
Near-Optimal Φ-Regret Learning in Extensive-Form Games

Ioannis Anagnostides 1 Gabriele Farina 2 Tuomas Sandholm 1 3 4 5

Abstract
In this paper, we establish efficient and uncou-
pled learning dynamics so that, when employed
by all players in multi-player perfect-recall
imperfect-information extensive-form games,
the trigger regret of each player grows as
O(log T ) after T repetitions of play. This im-
proves exponentially over the prior best known
trigger-regret bound of O(T 1/4), and settles a
recent open question by Bai et al. (2022). As
an immediate consequence, we guarantee con-
vergence to the set of extensive-form correlated
equilibria and coarse correlated equilibria at a
near-optimal rate of log T

T . Building on prior
work, at the heart of our construction lies a more
general result regarding fixed points deriving
from rational functions with polynomial degree,
a property that we establish for the fixed points
of (coarse) trigger deviation functions. More-
over, our construction leverages a refined regret
circuit for the convex hull, which—unlike prior
guarantees—preserves the RVU property intro-
duced by Syrgkanis et al. (NIPS, 2015); this
observation has an independent interest in es-
tablishing near-optimal regret under learning dy-
namics based on a CFR-type decomposition of
the regret.

1. Introduction
A primary objective of artificial intelligence is the design
of agents that can adapt effectively in complex and non-
stationary multiagent environments—modeled as general-
sum games. Multiagent decision making often occurs in
a decentralized fashion, with each agent only obtaining
information about its own reward function, and the goal
is to learn how to play the game through repeated inter-
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actions. But how do we measure the performance of a
learning agent? A popular metric commonly used is that
of external regret (or simply regret). However, external
regret can be a rather weak benchmark: a no-external-
regret agent could still incur substantial regret under simple
in-hindsight “transformations” of its behavior—e.g., con-
sistently switching from an action a to a different action
a′ (Gordon et al., 2008).

A more general metric is Φ regret (Hazan & Kale, 2007;
Rakhlin et al., 2011; Stoltz & Lugosi, 2007; Greenwald &
Jafari, 2003), parameterized by a set deviations Φ. From
a game-theoretic standpoint, the importance of this frame-
work is that different choices of Φ lead to different types
of equilibria (Greenwald & Jafari, 2003; Stoltz & Lugosi,
2007). For example, one such celebrated result guarantees
that no-internal-regret players converge—in terms of em-
pirical frequency of play—to the set of correlated equilib-
ria (CE) (Foster & Vohra, 1997; Hart & Mas-Colell, 2000).
This brings us to the following central question:

What are the best performance guarantees when
no-Φ-regret learners are playing in multi-player

general-sum games?

Special cases of this question have recently received con-
siderable attention in the literature (Daskalakis et al., 2011;
Rakhlin & Sridharan, 2013a;b; Syrgkanis et al., 2015; Fos-
ter et al., 2016; Wei & Luo, 2018; Chen & Peng, 2020;
Hsieh et al., 2021; Daskalakis et al., 2021; Daskalakis
& Golowich, 2022; Anagnostides et al., 2022a; Piliouras
et al., 2022b). In particular, Daskalakis et al. (2021) were
the first to establish O(polylog T ) external regret bounds
for normal-form games,1 and subsequent work extended
those results to internal regret (Anagnostides et al., 2022a);
those guarantees, applicable when all players employ spe-
cific learning dynamics, improve exponentially over what
is possible when a player is facing a sequence of adversar-
ially produced utilities—the canonical consideration in on-
line learning. However, much less is known about Φ-regret
learning beyond normal-form games.

One such important application revolves around learn-

1With a slight abuse of notation, we use the O(·) notation in
our introduction to suppress parameters that depend (polynomi-
ally) on the natural parameters of the game.
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ing dynamics for extensive-form correlated equilibria
(EFCE) (Von Stengel & Forges, 2008; Gordon et al., 2008;
Celli et al., 2020; Morrill et al., 2021a; Anagnostides et al.,
2022b; Morrill et al., 2021b; Bai et al., 2022a; Song et al.,
2022). Indeed, a particular instantiation of Φ regret, re-
ferred to as trigger regret, is known to drive the rate of
convergence to EFCE (Farina et al., 2022b). Incidentally,
minimizing trigger regret lies at the frontier of Φ-regret
minimization problems that are known to be computation-
ally tractable in extensive-form games. In this context,
prior work established O(T 1/4) per-player trigger regret
bounds (Anagnostides et al., 2022b), thereby leaving open
the possibility of obtaining near-optimal rates for EFCE;
that question was also recently posed by Bai et al. (2022a).

1.1. Our Contributions

Our main contribution is to establish the first uncoupled
learning dynamics with near-optimal per-player trigger re-
gret guarantees:
Theorem 1.1 (Informal; precise version in Theorem 3.10).
There exist uncoupled and computationally efficient learn-
ing dynamics so that the trigger regret of each player grows
as O(log T ) after T repetitions of play.

This improves exponentially over the O(T 1/4) bounds ob-
tained in prior work (Celli et al., 2020; Farina et al., 2022b;
Anagnostides et al., 2022b), and settles an open question
recently posed by Bai et al. (2022a). As an immediate con-
sequence, given that trigger regret drives the rate of con-
vergence to EFCE (Theorem 2.4), we obtain the first near-
optimal rates to EFCE.
Corollary 1.2. There exist uncoupled and computationally
efficient learning dynamics converging to EFCE at a near-
optimal rate of log T

T .

Overview of our techniques Our construction leverages
the template of Gordon et al. (2008) for minimizing Φ
regret (Algorithm 1). In particular, we follow the regret
decomposition approach of Farina et al. (2022b) to con-
struct an external regret minimizer for the set of devia-
tions corresponding to trigger deviation functions. A key
difference is that we instantiate each regret minimizer us-
ing the recent algorithm of Farina et al. (2022a), namely
LRL-OFTRL, which is based on optimistic follow the regu-
larizer leader (OFTRL) (Syrgkanis et al., 2015) under log-
arithmic regularization; LRL-OFTRL guarantees suitable
RVU bounds (Syrgkanis et al., 2015) for each “local” re-
gret minimizer.

