Hardware Acceleration with Zero-Copy Memory
Management for Heterogeneous Computing

Oren Bell
Comp. Sci. and Eng. Dept.
Washington University in St Louis
St Louis, MO, USA
oren.bell @wustl.edu

Abstract—The ROS2 software framework is increasingly
prevalent in component-based applications for robots and other
autonomous systems. Recently added ROS2 features to support
zero-copy semantics may significantly reduce latency and latency
variation when passing data from one component to another.

Additionally, there is a growing trend of developing au-
tonomous robotic systems on heterogeneous computing platforms
to exploit hardware acceleration. However, support for portable
and reusable zero-copy semantics on heterogeneous compute
systems is limited. Such systems thus must either use low-level
techniques to manage memory operations directly, which may
be tedious and error-prone, or they may not adequately address
substantial memory overheads that can arise from repeatedly
copying messages and data into and out of device memory
associated with GPUs and FPGAs.

Towards addressing that limitation of the current state of the
art, this paper introduces Hazcat, a new zero-copy framework
that automatically performs device memory operations when
needed, and avoids copying and other costly operations otherwise.
Hazcat is integrated specifically with ROS2 but is also designed
for portability to other component-based software frameworks.

Index Terms—ROS2, zero-copy, GPU, FPGA, multi-core, hard-
ware acceleration, heterogeneous computing, robotics

I. INTRODUCTION

Real-time embedded systems support mission-critical and
safety-critical applications ranging from automated and con-
nected driving [41] to real-time hybrid simulation in earth-
quake engineering experiments [9]. In recent years, the com-
bination of component-based modularity and customizable
thread and memory management in ROS2 has made it espe-
cially attractive for developing real-time embedded robotics
applications [5], including the TurtleBot 4 open source
robotics platform for education and research [2], the Hamster
robust micro Autonomous Unmanned Ground Vehicle [1], and
the xArm series of robotic manipulators [3].

Such systems often have timing constraints that require
careful management of hardware and software overheads and
other sources of timing variation as well as scheduling to
ensure real-time tasks meet their deadlines. Even atop tradi-
tional multi-core platforms, memory operations may introduce
significant overheads, e.g., when the number of cores used
exceeds a single chip socket so that the cost of memory
operations between threads on cores in different chip sockets
limits how many cores can be exploited at fine-grained time-

Chris Gill
Comp. Sci. and Eng. Dept.
Washington University in St Louis
St Louis, MO, USA
cdgill@wustl.edu

Xuan Zhang
Electrical and Systems Engineering Dept.
Washington University in St Louis
St Louis, MO, USA
xuan.zhang @wustl.edu

scales [9], or when frequent communication among compo-
nents causes the aggregate cost of memory operations to
approach other less frequent but more expensive overheads
(e.g., thread context switches). Thus, reducing the frequency
of memory operations or making them more efficient [13] is
an important issue for these systems.

For heterogeneous computing platforms that support hard-
ware acceleration of computations (e.g., Nvidia Jetson and
Xilinx Kria) latency-aware memory management is even more
salient. For example, it has been shown [31] [4] that GPUs
can be a cause of non-deterministic behavior in real-time
systems. As one particularly egregious example, memory
operations on Nvidia GPUs, particularly cudaFree, may cause
implicit device wide synchronization operations [43]. With
or without hardware acceleration, a multi-component appli-
cation can reduce its memory bandwidth by leveraging shared
memory structures and passing references to data instead of
copying the data itself [19], whenever possible. Such “zero-
copy” approaches are intuitive in principle, but must enforce
ownership of data to avoid race conditions, which may raise
further engineering challenges in practice.

Though the ROS2 application programming interface (API)
now supports zero-copy semantics atop multi-cores, support
for portable and reusable zero-copy semantics on heteroge-
neous computing platforms that autonomous systems may ex-
ploit for hardware acceleration is limited: currently they must
either use low-level techniques to manage memory operations
directly, which may be tedious and error-prone, or they may
encounter potentially substantial memory overheads that may
arise from repeatedly copying messages and data into, within,
and out of different device memories associated with multi-
core processors, GPUs, and FPGAs.

Towards addressing that limitation of the current state
of the art, we introduce Hazcat, a new zero-copy frame-
work that automatically performs device memory operations
when needed, and avoids copying and other costly operations
otherwise. Hazcat is integrated specifically with ROS2 but
is also designed for portability to other component-based
software frameworks. Hazcat assumes full responsibility for
all memory operations between components, and eliminates
memory copies when consecutive components are on the same
computational device (i.e., within the same device memory).



The contributions of this paper include: (1) a system model
for zero-copy semantics between and within device mem-
ory for multi-cores, GPUs, and FPGAs in section III; (2)
requirements for extending Hazcat support to new hardware
in section IV; and (3) empirical evaluations of the Hazcat
framework in comparison to other approaches in section V.

II. BACKGROUND AND RELATED WORK

Memory allocation on uniprocessors and multi-core pro-
cessors is fairly mature [21] [24] [12] [39] [26] [40] [34]
[28] [18], but memory allocation on heterogeneous computing
systems is newer and less studied [14] [32]. A recent example
by Nvidia recycles memory with the RAPIDS memory man-
ager [13], thus avoiding costly and non-deterministic memory
deallocation: as Section I mentioned, calls to cudaFree may
cause implicit device-wide synchronization on a GPU.

A survey on memory management of heterogeneous com-
puting systems was published by Hazarika et al [14]. There
has been extensive research into using hardware acceleration in
robotics applications [25] [30] [37] [33] [7] [22] [35] [23] [27]
[36] [29]. However, most of this research assumes developers
have detailed knowledge of the use of FPGAs/GPUs and tends
to target a particular product rather than discussing hardware
acceleration more broadly.

ROS2: The ROS2 software framework is often considered
a de facto standard for robotics. Subtasks within a robotics
application are separated into components called nodes, each
communicating with others via a publish/subscribe communi-
cation model: when a node sends data it publishes a message
on a fopic. Interested nodes subscribe to that topic to receive
a copy of the message. Recent research on ROS2 [5] has
focused on processing chains. When one node publishes, this
will naturally trigger the execution of its subscribers, which
may then publish and trigger execution of their subscribers,
and so on. This results in a natural chain of execution, which
can be modelled as a tree. The responsiveness of an application
can be quantified by looking at the end-to-end latency of these
processing chains. A response-time analysis for ROS2 was
developed in [5] and later modified in [38], both of which
include inter-component interference in their analysis.

