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Abstract

Event cameras provide an advantage over traditional
frame-based cameras when capturing fast-moving objects
without a motion blur. They achieve this by recording
changes in light intensity (known as events), thus allow-
ing them to operate at a much higher frequency and mak-
ing them suitable for capturing motions in a highly dy-
namic scene. Many recent studies have proposed methods
to train neural networks (NNs) for predicting optical flow
from events. However, they often rely on a spatio-temporal
representation constructed from events over a fixed interval,
such as 10 Hz used in training on the DSEC dataset. This
limitation restricts the flow prediction to the same interval
(10 Hz) whereas the fast speed of event cameras, which can
operate up to 3 kHz, has not been effectively utilized. In this
work, we show that a temporally dense flow estimation at
100 Hz can be achieved by treating the flow estimation as a
sequential problem using two different variants of recurrent
networks – Long-short term memory (LSTM) and spiking
neural network (SNN). First, We utilize the NN model con-
structed similar to the popular EV-FlowNet but with LSTM
layers to demonstrate the efficiency of our training method.
The model not only produces 10× more frequent optical
flow than the existing ones, but the estimated flows also
have 13% lower errors than predictions from the baseline
EV-FlowNet. Second, we construct an EV-FlowNet SNN
but with leaky integrate and fire neurons to efficiently cap-
ture the temporal dynamics. We found that simple inherent
recurrent dynamics of SNN lead to significant parameter re-
duction compared to the LSTM model. In addition, because
of its event-driven computation, the spiking model is esti-
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mated to consume only 1.5% energy of the LSTM model,
highlighting the efficiency of SNN in processing events and
the potential for achieving temporally dense flow.

1. Introduction

Optical flow estimation is a core problem in computer

vision that evaluates the motion of each pixel between any

two consecutive images captured by a frame-based cam-

era. Optical flow information enables an observer to visu-

alize a motion field which is useful for numerous applica-

tions such as object trajectory prediction [21], robotic con-

trol [25], and autonomous driving [16]. The problem has

been traditionally addressed using various classical com-

puter vision techniques like correlation-based [27], block-

matching [1] and energy minimization-based [14] tech-

niques, but their computational costs have shown to be

prohibitively expensive for real-time applications. Neural

network (NN) based techniques for optical flow prediction

[6, 22, 28] have been proposed and remain a popular low-

cost computing method. Generally, NN models receive two

consecutive images taken by a frame-based camera as in-

put and predict the optical flow that best warps pixels from

one image to another. However, due to the limited dynamic

range of such frame-based cameras, the performance of the

aforementioned techniques may be affected by motion blur

or temporal aliasing.

Methods to estimate optical flow from event camera out-

puts offer a promising alternative to the frame-based ap-

proaches [12, 18, 19, 31, 33, 34]. An event camera logs light

intensity change at each pixel (so-called events) rather than

measuring actual light intensity for a fixed duration. Thus,

an event camera can generate a stream of events at high

temporal resolution as illustrated in Fig. 1(a). The reso-

lution may be as small as 300 μs [7], making event-based

optical flow estimation less susceptible to motion blur and

more suitable for a highly dynamic scene. Nonetheless,

being able to effectively extract information from a high-
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Outputs of a traditional frame-based camera

Outputs of an event camera

Figure 1. (a) Comparison between outputs of a traditional frame-

based and event camera. (b) Existing NN models typically rely

on a collection of events for optical flow prediction. (c) We train

NN models with memory elements to process each event count so

that they can perform more frequent optical flow estimation. Red

arrows indicate information flow from a past to a future time-step.

frequency event stream is a challenging task. An event cam-

era outputs events at a fast rate but in an asynchronous and

noisy manner. To ensure high fidelity of the inputs to the

NN models, existing works collect events over a fixed pe-

riod (often a duration between two consecutive optical flow

ground truths) and construct a spatio-temporal representa-

tion for optical flow estimation. Hence, optical flow is eval-

uated at a speed slower than the rate that events are pro-

duced by an event camera as illustrated in Fig. 1(b). Eval-

uating optical flow at a faster rate can be crucial for cer-

tain applications, such as dodging an obstacle during navi-

gation [24], where fast reaction time is essential.

To predict temporally dense optical flow, we cast the

event-based optical flow estimation as a sequential learn-

ing problem. We consider the event stream as a long

correlated sequence over time rather than multiple inde-

pendent sequences of inputs like in the existing works

[9, 18, 19, 31, 33, 34]. This approach allows us to reduce the

time needed to collect events as depicted in Fig. 1(c). We

train the NN models to learn the trajectory from each event

count and use the collected information to estimate optical

flows. NN models are hence, required to have internal states

that are capable of retaining history. For demonstrating the

efficiency of our training method, we first construct an NN

model similar to the commonly used model in event-based

optical flow estimation, EV-FlowNet [33], but replace each

convolutional layer with a layer of convolutional long-short

term memory (LSTM) [26]. The use of LSTM allows pre-

vious event information to be stored and evolved through

time. To demonstrate the possibility of implementing tem-

porally dense optical flow estimation for real-time applica-

tion, we construct another NN model similar to EV-FlowNet

but replace stateless neurons (like ReLU) with stateful spik-

ing neurons [10]. Spiking neural networks (SNNs) have

been previously proposed to address the inefficiency of typ-

ical neural networks in handling events which are sparse

in nature [18, 19]. Note that neurons communicate with

other neurons through binary values, and hence, SNNs of-

fer power savings on event-driven hardware by process-

ing only non-zero inputs. In addition, SNNs have internal

states (membrane potentials) which enable them to retain

information over time. This inherent recurrence in SNNs

can be advantageous for sequential learning tasks such as

temporally dense optical flow estimation. We demonstrate

that our training methodology can be applied to the spik-

ing models, resulting in a model with significantly fewer

parameters than the corresponding LSTM model. Our esti-

mation reveals that the spiking model consumes only 58%

energy compared to the baseline EV-FlowNet while predict-

ing 10× more frequent optical flow. Successful training of

the spiking model serves as the first step to realize tempo-

rally dense flow estimation on a neuromorphic chip like In-

tel Loihi [3] which recently achieved a throughput of 1000+

fps for multi-layer convolutional SNN computation [30].