To combine those local regret minimizers into a global one
for the set of trigger deviations that still enjoys a suitable
RVU bound, we provide a refined guarantee for the “regret
circuit” of the convex hull (Proposition 3.3), which ensures
that the RVU property is preserved along the construction.

Incidentally, this simple observation can be used to ob-
tain the first near-optimal regret guarantees for algorithms
based on a CFR-type decomposition of the regret (Zinke-
vich et al., 2007); as such, Proposition 3.3 has an indepen-
dent and broader interest.

The next key step relates to the behavior of the fixed points
of trigger deviation functions. (Fixed points are at heart
of all known constructions for minimizing Φ regret (Hazan
& Kale, 2007); see Algorithm 1.) More precisely, to con-
vert the RVU property from the space of deviations to the
actual space of the player’s strategies, we show that it suf-
fices that the fixed points deriving from trigger deviation
functions can be expressed as a rational function with a
polynomial degree (Lemma 3.5). Importantly, we prove
this property for the fixed points of trigger deviation func-
tions (Proposition 3.7), thereby leading to Theorem 1.1;
the last part of our analysis builds on a technique devel-
oped for obtaining O(log T ) swap regret in normal-form
games (Anagnostides et al., 2022c), although (imperfect-
information) extensive-form games introduce considerable
new challenges, not least due to the combinatorial struc-
ture of trigger deviation functions. We also obtain slightly
improved guarantees for extensive-form coarse correlated
equilibria (EFCCE) (Farina et al., 2020), a relaxation of
EFCE that is attractive due to its reduced per-iteration com-
plexity compared to EFCE.

Finally, we support our theory (Theorem 1.1) by im-
plementing our algorithm and evaluating its performance
through experiments on several benchmark extensive-form
games in Section 4.

1.2. Further Related Work

Φ regret has received extensive attention as a solution con-
cept in the literature since it strengthens and unifies many
common measures of performance in online learning (e.g.,
see (Hazan & Kale, 2007; Rakhlin et al., 2011; Stoltz &
Lugosi, 2007; Greenwald & Jafari, 2003; Marks, 2008; Pil-
iouras et al., 2022a; Fujii, 2023; Bernasconi et al., 2023)).
This framework has been particularly influential in game
theory given that no-Φ-regret learning outcomes are known
to converge to different equilibrium concepts, depending
on the richness of the set of deviations Φ. For example,
when Φ includes all constant transformations—reducing
to external regret—no-regret learning outcomes are known
to converge to coarse correlated equilibria (CCE) (Moulin
& Vial, 1978), a relaxation of CE (Aumann, 1974). Un-
fortunately, CCE is understood to be a rather weak equi-
librium concept, potentially prescribing irrational behav-
ior (Dekel & Fudenberg, 1990; Viossat & Zapechelnyuk,
2013; Giannou et al., 2021). This motivates enlarging the
set of deviaitons Φ, thereby leading to stronger—and ar-
guably more plausible—equilibrium concepts. Indeed, the
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framework of Φ regret has been central in the quite recent
development of the first uncoupled no-regret learning dy-
namics for EFCE (Celli et al., 2020; Farina et al., 2022b)
(see also (Morrill et al., 2021a;b; Zhang, 2022)).2

Our paper lies at the interface of the aforedescribed liter-
ature with a recent line of work that strives for improved
regret guarantees when specific learning dynamics are in
place; this allows bypassing the notorious Ω(

√
T ) lower

bounds applicable under an adversarial sequence of utili-
ties (Cesa-Bianchi & Lugosi, 2006). The later line of work
was pioneered by Daskalakis et al. (2011), and has been
thereafter extended along several lines (Rakhlin & Sridha-
ran, 2013a;b; Syrgkanis et al., 2015; Chen & Peng, 2020;
Daskalakis et al., 2021; Daskalakis & Golowich, 2022; Pil-
iouras et al., 2022b; Yang & Ma, 2022), incorporating par-
tial or noisy information feedback (Foster et al., 2016; Wei
& Luo, 2018; Hsieh et al., 2022; Bai et al., 2022b), and
more recently, general Markov games (Erez et al., 2022;
Zhang et al., 2022). For additional pointers, we refer the
interested reader to the survey of Li et al. (2022).

A key reference point for our paper is the work of Anag-
nostides et al. (2022b), which established O(T 1/4) trigger
regret bounds through optimistic hedge. Specifically, build-
ing on the work of Chen & Peng (2020), they showed multi-
plicative stability of the fixed points associated with EFCE.
While those works operate in the full information model,
recent papers have also developed dynamics converging to
EFCE under bandit feedback (Bai et al., 2022a; Song et al.,
2022). Finally, it is worth noting that O(polylog T ) regret
bounds in extensive-form games were already obtained in
prior work (Farina et al., 2022c), but they only applied to
the weaker notion of external regret.

2. Preliminaries
In this section, we introduce our notation and basic back-
ground on online learning and extensive-form games; the
familiar reader can just skim this section for our notation.
For a more comprehensive treatment on those subjects,
we refer to the books of Cesa-Bianchi & Lugosi (2006)
and Leyton-Brown & Shoham (2008), respectively.

Notation We denote by N = {1, 2, . . . } the set of natural
numbers. We use the variable i with a subscript to index
a player, and t with a superscript to indicate the (discrete)
time. To access the r-th coordinate of a d-dimensional vec-
tor x ∈ Rd, for some index r ∈ [[d]] := {1, 2, . . . , d}, we
use the symbol x[r].

2While there are other methods for efficiently computing
EFCE (Dudı́k & Gordon, 2009; Huang & von Stengel, 2008), ap-
proaches based on uncoupled no-regret learning typically scale
significantly better in large games.

2.1. Optimistic Online Learning and Regret

LetX ⊆ [0, 1]d be a nonempty convex and compact set, for
d ∈ N. In the framework of online learning, a learner (or
a player), denoted by R, interacts with the environment at
time t ∈ N via the following subroutines.