The lowest layer of the ROS2 stack, called the ROS Mid-
dleware Abstraction Interface (RMW), serves as a wrapper
for a networking framework, such as FastDDS [8] or Cy-
cloneDDS [10], which directly facilitates this communication.
Recently developments in ROS2 have added API calls to the
RMW specification that enable zero-copy through the use of
borrow/return semantics. Before a publisher wishes to send
data, it must borrow a message which it can then populate
before publishing. Subscribers receive an immutable pointer
to the same data, and when all subscribers have returned their
pointers, the memory for the message is freed or recycled,
depending on the implementation.

In contrast to its predecessor (ROS) ROS2 is designed to
cater to real-time concerns. ROS2 has recently added 5 new
calls to its RMW specification to support zero-copy semantics:
rmw_borrow_loaned_message, rmw_return_loaned_message,

CPU-to-CPU
memory copy

Copy into
device mem

o Copy out of
device mem

Copy into

oo o Copy out of
devicemem | -

device mem

Fig. 1: Sequence with two hardware accelerated components

rmw_publish_loaned_message, rmw_take_loaned_message,
and rmw_release_loaned_message. Although these new
additions can help to reduce nondeterminism caused by
excessive memory operations, we posit that it doesn’t go
far enough. Many robotics applications leverage hardware
acceleration for performance reasons, but ROS2 zero-copy
features are as yet unaware of device memory boundaries, so
components leveraging hardware acceleration must assume
responsibility for copying data into, within, and out of device
memory which may lose the benefits of zero copy, and may
introduce more nondeterminism.

Hardware Accelerated Workloads: For components send-
ing data to each other, we want to minimize the latency that
is due to 3 types of operations, depicted in Figure 1: intra-
component memory copies (magenta), compute operations
(green), and inter-component memory copies (blue). With
hardware acceleration, whether using GPUs or FPGAs, there
are 3 steps: copy to device memory, run the acceleration
kernel, and copy out of device memory [42] [6]. These 3
operations happen within a component. We aim to remove
intra-component memory copies entirely by having middle-
ware assume responsibility for device memory operations.
Inter-component memory copies also may be eliminated when
conditions are right for zero-copy to occur, that is, when two
consecutive nodes operate within the same memory domain.

Zero Copy in ROS2: A popular implementation of zero-
copy semantics for ROS2 is in the Iceoryx project [11], which
provides a third-party daemon that manages a shared memory
pool. Publishers and subscribers wishing to make use of zero
copy are required to use borrow and return semantics to
access memory chunks [20] as follows: (1) publishers and
subscribers register with the Iceoryx daemon, specifying their
topics of interest; (2) a publisher makes a borrow request and
the daemon provides the address of the next available chunk
large enough to fit the message; (3) the publisher populates the
chunk with data and (4) publishes the chunk, relinquishing
ownership; (5) Iceoryx notifies all interested subscribers of
available data after which (repeatedly): (6) a subscriber awakes
and borrows the chunk, receiving a pointer to newly available
data (7) processes the data and (8) returns their reference to
the chunk; (9) the Iceoryx daemon marks a chunk as available
for reuse once all subscribers have processed it.

Multi-core performance numbers for Iceoryx show mini-
mal overhead [19], but Iceoryx does not support zero-copy
semantics for other devices’ memory: a developer wishing to
leverage hardware acceleration must manually copy messages
into and out of device memory. Additionally, the memory
pools are pre-allocated by a third-party daemon, which the



end-developer must configure to optimize memory usage.
Under the default settings, memory chunks are likely to be
oversized, and may not be plentiful enough to accommodate
the message backlog of a worst-case scenario. Iceoryx also
only supports zero-copy of fixed-size plain-old-data types. Any
messages which require dynamic allocation of memory may be
partially allocated on the heap, potentially resulting in invalid
pointers and segmentation faults when sharing messages be-
tween processes. This is a limitation our implementation also
shares, a fix for which would likely require updates to the
ROS2 API. Another zero-copy mechanism is available higher
in the ROS2 software stack [16], but it only supports intra-
process zero-copy semantics. In the interest of generality, we
do not assume two components share an address space so we
do not consider that solution further in this paper.

III. SYSTEM MODEL

We use the term memory domain to refer to any area of
memory that is tied to a particular set of processors, and is
guaranteed to be readable from processors in that set: host
memory is a separate domain from GPU memory, both are
separate domains from FPGA memory, and data in one domain
must be copied to be accessible in another domain.

We specify special heterogeneity aware (HA) allocators that
manage memory for a particular memory domain, according
to a domain-agnostic interface. They have functionality to
access each other’s memory, and perform copy operations as
needed when memory is not in an appropriate domain. We
also specify a shared message queue, analogous to a ROS2
topic, which stores references to messages allocated by an
HA allocator. Publishers put messages into the queue for later
consumption by subscribers. When a subscriber expresses a
preference to receive a message in a different memory domain,
a copy is made on the fly in the correct memory domain and
a token to the duplicate copy is also stored in the message
queue. This is the worst-case scenario: when data moves across
memory domains, a copy operation must occur. Each topic
gets a unique message queue. Unlike Iceoryx, our system
handles zero-copy in a completely decentralized manner, and
developers are allowed to apply custom allocation strategies
instead of being forced to use Iceoryx’s static ring buffer.

Hazcat is not truly zero-copy in all circumstances. If an
application is only partially hardware accelerated, memory
copies will be required between portions operating in host
memory and portions operating in device memory. However,
if consecutive nodes operate in the same memory domain, we
offer the benefits of zero-copy regardless of what that memory
domain is, be it host, GPU, or (in the future) FPGA memory.

A. Heterogeneity Aware Allocator

Custom memory allocators are already used in real-time
systems, e.g. to allocate memory statically, or to reuse pre-
viously allocated objects to avoid overheads of an operating
system’s default dynamic memory management mechanisms.
Sophisticated features such as allocator-aware containers and

polymorphic allocators [17] have been developed to allow flex-
ible use of allocators, through which containers allocated with
different strategies can be completely interoperable without
subverting type-safety. A minimal allocator offers 2 functions:
allocate and deallocate. Some allocators also provide object
construction, but we omit this in our design: we assume that
our allocators, while potentially managing peripheral device
memory, will run on a CPU and should not attempt to
dereference the device memory they allocate.