Throughout this work, we refer to the two proposed mod-

els as LSTM-FlowNet and EfficientSpike-FlowNet, respec-

tively, for short. Steps to train both models for temporally

dense optical flow estimation are, nonetheless, not straight-

forward. A proper encoding scheme must be adapted to

deliver event information during every small duration to the

models. For this purpose, we use per-pixel event count ob-

tained through simple aggregation over a small time period.

Temporal information of the events is implicitly encoded in

the order that the event counts are fed to the models. De-

spite its simplicity, we show that the event count is sufficient

for optical flow estimation and in fact leads to better predic-

tion with a sequential learning methodology. Another chal-

lenge comes from a typical assumption in sequential learn-

ing that an input has a limited length. However, an input in



our case (i.e., event stream) is a long indefinite-length se-

quence of information, as the optical flow estimation may

be performed for an extended time. This raises the issue of

how to estimate optical flow from an event stream without

resetting the NN models. Resetting the models would result

in losing valuable event information processed in the past.

We find that typical sequential learning approaches do not

train the models to perform well on continuous inference

(i.e., without a regular reset) and propose modifications to

address this problem. Our proposed modification allows the

models to learn and ignore information from older events

while considering more recent relevant events for optical

flow estimation.

Overall, our contributions can be summarized as follows:

1. We cast event-based optical flow estimation as a se-

quential learning problem to achieve temporally dense

optical flow prediction. We introduce two NN mod-

els with internal states, namely LSTM-FlowNet and

EfficientSpike-FlowNet, and train them on the DSEC

dataset [8] to estimate 10× more frequent optical flow

than models crafted from the existing approaches.

2. We present a technique to train the proposed models

for optical flow estimation without any network reset,

so that information from past relevant events is car-

ried over time for a more reliable and frequent predic-

tion. We show that an ability to draw longer tempo-

ral correlations from an event stream leads to 13% im-

provement in the flow prediction accuracy of LSTM-

FlowNet over the baseline EVFlowNet.

3. We demonstrate the potential of efficiently estimat-

ing more frequent flow (temporally dense flow) by ap-

plying the proposed method to train EfficientSpike-

FlowNet. Compared to LSTM-FlowNet, we found

that the spiking model has a higher prediction error

due to its simpler recurrence dynamic. However, it

comes with 3.23× lower number of parameters and

offers substantial power savings (1.5% of the LSTM-

FlowNet).

2. Background
2.1. Comparison with Existing Works

The primary focus of many existing works on event-

based optical flow estimation is on proposing different NN

models for predicting optical flow [9, 12, 17–19, 31, 33, 34].

Zhu et al. proposed the first encoder-decoder model known

as EV-FlowNet to process an event representation [33]. A

similar model was introduced in [31, 34] but with an abil-

ity to compute camera and depth simultaneously. The in-

efficiency of EV-FlowNet in handling events was addressed

in [18,19] by incorporating spiking neurons into the encoder

Figure 2. (a) Diagram representing operations of LSTM or spiking

neuron layer at time t. Internal state of both NN layers is carried

over from the past time-step to the current time-step for computa-

tion. (b) Equivalent representation when operations of LSTM or

spiking neuron layer are unrolled into multiple time-steps.

part of the model. With the advancement of SNN train-

ing techniques, the fully spiking variances of EV-FlowNet

were introduced later in [12, 17]. Another line of works

proposed the use of recurrent NNs for iteratively optimiz-

ing optical flow [5, 9]. A key observation is that all models

proposed so far are still trained similar to the EV-FlowNet.

They are trained to predict a single optical flow during a

fixed interval, such as 10 Hz used in training on the DSEC

dataset. Our work distinguishes itself from prior stud-

ies by proposing a new methodology for predicting mul-

tiple optical flows within the same period. We achieve

this temporally dense optical flow estimation by leverag-

ing proper sequential training and recurrent NNs with in-

ternal states (outlined in Section 3). One may argue that

event-based flow estimation with recurrent NNs has been

proposed in [5, 9]. However, those models are designed to

process each event representation multiple times and utilize

that information to iteratively improve flow prediction. Our

proposed models, on the other hand, are trained to process

each event count only once and retain relevant information

for an optical flow estimation.

2.2. Building Blocks for Sequential Learning

Sequential learning tasks are a class of problems where

information is received through multiple episodes over

time. In sequential learning, NNs are trained to extract and

retain important information at each time step for future pre-

dictions (e.g., optical flow). This calls for NNs with mem-

ory elements to retain information from the past. In this

work, we utilize two different types of NN layer to create

a model like EV-FlowNet, namely convolution LSTM and

spiking neuron layer. The operation of convolution LSTM

and spiking neuron layer can be visualized in the form of a

computational graph as shown in Fig. 2(a).

2.2.1 Convolutional LSTM

LSTM is a type of NNs with internalized memory that have

demonstrated exceptional generalization capabilities across

various sequential learning problems [11, 13, 29]. Its in-

ternal state typically referred to as the cell state (ct) is de-
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Figure 3. Computational graph of (a) convolutional LSTM layer

and (b) convolutional spiking neuron layer.

signed specifically to avoid the vanishing gradient problem.

