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Abstract. Spiking Neural Networks (SNNs) can be energy efficient al-
ternatives to commonly used deep neural networks (DNNs). However,
computation over multiple timesteps increases latency and energy and
incurs memory access overhead of membrane potentials. Hence, latency
reduction is pivotal to obtain SNNs with high energy efficiency. But,
reducing latency can have an adverse effect on accuracy. To optimize
the accuracy-energy-latency trade-off, we propose a temporal pruning
method which starts with an SNN of T timesteps, and reduces T every it-
eration of training, with threshold and leak as trainable parameters. This
results in a continuum of SNNs from T timesteps, all the way up to unit
timestep. Training SNNs directly with 1 timestep results in convergence
failure due to layerwise spike vanishing and difficulty in finding optimum
thresholds. The proposed temporal pruning overcomes this by enabling
the learning of suitable layerwise thresholds with backpropagation by
maintaining sufficient spiking activity. Using the proposed algorithm, we
achieve top-1 accuracy of 93.05%, 70.15% and 69.00% on CIFAR-10,
CIFAR-100 and ImageNet, respectively with VGG16, in just 1 timestep.
Note, SNNs with leaky-integrate-and-fire (LIF) neurons behave as Re-
current Neural Networks (RNNs), with the membrane potential retaining
information of previous inputs. The proposed SNNs also enable perform-
ing sequential tasks such as reinforcement learning on Cartpole and Atari
pong environments using only 1 to 5 timesteps.

Keywords: Spiking Neural Networks, Unit timestep, Energy efficiency,
Temporal pruning, Reinforcement learning

1 Introduction

Deep neural networks (DNNs) have revolutionized the fields of object detection,
classification and natural language processing [21,14,5]. However, such perfor-
mance boost comes at the cost of extremely energy intensive DNN architectures
[23]. Therefore, edge deployment of such DNNs remains a challenge. One ap-
proach to counter this is to use bio-inspired Spiking Neural Networks (SNNs)
[25,33], which perform computations using spikes instead of analog activations
used in standard networks. In this paper, standard networks are referred to as
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Artificial Neural Networks (ANNs) in contrast to SNNs having spike activation.
As such, the sparse event-driven nature of SNNs makes them an attractive al-
ternative to ANNs [9].

The applicability of SNNs was initially limited due to the unavailability of
suitable training algorithms. At first, ANN-SNN conversion methods [7,36] were
adopted, but incurred high latency. Recently, direct training using surrogate gra-
dients [27,44] has resulted in low latency. Most of the commonly used SNNs use
Poisson rate-coding [7,36] where a large number of timesteps! is usually required
to obtain high performance [36,11]. However, multi-timestep processing causes
twofold challenges in SNNs - (i) too long a latency might be unsuitable for real-
time applications, (ii) the need for accumulation of membrane potential (Viem)
over numerous timesteps results in higher number of operations, thereby reduc-
ing efficiency. Moreover, in contrast to ANNs, additional memory is required
to store the intermediate Ve and memory access cost is incurred for fetching
Vinem at each timestep. Note, the memory access cost can be significantly higher
compared to floating point add operations [12]. So, reducing inference latency is
critical for widespread deployment of SNNs.

To leverage the full potential of SNNs, we propose a temporal pruning tech-
nique to obtain a continuum of SNNs optimizing the associated accuracy-energy-
latency trade-offs. SNNs, unlike ANNs have a temporal dimension. As a result,
low latency SNNs might be obtained if suitable compression can be performed
along the temporal axis, which we refer to as ‘temporal pruning’ here. Such
temporal compression is required since training SNNs directly with very few
timesteps results in convergence failure due to significant decay of spiking activ-
ity in the deeper layers. To infer with very low latency, sufficient spikes must be
propagated till the final layer in only a few forward passes. To achieve that, the
layerwise neuron thresholds and leaks must be adjusted properly. The optimum
approach to set the thresholds and leaks is learning them using backpropagation
(BP). However, without having enough spikes at the output, the optimization
gets stuck and no learning can occur for extremely low latency. To circumvent
this issue, we adopt a temporal pruning method which starts with an SNN of
T (T>1) timesteps, and gradually reduces T at every iteration of training using
threshold and leak as trainable parameters alongside the weights. At each stage
of timestep reduction, the network trained at previous stage with higher timestep
is used as initialization for subsequent training with lower timestep. Using such
a pruning process, we obtain a continuum of SNNs, starting from T timesteps,
eventually leading up to unit timestep. Note, under unit timestep, if a neuron
receives an input, it updates V,em and in the event of crossing a given threshold,
it outputs a spike in a single shot, similar to binary activated ANNs [35,1].