Managing multiple memory domains within our framework
incurs stricter design requirements beyond supporting allocate
and deallocate functions. We first detail a new extended inter-
face, describe garbage collection features required whenever
sharing memory, present the structure of the allocator and
its memory pool, and show a way to ensure fidelity when
reconstructing the allocator in other processes.

1) Allocator Interface: We propose a new allocator inter-
face, shown in Listing 1, that adds functionality to convert
arbitrary memory allocated by a separate allocator into a
domain readable to the current allocator. This conversion may
operate as a simple passthrough function if the two allocators
operate in the same memory domain (this is our zero-copy
condition), or it may perform the operations necessary to copy
data from a separate domain.

Listing 1: Allocator interface for heterogeneous computing

class Alloc {
static int domain;
static void * create_alloc(...);

static void * remap(Alloc x alloc);
void unmap () ;

int allocate (int size);
void share(int offset);
void deallocate (int offset);

void * copy_from(const voidx ptr, voidx cpu_ptr, int size
)i

void x copy_to(void* ptr, const void* cpu_ptr, int size);

void x copy(const Allocx a, voidx dst, const voidx src,
int size);

int shmem_id;

int device_type;
int device_number;
int strategy;

Multiple allocators can be written for the same domain. We
assume that any allocation can be accessed by any component
in the same domain, provided any requisite memory mapping
operations have been performed. The added functionality is
six-fold: remap maps an allocator previously created in a dif-
ferent process into this process address space; unmap removes
the allocator from this process address space; share increases
a reference counter for a specific allocation; copy_from copies
from this allocator to a pointer in CPU memory; copy_to
copies to this allocator from CPU memory; and copy copies
from an arbitrary allocator into this one, possibly going
through host memory as an intermediary. Our allocators return
an integer offset rather than a pointer: allocators are mapped at
different places in each process’s address space, so allocations




are measured relative to the beginning of the allocator and
absolute pointers are recalculated in each process.

2) Deallocation and Reference Counting: Deallocation of
shared memory may need to be performed by any thread: while
a message is created by a publisher, one of its subscribers will
likely be responsible for deallocation. So, for time-sensitive
threads, deallocation must be a time-bounded operation, which
limits the types of allocation strategies we can use. For now,
we only provide a static ring buffer and intend to provide
additional options in the future, but stipulate that all allocation
strategies must offer O(1) deallocation. We assume that every
memory domain is copyable into host memory and vice-versa.
However, not every memory domain may be copyable into
each other, so each allocator must specify copy_from, to copy
memory from itself into host memory, and copy_to, to copy
memory to itself from host memory. The copy function is
often a wrapper for those two steps in sequence: copying
from the source domain to host memory, and then from
host memory to the target domain. However, depending on
available hardware, developers may code special conditions
that bypass host memory, e.g., for GPU-GPU copies.

An HA allocator must implement a reference counting
strategy, so the deallocate function will not free an allocation
until it is called more times than there have been calls to share
the same allocation. Note this creates a race condition that is
resolved by the message queue as discussed in Section III-C.
When implementing new allocators for device memory, the al-
locator methods cannot access the memory they are allocating,
so strategies like boundary tags [21] are not applicable.

Allocators provide additional information: device_type iden-
tifies the hardware device the allocator is managing memory
for; for multiple instances of that device_type, device_number
can distinguish them; and strategy identifies the allocator
approach, such as ring buffers, TLSF [24], or best-fit [21]. Two
allocators’ device_type and device_number must be the same
to take advantage of zero copy, with device_type and strategy
used to perform function lookups when an allocator is mapped
into a new process, based on its ID according to System V
shared memory (a POSIX standard that creates unique system-
wide IDs for different shared memory segments).

3) Allocator Structure: Each allocator comprises 3 contigu-
ous memory mappings: a local portion, a shared portion visible
across processes, and a pool of mapped device memory. The
local portion stores function pointers as a way to emulate the
convenience of object-oriented polymorphism, which we use
so our message queue does not need to concern itself with type
information. True polymorphism is not possible for objects in
shared memory, due to uncertainty of the structure of some
data types, which combined with inherent type-erasure that
occurs during inter-process communication would prevent us
from knowing the structure of an allocator created in another
process. The goal is for different allocator implementations to
have an identical structure in their first few bytes, so we use
plain-old-data structures for our allocator design to guarantee
this.

Since function pointers are not valid across process bound-

Process Virtual Address Space

Local Partition T
Unstructured data unique to process
Function Pointers: allocate, share, ...

— 4kB

Base Allocator Interface Shared Partition
Allocator 1D
Device Type and Number

Allocator Strategy (Ring, half-fit, etc)

Implementation specific data
Free lists
Availability masks
Indices to ring buffer
Segregated fit lists
etc

— 20kB

GPU Physical

Memory - -
| Virtual Memory Pool

—2GB

Fig. 2: Structure of allocator and partitions
(not to scale)

aries, the allocator portion that holds them is not a shared
mapping. This leads to a design in which our allocator object
straddles different memory mappings, the bulk of which is vis-
ible across processes, with the local partition only visible to the
current process. Due to granularity requirements, a minimum
of 4kB is allotted to the local partition, but only 56 bytes are
needed for the 7 non-static function pointers. The remainder
is unstructured space that may be used as appropriate for the
convenience of the allocator implementation. The start of the
allocator’s shared portion contains required type information
that is relevant when remapping it into a new process, using
the new allocator interface described above in Listing 1. The
rest of the shared mapping varies by implementation. After
the shared mapping is the actual memory pool, often mapped
device memory, which again varies by implementation. For
dynamic allocators, it’s useful to start with an arbitrarily large
virtual memory pool unbacked by physical memory. This gives
the allocator room to grow, while still guaranteeing it can be
reconstructed in a different process.

4) Reconstructability of Allocators: Reconstructibility is
essential: since allocators are not guaranteed to start at the
same virtual memory address in different processes, memory
allocations are expressed in terms of offsets from the start of
their allocator and the relative structure of the allocator and
its memory pool must be identical between processes. This is
complicated by alignment restrictions on shared memory for



different devices and systems. The minimum size of the local
partition is a page (typically 4kB). The granularity of shared
memory varies (4kB on x64 systems, but 16kB on ARM), as
does the required granularity of device memory.