• R.NEXTSTRATEGY(): The learner outputs its next
strategy x(t) ∈ X based on its internal state; and

• R.OBSERVEUTILITY(u(t)): The learner receives a
feedback from the environment in the form of a utility
vector u(t) ∈ Rd.

The canonical measure of performance in online learning is
the notion of regret, denoted by RegT , defined for a fixed
time horizon T ∈ N as

max
x⋆∈X

{
T∑

t=1

⟨x⋆,u(t)⟩

}
−

T∑
t=1

⟨x(t),u(t)⟩. (1)

In words, the performance of the learner is compared to
the performance of playing an optimal fixed strategy in
hindsight. We will say that the agent has no-regret if
RegT = o(T ), under any sequence of observed utilities.

Optimistic FTRL By now, it is well-understood that
broad families of online learning algorithms—such as fol-
low the regularized leader—incur at most O(

√
T ) regret,

even when the sequence of utilities is selected adversari-
ally (Cesa-Bianchi & Lugosi, 2006). In addition, signifi-
cant improvements are possible when the observed utilities
satisfy further properties, such as small variation (Rakhlin
& Sridharan, 2013a), which turns out to be crucial in the
context of learning in games. To leverage such structure,
Syrgkanis et al. (2015) introduced optimistic follow the
regularized leader (OFTRL), which updates every strategy
x(t+1) as the (unique) solution to the optimization problem

max
x∈X

{〈
x,u(t) +

t∑
τ=1

u(τ)

〉
− 1

η
R(x)

}
, (OFTRL)

where η > 0 is the learning rate and R : X → R is a
1-strongly convex regularizer with respect to some norm
∥ · ∥. Syrgkanis et al. (2015) showed that OFTRL satisfies
a remarkable regret bound coined the RVU property.
Definition 2.1 (RVU property). A regret minimizer satis-
fies the RVU property w.r.t. a dual pair of norms (∥·∥, ∥·∥∗)
if there exist α, β, γ > 0 such that for any (u(t))1≤t≤T ,

RegT≤ α+β
T−1∑
t=1

∥u(t+1)−u(t)∥2∗−γ
T−1∑
t=1

∥x(t+1)−x(t)∥2.

Φ regret A much more general performance metric
than (1) is Φ regret, parameterized by a set of transforma-
tions Φ : X → X . Namely, Φ-regret RegTΦ—for a time
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horizon T ∈ N—is defined as

sup
ϕ⋆∈Φ

{
T∑

t=1

⟨ϕ⋆(x(t)),u(t)⟩

}
−

T∑
t=1

⟨x(t),u(t)⟩. (2)

External regret (1) is simply a special case of (2) when Φ
includes all possible constant transformations, but Φ regret
can be much more expressive. A celebrated game-theoretic
motivation for Φ regret stems from the fact that when all
players employ suitable Φ-regret minimizers, the dynam-
ics converge to different notions of correlated equilibria,
well-beyond coarse correlated equilibria (Foster & Vohra,
1997; Stoltz & Lugosi, 2007; Hart & Mas-Colell, 2000;
Celli et al., 2020).

From external to Φ regret As it turns out, there is a gen-
eral template for minimizing Φ regret due to Gordon et al.
(2008). In particular, they assume access to the following.

1. A no-external-regret minimizer RΦ operating over the
set of transformations Φ; and

2. A fixed point oracle FIXEDPOINT(ϕ) that, for any
ϕ ∈ Φ, computes a fixed point x ∈ X , under the
assumption that such a point indeed exists.

Based on those ingredients, Gordon et al. (2008) were
able to construct a regret minimization algorithm R with
sublinear Φ regret, as illustrated in Algorithm 1. Specif-
ically, R determines its next strategy by first obtaining
the strategy ϕ(t) of RΦ, and then outputting any fixed
point of ϕ(t). Then, upon receiving the utility vector
u(t) ∈ Rd, R forwards as input to RΦ the utility function
ϕ 7→ ⟨u(t), ϕ(x(t))⟩. We will assume that Φ contains lin-
ear transformations, in which case that utility can be rep-
resented as U (t) := u(t) ⊗ x(t) := u(t)(x(t))⊤ ∈ Rd×d;
that is,⊗ denotes the outer product of the two vectors. This
algorithm enjoys the following guarantee.

Algorithm 1 Φ-Regret Minimizer (Gordon et al., 2008)

1: Input: An external regret minimizer RΦ for Φ
2: function NEXTSTRATEGY()
3: ϕ(t) ← RΦ.NEXTSTRATEGY()
4: x(t) ← FIXEDPOINT(ϕ(t))
5: return x(t)

6: end function
7: function OBSERVEUTILITY(u(t))
8: Construct the utility U (t) ← u(t) ⊗ x(t)

9: RΦ.OBSERVEUTILITY(U (t))
10: end function

Theorem 2.2 (Gordon et al., 2008). Let RegT be the ex-
ternal regret of RΦ, and RegTΦ be the Φ-regret of R. Then,
for any T ∈ N,

RegT = RegTΦ .

It is also worth pointing out that a similar guarantee applies
even under approximate fixed-point computations, as long
as the accuracy is high enough (Gordon et al., 2008).

No-Regret learning in games The main focus of our pa-
per is about the behavior of no-regret learning dynamics
when employed by all players in n-player games. More
precisely, the strategy set of each player i ∈ [[n]] is a
nonempty convex and compact set Xi. Further, the utility
function ui :×n

i′=1
Xi′ → R of each player i ∈ [[n]] is mul-

tilinear, so that for any x−i := (x1, . . . ,xi−1,xi+1,xn),
ui(x) := ⟨xi,ui(x−i)⟩.