As mentioned, the proposed temporal pruning starts from an initial SNN
trained for T timesteps. We obtain this initial SNN using a hybrid training
method [32]. First an ANN is trained, followed by ANN-SNN conversion, and
SNN training with surrogate gradient based backpropagation [27]. The initial de-
sign using the above approach leads to an SNN with T=5 [31] and our proposed

1 1 timestep is defined as the time taken to perform 1 forward pass through the network
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approach reduces the timestep to 1. We use direct input encoding [34], with the
first convolutional layer of the network acting as spike generator. We evaluate the
performance of the proposed method on image classification and achieve top-1
accuracy of 93.05%, 70.15% and 69.00% on CIFAR-10, CIFAR-100 and Ima-
geNet, respectively with VGG16, in just 1 timestep. These results demonstrate
that for static vision tasks, SNNs can perform comparable to ANNs using single
shot inference. However, a key distinction between ANNs and SNNs is the time
axis which can potentially enhance the performance of SNNs for sequential tasks
if the temporal information can be leveraged suitably using the membrane poten-
tial of neurons. To validate this hypothesis, we apply our technique to SNN-based
reinforcement learning (RL) agents on Cartpole and Atari pong environments.
Though the proposed method can provide RL agents with unit timestep, perfor-
mance improves significantly for SNNs with larger timesteps. For cartpole, we
obtain mean reward of 38.7 and 52.2 for 1 and 3 timesteps, respectively. Simi-
larly, the mean reward increased from 17.4 to 19.4 as the timesteps are increased
from 1 to 5 for Atari pong. It is noteworthy that even unit timestep SNNs can
handle dynamic inputs. However, increasing timesteps leads to enhancement in
performance for sequential tasks. Overall, the proposed continuum of SNNs is
able to provide optimum solutions for both static and dynamic tasks. While
SNNs with unit timestep obtain satisfactory performance with highest efficiency
for static inputs, choosing SNNs having only a few timesteps from the continuum
of SNNs can provide ANN-like performance for dynamic RL tasks with much
lower energy cost. To summarize, the main contributions of this work are-

— We present a temporal pruning technique to obtain a continuum of SNNs
with varying latency, starting from T timesteps up to 1. To the best of our
knowledge, this is the first SNN work to achieve competitive classification
performance (top-1 accuracy of 69%) on ImageNet using unit timestep.

— Our approach does not incur the memory access cost of accumulated mem-
brane potentials, unlike previously proposed SNNs.

— One timestep SNNs infer with up to 5X lower latency compared to state-
of-the-art SNNs, while achieving comparable accuracy. This also leads to
efficient computation, resulting in SNNs which are up to 33X more energy
efficient compared to ANNs with equivalent architecture.

— The proposed method enables deep-Q reinforcement learning on Cartpole
and Atari Pong with SNNs having few (1-5) timesteps, thereby showing the
efficacy of multi-timestep SNNs (as RNNs) for sequential tasks. Compared to
unit timestep, 3-5 timesteps enhance the performance of SNNs considerably
for such tasks by leveraging the inherent recurrence of spiking neurons.

2 Related Works

ANN-SNN Conversion. A widely used approach for training deep SNNs in-
volves training an ANN and converting to SNN for fine-tuning [2,7,36]. Proper
layerwise threshold adjustment is critical to convert ANNs to SNNs successfully.
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One approach is choosing the thresholds as the maximum pre-activation of the
neurons [36]. While it provides high accuracy, the associated drawback is high
inference latency (about 1000 timesteps). Alternatively, [34] suggests choosing
a certain percentile of the pre-activation distribution as the threshold to reduce
latency. However, these methods [34,11] still require few hundred timesteps.

Backpropagation from Scratch and Hybrid Training. An alternate
route of training SNNs with reduced latency is learning from scratch using back-
propagation (BP). To circumvent the non-differentiability of the spike function,
surrogate gradient based optimization has been proposed [27] to implement BP
in SNNs [16,22]. A related approach is using surrogate gradient based BP on
membrane potential [47,38]. Overall, these approaches obtain SNNs with high
accuracy, but the latency is still significant (~100-125 timesteps). Recently, sur-
rogate gradient-based deep residual learning has been employed to directly train
SNNs with just 4 timesteps [8]. A hybrid approach is proposed in [32] where a
pre-trained ANN is used as initialization for subsequent SNN learning. Such a
hybrid approach improves upon conversion by reducing latency and speeds up
convergence of direct BP from scratch method.

Temporal Encoding. Temporal coding schemes such as phase [18] or burst
[28] coding attempt to capture temporal information into learning; a related
method is time-to-first-spike (TTFS) coding [29], where each neuron is allowed
to spike just once. While these techniques enhance efficiency by reducing the
spike count, issues regarding high latency and memory access overhead persist.

Direct Encoding. The analog pixels are directly applied to the 1% layer of
the network in direct encoding [34,31,49]. Using direct coding and utilizing the
first layer as spike generator, authors in [31] achieve competitive performance
on ImageNet with 5 timesteps. Threshold-dependent batch normalization is em-
ployed with direct encoding by [49] to obtain high performing SNNs on ImageNet
with 6 timesteps. Inspired by such performance, we adopt the direct encoding
method. The difference between our work and [31] is the temporal pruning as-
pect, which enables to reduce the timestep to lowest possible limit while main-
taining performance on complex datasets. This was infeasible for state-of-the-art
SNNs [8,31,49], even with direct encoding. Moreover, our approach is able to en-
hance performance by incorporating batch-normalization unlike [31,32].