The allocator is only reconstructible in a location that
satisfies all these granularity requirements. The shared map-
ping must end at an address that’s a multiple of the shared
granularity. Similarly, the device mapping must start at an
address that’s a multiple of the device granularity. Since
the shared mapping and the device mapping are contiguous,
then the boundary between them must be at an address that
is a multiple of the least-common-multiple of both their
granularities: lem(m,n). We make an initial reservation of
unmapped virtual memory at approximate location  of size
a+b+c+lem(m,n). That is, the collective sizes of the local,
shared, and device mappings, plus a buffer zone to align it
correctly. A valid position satisfying all granularity constraints
is guaranteed to exist in any memory range of this size.

If the boundary of shared and device memory partitions
must be at a multiple of lecm(m,n), then some modular
arithmetic reveals that our reservation x must start at & +
lem(m,n) — ((z + a + b) mod lem(m,n)). Any virtual
memory before this point or past the tail can be released.
Virtual memory within this range will be remapped to local,
shared, and device memory in contiguous blocks guaranteed to
begin at an address that satisfies their granularity requirements.

B. Message Queue

In a publish/subscribe application, topics can be modelled as
a queue of messages. This is because execution of subscription
processing may be delayed and a backlog of work may
accumulate. In soft real-time systems, the queue can have a
maximum length and stale messages may be dropped.

In our framework, these message queues exist as named
shared memory files, with the name taken from the topic name.
In ROS2, topics are named with strings. So a ROS2 topic
named /perception/rear_camera would be saved as a shared
file /dev/shm/ros2_hazcat.perception.rear_camera. When us-
ing Hazcat outside of ROS2, these message queues can be
named arbitrarily. The structure and example contents of
a message queue are shown in Table I. We describe the
formatting of this design, and the methods for interacting with
it, including registration and the publish / take calls.

1) Design of a Message Queue: Each message is stored in
the queue in three parts: an allocator ID, the memory offset,
and the message length. The allocator ID is used to look up
an allocator, which may or may not be already mapped into
the current process. These mapping operations typically occur
once near the beginning of a program’s run. After an allocator
is mapped into the process’s address space, the memory offset
is added to the allocator’s starting address to get the absolute
address of the message. Each message may have multiple
copies, one for each memory domain. The entire message
queue is then structured as a collection of arrays: one per
memory domain, plus an extra array for metadata.

The message length is a latent design decision for now.
As mentioned in Section II, we only support fixed-size plain-
old-data datatypes for messages, so specifying message length
is redundant, as it could be inferred from the topic. In the
future, however, we plan to implement support for zero-copy
of dynamically sized messages. Each entry in the metadata
array contains 96 bits, as follows. 32 bits serve as a subscriber
counter to indicate if the message is still in use. 32 more
bits serve as an availability map for up to the 32 supported
memory domains, where a 0 indicates the message hasn’t been
copied to this domain, and a 1 indicates it is ready for zero-
copy reading. The last 32 bits serve as locks for each memory
domain to prevent redundant copy operations from colliding.

This allows up to 4 billion publishers and subscribers per
topic, and 32 supported memory domains. The zero-th memory
domain will always be host memory, but the rest are assigned
in order of registration and have no relation to the device_type
or device_number mentioned above in Section III-A.

In addition to the message queue itself, there is header data
(not illustrated) to track the size of the message queue, the
number of registered memory domains, and a global iterator
pointing to the most recent message index. Subscribers also
store their own iterator to the most recent message they
haven’t yet read. The sub counter tracks how many registered
subscribers haven’t read the affiliated message yet. Whenever
a subscriber takes a message (covered in Section III-B4 on the
take command), the sub count is decremented.

2) Publisher and Subscriber Registration: Before interact-
ing with the message queue, a publisher or subscriber must
register with Hazcat. A publisher or subscriber can only
be affiliated with a single topic which they request during
registration. The associated message queue will be mapped
into the current process (or created from scratch). Pursuant
to the subscriber’s requested backlog, the message queue may
be resized. Other processes will be informed of this when
they attempt to fetch data and note the message queue’s self-
reported size does not match the size of their own mapping,
at which point they remap the message queue with its larger
capacity.!. We assume that all publishers and subscribers are
registered during an application’s initialization phase, so these
resizing operations will not be a part of steady state operation.

When the application terminates, publishers and subscribers
are also required to unregister, which is largely just decrement-
ing an entity count. The last process to unregister the last of
the publishers and subscribers for a message queue will also
destroy the message queue.

When resizing message queues for topics, we consider the
design philosophy behind ROS2 when developing Quality of
Service (QoS) policies [15]. The general principle is that
publishers offer a quality of service, and subscribers request a
quality of service. Since we are not concerned with packet loss
over a network, the ability of publishers to retain a message

UIn practice, this resizing would seldom occur, due to the shared memory
object being page aligned. A 4kB page is enough to hold tokens for well over
60 messages across 4 different memory domains. Few applications, would
require more than this.



Metadata Mem Domain 1 Mem Domain 2
Sub Count | Avail Bits | Locks Alloc ID Offset Size Alloc ID Offset Size
0 0 0 ~ ~ ~ ~ ~ ~
I bll b10 0x0000 0014 | 0x0000 DOF8 | 0x0001 4100 | 0x0000 O0IA | 0x0000 04D0O | 0x0001 4100
3 b10 b00 0x0000 0015 | 0x0021 0AO00 | 0x0000 OBOO ~ ~ ~
3 b10 bll 0x0000 0014 | 0x0001 21F8 | 0x0001 4100 ~ ~ ~

TABLE I: Example Message Queue. Each column is 32 bits. Each row represents a message.

history for resending is unnecessary. Thus, only the requests
of the subscribers are relevant and the message queue should
be the largest depth of all interested subscribers. Since shared
memory objects must be page aligned, the minimum footprint
is still large enough to accommodate over 60 backlogged
messages across 4 memory domains. 4 arrays of 96 bit entries,
plus another metadata array of 96 bit entries, makes 60 bytes
per entry. A 4kB page then equates to 68 entries.