In this context, learning procedures work as follows. At ev-
ery iteration t ∈ N each player i ∈ [[n]] commits to a strat-
egy x

(t)
i ∈ Xi, and subsequently receives as feedback the

utility corresponding to the other players’ strategies at time
t: u(t)

i := ui(x
(t)
−i). It is assumed that players use no-regret

learning algorithms to adapt to the behavior of the other
players, leading to uncoupled learning dynamics, in the
sense that players do not use information about other play-
ers’ utilities (Hart & Mas-Colell, 2000; Daskalakis et al.,
2011). For convenience, and without any loss, we assume
that ∥u(t)

i ∥∞ ≤ 1, for i ∈ [[n]] and t ∈ N.

2.2. Background on EFGs

An extensive-form game (EFG) is played on a rooted
and directed tree with node-set H. Every decision (non-
terminal) node h ∈ H is uniquely associated with a
player who selects an action from a finite and nonempty
set Ah. By convention, the set of players includes a ficti-
tious “chance” player c that acts according to a fixed distri-
bution. The set of leaves (terminal) nodes Z ⊆ H corre-
sponds to different outcomes of the game. Once the game
reaches a terminal node z ∈ Z , every player i ∈ [[n]] re-
ceives a payoff according to a (normalized) utility function
ui : Z → [−1, 1].

In an imperfect-information EFG, the decision nodes of
each player i ∈ [[n]] are partitioned into information setsJi,
inducing a partially ordered set (Ji,≺). For an information
set j ∈ Ji and an action a ∈ Aj , we let σ := (j, a) be the
sequence of i’s actions encountered from the root of the tree
until (and including) action a; we use the special symbol ∅
to denote the empty sequence. The set of i’s sequences is
denoted by Σi := {(j, a) : j ∈ Ji, a ∈ Aj}∪{∅}. We also
let Σ∗

i := Σi \ {∅} and Σj := {σ ∈ Σi : σ ⪰ j}, where
we write σ ⪰ j if sequence σ must pass from some node
in j. We will use σj to represent the parent sequence of an
information set j ∈ Ji; namely, the last sequence before
reaching j, or ∅ if j is a root information set. For any pair
of sequences σ, σ′ ∈ Σ∗

i , with σ = (j, a) and σ′ = (j′, a′),
we write σ ≺ σ′ if the sequence of actions encountered
from the root of the tree to any node in j′ includes select-
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ing action a at some node from information set j. Further,
by convention, we let ∅ ≺ σ for any σ ∈ Σ∗

i .

Sequence-form strategies The strategy of a player
specifies a probability distribution for every information
set. Assuming perfect recall—players never forget ac-
quired information—a strategy can be represented via the
sequence-form strategy polytope Qi ⊆ R|Σi|

≥0 , defined as{
qi : qi[∅] = 1, qi[σj ] =

∑
a∈Aj

qi[(j, a)], ∀j ∈ Ji
}

.

Under the sequence-form representation, learning in
extensive-form games can be cast in the framework of on-
line linear optimization described earlier in Section 2.1; we
refer to, for example, the work of Farina et al. (2022b).

Further, we let Πi := Qi∩{0, 1}|Σi| be the set of determin-
istic sequence-form strategies. Analogously, one can define
the sequence-form polytope Qj rooted at information set
j ∈ Ji, and Πj := Qj ∩ {0, 1}|Σj |. We also use ∥Qi∥1 to
denote the maximum ℓ1-norm of a vector qi ∈ Qi. Finally,
we denote by Di the depth of i’s subtree.

Trigger deviations and EFCE To formalize the connec-
tion between EFCE and the framework of Φ-regret, we in-
troduce trigger deviation functions.
Definition 2.3 (Farina et al., 2022b). A trigger deviation
function with respect to a trigger sequence σ̂ = (j, a) ∈ Σ∗

i

and a continuation strategy π̂i ∈ Πj is any linear mapping
f : R|Σi| → R|Σi| such that

• f(πi) = πi for all πi ∈ Πi such that πi[σ̂] = 0;
• Otherwise, for all πi ∈ Πi,

f(πi)[σ] =

{
πi[σ] if σ ̸⪰ j,

π̂i[σ] if σ ⪰ j.

We denote by Ψi the convex hull of all trigger devia-
tion functions—over all trigger sequences and determinis-
tic continuation strategies; Ψi-regret is referred to as trig-
ger regret. In an extensive-form correlated equilibrium
(EFCE) (Von Stengel & Forges, 2008) no trigger deviation
by any player can improve the utility of that player, leading
to the following connection.
Theorem 2.4 (Farina et al., 2022b). If each player i ∈
[[n]] incurs trigger regret RegTΨi

after T repetitions of
the game, the average product distribution of play is a
1
T maxi∈[[n]] Reg

T
Ψi

-approximate EFCE.

Moreover, extensive-form coarse correlated equilibria
(EFCCE) (Farina et al., 2020) are defined analogously
based on coarse trigger deviations Ψ̃i; the difference is that
in EFCCE the player decides whether to follow the recom-
mendation before actually seeing the recommendation at
that information set (see Appendix A for the definition and
specific examples).

3. Near-Optimal Learning for EFCE
In this section, we establish our main result: efficient learn-
ing dynamics with O(log T ) per-player trigger regret; this
is made precise in Theorem 3.10, the informal version of
which was stated earlier in Theorem 1.1.

This section is organized as follows: Section 3.1 analyzes
the regret of the algorithm operating over the set of trigger
deviation functions; Section 3.2 provides a refined char-
acterization for the corresponding fixed points; and, fi-
nally, Section 3.3 combines all the previous pieces to ar-
rive at Theorem 3.10. All the proofs are deferred to Ap-
pendix B.