Binary Neural Networks. Unit timestep SNN is closely related to bi-
nary neural networks (BNN) [30,40], as both infer in a single shot with binary
activation. However, there are quite a few distinctions. While BNNs binarize
the outputs as £1, SNNs give spike (i.e., {0, 1}) output, which leads to higher
sparsity. Additionally, our model uses LIF neurons with trainable thresholds,
whereas, BNNs employ a Heaviside activation where the firing threshold is zero.
The activation of the proposed SNN reduces to Heaviside function with tunable
threshold for T— 1. However, the use of LIF neurons enables us to use the same
model for sequential processing using V,em, which is non-trivial in BNNs.
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Fig.1. (a) Schematic of an SNN with dynamics shown for yellow neuron with x as
input and y as output, (b) No output spike for direct transition from 5 to 1 timestep,
(c) Output spike in just 1 timestep through Vi, /w lowering, (d) Layerwise spike rates;
Tx represents an SNN trained with ‘x’ timesteps; Tx_y represents an SNN trained with
‘x” timesteps but initialized with an SNN that was trained for ‘y’ timesteps.

3 Background

Spiking Neuron Model. The LIF neuron model [17] is described as-

dUu
Tm% = *(U - Urest) + RI; U S ‘/th (1)
where U, I, 7, R, V35, and U,..s; denote membrane potential, input, time con-
stant for membrane potential decay, leakage resistance, firing threshold and rest-
ing potential, respectively. We employ a discretized version of Eqn. 1-

t oy t—1 ot -1
up = Au; o+ E w;j0; — vio; (2)
J

1, if u§_1 > v;
0, otherwise

3)

where u is the membrane potential, subscripts ¢ and j represent the post and
—1

t—1

_ (2 _

P and 02 L=
V;

pre-neuron, respectively, t denotes timestep, A is the leak constant= e™ , w;;
represents the weight between the i-th and j-th neurons, o is the output spike,
and v is the threshold. The detailed methodology of training SNN with a certain
timestep is provided in supplementary section 1. In particular, Algorithm S1 of
supplementary depicts the training scheme for one iteration.

4 Proposed Latency Reduction Method

We start by training an ANN with batch-norm (BN) and subsequently the BN
parameters are fused with the layerwise weights as done in [34]. With such
pretrained ANN, the weights are copied to an iso-architecture SNN and we
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select the 90.0 percentile of the pre-activation distribution at each layer as its
threshold. Then the SNN is trained for T timesteps using BP which serves as
our baseline; training steps are detailed in Algorithm S1 of supplementary. Our
starting point is a T=) timesteps trained network, since 4-6 is the minimum
latency range that state-of-the-art (SOTA) SNNs have reported for ImageNet
training [8,31,49] with high performance. However, our method is generic and
can be applied to SNNs with higher T as starting point too, but that increases
training overhead which motivates our choice of starting point as T=5.

Direct Inference with Unit Timestep. As mentioned in Section 1, our
goal is to reduce latency of SNNs as much as possible. To that effect, next we
explore the feasibility of directly reducing latency from T=5 to 1. Fig. 1(a)
schematically depicts an SNN with 3 neurons (one per layer), we focus on the
yellow neuron. Suppose it receives x as input and y is its output. With the weight
(w) and threshold (Vi) trained for 5 timesteps, there is enough accumulation
of membrane potential (Vyem) to cross Vi, and propagate spikes to next layer
within that 5 timestep window. However, when we try to infer with 1 timestep
(Fig. 1(b)), there is no output spike as the Ve is unable to reach Vi, instantly.
Therefore, w and Viy need to be adjusted such that information can propagate
even within 1 step. Balancing the thresholds properly is critical for SNNs to
perform well [49]. Hence, our goal is adjusting Vy,/w through learning using
BP, so that only neurons salient for information propagation are able to spike
in 1 timestep (Fig. 1(c)), while other neurons remain dormant.

Direct Transition to Training with Unit Timestep. Next, we begin
training with 1 timestep initialized with the 5 timestep trained SNN. However,
the network fails to train. To investigate this, we plot the layerwise spike rates for
a VGG16 on CIFARI10 in Fig. 1(d). Here, with Tx denotes an SNN trained with
spike based back propagation for x timesteps, and Tx_y denotes an SNN trained
with x timesteps, starting from an initial SNN that was trained for y timesteps
(y > x). While T5 has sufficient spiking activity till final layer, for T1.5, spikes
die out in the earlier layers. Due to such spike vanishing, all outputs at the
deeper layers (layers 11-16) are 0, thus BP fails to start training. This happens
since the initial Vi, and w are trained for 5 timesteps, and retraining directly
for 1 timestep hinders spike propagation to the later layers.