The cell state runs straight through an LSTM with minimal

linear interactions as illustrated in Fig. 3(a), thus avoiding

encoded information from the past being disrupted while

sustaining gradient flow during back-propagation. LSTM

can be combined with a convolutional layer making it capa-

ble of processing 2-D inputs.

Whenever a layer of convoluation LSTM receives an in-

put (xt) at time t, it computes an output known as the hid-

den state (ht) and the internal state (ct) through various gat-

ing mechanisms as follows. First, the forget gate (see left

dashed box in Fig. 3(a)) controls how much of the previous

cell state (ct−1) is retained by deriving a scale factor ft (val-

ued between 0 and 1) based on the input and the previous

hidden state (ht−1). Candidate and input gates (see middle

box in Fig. 3(a)) then calculate the contribution from the

input to the internal state and combine it with the output

of the forget gate to obtain the new cell state. Lastly, the

output gate controls the amount of information carried from

the new cell state to the convolutional LSTM output (hidden

state). The dynamic of the convolutional LSTM layer can

be expressed mathematically as follows:

ft = σ(Conv(ht−1) + Conv(xt) + bf )

it = σ(Conv(ht−1) + Conv(xt) + bi)

ĉt = tanh(Conv(ht−1) + Conv(xt) + bc)

ct = ft � ct−1 + it � ĉt

ot = σ(Conv(ht−1) + Conv(xt) + bf )

ht = ot � tanh(ct)

where b are a bias of each different gate. � signifies an

element-wise multiplication.

2.2.2 Spiking Neurons

Spiking neurons are artificial neurons that are inspired by

biological neurons in nature. They display several unique

characteristics that make them suitable for real-time appli-

cations. Artificial spiking neurons communicate sparsely

through binary signals (so-called spikes) that resemble elec-

tric pulses transmitted by biological neurons. This com-

munication scheme simplifies hardware implementations of

SNNs and enables their computations to be done efficiently

in an event-driven manner [3,4,20]. In addition, their event-

driven nature makes them ideal for handling asynchronous

data generated by event sensors. Spiking neurons also have

internal states which are useful for sequential learning.

Dynamics of the leaky integrate-and-fire (LIF) neuron,

a popular spiking neuron model, have a couple of notable

characteristics [10]. A spiking neuron has an internal state

referred to as the membrane potential (vt). The membrane

potential is increased by an input coming into the neuron

after the input gets modulated by a synaptic weight. The

neuron then generates an output (or a spike) when the mem-

brane potential exceeds a defined threshold as shown in

Fig. 3(b). Mathematically, the dynamics of the LIF neuron

with a convolutional connection that we used in this work

can be expressed as follows:

vt = vt−1 − yt−1 + Conv(xt) + b

yt = thres(vt)

where xt and yt represent the input and output of the LIF

neuron at time t. b is a bias of the neuron.

2.3. Method to Train Sequential Networks

To understand the training methodology, we refer to the

computational graphs of the NN layer in Fig. 2. Because

internal states of the NN layer (statet) are computed based

on new inputs (inputt) and their state values from the pre-

vious time-step (statet−1), we can utilize the same com-

putational graph to derive new internal states and outputs

(outputt) recursively. Hence, the back-propagation through

time (BPTT) algorithm can be applied to compute gradients

for training these models. For this, the operations of the

NN layer are unfolded in time by creating several copies

of it and treating them as a feed-forward network with tied

weights. Fig. 2(b) shows the computation graph after an

unrolling. Given a target flow at each time, an error can be

computed in a supervised manner and the gradient can be

then propagated backward to each time-step. We overcome

the non-differentiability of the SNN threshold function by

using surrogate gradients [2, 32].

3. Proposed Method
3.1. Proposed Event Representation for Temporally

Dense Flow Estimation

Selecting a proper event representation for optical flow

estimation is a challenging task as an event camera asyn-

chronously reports changes in the light intensity (It) at ev-

ery pixel on the sensor array. For each pixel, an event

camera can generate a negative event or a positive event.

The positive event is generated whenever the brightness in-

creases beyond a predefined threshold (θ+) as described by



t h e f oll o wi n g e q u ati o n:

l o g (I t / I t − 1 ) ≥ θ +

Li k e wis e, t h e n e g ati v e e v e nt is g e n er at e d  w h e n t h e bri g ht-
n ess d e cr e as es b e y o n d a diff er e nt t hr es h ol d θ − .  H e n c e,
e a c h e v e nt c orr es p o n ds t o a ti m e (t), pi x el l o c ati o n (x, y )
a n d p ol arit y of c h a n g e (p ). Si n c e t h e g o al of o pti c al fl o w
esti m ati o n is t o pr o d u c e i m a g e-li k e o ut p ut t h at i n di c at es t h e
fl o w  m a g nit u d e i n x - a n d y - dir e cti o ns, e xisti n g a p pr o a c h es
utili z e a c o n v ol uti o n al l a y er t o dr a w s p ati al c orr el ati o ns b e-
t w e e n n e ar b y pi x els.  A c o m m o n pr a cti c e is t o str u ct ur e
e v e nt i nf or m ati o n as fr a m es  wit h a fi x e d n u m b er of c h a n-
n els b ef or e c o n v ol uti o n o p er ati o n is a p pli e d.