3.1. Regret Minimizer for Trigger Deviations

The algorithm Our construction for minimizing trigger
regret uses the general template of Gordon et al. (2008)
(Algorithm 1), and in particular, the approach of Farina
et al. (2022b) in order to construct an external regret min-
imizer for the set Ψi (a similar approach also applies for
the set of coarse trigger deviations Ψ̃i). More precisely,
that construction leverages one separate regret minimizer
Rσ̂ for every possible trigger sequence σ̂ ∈ Σ∗

i (recall
Definition 2.3). In particular, Rσ̂ , with σ̂ = (j, a), is—
after performing an affine transformation—operating over
sequence-form vectors qσ̂ ∈ Qj (rooted at information set
j ∈ Ji). Then, those regret minimizers are combined using
a regret minimizer R△ operating over the simplex ∆(Σ∗

i ).
The first key ingredient in our construction is the use of
a logarithmic regularizer. More specifically, we instanti-
ate each regret minimizer with LRL-OFTRL, a recent al-
gorithm due to Farina et al. (2022a). LRL-OFTRL is an
instance of (OFTRL) (Syrgkanis et al., 2015) with logarith-
mic regularization; the main twist is that LRL-OFTRL op-
erates over an appropriately lifted space. The overall con-
struction is given in Algorithm 2.

For our purposes, we first apply (Farina et al., 2022a,
Proposition 2 and Corollary 1) to obtain a suitable RVU
bound for each regret minimizer Rσ̂ instantiated with
LRL-OFTRL, for each σ̂ ∈ Σ∗

i .
Lemma 3.1. Fix any σ̂ ∈ Σ∗

i , and let RegTσ̂ be the re-
gret of Rσ̂ up to time T ≥ 2. For any η ≤ 1

256∥Qi∥1
,

max{0,RegTσ̂ } can be upper bounded by

2|Σi| log T
η

+16η∥Qi∥21
T−1∑
t=1

∥U (t+1)
i −U

(t)
i ∥

2
∞

− 1

512η

T−1∑
t=1

∥q(t+1)
σ̂ − q

(t)
σ̂ ∥

2

q
(t)
σ̂ ,∞

. (3)

A few remarks are in order. First, we recall that U (t)
i :=

u
(t)
i ⊗ x

(t)
i , in accordance to Algorithm 2. Also, η > 0
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Algorithm 2 Ψi-Regret Minimizer

1: Input:

• R△ ← LRL-OFTRL(η△) over ∆(Σ∗
i )

• {Rσ̂ ← LRL-OFTRL(η) over Qj}σ̂=(j,·)∈Σ∗
i

2: function NEXTSTRATEGY()

3: λ
(t)
i ← R△.NEXTSTRATEGY()

4: X
(t)
σ̂ ← Rσ̂.NEXTSTRATEGY(), for all σ̂ ∈ Σ∗

i

5: ϕ
(t)
i ←

∑
σ̂∈Σ∗

i
λ
(t)
i [σ̂]X

(t)
σ̂

6: x
(t)
i ← FIXEDPOINT(ϕ

(t)
i )

7: return x
(t)
i

8: end function
9: function OBSERVEUTILITY(u

(t)
i )

10: Construct the utility U
(t)
i ← u

(t)
i ⊗ x

(t)
i

11: Rσ̂.OBSERVEUTILITY(U
(t)
i ), for all σ̂ ∈ Σ∗

i

12: R△.OBSERVEUTILITY((⟨X(t)
σ̂ ,U

(t)
i ⟩)σ̂∈Σ∗

i
)

13: end function

denotes the (time-invariant) learning rate of LRL-OFTRL.
Furthermore, for σ̂ = (j, a) ∈ Σ∗

i , in Lemma 3.1 we used
the notation

∥q(t+1)
σ̂ − q

(t)
σ̂ ∥q(t)

σ̂ ,∞ := max
σ∈Σj

∣∣∣∣∣1− q
(t+1)
σ̂ [σ]

q
(t)
σ̂ [σ]

∣∣∣∣∣ .
Lemma 3.1 establishes an RVU bound (Definition 2.1), but
with two important refinements. First, the bound applies to
max{0,RegTσ̂ }, instead of RegTσ̂ , ensuring that (3) is non-
negative. Further, the local norm appearing in (3) will also
be crucial for our argument in the sequel (Lemma 3.5).

Next, similarly to Lemma 3.1, we obtain a regret bound for
R△, the regret minimizer “mixing” over all {Rσ̂}σ̂∈Σ∗

i
.

Lemma 3.2. Let RegT△ be the regret of R△ up to time T ≥
2. For any η△ ≤ 1

512|Σi| , max{0,RegT△} can be upper
bounded by

2|Σi| log T
η△

+ 16η△|Σi|2
T−1∑
t=1

∥u(t+1)
△ − u

(t)
△ ∥

2
∞

− 1

512η△

T−1∑
t=1

∥λ(t+1)
i − λ

(t)
i ∥

2

λ
(t)
i ,∞

.

Here, we used the notation u
(t)
△ [σ̂] := ⟨X(t)

σ̂ ,U
(t)
i ⟩, where

X
(t)
σ̂ is the output of Rσ̂ , for each σ̂ ∈ Σ∗

i ; that is,
X

(t)
σ̂ ∈ R|Σi|×|Σi| transforms sequence-form vectors based

on the continuation strategy q
(t)
σ̂ below the trigger sequence

σ̂ (recall Definition 2.3). We also note that λ(t)
i ∈ ∆(Σ∗

i )
above represents the output of R△ at time t.

We next use Theorem 2.2 to obtain a bound for RegTΨi
, the

Ψi-regret of the overall construction (Algorithm 2).

Proposition 3.3. For any T ∈ N,

max{0,RegTΨi
} ≤ max{0,RegT△}+

∑
σ̂∈Σ∗

i

max{0,RegTσ̂ }.

This uses the regret circuit for the convex hull (Farina et al.,
2019b) to combine all the regret minimizers {Rσ̂}σ̂∈Σ∗

i
via

R△ into an external regret minimizer for the set Ψi; by
virtue of Theorem 2.2, the external regret of the induced al-
gorithm is equal to the Ψi-regret (RegTΨi

) of player i. There
is, however, one crucial twist: the guarantee of Farina et al.
(2019b) would give a bound in terms of maxσ̂∈Σ∗

i
RegTσ̂ ,

instead of
∑

σ̂∈Σ∗
i
RegTσ̂ ; this is problematic for obtain-

ing near-optimal rates as it breaks the RVU property over
the convex hull. In general, it is not clear how to bound
the maximum of the regrets by their sum since (external)
regret can be negative. This is, in fact, a recurrent ob-
stacle encountered in this line of work (Syrgkanis et al.,
2015), and it is precisely the reason why approaches based
on regret decomposition—in the spirit of CFR (Zinkevich
et al., 2007)—failed to bring rates better than T−3/4 (Fa-
rina et al., 2019a). Proposition 3.3 circumvents those obsta-
cles by establishing bounds in terms of nonnegative mea-
sures of regret.