Gradual Temporal Pruning. To mitigate the above issue, we propose a
gradual latency reduction approach. We observe that despite significant layer-
wise spike activity decay, some spikes still reach the final layer for T3_5. Hence,
we start training with 3 timesteps using T5 as initialization and training is able
to converge through BP. The spiking activity is recovered when learning con-
verges as shown in Fig. 1(d), case T3. Subsequently, we train a network with
just 1 timestep by initializing it with T3, and successfully attain convergence.
The results for this case is shown as T1 in Fig. 1(d). Motivated by these observa-
tions, we propose an iterative temporal pruning method which enables training
a continuum of SNNs starting from T timesteps (T> 1) up to 1. Since in our
case, we compress the temporal dimension of SNNs, it is termed as ‘temporal
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Algorithm 1 Pseudo-code of training.

Input: Trained SNN with N timesteps (T'N), timesteps reduction step size (b),
number of epochs to train (e)
Initialize: new SNN initialized with trained parameters of T'N, reduced latency
T.=N-5b
while 7, > 0 do

// Training Phase

for epoch <+ 1 to e do

//Train network with T, timesteps using algorithm S1 of supplementary

end for

// Initialize another iso-architecture SNN with parameters of above trained net-

work

// Temporal pruning

T.=T.—b
end while

pruning’. A pseudo-code of training is given in Algorithm 1. Beginning with T5,
we gradually reduce the latency by 1 at each step and train till convergence.

How does temporal pruning help in learning? In this section, we in-
vestigate the effect of the temporal pruning on SNN learning. Without temporal
pruning, spikes may not propagate to the final layers in few timesteps. As a
result, no gradient can be propagated back to train the SNN. In terms of the
optimization landscape, the neural network parameters remain stuck at their ini-
tialization point since the gradient updates remain zero. However, using gradual
temporal pruning, we facilitate the propagation of spikes (and suitable gradient
flow is enabled) by properly learning the threshold and leak parameters, leading
to training convergence with very few timesteps. This can be visualized as a form
of curriculum training, where the SNN is first trained with a comparatively eas-
ier learning case (higher T) and then more stringent constraints (training with
lower T) are incorporated gradually. Similar curriculum training has been ap-
plied for ANNs [20] where directly imposing a tougher learning scenario leads to
optimization failure; however, gradual training alleviates the problem. The effect
of temporal pruning can also be analyzed by comparing it to spatial pruning in
ANNs [13,12]. In case of spatial pruning, a more complex network is first trained
and then spatial compression is performed while maintaining performance. Our
proposed approach is similar with the exception that we leverage the time axis
of SNNs to perform pruning. SNNs with multiple timesteps are trained with BP
through time (BPTT) [27], like RNNs. If we unroll SNNs in time, it becomes ob-
vious that each timestep adds a new hidden state. In essence, temporal pruning
helps latency reduction in SNNs through compression. From a related perspec-
tive, we can also perceive gradual temporal pruning as training by generations.
Similar sequential compression (training by generations) has been implemented
in ANNs [10,46] to obtain better performing compressed networks.
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Table 1. Top-1 classification accuracy (%), Tx denotes SNN trained with ‘x’ timestep

Architecture Dataset ANN T5 T4 T3 T2 T1
VGG6 CIFARI10 91.59 90.61 90.52 90.40 90.05 89.10
VGG16 CIFARI10 94.10 93.90 93.87 93.85 93.72 93.05
ResNet20 CIFARI10 93.34 92.62 92.58 92.56 92.11 91.10
VGG16 CIFAR100 72.46 71.58 71.51 71.46 71.43 70.15
ResNet20 CIFAR100 65.90 65.57 65.37 65.16 64.86 63.30
VGG16 ImageNet 70.08 69.05 69.03 69.01 69.00 69.00

5 Experiments and Results

Datasets and Models. We perform experiments on CIFAR10, CIFAR100 and
ImageNet using VGG16 and ResNet20, with some studies involving VGG6. The
proposed method is also evaluated on reinforcement learning (RL) using Cart-
pole and Atari-pong. Supplementary section 2 includes architectural details and
hyperparameters. The code is submitted as part of the supplementary material.

Results on CIFAR and ImageNet. The experimental results using the
proposed scheme are shown in Table 1. We achieve top-1 accuracy of 93.05%
and 70.15% on CIFAR-10 and CIFAR-100, respectively using VGG16, with just
1 timestep (T1); results with ResNet20 are also shown in this Table. With re-
duction of latency from 5 to 1, there is a slight accuracy degradation, however
that is due to the inherent accuracy versus latency trade-off in SNNs. Next, to
investigate the scalability of the proposed algorithm, we experiment with Ima-
geNet where we obtain 69.00% top-1 accuracy with T1. Notably, the proposed
technique allows us to reduce the SNN latency to lowest possible limit.