3) Publish command: The publish command is called by
a publisher with a message to publish. First, it atomically
fetches and increments the index of the next available row.
It then secures a lock on the entire row, which ensures that
any subsequent attempt to modify that row will block until the
current call finishes.

If there are any remaining messages in that row (due to
wrap around of the message queue) they are deallocated.
This dropping of messages will only occur if there are best-
effort components in the system, which are assumed to be
tardy and unaffected by the missed messages. Any hard real-
time tasks have to consider this deallocation as a source of
interference when computing their response time. In a well-
designed application with only hard real-time components, the
message queue would never overflow, as an accumulated back-
log exceeding the quality-of-service setting is by definition a
system failure. The alloc id, offset, and size fields illustrated
in Table I are updated accordingly and then the write lock is
removed. Finally, a signal is sent on the associated FIFO to
inform other processes that a message is available.

4) Take command: The take command is called by a
subscriber after being notified that a message was available
(a convenience, not a required step). First, the row for the
oldest unread message is found. If the subscriber is up-to-date
and no new messages are available, the call returns NULL.
After inspecting the availability bitmask for the row, if the
message is available in the subscriber’s preferred domain, it
will share the message and then prepare to return it. If the
message isn’t available in the message’s preferred domain, an
available copy is identified and the entry for that is fetched.
Then the subscriber’s allocator allocates a new message and
performs a copy operation as shown in Listing 2.

This new message copy is also stored in the row with
the original, the availability mask is updated accordingly,
and the allocator ID and message offset are prepared to be
returned. Whether or not a copy occured, one last check is
made. If this subscriber is the last to access this message,
the message queue will release its references to all copies
of this message across all domains, potentially deallocating

some, if no other subscribers hold a reference. Messages with
a non-zero reference count remain available to access for any
subscriber that is already running. When they finish, they
also decrement their reference count and the last to finish
deallocates the copy in their particular domain. This does
mean that subscribers frequently use messages that are no
longer tracked by the message queue. We do this because
tracking message ownership in the message queue requires
locking a message reference as read-only until all subscriptions
return. These locks would provide an opportunity for best-
effort subscriptions to indefinitely block a real-time publisher
trying to submit a message, which is unacceptable, so we
require our HA allocators to implement reference counting
themselves.

Listing 2: Copy a message into the preferred domain when
zero-copy conditions are not met

alloc = lookup(sub.alloc_id)
src_alloc = lookup(entry.alloc_id)
msg = src_alloc + entry.offset
len = entry.len

here = alloc.allocate(len)

if (CPU == src_alloc.domain) {

alloc.copy_to (here, msg, len)

} else if (CPU == alloc.domain) {
src_alloc.copy_from(msg, here, len)

} else {
alloc.copy (here, src_alloc, msg, len)

}

C. Message Lifecycle

As arecap to our system model, we cover the steps to create,
use, and dispose of a message. We conclude with comments
on thread safety and steps to prevent race conditions of shared
memory. The steps to interact with Hazcat are 4-part: allocate,
publish, take, and deallocate. The allocate method is called on
an allocator to create memory for the message, as detailed
in Section III-Al. During a component’s computation, the
message is populated. After the first component is finished, it
calls publish, which places the allocator ID and message offset
in the relevant message queue, as described in III-B3. When a
second subscribed component has been informed of a message,
it calls take. This modifies the message queue as described
in Section III-B4 and also affects the messages directly: it
calls share on the message copy in the component’s memory
domain, which increments the reference counter stored in the
allocator. If this subscriber is the last to read the message,




it will also call deallocate on all the message copies, which
decrements the reference counter. This is akin to clearing
the message queue’s references to the message copies. The
message won’t be garbage collected until this subscribed
component calls deallocate one more time to clear it’s own
reference to the message, which is the final step.

In Section III-A2, we mention that the share and deallocate
commands create a natural race condition. This is resolved by
the fact that share is only ever called from within the take
command, while the message is owned by the message queue.
Calling deallocate from a separate thread concurrently with
the take command is always guaranteed to do nothing, as
the message queue itself retains a reference to the message.
The only circumstance where calling deallocate will truly
deallocate a message is when the message is no longer tracked
by the message queue, so there’s no possibility of share being
called on it simultaneously.

IV. DESIGN AND IMPLEMENTATION

Any component-based framework using a CORBA or pub/-
sub communication model can be modified to use Hazcat as its
communication layer. Calls can be made to hazcat to register
publishers and subscribers, create messages, publish to a topic,
take from a topic, and finally deallocate messages. All that is
needed is a translation layer to incorporate this into a desired
framework.

For sake of demonstration, we created an RMW to interface
with ROS2 systems and provide these zero-copy benefits to
ROS2 applications. We also provide 2 allocators, one each
for CPU and GPU, both implementing a static ring buffer.
Additional allocators can be added readily in the future, such
as one for the real-time dynamic memory strategy TLSF [24].

These allocators can be specified by the end developer when
instantiating publishers or subscribers. These are done through
the use of subscription_options and publisher_options, which
each contain a field called rmw_implementation_payload. This
mechanism can be used to pass options specific to an RMW
implementation. In this case, a Hazcat allocator. If this field
is ignored, then a default CPU-based allocator is assumed.

When extending the Hazcat platform to new products and
hardware, we make certain stipulations for features the drivers
must provide: an IPC mechanism to share device memory
allocations with unrelated processes; support for unified-
virtual-addressing, including virtual memory reservations; and
mapping of physical memory to an explicit virtual address,
subject to page granularity constraints.

First, the hardware driver must implement some interprocess
communication (IPC) mechanism for its device memory. Any
device memory allocated must be able to be accessed by any
unrelated process using a globally unique token. Depending
on how this mechanism is implemented, or whether it’s im-
plemented at all, may naturally limit a product’s performance
and its viability to be used with Hazcat. As an illustrative
example, CUDA now provides shareable handles for IPC
communication with their new driver API calls. As of CUDA
10.2, a developer can use cuMemExportToShareableHandle

and cuMemlImportFromShareableHandle to create a handle
allegedly shareable between processes. However, these calls
only work for related processes. The shareable handles are
process-specific file descriptors, and any attempt to translate
these descriptors to another process, via the procfs and the new
pidfd_getfd syscall, will inevitably fail. Why this happens not
unexplained in the current CUDA documentation. The handle
is intended to be used before a fork() operation, and is not
conducive to IPC between arbitrary processes.