Pri or  w or ks pr o p os e d diff er e nt  m et h o ds t o c o nstr u ct t his
s p ati o-t e m p or al r e pr es e nt ati o n fr o m a c oll e cti o n of e v e nts.
O n e c o m m o n a p pr o a c h e n c o d es t h e a v er a g e ti mi n g or t h e
m ost r e c e nt ti mi n g of e v e nts at e v er y pi x el i nt o o n e of t h e
c h a n n els t o c a pt ur e t e m p or al i nf or m ati o n [ 3 1 ,3 3 ].  A n ot h er
c o m m o n a p pr o a c h di vi d es e v e nts i nt o  m ulti pl e p artiti o ns
wit h t h e s a m e n u m b er of e v e nts.  T h e n, p er- pi x el e v e nt
c o u nt fr o m e a c h p artiti o n is c al c ul at e d t o f or m a  m ulti-
c h a n n el i n p ut [ 1 2 , 1 8 , 1 9 ].  T h e iss u e  wit h s u c h i n p ut e n-
c o di n g s c h e m es is t h at a n i nf er e n c e c a n o nl y b e  m a d e o n c e
t h e e ntir e s e q u e n c e of e v e nt d at a is a v ail a bl e. F or i nst a n c e,
s u p p os e t h at  w e  w a nt t o r e pr es e nt e v e nts r e c ei v e d o v er a
d ur ati o n b et w e e n t= 1 6 a n d t= 2 0 fr o m a n e v e nt str e a m as
d e pi ct e d i n Fi g. 1 ( c).  At t= 1 8 , e v e nts c a n n ot b e di vi d e d i nt o
e q ui v ol u m e p artiti o ns a n d tr a nsl at e d t o a s p ati o-t e m p or al
r e pr es e nt ati o n si n c e t h e t ot al n u m b er of e v e nts t h at arri v e
d uri n g t h e  w h ol e d ur ati o n is n ot y et k n o w n.

T o e n a bl e i nst a nt a n e o us c o m p uti n g fr o m e v e nts i n a
s m all er i nt er v al,  w e f e e d p er- pi x el e v e nt c o u nt as a n i n p ut
t o  N Ns.  T his r e pr es e nt ati o n c a n b e o bt ai n e d t hr o u g h si m pl e
a g gr e g ati o n o v er e a c h ti m e p eri o d. Si n c e o ur pr o p os e d  N Ns
pr o c ess i n p ut s e q u e nti all y, t e m p or al i nf or m ati o n of e v e nts
is i m pli citl y e n c o d e d i n t h e or d er t h at t h e e v e nt c o u nts ar e
f e d t o t h e  N Ns.  We s a m pl e e v e nt c o u nt at r e g ul ar i nt er v als
t o k e e p t h e n oti o n of ti m e c o nsist e nt a n d all o w  N Ns t o l e ar n
t e m p or al c orr el ati o ns b et w e e n e v e nts at e a c h pi x el.

3. 2.  P r o p os e d  M o d els f o r  Te m p o r all y  D e ns e  O pti c al
Fl o w  Esti m ati o n

E n c o d er- d e c o d er n et w or k ar c hit e ct ur e h as b e e n  wi d el y
a d o pt e d b y pri or  w or ks f or e v e nt- b as e d o pti c al fl o w esti m a-
ti o n [1 2 , 1 8 , 1 9 , 3 4 ].  T his ar c hit e ct ur e h as  m ulti pl e d o w n-
s a m pli n g c o n v ol uti o n al l a y ers f oll o w e d b y u ps a m pli n g c o n-
v ol uti o n al l a y ers.  T h e f or m er d o w ns a m pli n g p art of t h e
n et w or k ai ms t o e n c o d e s p ati o-t e m p or al i n p uts i nt o i nt er-
m e di at e r e pr es e nt ati o ns  w hil e t h e l att er u ps a m pli n g p art
utili z es t h es e r e pr es e nt ati o ns t o esti m at e o pti c al fl o w.  We
f oll o w t h e s a m e c o n v e nti o n a n d c o nstr u ct t w o  N N  m o d els
f or t e m p or all y d e ns e o pti c al fl o w pr e di cti o n.  T o d e m o n-
str at e t h e ef fi ci e n c y of o ur tr ai ni n g  m et h o d,  w e first cr e at e
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Fi g ur e 4. ( a)  E x a m pl e of e v e nt c o u nt s e q u e n c e g e n er ati o n
fr o m a n e v e nt str e a m. ( b)  O p er ati o ns of  L S T M- Fl o w N et a n d
Ef fi ci e nt S pi k e- Fl o w N et o n e a c h g e n er at e d s e q u e n c e.  B P T T al g o-
rit h m is a p pli e d as us u al, b ut t h e gr a di e nt is pr o p a g at e d b a c k w ar d
o nl y t o e v e nt c o u nts t h at ar e  wit hi n a  wi n d o w of i nt er est.

a n  N N  m o d el c all e d  L S T M- Fl o w N et,  w hi c h is si mil ar t o
E V- Fl o w N et - a p o p ul ar e n c o d er- d e c o d er  m o d el f or e v e nt-
b as e d o pti c al fl o w esti m ati o n [ 3 3 ].  H o w e v er, i nst e a d of us-
i n g r e g ul ar c o n v ol uti o n al l a y ers,  w e r e pl a c e e a c h l a y er  wit h
a l a y er of c o n v ol uti o n al  L S T M.  T h e us e of  L S T M all o ws
pr e vi o us e v e nt i nf or m ati o n t o b e st or e d a n d e v ol v e d t hr o u g h
ti m e. I n a d diti o n,  w e c o nstr u ct a n ot h er  N N  m o d el si mil ar
t o  E V- Fl o w N et b ut  wit h o n e  m aj or diff er e n c e.  R at h er t h a n
usi n g st at el ess n e ur o ns li k e  R e L U,  w e r e pl a c e t h e m  wit h
st at ef ul s pi ki n g n e ur o ns.  O ur ai m is t o d e m o nstr at e t h e p o-
t e nti al i m pl e m e nt ati o n of t e m p or all y d e ns e fl o w esti m ati o n
f or r e al-ti m e a p pli c ati o n. S N Ns h a v e pr e vi o usl y b e e n pr o-
p os e d t o a d dr ess t h e i n ef fi ci e n c y of t y pi c al n e ur al n et w or ks
i n h a n dli n g e v e nts t h at is s p ars e i n n at ur e.  B y c o m m u ni c at-
i n g t hr o u g h bi n ar y v al u es, S N Ns c a n s ki p c o m p ut ati o n  wit h
z er o i n p uts  w h e n r e ali z e d o n e v e nt- dri v e n h ar d w ar e, r es ult-
i n g i n p o w er s a vi n gs.  T h us,  w e r ef er t o t h e s pi ki n g  m o d el
as  Ef fi ci e nt S pi k e- Fl o w N et a n d a n al y z e its e x p e ct e d c o m p u-
t ati o n r e q uir e m e nts i n t h e f oll o wi n g s e cti o n t o d e m o nstr at e
its c o m p ut ati o n al ef fi ci e n c y.