Performance Comparison. Next, we compare our performance with differ-
ent state-of-the-art SNNs in Table 2. T1 SNN performs better than or compara-
bly to all these methods, while achieving significantly lower inference latency. In
particular, previously it was challenging to obtain satisfactory performance with
low latency on ImageNet, with lowest reported timesteps of 4 [8], 5 [31] and 6
[49]. In contrast, we report 69.00% top-1 accuracy on ImageNet using T1. Over-
all, T1 SNN demonstrates 4-2500X improvement in inference latency compared
to other works while maintaining iso or better classification performance. Table
2 also demonstrates the gradual progression of SNN training from ANN-SNN
conversion to T1 SNN. Initial ANN-SNN conversion methods required latency
on the order of thousands [36,17]. Surrogate-gradient based BP [44,22] reduced
it to few tens to hundred. Next, hybrid training [32] combined these two methods
to bring the latency down to few hundreds on ImageNet. Subsequently, direct
input encoding enabled convergence on ImageNet with latency of ~ 5 [31,49].
The proposed method leverages all these previously proposed techniques and
improves upon them by incorporating the temporal pruning approach. We also
achieve better performance compared to different SNN encoding schemes such
as TTFS [29], phase [18], burst [28]; detailed comparison with these methods is
provided in supplementary section 3.
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Table 2. Comparison of T1 with other SNN results. SGB, hybrid and TTFS denote
surrogate-gradient based backprop, pretrained ANN followed by SNN fine-tuning, and
time-to-first-spike, respectively and (qC, dL) denotes q conv layers and d linear layers.

Method Dataset  Architecture Accuracy(%) Timesteps (T)
ANN-SNN conversion [17]  CIFARIO 2C, 2L 82.95 6000
ANN-SNN conversion [2] CIFARIO 3C, 2L 77.43 400
ANN-SNN conversion [36]  CIFARI0 VGGI6 91.55 2500

SGB [22] CIFARIO VGG 90.45 100
ANN-SNN conversion [34] CIFARIO 4C, 2L 90.85 400

Hybrid [32] CIFARIO  VGGO 90.5 100
TTFS [29] CIFARIO  VGGIB 1.4 650
Burst-coding [28] CIFARI0O __ VGGI6 014 1125
Phase-coding [18] CIFARI10 VGG16 91.2 1500
SGB [43 CIFARI10 2C, 2L 50.7 30
SGB [44 CIFARI0 5C, 2L 90.53 12
Tandem Learning [42] CIFAR10 5C, 2L 90.98 8
SGB [48] CIFARI0  5C, 2L 01.41 5
Direct Encoding [31] CIFAR10 VGG16 92.70 5
STBP-tdBN [49] CIFARI0 ResNet-19 93.16 6
Temporal pruning (ours) CIFAR1I0 VGG16 93.05 1
ANN-SNN conversion [24]  CIFARI00 VGGI5 63.2 62
Hybrid [32] CIFARI100 VGGI11 67.9 125
TTFS [29] CIFARIO0 _ VGGI6 65.8 650
Burst-coding [28] CIFAR100 VGG16 68.77 3100
Phase-coding [18] CIFAR100 VGGI16 68.6 8950
Direct Encoding [31] CIFAR100 VGG16 69.67 5
Temporal pruning (ours) CIFARI00 VGG16 70.15 1
ANN-SNN conversion [36 ImageNet VGG16 69.96 2500
ANN-SNN conversion [34 ImageNet VGG16 49.61 400
Hybrid [32] ImageNet VGG16 65.19 250
Tandem Learning [42] TmageNet AlexNet 50.22 10
ANN-SNN conversion [24] ImageNet VGGI15 66.56 64
Direct Encoding [31] ImageNet VGG16 69.00 5
SGB [g] ImageNet  ResNet-34 67.04 4
STBP-tdBN [49] ImageNet  ResNet-34 67.05 6
Temporal pruning (ours) ImageNet VGG16 69.00 1

Inference Efficiency. Next, we compare the energy efficiency of T1 SNNs
with ANNs and multi-timestep SNNs. In SNNs, the floating-point (FP) ad-
ditions replace the FP MAC operations. This results in higher compute effi-
ciency as the cost of a MAC (4.6pJ) is 5.1x to an addition (0.9pJ) [15] in
45nm CMOS technology (as shown in Fig. 2(e)). Supplementary section 4 con-
tains the equations of computational cost in the form of operations per layer
in an ANN, #ANNg,s. For an SNN, the number of operations is given as
#SNNops, ¢ = spike rate; X #ANNgps o; where spike rateq denotes the aver-
age number of spikes per neuron per inference over all timesteps in layer q.
The layerwise spike rates across T5 to T1 are shown in Fig. 2(a-c). Note, the
spike rates decrease significantly with latency reduction from 5 to 1, leading to
considerable reduction in operation count. The overall average spike rates us-
ing T1 for CIFAR10, CIFAR100 and ImageNet on VGG16 are 0.13, 0.15 and
0.18, respectively; all significantly below 5.1 (relative cost of MAC to addition).
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The first layer with direct input encoded SNNs receive analog inputs, hence the
operations are same as an ANN at this layer. Considering it, we calculate the
compute energy benefits of T1 SNN over ANN, « as,

o Bawy _ S #ANNgpg g % 4.6
EsNN # SNNops1 # 4.6 + Y0y # SNNops g 0.9

(4)