Additionally, the drivers for the hardware device in question
must support unified-virtual-addressing. Remapping allocators
requires concatenating shared memory with device memory
in a way that they appear as a single object. While their
absolute location may vary, their relative positioning must
be intact between processes. Thus, once a shared memory
mapping is created for the allocator, its device memory pool
must be placed in a particular location in a process’s address
space. If this ability is not present, we can’t make guarantees
about the positional relationship between an allocator and
its memory pool. These guarantees are essential to correctly
locate messages using nothing more than an offset.

Lastly, to avoid race conditions when claiming address
space, the device needs a call to reserve virtual memory. Then
the allocator and device memory can be mapped in without
another thread claiming adjacent virtual memory.

CUDA’s driver APIs support all the necessary virtual mem-
ory features mentioned above, but lack an adequete IPC
mechanism. The traditional CUDA API does not support
address reservations and explicit memory mapping, but does
have IPC functionality that meets our constraints. However,
the two APIs provided are not compatible. We can conclude
that based on the aggregate functionality present in both APIs,
Nvidia hardware has the capability to work with Hazcat,
but as it stands, Hazcat cannot support CUDA on it for
independent-process workloads. The experiments below in
Section V therefore use components in a single process or
in related processes.

V. EMPIRICAL EVALUATION
A. Two Component Experiments

As a demonstrative example, we evaluate a sample appli-
cation with two nodes. Each performs a simple bilateral filter
on a random 4k image, to serve as an arbitrary parallelizable
computation. These experiments were performed on a desktop
system with an AMD Ryzen7 3700X CPU and an Nvidia RTX
2070 Super. We measure the end-to-end latency and perform
stacktrace sampling on this application while it runs on three
different middlewares: CycloneDDS, Iceoryx, and our Hazcat.

Due to the limitations of CUDA IPC mentioned in Sec-
tion IV, these nodes where run in the separate threads in the
same process, instead of in different processes, though we
expect that the performance differences with that other case
would be negligible. We measure the steady state operation
of the system, so the first 1 or 2 samples were dismissed as
outliers if their runtime latencies differed significantly from
the subsequent samples. Such outliers were seen in the Iceoryx



S

(a) CycloneDDS Flame Graph
(end-to-end latency: 50.8ms)

(b) Iceoryx Flame Graph
(end-to-end latency: 27.2ms)

(c) Hazcat Flame Graph
(end-to-end latency: 13.7ms)

Fig. 3: Stacktrace Sampling

uniprocessor example, as well as in all of the GPU examples
(presumably due to kernel loading).

Figure 1 illustrates the different operations performed by
this two-component sample application. Each operation type
is detailed in Section II, and mean timing information for
each variation is illustrated in Figure 4. Variation on the
end-to-end latency for all three middlewares is displayed in
the violin graphs in Figure 5. These figures were created
by manually placing userspace probes in the application to
measure the entry and exit points for GPU memory operations,
GPU kernels, and the callback functions for each component.

Stacktrace sampling can be found in Figures 3a, 3b, and
3c. The width of these flame graphs has been normalized
according to their respective end-to-end latencies, so the time
spent in each function can be better visualized.

Our tracing tools are unfortunately incapable of extracting
stack traces from within CUDA code, so any usage, be it from
kernel execution or memory operations, are combined into
“libcuda”. We do observe that CycloneDDS and Iceoryx spend
roughly the same amount of time in the CUDA library, inde-
pendant of their other sources of overhead. Hazcat, however,
spends much less time running CUDA code. Since the three

B Component 1
B Component 2
Bl GPU Memory Copy
mm Accelerated Kernel

Iceoryx

30 45 60
Time (ms)

15

Fig. 4: Two Component Experiment with Hardware Acceler-
ation

CycloneDDS —_
Iceoryx ]
Hazcat - H
0 15 30 45 60
Time (ms)

Fig. 5: End-to-end Latency Distributions for Two Component
Experiment



are running the same kernel, we can assume time spent on
GPU computation remains constant, and the variation observed
is a result of reduced GPU memory operations.

We see this confirmed in Figure 4. Iceoryx sees reduced
latency compared to CycloneDDS, despite running the same
code. This is because of CycloneDDS’s worse overhead and
required memory copies between components (as dissected in
3a). Hazcat runs slightly modified code, where the memory
copies in userspace have been removed. Almost all of the end-
to-end latency under Hazcat is from GPU computation.

The Iceoryx and Hazcat variations both implement some
type of zero copy and as a result have reduced inter-component
(and even intra-component) latency — the latter is due to
performing a publish call on the underlying middleware while
the node is running. This call performs a memory copy in
CycloneDDS but has minimal overhead in Iceoryx and Hazcat.

CycloneDDS and Iceoryx incur the overhead of additional
GPU memory operations when using hardware acceleration.
This is the primary performance benefit of Hazcat over Iceo-
ryx: eliminating unnecessary GPU memory operations.

Figure 5 shows density plots of the end-to-end latency of
each experiment variation. The distributions on the hardware
accelerated workloads show that both Hazcat and Iceoryx have
tight lower bounds, highlighting that, with them, the best case
is the typical case. CycloneDDS, with its higher overhead and
excess inter-component memory copies, sees more variation.

The most interesting finding is that Hazcat also has a tight
upper bound. Iceoryx’s use of GPU memory copies creates a
source of latency jitter. Hazcat, on the other hand, has no such
issue, making it behave much more deterministically compared
to the other two frameworks.

B. Synthetic ROS Graphs

To demonstrate Hazcat’s performance in more complex
workloads, we synthetically generated 98 ROS graphs with
randomized message sizes for topics and randomized CPU
or GPU computation for nodes. Graphs ranged from 2 to 14
nodes, 1 to 17 edges, and had critical paths ranging from 2
nodes to 5.

Each graph was ran under Hazcat, Iceoryx, and Cy-
cloneDDS, and their end-to-end latencies were measured. The
first three samples were discarded from each run, to eliminate
outliers caused by transient effects during startup or shutdown.