Remark 3.4 (Near-optimal regret via CFR-type algo-
rithms). An important byproduct of our techniques, and in
particular Proposition 3.3 along with RVU bounds for non-
negative measures of regret (Anagnostides et al., 2022c), is
the first near-optimal O(log T ) regret bound for CFR-type
algorithms in general games, a question that has been open
even in (two-player) zero-sum games (see the discussion
by Farina et al. (2019a)).3

3.2. Characterizing the Fixed Points

Next, our main goal is to obtain an RVU bound for
max{0,RegTΨi

}, but cast in terms of the player’s strategies
(x

(t)
i )1≤t≤T , as well as the utilities (u(t)

i )1≤t≤T observed
by that player. In particular, in light of Lemmas 3.1 and 3.2,
the crux is to appropriately bound ∥λ(t+1)

i − λ
(t)
i ∥λ(t)

i ,∞

and
∑

σ̂∈Σ∗
i
∥q(t+1)

σ̂ − q
(t)
σ̂ ∥q(t)

σ̂ ,∞ in terms of ∥x(t+1)
i −

x
(t)
i ∥—the deviation of the player’s strategy at every time

t. To do so, we prove the following key result.

Lemma 3.5. Let X(t)
i ∈ RD

>0 be defined for every time
t ∈ N, for some D ∈ N. Further, suppose that for every

3Liu et al. (2022) very recently obtained near-optimal rates in
zero-sum games, though with very different techniques.
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time t ∈ N and σ ∈ Σi,

x
(t)
i [σ] =

m∑
k=1

pσ,k(X
(t)
i )

qσ,k(X
(t)
i )

, (4)

for some multivariate polynomials {pσ,k}, {qσ,k} with pos-
itive coefficients and maximum degree degi ∈ N. If

max
e∈[[D]]

∣∣∣∣∣1− X
(t+1)
i [e]

X
(t)
i [e]

∣∣∣∣∣ ≤ 100

256 degi
, (5)

it holds that

∥x(t+1)
i −x(t)

i ∥1 ≤ (4∥Qi∥1 degi) max
e∈[[D]]

∣∣∣∣∣1− X
(t+1)
i [e]

X
(t)
i [e]

∣∣∣∣∣ .
We recall that, based on Algorithm 1, the final strategy x

(t)
i

is simply a fixed point of ϕ(t)
i ∈ Ψ

(t)
i , where ϕ

(t)
i is a func-

tion of X(t)
i = (λ

(t)
i , (q

(t)
σ̂ )σ̂∈Σ∗

i
). Equation (4) postulates

that the fixed point is given by a rational function with pos-
itive coefficients. Taking a step back, let us clarify that
assumption in the context of the no-swap-regret algorithm
of Blum & Mansour (2007), a specific instance of Algo-
rithm 1. In that algorithm, the fixed point is a stationary
distribution of the underlying stochastic matrix Xi; hence,
(4) is simply a consequence of the Markov chain tree the-
orem (see (Anantharam & Tsoucas, 1989)), with degree in
the order of the rank of the corresponding stochastic matrix.

While insisting on having positive coefficients in
Lemma 3.5 may seem restrictive at first glance, in Proposi-
tions B.5 and B.6 (in Appendix B) we show that, in fact, it
comes without any loss under sequence-form vectors. We
further remark that the degree of the rational function is a
measure of the complexity of the fixed points, as it will be
highlighted in Propositions 3.6 and 3.7 below. Finally, the
property in (5) will be satisfied for our construction since
the regret minimizers we employ guarantee multiplicative
stability (as we formally show in Lemmas B.2 and B.4),
meaning that the ratio of any two consecutive coordinates
is close to 1; this refined notion of stability is ensured by
the use of the logarithmic regularizer.

We now establish that assumption (4) is satisfied for trans-
formations in Ψi with only a moderate degree. First, as a
warm-up, we consider fixed points associated with coarse
trigger deviation functions Ψ̃i.

Proposition 3.6. Let ϕ(t)
i ∈ Ψ̃i be a transformation defined

by X
(t)
i = (λ

(t)
i , (q

(t)
j )j∈Ji

) ∈ RD
>0, for some D ∈ N and

time t ∈ N. The unique fixed point x(t)
i of ϕ(t)

i satisfies (4)
with degi ≤ 2Di.

This property is established by leveraging the closed-
form characterization for the fixed points associated with

EFCCE given by Anagnostides et al. (2022b). Next, let
us focus on the fixed points of trigger deviation func-
tions. Unlike EFCCE, determining such fixed points re-
quires computing stationary distributions of Markov chains
along paths of the tree, commencing from the root and
gradually making way towards the leaves (Farina et al.,
2022b); this substantially complicates the analysis. Nev-
ertheless, we leverage a refined characterization of the sta-
tionary distribution at every information set (Anagnostides
et al., 2022b) to obtain the following.

Proposition 3.7. Let ϕ(t)
i ∈ Ψi be a transformation defined

by X(t)
i = (λ

(t)
i , (q

(t)
σ̂ )σ̂∈Σ∗

i
) ∈ RD

>0, for some D ∈ N and

time t ∈ N. The (unique) fixed point x(t)
i of ϕ(t)

i satisfies
(4) with degi ≤ 2Di|Ai|, where |Ai| := maxj∈Ji

|Aj |.

In proof, we show that augmenting a “partial fixed point” at
a new (successor) information set can only increase the de-
gree of the rational function by an additive factor of 2|Ai|;
Proposition 3.7 then follows by induction. It is crucial
to note that using the Markov chain tree theorem directly
at every information set would only give a bound on the
degree that could be exponential in the description of the
extensive-form game. Next, we combine Proposition 3.7
with Lemma 3.5 to derive the following key inequality.