3. 3. S e q u e nti al  Tr ai ni n g f o r  Te m p o r all y  D e ns e  O p-
ti c al  Fl o w  Esti m ati o n f r o m a n  E v e nt St r e a m

I n or d er t o a c hi e v e fr e q u e nt o pti c al fl o w esti m ati o n,  w e
tr e at t h e e v e nt str e a m as o n e l o n g i n p ut, r at h er t h a n di vi d-
i n g it i nt o i n di vi d u al s e q u e n c es li k e i n t h e pr e vi o us  w or ks.
H o w e v er, tr ai ni n g t h e pr o p os e d  m o d els o n s u c h a l o n g i n p ut
p os es s e v er al c h all e n g es. Firstl y, a b at c h c o m p ut ati o n t e c h-
ni q u e c a n n ot b e us e d,  w hi c h l e a ds t o sl o w er tr ai ni n g a n d p o-
t e nti al bi as es i n t h e tr ai n e d  m o d els.  A d diti o n all y, t h er e ar e
li mit e d d at a a u g m e nt ati o ns t h at c a n b e a p pli e d d uri n g e a c h
e p o c h si n c e t h e y  m ust b e u nif or m a cr oss t h e e ntir e i n p ut s e-
q u e n c e.  M or e o v er, tr a diti o n al s e q u e nti al tr ai ni n g  m et h o d-
ol o g y ass u m es t h at s e q u e nti al i n p uts h a v e a fi nit e l e n gt h,
a n d t h e  m o d el’s i nt er n al st at es ar e r es et  wit h e a c h n e w i n p ut
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s e q u e n c e.  H o w e v er,  w e  w a nt o ur  m o d els t o esti m at e o pti-
c al fl o w  wit h o ut i nt err u pti o n as r ei niti ali zi n g t h eir i nt er n al
st at es  w o ul d r es ult i n a l oss of i nf or m ati o n fr o m p ast e v e nts.
T h e  m o d els als o d o n ot g e n er at e r eli a bl e o ut p uts u ntil t h e y
pr o c ess a s uf fi ci e nt n u m b er of e v e nt c o u nts.

T o a d dr ess t h os e iss u es,  w e c a n n ai v el y s plit a l o n g e v e nt
str e a m i nt o  m ulti pl e s m all er s e q u e n c es c o nsisti n g of 1 0
e v e nt c o u nts as ill ustr at e d i n Fi g. 1 ( b) a n d tr ai n t h e pr o-
p os e d  m o d el usi n g a t y pi c al s e q u e nti al tr ai ni n g  m et h o d ol-
o g y.  T h e n,  w e utili z e t h e tr ai n e d  m o d el  wit h o ut a n et w or k
r es et.  H o w e v er, o ur pr eli mi n ar y e x p eri m e nts s h o w t h at t his
a p pr o a c h r es ults i n u n a c c e pt a bl y l ar g e err ors  wit h b ot h pr o-
p os e d  m o d els, e v e n  wit h t h e us e of d at a a u g m e nt ati o ns a n d
n ois y i niti al st at es d uri n g tr ai ni n g.  We o bs er v e t h at t h e pr e-
di cti o n err or i n cr e as es dr asti c all y aft er t h e first a c c e pt a bl e
o pti c al fl o w esti m ati o n.  T his is b e c a us e tr a diti o n al s e q u e n-
ti al tr ai ni n g  m et h o d ol o gi es d o n ot tr ai n t h e  m o d el t o eff e c-
ti v el y i g n or e ol d er e v e nts a n d f o c us o n  m or e r e c e nt o n es.
T h e i nt er n al st at es c oll e ct r esi d u al i nf or m ati o n,  m a ki n g t h e
m o d el pr o gr essi v el y h ar d t o esti m at e r eli a bl e fl o w  wit h e a c h
n e w i n p ut.

T o pr e p ar e t h e  m o d els f or i nf er e n c e o n a n e v e nt str e a m
wit h o ut a n et w or k r es et,  w e pr o p os e a t w o-st e p d at a g e n er a-
ti o n a p pr o a c h f or tr ai ni n g. S u p p os e t h at o pti c al fl o w gr o u n d
tr ut h is a v ail a bl e at e v er y m e v e nt c o u nts.  T h e first st e p is
t o cr e at e i n p ut s e q u e n c es fr o m a n e v e nt str e a m c o nsisti n g
of m ·n c o ns e c uti v e e v e nt c o u nts (s e e Fi g. 4 ( a)).  We  m a k e
s ur e t h at m ·n is s uf fi ci e ntl y l ar g e s o t h at all i m p ort a nt e v e nt
c o u nts ar e i n cl u d e d f or o pti c al fl o w esti m ati o n.  D oi n g s o
all o ws us t o a p pl y diff er e nt d at a a u g m e nt ati o ns t o e a c h s e-
q u e n c e a n d i n cr e as es t h e n u m b er of d at a p oi nts f or tr ai ni n g.
T o  m a k e t h e  m o d el a w ar e of t h e pr e vi o us e v e nt c o u nts,  w e
i n cr e as e t h e l e n gt h of e a c h s e q u e n c e b y i n cl u di n g l a d di-
ti o n al e v e nt c o u nts i n fr o nt of t h e m ·n e v e nt c o u nts.  T h e
n e xt st e p is t o tr ai n t h e  m o d el usi n g t h e  B P T T al g orit h m, b ut
pr o p a g at e gr a di e nt b a c k w ar d o nl y t o e v e nt c o u nts t h at ar e
wit hi n a  wi n d o w of i nt er est e q u al t o m ·n (s e e Fi g. 4 ( b)). I n-
f or m ati o n fr o m l e v e nt c o u nts b e y o n d t his  wi n d o w of i nt er-
est is a ut o m ati c all y tr e at e d as n ois e d uri n g tr ai ni n g.  T h us,
w e g u ar a nt e e t h e  m o d els t o l e ar n t e m p or al c orr el ati o ns fr o m
m ·n e v e nt c o u nts b y pr o p a g ati n g gr a di e nt b a c k i n ti m e.