Different graphs will naturally have vastly varying end-to-
end latencies. We observed mean latencies ranging from 15
to 206ms. Since plotting all 98 graphs would be infeasible,
instead measurements were normalized relative to the mean
end-to-end latency of the same graph ran on Iceoryx. That is,
if 3 runs of the same graph on Iceoryx take 10ms, 12ms, and
17ms, each run will then be plotted in Figure 6 as -2Ams, -
1Ams, and 4Ams. If a run of the same graph on Hazcat takes
8ms, it will be plotted as -5Ams.

Hazcat had a better mean performance than CycloneDDS
for every graph. It performed comparably (+10%) with Iceo-
ryx for 60% of the graphs, and out-performed Iceoryx for 9%
of the graphs.

CycloneDDS I I
Iceoryx |—|
Hazcat H H
-2  -20 0 20 40 60 80 100

Time (ms, relative to Iceoryx Mean)

Fig. 6: Relative performance with randomized ROS graphs

When examining individual graphs, we notice that Hazcat
performs comparably to Iceoryx in graphs dominated by CPU
work, as well as graphs with wide work but a short span.
Such graphs comprised the majority of our test set. The largest
performance benefits come when multiple successive GPU
nodes are chained together, and can benefit from the device-
memory zero copy.

There was a greater deal of temporal variance in Hazcat,
which we ascribe to its experimental implementation.

VI. CONCLUSIONS AND FUTURE WORK

The primary contribution of Hazcat’s heterogeneity aware
zero-copy features for heterogeneous computing environments
is that memory copies are only performed when data in one
memory domain is needed in a different domain. In all other
cases, memory is recycled, drastically reducing the worst case
end-to-end latency of an application as well as removing
sources of nondeterminism.

In our synthetic benchmarks with randomized ROS graphs,
we saw an average case speedup of 1-73% over the unopti-
mized CycloneDDS middleware, depending on the graph in
question, with 27% being typical. When compared to Iceoryx,
we observed anywhere between nearly a 1.8x slowdown to a
2x speedup, again, depending heavily on the graph in question.

The largest performance benefits are mostly seen when
consecutive components in the application all operate in the
same domain. Even in the worst case, for an application using
n domains, we never saw more than n-1 copy operations per
message.

We observe that in addition to performance gains in hard-
ware acceleration workloads, our framework has a decentral-
ized design, which additionally reduces the requisite developer
knowledge, as there is no 3rd party daemon to launch and
no ring buffers to configure. Built-in defaults and runtime
initialization allow it to perform well even when limited
information is provided about the application.

In the future, we aim to support a wider range of hardware.
This paper only discusses CUDA based usage of Nvidia hard-
ware, but FPGAs are an important target for future research as
well. Given the aforementioned lapses in the CUDA drivers’
support of IPC, we plan to investigate other approaches to
support GPUs [6] [31].



Hazcat also lays the groundwork for future exploration of
custom allocation strategies. Though it currently only supports
static ring buffers, we plan to develop other allocators in the
future, including ones for dynamic allocation of uniprocessor,
multi-core, and device memory.

[1]
[2]
[3]
[4]

[5]

[6]

[7]

[8]
[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]
(17]
(18]
[19]
[20]
[21]

[22]

[23]

[24]

REFERENCES

Hamster (ros2 robots) https://robots.ros.org/hamster/.

Turtlebot4 (ros2 robots) https://robots.ros.org/turtlebot4/.

xarm (ros2 robots) https://robots.ros.org/xarm/.

Tanya Amert, Nathan Otterness, Ming Yang, James H Anderson, and
F Donelson Smith. Gpu scheduling on the nvidia tx2: Hidden details
revealed. In 2017 IEEE Real-Time Systems Symposium (RTSS), pages
104-115. IEEE, 2017.

Daniel Casini, Tobias Blaf}, Ingo Liitkebohle, and Bjorn Brandenburg.
Response-time analysis of ros 2 processing chains under reservation-
based scheduling. In 31st Euromicro Conference on Real-Time Systems,
pages 1-23. Schloss Dagstuhl, 2019.

Roberto Cavicchioli, Nicola Capodieci, Marco Solieri, and Marko
Bertogna. Novel methodologies for predictable cpu-to-gpu command
offloading. In 31st Euromicro Conference on Real-Time Systems (ECRTS
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

Marc Eisoldt, Steffen Hinderink, Marco Tassemeier, Marcel Flottmann,
Juri Vana, Thomas Wiemann, Julian Gaal, Marc Rothmann, and Mario
Porrmann. Reconfros: Running ros on reconfigurable socs. In Proceed-
ings of the 2021 Drone Systems Engineering and Rapid Simulation and
Performance Evaluation: Methods and Tools Proceedings, pages 16-21.
2021.

eProsima. Fastdds. https:/github.com/eProsima/Fast-DDS, 2016.
David Ferry, Gregory Bunting, Amin Megareh, Shirley Dyke, Arun
Prakash, Kunal Agrawal, Chris Gill, and Chenyang Lu. Real-time system
support for hybrid structural simulation. In International Conference on
Embedded Software (EMSOFT). ACM, 2014.
Eclipse Foundation. Cyclonedds.
cyclonedds/cyclonedds, 2019.

Eclipse Foundation. Iceoryx. https://github.com/eclipse-iceoryx/iceoryx,
2019.

David Gay and Alex Aiken. Memory management with explicit regions.
In Proceedings of the ACM SIGPLAN 1998 conference on Programming
language design and implementation, pages 313-323, 1998.

Mike Harris. Fast, flexible allocation for nvidia cuda with rapids memory
manager, Dec 2020.

Anakhi Hazarika, Soumyajit Poddar, and Hafizur Rahaman. Survey on
memory management techniques in heterogeneous computing systems.
IET Computers & Digital Techniques, 14(2):47-60, 2020.

Michel Hidalgo, Shane Loretz, Chris Lalancette, Michael Jeromino,
M. Mei, Marya Belanger, and Christophe Bedard. About quality of
service settings, Jul 2022.

Michel Hidalgo, Ivan Paunovic, Chris Lalancette, and Esther Weon.
Setting up efficient intra-process communication, Jul 2022.

ISO. ISO/IEC 14882:2011 Information technology — Programming
languages — C++. Third edition, September 2011.

Mark S Johnstone and Paul R Wilson. The memory fragmentation
problem: Solved? ACM Sigplan Notices, 34(3):26-36, 1998.

Karsten Knese and Michael Pohnl. A true zero-copy rmw implementa-
tion for ros2. 2019.