The values of « for different datasets and architectures are given in Fig. 2(d).
For VGG16, we obtain « of 33.0, 29.24 and 24.61 on CIFAR-10, CIFAR-100 and
ImageNet, respectively. Besides compute energy, another significant overhead
in SNNs occurs due to memory access costs which can be significantly higher
[12] compared to FP adds as shown in Fig. 2(e). However, most previous works
[29,31,49,32] did not consider this cost while comparing the energy benefits of
SNN to ANN. To obtain a
fairer comparison, we analyze
the costs taking the memory ac-
cess issue into consideration. For
multi-timestep SNNs, in addi-
tion to the weights, Vem needs Method Dataset Accuracy(%)

to be stored and fetched at each  Binary activation [35] CIFAR10 89.6
timestep. However, the mem-

Table 3. Comparison of T1 SNN with BNN

ory requirements for T1 SNNs STE-BNN [1] CIFARIO 85.2
are same as ANNs. The ac- BN-less BNN [3] CIFARI10 92.08
tual improvements in energy de- Trained binarization[45] CIFAR10 92.3
pends on the hardware archi- BBG-Net [37] CIFAR1L0 92.46
tecture and system configura- CI-BCNN [41] CIFARIO 0247

gon: He_ncetv we Conflpare %he re‘f Binary activation [6] CIFARIO _ 91.83
tetion i terns of funber o This work (T1)  CIFARIO _ 93.05

memory access. For a VGGI6, i _
Binary activation [6] CIFAR100  70.43

the proposed T1 reduces the
number of memory accesses by BN-less BNN [3]  CIFARI00  63.34

5.03x compared to 5 timestep BBG-Net [37] CIFAR100  69.38
SNN of [31]. More generally, This work (T1) CIFAR100  70.15
our scheme with T1 reduces the
number of memory accesses by
approximately T x compared to an SNN trained with T timesteps.
Comparison with binary activated ANNs. A key distinction between
ANNs and SNNs is the notion of time. However, T1 SNN and binary neural
networks (BNNs) both infer in single shot using binary activations. But, there
are some differences which have been discussed in section 2. Here, we compare
the performance of T1 SNN and BNNs. We observe that T1 SNN performs on
par or better than other BNN approaches on CIFAR10 and CIFAR100 datasets,
as depicted in Table 3. Furthermore, training large scale datasets such as Ima-
geNet using BNN methods [35,1,4,3,45,37] has been challenging, while the pro-
posed method scales well to ImageNet. Notably, Xnor-net [30] and Dorefa-net
[50] achieve 44.2% and 43.6% top-1 accuracy on ImageNet, respectively, with




Temporally Pruned SNN 11

(a) CIFAR10 WETS5(0.67) MEIT2(0.27)

£ EET4(0.53) BET1(0.13) £ 1
< [T3(0.39) Y
i) i)
3505 h L,5’_05
wv
0 hhhhhhhnnh ik
123456 7891011121314 15 3456738

(d) ANN vs T SNN
compute energy

5
(b) CIFAR100 MET5(0.69) mET2(0.32)

ENT4(0.57) BET1(0.15)
[IT3(0.44)

h nhhnnnhh hhn

9101112131415
Layer

(e) Energy Table

Operation Energy Relative
(32bits)  (p)) Cost

FP add 0.9 1

FP mult 37 4.1

1
° (c) ImageNet EEIT5(0.75) MMT2(0.37) Network  Dataset a
s BET4(0.63) BET1(0.18)
© 1 £9T3(0.50) VGG16 CIFAR10 33.0
§2 VGG16 CIFAR100 29.24
‘305
)

VGG16 ImageNet 24.61

hhhhhhnnnn nﬁ

FPMAC 46 5.1

0123456789101112131415 ResNet20 CIFARIO 16.32

Layer ResNet20 CIFARI00 1535

SRAM 5 5.6
Cache
DRAM 640 711.1

Fig. 2. Layerwise spike rates for a VGG16 (average spike rate in parenthesis) on (a)
CIFARI10, (b) CIFAR100, (c) ImageNet, (d) relative cost of compute between ANN
and T1, (e) operation-wise energy consumption in 45nm CMOS [15].

1-bit activations, while T'1 achieves 69%. However, SNNs like some of the BNNs
in Table 3 [35,6] use real-valued weights, while other BNNs use binary weights
[4,30,50]. Although SNNs use full precision weights, they provide computational
efficiency like BNNs by replacing MACs with adds, while maintaining accuracy.
Note, we performed energy comparison of T1 with ANNs following [32,31]. How-
ever, BNNs infer using XNOR and popcount ops instead of adds (used in SNNs),
which might further improve efficiency. Therefore, the proposed SNNs can pro-
vide suitable trade-off between accuracy and efficiency between ANN and BNNs.