4.  E x p e ri m e nt al S et u p a n d  R es ults

4. 1.  D at as et,  Tr ai ni n g a n d  E v al u ati o n  P r o c e d u r e

We d e m o nstr at e t h e eff e cti v e n ess of t h e pr o p os e d t e m p o-
r all y d e ns e o pti c al fl o w esti m ati o n o n t h e  D S E C d at as et [8 ]
w hi c h c o nt ai ns b ot h hi g h-r es ol uti o n e v e nts a n d o pti c al fl o w
gr o u n d tr ut hs fr o m d a yti m e a n d ni g htti m e o ut d o or dri vi n g
u n d er v ari o us li g hti n g c o n diti o ns.  T h er e is a n ot h er p o p u-
l ar d at as et,  M V S E C [3 3 ]; h o w e v er, t h e  m a g nit u d es of its
o pti c al fl o ws ar e  m ostl y s m all er t h a n 3 pi x els a n d o nl y
a b o ut 2 0 % of pi x els i n e a c h fl o w gr o u n d tr ut h ar e v ali d.

We c h o os e t o e x p eri m e nt  wit h  D S E C d at as et as it h as b et-
t er q u alit y gr o u n d tr ut hs a n d o pti c al fl o ws  wit h 5× f ast er
m o v e m e nt, all o wi n g us t o q u a ntif y t h e i m pr o v e m e nt  wit h
o ur pr o p os e d a p pr o a c h. I n t h e  D S E C d at as et, t h e e v e nts ar e
r e c or d e d usi n g a st er e o e v e nt c a m er a.  O pti c al fl o w gr o u n d
tr ut hs ar e d eri v e d fr o m o d o m etr y gr o u n d tr ut hs a n d ar e p u b-
li cl y a v ail a bl e f or 1 8 s c e n ari os.  We s plit e v e nts a n d o pti-
c al fl o w gr o u n d tr ut hs i n e a c h r e c or di n g i nt o a tr ai ni n g a n d
t esti n g s et usi n g a n 8 0/ 2 0 r ati o. I n ot h er  w or ds,  w e pi c k
t h e first 8 0 % of t h e e v e nts a n d t h e c orr es p o n di n g gr o u n d
tr ut hs i n e a c h r e c or di n g t o b e a tr ai ni n g s et  w hil e  w e us e
t h e r est as a t esti n g s et.  N ot e t h at  w e pr o vi d e r es ults fr o m
usi n g a diff er e nt tr ai ni n g-t esti n g s et-s plitti n g str at e g y si mi-
l ar t o [9 , 3 3 ] ar e i n cl u d e d i n t h e s u p pl e m e nt ar y d o c u m e nt.
F or tr ai ni n g, o nl y e v e nts fr o m t h e l eft c a m er a ( aft er a p pl y-
i n g o pti c al c orr e cti o n) ar e us e d f or t a b ul ati n g e v e nt c o u nts.
We r a n d o ml y a u g m e nt t h e e v e nts a n d o pti c al fl o w gr o u n d
tr ut hs b y fli p pi n g t h e m al o n g v erti c al a n d h ori z o nt al dir e c-
ti o ns a n d cr o p pi n g t h e m d o w n t o a si z e of 2 8 8× 3 8 4.  We
tr ai n t h e b as eli n e a n d pr o p os e d n et w or ks  wit h  A d a m o pti-
mi z er f or 1 0 e p o c hs  wit h a n i niti al l e ar ni n g r at e of 5 × 1 0 − 4

a n d a b at c h si z e of 1 6. Si n c e t h e o pti c al fl o w gr o u n d tr ut hs
i n  D S E C d at as et ar e a v ail a bl e at 1 0  H z,  w e g e n er at e a d-
diti o n al gr o u n d tr ut hs f or tr ai ni n g o ur pr o p os e d  m o d els b y
li n e ar i nt er p ol ati o n t o  m at c h t h e i n p ut fr e q u e n c y. Si n c e t h e
c o nst a nt v el o cit y ass u m pti o n  mi g ht n ot b e a p pli c a bl e t o all
m oti o n s c e n ari os, o ur a p pr o a c h of g e n er ati n g a d diti o n al o p-
ti c al fl o w gr o u n d tr ut hs usi n g li n e ar i nt er p ol ati o n c o ul d p o-
t e nti all y gi v e ris e t o c o n c er ns.  T h er ef or e,  w e als o pr es e nt
s u p pl e m e nt ar y r es ults b as e d o n a ct u al gr o u n d tr ut hs i n t h e
s u p pl e m e nt ar y d o c u m e nt.  We tr ai n e d all e xisti n g a n d pr o-
p os e d  m o d els  wit h L 2 l oss t h at  mi ni mi z es t h e s q u ar e d dif-
f er e n c es b et w e e n o pti c al fl o w esti m ati o n a n d gr o u n d tr ut h.
T h e l oss f u n cti o n c a n b e  m at h e m ati c all y e x pr ess e d as:

L =
M N

( u, v ) pr e di cti o n − ( u, v ) gt 2

w h er e M is t h e t ot al n u m b er of gr o u n d tr ut hs i n a n e v e nt
str e a m a n d N is t h e n u m b er of a cti v e pi x els i n t h e gr o u n d
tr ut h. (u, v ) r e pr es e nts o pti c al fl o w  m a g nit u d e al o n g (x, y )
dir e cti o ns.