Karsten Knese, William Woodall, and Michael Carroll. Zero copy via
loaned messages, Apr 2020.

Donald E Knuth. The art of computer programming, vol 1: Fundamental.
Algorithms. Reading, MA: Addison-Wesley, 1968.

Daniel Pinheiro Leal, Midori Sugaya, Hideharu Amano, and Takeshi
Ohkawa. Automated integration of high-level synthesis fpga mod-
ules with ros2 systems. In 2020 International Conference on Field-
Programmable Technology (ICFPT), pages 292-293. IEEE, 2020.
Daniel Pinheiro Leal, Midori Sugaya, Hideharu Amano, and Takeshi
Ohkawa. Fpga acceleration of ros2-based reinforcement learning agents.
In 2020 Eighth International Symposium on Computing and Networking
Workshops (CANDARW), pages 106-112. IEEE, 2020.

Miguel Masmano, Ismael Ripoll, Alfons Crespo, and Jorge Real. Tlsf: A
new dynamic memory allocator for real-time systems. In Proceedings.
16th Euromicro Conference on Real-Time Systems, 2004. ECRTS 2004.,
pages 79-88. IEEE, 2004.

https://github.com/eclipse-

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

(371

[38]

(39]

[40]

[41]

[42]

[43]

Victor Mayoral-Vilches, Sabrina M Neuman, Brian Plancher, and Vi-
jay Janapa Reddi. Robotcore: An open architecture for hardware
acceleration in ros 2. arXiv preprint arXiv:2205.03929, 2022.

Greg Morrisett, Matthias Felleisen, and Robert Harper. Abstract models
of memory management. In Proceedings of the seventh international
conference on Functional programming languages and computer archi-
tecture, pages 6677, 1995.

Yasuhiro Nitta, Sou Tamura, and Hideki Takase. A study on introducing
fpga to ros based autonomous driving system. In 2018 International
Conference on Field-Programmable Technology (FPT), pages 421-424.
IEEE, 2018.

Takeshi Ogasawara. An algorithm with constant execution time for dy-
namic storage allocation. In Proceedings Second International Workshop
on Real-Time Computing Systems and Applications, pages 21-25. IEEE,
1995.

Takeshi Ohkawa, Yuhei Sugata, Harumi Watanabe, Nobuhiko Ogura,
Kanemitsu Ootsu, and Takashi Yokota. High level synthesis of ros
protocol interpretation and communication circuit for fpga. In 2019
IEEE/ACM 2nd International Workshop on Robotics Software Engineer-
ing (RoSE), pages 33-36. IEEE, 2019.

Takeshi Ohkawa, Kazushi Yamashina, Takuya Matsumoto, Kanemitsu
Ootsu, and Takashi Yokota. Architecture exploration of intelligent robot
system using ros-compliant fpga component. In 2016 International
Symposium on Rapid System Prototyping (RSP), pages 1-7. IEEE, 2016.
Nathan Otterness and James H Anderson. Amd gpus as an alternative
to nvidia for supporting real-time workloads. In 32nd Euromicro
Conference on Real-Time Systems (ECRTS 2020). Schloss Dagstuhl-
Leibniz-Zentrum fiir Informatik, 2020.

Cenk Ozer. A dynamic memory manager for fpga applications. Master’s
thesis, Middle East Technical University, 2014.

Ariel Podlubne and Diana Gohringer. Fpga-ros: Methodology to aug-
ment the robot operating system with fpga designs. In 2019 International
Conference on ReConFigurable Computing and FPGAs (ReConFig),
pages 1-5. IEEE, 2019.

Paul W Purdom, Stephen M Stigler, and Tat-Ong Cheam. Statistical
investigation of three storage allocation algorithms. BIT Numerical
Mathematics, 11(2):187-195, 1971.

J Peiia Queralta, Fu Yuhong, Lassi Salomaa, Li Qingqing, Tuan Nguyen
Gia, Zhuo Zou, Hannu Tenhunen, and Tomi Westerlund. Fpga-based
architecture for a low-cost 3d lidar design and implementation from
multiple rotating 2d lidars with ros. In 2019 IEEE SENSORS, pages
1-4. IEEE, 2019.

Yuhei Sugata, Takeshi Ohkawa, Kanemitsu Ootsu, and Takashi Yokota.
Acceleration of publish/subscribe messaging in ros-compliant fpga
component. In Proceedings of the Sth International Symposium on
Highly Efficient Accelerators and Reconfigurable Technologies, pages
1-6, 2017.

Yuhei Suzuki, Takuya Azumi, Shinpei Kato, and Nobuhiko Nishio.
Real-time ros extension on transparent cpu/gpu coordination mechanism.
In 2018 IEEE 21st International Symposium on Real-Time Distributed
Computing (ISORC), pages 184-192. IEEE, 2018.

Yue Tang, Zhiwei Feng, Nan Guan, Xu Jiang, Mingsong Lv, Qingxu
Deng, and Wang Yi. Response time analysis and priority assignment of
processing chains on ros2 executors. In 2020 IEEE Real-Time Systems
Symposium (RTSS), pages 231-243. IEEE, 2020.

Mads Tofte and Jean-Pierre Talpin. Region-based memory management.
Information and computation, 132(2):109-176, 1997.

Paul R Wilson, Mark S Johnstone, Michael Neely, and David Boles. Dy-
namic storage allocation: A survey and critical review. In International
Workshop on Memory Management, pages 1-116. Springer, 1995.

Falk Wurst, Dakshina Dasari, Arne Hamann, Dirk Ziegenbein, Ignacio
Sanudo, Nicola Capodieci, Paolo Burgio, and Marko Bertogna. System
performance modelling of heterogeneous hw platforms: An automated
driving case study. In 22nd Euromicro Conference on Digital System
Design (DSD). Euromicro, 2019.

Yecheng Xiang and Hyoseung Kim. Pipelined data-parallel cpu/gpu
scheduling for multi-dnn real-time inference. In 2019 IEEE Real-Time
Systems Symposium (RTSS), pages 392-405. IEEE, 2019.

Ming Yang. Avoiding pitfalls when using nvidia gpus for real-time
tasks in autonomous systems. In Proceedings of the 30th Euromicro
Conference on Real-Time Systems, 2018.