Lemma 3.8. Consider any parameters η ≤ 1
256∥Qi∥1 degi

and η△ ≤ 1
512|Σi| degi

, where degi := 2|Ai|Di. Then, for
any time t ∈ [[T − 1]],

∥x(t+1)
i − x

(t)
i ∥1 ≤ 8∥Qi∥1|Ai|DiM(X

(t)
i ),

where M(X
(t)
i ) is defined as

max

{
max
σ̂∈Σ∗

i

∣∣∣∣∣1− λ
(t+1)
i [σ̂]

λ
(t)
i [σ̂]

∣∣∣∣∣ ,max
σ̂∈Σ∗

i

max
σ∈Σj

∣∣∣∣∣1− q
(t+1)
σ̂ [σ]

q
(t)
σ̂ [σ]

∣∣∣∣∣
}
.

3.3. Putting Everything Together

We now combine Lemma 3.8 with Lemmas 3.1 and 3.2
and Proposition 3.3, as well as some further manipulations
of the utilities (U (t)

i )1≤t≤T (Lemma 3.1) and (u
(t)
△ )1≤t≤T

(Lemma 3.2) to derive the following RVU bound.

Corollary 3.9. Suppose that η ≤ 1
212|Σi|1.5∥Qi∥1 degi

and
η△ = 1

2|Σi|η, where degi := 2|Ai|Di. For any T ≥ 2,

max{0,RegTΨi
} can be upper bounded by

8|Σi|2 log T
η

+ 256η|Σi|3
T−1∑
t=1

∥u(t+1)
i − u

(t)
i ∥

2
∞

− 1

215η deg2i ∥Qi∥21

T−1∑
t=1

∥x(t+1)
i − x

(t)
i ∥

2
1.
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Now given that the RVU bound in Corollary 3.9 has been
obtained for max{0,RegTΨi

}, a nonnegative measure of re-
gret, we can show that the second-order path length of the
dynamics when all players follow Algorithm 2 is bounded
by O(log T ); that is,

T−1∑
t=1

n∑
i=1

∥x(t+1)
i − x

(t)
i ∥

2
1 = O(log T ).

This step is formalized in Theorem B.12 (in Appendix B),
and follows the technique of Anagnostides et al. (2022c),
leading to our main result; below we use the notation |Σ| :=
maxi∈[[n]] |Σi|, and similarly for the other symbols (namely,
∥Q∥1, |A| and D).
Theorem 3.10. If all players employ Algorithm 2, the trig-
ger regret of each player i ∈ [[n]] after T repetitions will be
bounded as

RegTΨi
≤ Cn|Σ|3.5∥Q∥1|Z||A|D log T, (6)

for a universal constant C > 0.

While the above theorem applies when all players follow
the prescribed protocol, it is easy to ensure at the same time
that the trigger regret of each player will grow as O(

√
T )

even if the rest of the players are instead acting so as to
minimize that player’s utility (Anagnostides et al., 2022c).

As we highlight in Section 5, improving the dependence
of (6) on the underlying parameters of the game is an im-
portant direction for future work. For EFCCE, in accor-
dance to Proposition 3.6, we obtain a slightly improved re-
gret bound (see Corollary B.14 in Appendix B).
Remark 3.11 (Beyond EFCE). While we have focused pri-
marily on obtaining near-optimal guarantees for trigger re-
gret, corresponding to EFCE, our techniques apply more
broadly to Φ-regret minimization under two conditions: i)
the fixed point of any ϕ ∈ Φ should admit a characteri-
zation as a rational function per (4); and (ii) one can effi-
ciently perform projections to the set Φ (in the sense of Fa-
rina et al. (2022a)). For example, we believe that those
two conditions are met even when the set of deviations
Φ includes all possible linear transformations, which is of
course stronger than trigger regret.

4. Experimental Results
Finally, in this section we experimentally verify our the-
oretical results on several common benchmark extensive-
form games: (i) 3-player Kuhn poker (Kuhn, 1953); (ii)
2-player Goofspiel (Ross, 1971); and (iii) 2-player Sher-
iff (Farina et al., 2019c). We note that none of the above is
a two-player zero-sum game—for which no-regret learning
is well-known to lead to Nash equilibria. A detailed de-
scription of the game instances we use in our experiments
is included in Appendix C.

In accordance to Theorem 3.10, we instantiate each local
regret minimizer using LRL-OFTRL, and all players use
the same learning algorithm. For simplicity we use the
same learning rate η > 0 for all the local regret minimizers,
which is treated as a hyperparameter in order to obtain bet-
ter empirical performance. In particular, after a very mild
tuning process, we chose η = 1 for all our experiments. We
compare the performance of our algorithm with that of two
other popular regret minimizers: 1) CFR with regret match-
ing (RM) (Zinkevich et al., 2007), meaning that every local
regret minimizer Rσ̂ uses CFR (with RM) and R△ (which
is an algorithm for the simplex) also uses RM; and 2) CFR+

with RM+ (Tammelin et al., 2015). We did not employ al-
ternation or linear averaging, two popular tricks that accel-
erate convergence in zero-sum games, as it is not known if
those techniques retain convergence in our setting.

Our findings are illustrated in Figure 1. As predicted by
our theory (Theorem 3.10), the trigger regret of all players
appears to grow as O(log T ) (the x-axis is logarithmic),
implying convergence to the set of EFCE with a rate of
log T
T . In contrast, although the trigger regret experienced

by the other regret minimizers is sometimes smaller com-
pared to our algorithm, their asymptotic growth apparently
exhibits an unfavorable exponential increase, meaning that
their trigger regret grows as ω(log T ), with the exception of
3-player Kuhn poker. In fact, for Kuhn poker we see that
the learning dynamics actually converge to a Nash equi-
librium after only a few iterations, but this is not a typi-
cal behavior beyond two-player zero-sum games. Indeed,
for the other two games in Figure 1 we do not have con-
vergence to a Nash equilibrium, although—as predicted by
our theory—we observe convergence to EFCE (since the
players’ average trigger regrets approach to 0). The overall
conclusion is that our algorithm should be preferred in the
high-precision regime.