Efficacy of temporal pruning with shallow networks. Temporal prun-
ing is required due to spike vanishing at later layers if direct transition from T5
to T1 is attempted. However, for shallow networks, training with T1 following di-
rect conversion from ANN might be possible. To investigate this, we experiment
with a VGG6 on CIFAR10 and the results are shown in Table 4, where VGG6g
denotestrained with temporal pruning and VGG6d denotes directly converted
from ANN and trained using that particular timestep. The proposed scheme
provides slightly higher accuracy compared to direct training in case of shal-
lower networks. This is consistent with [10,13], where the authors achieve better
performing networks using sequential model compression.

Proposed method with and without batch-norm. Recent works have
achieved low latency by adopting batch-normalization (BN) suitably in SNNs
[49,19]. To disentangle the effect of BN from the proposed scheme and ensure that
achieving convergence with 1 timestep is orthogonal to using BN, we perform
ablation studies as shown in Table 5. For both CIFAR10 and CIFAR100, we
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Table 4. Accuracy(%) Table 5. Accuracy(%) with VGG16, D_w and D_wo denote
on CIFARI10 dataset D with and without batch-norm respectively

T VGG6g VGG6d T CIFAR10.w CIFAR10-wo CIFAR100-w CIFAR100_wo

5 90.61 90.15 5 93.90 92.15 71.58 69.86
4 90.52 90.08 4 93.87 91.95 71.51 69.84
3 90.40 89.91 3 93.85 91.90 71.46 69.76
2 90.05  89.35 2 93.72 91.88 71.43 69.30
1 89.10 88.64 1 93.05 91.03 70.15 67.76
(a) Cartpole (b) Atari Pong (c) Atari Pong with SNN-DQN (T1)
55 2 0.35 Average spike rate=0.08
20 0.30
< 50 19 I ‘[ Lo.2s
2 % 18 2 0.20
e + 217 Lo1s
Qa0 <16 &o10
. : 1 1

14 0.00
ANN SNN(T1) SNN(T3) ANN SNN(T1) SNN(T3) SNN(TS) convl conv2 conv3  fcl
Network Network Layer

Fig. 3. Average reward (errorbars depict mean+tstd), using DQN with ANN and SNN
on (a) Cartpole and (b) Atari Pong, (c) layerwise spike rate with T1 on Atari Pong.

are able to perform training with T5 to T1 irrespective of using BN during
ANN training. Using BN enhances accuracy, but sequential temporal pruning
can be performed independently from it. Also, [49] reports that using threshold-
dependent BN allows reducing latency up to a minimum of 6 timesteps, but
we can go up to 1. Note, BN is used only during ANN training and the BN
parameters are fused with the weights during ANN-SNN conversion as proposed
in [34]; BN is not used in the SNN domain.

Skipping intermediate timestep reduction steps. Since the proposed
scheme increases training overhead due to sequential temporal pruning, it is
worth investigating if this cost can be reduced by skipping in between timestep
reduction steps. To that effect, we experiment with 2 cases- (i) training T5
followed by T3.5, followed by T1.3, (ii) including all intermediate timesteps
with the sequence- T5, T4.5, T34, T2_3 and T1_2. Interestingly, both these
cases perform comparably; for CIFAR10, we obtain 93.01% and 93.05% accuracy,
respectively with 1 timestep for cases (i) and (ii). These values for CIFAR100
are 69.92% and 70.15%, respectively, and for ImageNet, the values are 68.98%
and 69%, respectively. This indicates that if the end goal is obtaining T1 SNN,
training overhead can be reduced by skipping intermediate steps.

T1 with spatial pruning. With T1, we obtain maximum compression in
the temporal domain of SNNs. Additionally, we hypothesize that T1 might be
amenable to spatial pruning as there is redundancy in the weights of DNNs
[13,12]. To investigate this, we perform experiments on T1 with magnitude based
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weight pruning [12]. Our result indicate that we can remove up to 90% of the total
weights of a VGG16 without large drop in performance. Using VGG16 (T1), we
obtain 91.15% accuracy on CIFAR10 and 68.20% accuracy on CIFAR100, while
retaining just 10% of the original spatial connections. This provides evidence
that spatial pruning techniques can be combined with T1 SNNs.