F or e v al u ati o n,  w e c e nt er cr o p e v e nts fr o m e a c h r e c or d-
i n g a n d o bt ai n e v e nt c o u nts of si z e 2 8 8× 3 8 4 f or o pti c al
fl o w esti m ati o n.  We s e q u e nti all y f e e d e v e nt c o u nts t o t h e
pr o p os e d  m o d els o n e b y o n e a n d o bt ai n o pti c al fl o w esti-
m ati o n. Si n c e o pti c al fl o w gr o u n d tr ut hs ar e a v ail a bl e at
1 0  H z,  w e p erf or m a n ot h er a u g m e nt ati o n t o g e n er at e e xtr a
gr o u n d tr ut hs f or t h e t est s et a n d g u ar a nt e e t h at t h e pr o p os e d
m o d el g e n er at es r eli a bl e o pti c al fl o ws aft er e v er y i n p ut.  We
r e p ort t h e a v er a g e of e n d- p oi nt err ors ( A E E)  w hi c h is t h e
m e a n of t h e  E u cli d e a n dist a n c e b et w e e n t h e pr e di ct e d fl o w
a n d t h e gr o u n d tr ut h.  We als o c o m p ut e t h e p er c e nt a g e of
pi x els t h at h a v e pr e di ct e d err ors gr e at er t h a n k n u m b er of
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Figure 5. Qualitative comparison of the optical flow estimated by EV-FlowNet and LSTM-FlowNet on zurich city 03 a sequence.

pixels (denoted as kPE). Since not all ground truth pixels

are valid, we limit a calculation of these metrics to areas

that have odometry information available.

4.2. Optical Flow Estimation Rate and Accuracy

Table 1 presents a comparison of the optical flow estima-

tion rate, AEE, and kPE between the existing and proposed

models. To train the existing models, we first use their cor-

responding event representations proposed in each work as

inputs to the models. As the optical flow ground truths on

the DSEC dataset are recorded at 10Hz, we split the event

stream at times when ground truths are available and con-

struct a spatio-temporal representation based on events in

each split. Existing models are trained with the event repre-

sentations at 10 Hz, resulting in models that estimate optical

flow at the same frequency (see column 3 of the first four

rows in the table). In contrast, we train LSTM-FlowNet and

EfficientSpike-FlowNet using the proposed event represen-

tation, which enables more frequent optical flow estimation.

The proposed models receive event counts which can be

computed during a much shorter interval since normaliza-

tion or other pre-processing is not required. We arbitrarily

collect event counts at 100 Hz, which is 10 times of the op-

tical flow ground truth frequency. Other rates are possible

as discussed in the following subsection. We then utilize

sequential training method to train the proposed models for

temporally dense optical flow at the rate of 100 Hz. As a

result, the prediction rate for the proposed models is an or-

der of magnitude higher than the existing ones (see column

3 of the last four rows in the table). Note that we evaluate

both proposed models without a network reset to reproduce

a scenario where the models are used for real-time optical

flow estimation. Network reset implies an interruption in

getting reliable optical flows as a sequential model requires

processing a sufficient number of event counts similar to the

way it was trained before producing a faithful prediction.

Our results reveal that a typical sequential learning

method does not train the proposed models well for opti-

cal flow estimation without a regular state reinitialization as

discussed in Section 3.3. Both the proposed models per-

form poorly in terms of prediction accuracy (see column 4

of the middle two rows in the table). Our proposed sequen-

tial training method (with n=1 and l=10) addresses this po-

tential issue in optical flow estimation. It enables LSTM-

FlowNet and EfficientSpike-FlowNet to estimate tempo-

rally dense optical flows with a mean error smaller than

the average flow magnitude in our testing set (7.73 pix-

els). LSTM-FlowNet in particular outperforms all exist-

ing models with encoder-decoder architecture. Compared

to the baseline EV-FlowNet, LSTM-FlowNet achieves a

13% lower AEE, thanks to its ability to draw longer cor-

relations back in time. Our qualitative comparison reveals

that LSTM-FlowNet outperforms EV-FlowNet in scenar-

ios with only few reliable events such as events generated

from a tree line under low illumination as shown in Fig. 5.

Nonetheless, LSTM-FlowNet still has slightly lower accu-

racy than E-RAFT which relies on a different model ar-

chitecture and principle. 1PE measurement indicates that

their differences come from the predicted flows with errors

of 1 pixel or less [9]. While EfficientSpike-FlowNet bene-

fits from the proposed sequential learning method, its flow

estimation accuracy is slightly lower than LSTM-FlowNet,

which has more complex recurrent dynamics. However, we

show that the simple recurrent dynamics turn out to be ben-

eficial in terms of the number of parameters (see column

5 of Table 2). The spiking model has 3.23× lower num-

ber of parameters than LSTM-FlowNet, which translates to

smaller memory requirements and potentially lower power

consumption.

4.3. Computational Efficiency

We evaluate the computational efficiency of the base-

line and proposed models by measuring the expected en-

ergy consumption as shown in the last column of Table 2.