Reinforcement learning (RL) with proposed SNNs. Due to their in-
herent recurrence, SNNs with multiple timesteps might be more useful in se-
quential decision-making (such as RL tasks) than static image classification.
However, application of SNNs in RL may be limited if the latency is too high,
since the agent has to make decisions in real-time. The authors in [39] obtain
high performing RL agents on Atari games with SNNs,; but with 500 timesteps.
In this section, we investigate if our technique can enable training SNNs for RL
tasks with low latency. The training pipeline is similar to that used for image
classification tasks (hybrid SNN training with temporal pruning). Experiments
are performed using deep Q-networks (DQN) [26] with SNNs (SNN-DQN) on
cartpole and Atari pong environments. As shown in Fig. 3(a) and (b), for both
cases, we can train SNNs up to 1 timestep. The rewards are obtained by averaging
over 20 trials and plotted with error-bars showing mean-+std. In (a), the reward
is the duration of the cartpole remaining balanced. DQN with ANN, SNN(T1)
and SNN(T3) achieve 40.3+£4.8, 38.7+5.4, 52.244.3 reward, respectively. While
T1 SNN performs slightly worse compared to ANN-based DQN, T3 outperforms
the ANN. Similar performance improvement over ANN using SNN for some RL
tasks has been reported in [39]. Next, we experiment with a more complex task,
Atari pong game. In this case, T1 achieves reward of 17.443.2 compared to
ANN based DQN’s 19.7£1.1. However, with T5, we obtain comparable reward
(19.441.3) to ANN. These results demonstrate that even T1 can handle dynamic
inputs, albeit with lower accuracy than T3 or T5 (Fig. 3). Number of timestep
is defined as the number of forward passes through the model. As such, T'1 does
not prevent usage with temporal inputs, rather each frame is processed just
once, like an RNN. However, for sequential tasks, SNNs with multiple timesteps
indeed provide enhanced performance using the inherent memory of membrane
potential in neurons. Notably, we can obtain SNNs for RL task (pong) with
significantly lower latency compared to prior art. On pong, [39] reports reward
of 19.8+1.3 using 500 timesteps, whereas, we obtain 19.4+1.3 reward using just
5 timesteps. Our training method enables SNNs for RL tasks with comparable
performance to ANNs with ~ 5 timesteps, and up to 1 timestep with slightly
lower performance. Moreover, such latency reduction translates to considerable
energy savings which is critical for agents operating in the real world. The lay-
erwise spike rates for SNN-DQN (T1) are shown in Fig. 3(c), the average spike
rate is 0.08, which results in 7.55X higher computational energy efficiency com-
pared to ANN-DQN. Furthermore, if we compare iso-performing networks to
ANN-DQN, SNN-DQN (T5) infers with average spike rate of 0.42, thus pro-
viding 5.22X higher computational energy efficiency compared to ANN-DQN.
Details of training and additional results are given in supplementary section 6.
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Is direct training feasible? Though the overhead due to iterative training
does not affect our primary goal (inference efficiency), we explore the feasibility
of directly obtaining T1 SNNs here. We reproduce the results of [35,1] where
the networks are trained as BNN; but as shown in Table 3, the iterative process
provides better results. Furthermore, it is challenging to scale these networks
with purely binary activation to ImageNet. More importantly, the continuum of
SNNs cannot be obtained using this process, which is required to have optimal
SNN solutions for both static and dynamic tasks. Additionally, we investigate
if direct conversion from ANN to T1 is feasible and find that this case leads to
convergence failure (details provided in supplementary section 5).

Limitations. A limitation of the proposed scheme is the training overhead
due to sequential training. However, this occurs only in training (can be per-
formed offline) and our end goal is inference which is not impacted by this iter-
ative process. Moreover, this cost can be reduced by skipping latency reduction
steps. Furthermore, if the end goal is T1, training can be performed with equiv-
alent overhead to T5 by early stopping training of parent SNNs. In this case, we
do not train the SNNs with higher timesteps till full convergence. Rather, we
keep the number of overall training epochs fixed and divide the epochs equally
among the temporal pruning stages. Let, the number of training epochs used for
training only T5 is v. Then, for the case of training T5 followed by T3_5, followed
by T1.3, we use (v/3) number of training epochs at each stage. Interestingly,
this causes negligible performance drop (< 0.3%) for CIFAR10 with VGG16.

6 Conclusion

Bio-plausible SNNs hold promise as energy efficient alternatives to ANNs. How-
ever, mitigating high inference latency is critical for their edge deployment. To
that end, we propose a temporal pruning approach which results in a contin-
uum of SNNs from T timesteps up to unity (T1). The proposed low-latency
SNNs use direct input coding with threshold and leak as trainable parameters
along with weights. This leads to a spectrum of optimum SNN solutions for
both static and sequential tasks. For static vision applications, T1 SNNs provide
the best efficiency and latency. In particular, the T1 SNNs enhance computa-
tional efficiency by 25X on ImageNet compared to ANNs using VGG16 and are
able to reduce the memory access overhead compared to SNNs with higher T.
On the other hand, the presented approach also provides SNN based solutions
for sequential tasks using few (1-5) timesteps. Notably, these SNN based deep
Q-networks (DQNs) perform comparably to ANNs while providing significantly
higher efficiency. Thus, the proposed technique enables training highly efficient
SNNs on static tasks (up to unit timestep) as well as on sequential tasks (with
few timesteps) while maintaining satisfactory performance.
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