To compute the energy consumption, we adopt a similar

approach to that used in [18, 23], which calculates energy

based on the number and type of arithmetic operations.

Since spiking neurons communicate through binary values

(0 and 1), power-hungry multiplication operations in SNN

can be simplified into addition operations. For computing

weight sum, SNNs perform sparse accumulate (AC) oper-

ations instead of multiply-and-accumulate (MAC) opera-

tions used by typical NNs. The energy required for AC

and MAC operations in 32-bit floating-point computation



Table 1. Comparison of the flow prediction rate, average end-point error (AEE), and predicted errors greater than k pixels (kPE) between

existing and proposed models trained using different learning methodologies. Bold value represents the best result of each metric.

Training method Architecture Prediction rate AEE 1PE 2PE 3PE

Using each corresponding EV-FlowNet [33] 10 Hz 0.67 17% 3% 1%

event representation Spike-FlowNet [19] 10 Hz 1.12 64% 28% 13%

constructed from events Adaptive-FlowNet [17] 10 Hz 1.26 47% 15% 6%

every 10 Hz E-RAFT [9] 10 Hz 0.52 10% 2% 1%
Typical sequential LSTM-FlowNet 100 Hz 36.91 100% 100% 100%

learning method EfficientSpike-FlowNet 100 Hz 20.99 100% 99% 99%

Proposed sequential LSTM-FlowNet 100 Hz 0.60 12% 2% 1%
learning method EfficientSpike-FlowNet 100 Hz 2.66 84% 56% 34%

Table 2. Comparison of the optical flow prediction rate, AEE, number of parameters, and normalized compute energy per second between

baseline and proposed models with different types of inputs. Bold value represents the best result of each metric.

Inputs Architecture Prediction rate AEE # Params Normalized energy

Event representation at 10 Hz EV-FlowNet [33] 10 Hz 0.67 16.6M 1×
Event counts at 100 Hz

LSTM-FlowNet 100 Hz 0.60 53.6M 40×
EfficientSpike-FlowNet 2.66 16.6M 0.58×

Event counts at 50 Hz EfficientSpike-FlowNet 50 Hz 3.86 16.6M 0.24×

on 45nm CMOS technology are 0.9 pJ and 4.6 pJ [15],

respectively. This makes arithmetic operations for SNNs

roughly five times more energy-efficient than typical NNs.

On event-driven hardware, SNNs also provide extra power

saving by processing only non-zero inputs. To compute the

total energy of EfficientSpike-FlowNet, we then track the

percentage of non-zero inputs received by spiking neurons

in each layer and multiply the percentage with the number

of arithmetic operations to get the total energy. Our mea-

surement reveals that the input sparsity (i.e., the number of

zero inputs) of encoder blocks in EfficientSpike-FlowNet

increases with depth and reaches a maximum of 87% in the

last encoder block. The input sparsity then gradually de-

creases in the decoder blocks, possibly due to a reduction in

the number of decoder channels. We found that the compute

energy of EfficientSpike-FlowNet is only 58% of the base-

line EV-FlowNet even though it produces more frequent

optical flows. The estimated energy for EfficientSpike-

FlowNet is almost two orders of magnitude lower than

LSTM-FlowNet (see row 3-4 of Table 2) due to a smaller

number of parameters and its efficiency in handling events.

These findings serve as a verification and represent a step

towards the realization of temporally dense flow estimation

on hardware geared toward fast and efficient computing like

Intel Loihi [3] which has recently achieved a throughput

of 1000+ fps for multi-layer convolutional SNN computa-

tion [30].

4.4. Effect of Input Rate

In our framework, the proposed models are trained to es-

timate optical flow at the same frequency as the input event

counts. The frequency of event counts can be changed to

accommodate computational constraints. We demonstrate

that different input rates can be used by feeding the model

with event counts at 50 Hz. The slower input rate results

in faster training and less energy consumption (see the last

row in Table 2), as the inputs at 50 Hz require fewer com-

putations than ones at 100 Hz within a given period. How-

ever, the error in flow estimation increases due to impre-

cise temporal information (i.e., using longer time to collect

event count). Increasing the input rate is also possible but

at the expense of inference energy consumption. In our ex-

periments, we found that increasing the input rate beyond

100 Hz does not significantly improve the predicted flow

quality. Therefore, we choose the input rate of 100 Hz in

all experiments. Nonetheless, the input rate must be cho-

sen carefully to satisfy the reaction time and computational

constraints during a deployment.

5. Conclusion
In this work, we propose an approach to achieve tem-

porally dense optical flow estimation using event cameras.

We cast the problem as a sequential learning task and intro-

duce variants of the EV-FlowNet architecture that incorpo-

rate LSTMs and spiking neurons so that the models have

suitable memories for learning. Our results suggest that



traditional training methods are not well-suited for training

the proposed models to estimate optical flows from a con-

tinuous event stream. To address this issue, we propose a

sequential training method that enables the models to fo-

cus on recent events while ignoring irrelevant older ones.

This leads to a continuous 10× temporally dense flow es-

timation (without requiring a network reset) over existing

approaches. Results from the LSTM model reveal a po-

tential accuracy improvement over the baseline model from

the ability to draw longer temporal correlations from event

streams. We demonstrate that the inherent recurrent dy-

namics of the spiking model are also useful for estimating

more frequent optical flow. Due to its simpler dynamics, the

spiking model offers substantial parameter reduction over

the LSTM model. In addition, our energy estimation indi-

cates that the spiking model is significantly more efficient

in handling events compared to the LSTM model, with an

expected energy consumption of only 1.5% of the LSTM

one. This highlights the potential use of the spiking model

for temporally dense optical flow estimation in real-time ap-

plications like flying drones with limited energy budget.
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