It is also worth pointing out that we obtained qualitatively
similar regret bounds for coarse trigger regret—associated
with EFCCE.

5. Conclusions and Future Research
In this paper, we established the first near-optimal
log T
T rates of convergence to extensive-form correlated

equilibria, thereby extending recent work from normal-
form games to the substantially more complex class of
imperfect-information extensive-form games. Our ap-
proach for obtaining near-optimal Φ-regret guarantees can
be in fact further extended even beyond extensive-form
games, as long as the fixed points admit the characteri-
zation imposed by Lemma 3.5. Our techniques also have
an independent interest in deriving near-optimal rates us-
ing the regret-decomposition approach, a question that has
previously remained elusive even in two-player zero-sum
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Figure 1. Trigger regret of each player on (i) Kuhn poker (left); (ii) Goofspiel (center); and (iii) Sheriff (right). Every row corresponds to
a different algorithm, starting from ours in the first one. The x-axis indicates the iteration, while the y-axis indicates the corresponding
trigger regret for each player. We emphasize that the x-axis is logarithmic.

games (Farina et al., 2019a). In particular, we initiated
the study of regret circuits—in the sense of Farina et al.
(2019b)—that preserve the RVU property, and we estab-
lished a new composition result for the convex hull, which
has been the main obstacle in prior approaches (Farina
et al., 2019a).

There are still many interesting avenues for future re-
search related to our work. While our trigger-regret bounds
are near-optimal in terms of the dependence on T (Theo-
rem 3.10), the dependence on the parameters of the game
in (6) can likely be improved. Establishing near-optimal
trigger regret under dynamics that do not employ logarith-
mic regularization, such as optimistic hedge, could be a
helpful step in that direction, but that is currently a chal-
lenging open problem; it is plausible that the techniques
of Anagnostides et al. (2022a) in conjunction with the re-
gret bounds of Daskalakis et al. (2021) could be useful in
that direction, although the combinatorial complexity of
trigger deviation functions poses considerable challenges.

Another interesting problem is to characterize the set of
transformations Φ under which our techniques are appli-
cable (see Remark 3.11). In a similar vein, we suspect
that our approach leads to near-optimal convergence to the
set of behavioral correlated equilibria (BCE), which corre-
sponds to minimizing swap regret at every information set
locally (Morrill et al., 2021b).
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A. Additional Preliminaries
In this section, we provide some additional background on extensive-form games and (coarse) trigger deviation functions.

An illustrative example First, to clarify some of the concepts we introduced earlier in Section 2, we consider the simple
two-player EFG of Figure 2. White round nodes correspond to player 1, while black round nodes to player 2. We use
square nodes to represent terminal nodes (or leaves). As illustrated in Figure 2, player 1 has two information sets, denoted
by J1 := {A, B}, each containing two nodes. Further, the set of sequences of player 1 can be represented as Σ1 :=
{∅,1,2,3,4}; here, we omitted specifying the corresponding information set since we use different symbols for actions
belonging to different information sets.

1 12 2 3 34 4

S R

A B

Figure 2. Example of a two-player EFG.

Trigger deviation functions It will be convenient to represent trigger deviation functions, in the sense of Definition 2.3,
as follows.

Definition A.1 (Farina et al., 2022b). Let σ̂ = (j, a) ∈ Σ∗
i , and q ∈ Qj . We let Mσ̂→q ∈ R|Σi|×|Σi| be a matrix, so that

for any σr, σc ∈ Σi,

Mσ̂→q =


1 if σc ̸⪰ σ̂ and σr = σc;

q[σr] if σc = σ̂ and σr ⪰ j; and
0 otherwise.

We will let ϕσ̂→q denote the linear function x 7→ Mσ̂→qx, for some q ∈ Qj . It is immediate to verify that for any
σ̂ = (j, a) ∈ Σ∗

i and q ∈ Qj , ϕσ̂→q is a trigger deviation function in the sense of Definition 2.3.

To clarify Definition A.1, below we give two examples for the EFG of Figure 2. If q = ( 12 ,
1
2 ) ∈ ∆2, then

M1→q =

∅ 1 2 3 4


∅ 1 0 0 0 0
1 0 1/2 0 0 0
2 0 1/2 1 0 0
3 0 0 0 1 0
4 0 0 0 0 1

, M3→q =

∅ 1 2 3 4


∅ 1 0 0 0 0
1 0 1 0 0 0
2 0 0 1 0 0
3 0 0 0 1/2 0
4 0 0 0 1/2 1

.

The following characterization can be readily extracted from (Farina et al., 2022b).

Claim A.2. Every transformation ϕi ∈ Ψi can be expressed as
∑

σ̂∈Σ∗
i
λi[σ̂]ϕσ̂→qσ̂

, where λi ∈ ∆(Σ∗
i ) and qσ̂ ∈ Qj for

σ̂ = (j, a) ∈ Σ∗
i .

Coarse trigger deviation functions Analogously, coarse trigger deviation functions can be represented as follows.

Definition A.3 (Anagnostides et al., 2022b). Let j ∈ Ji and q ∈ Qj . We let Mj→q ∈ R|Σi|×|Σi| be a matrix, so that for
any σr, σc ∈ Σi,

Mj→q =


1 if σc ̸⪰ j and σr = σc;

q[σr] if σc = σj and σr ⪰ j; and
0 otherwise.
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Unlike trigger deviations, which are “triggered” by a sequence, we point out that coarse trigger deviations are “triggered”
by an information set; see the work of Farina et al. (2020) for a more detailed discussion on this point.

Returning to the example of Figure 2, and letting again q = ( 12 ,
1
2 ) ∈ ∆2,

MA→q =

∅ 1 2 3 4


∅ 1 0 0 0 0
1 1/2 0 0 0 0
2 1/2 0 0 0 0
3 0 0 0 1 0
4 0 0 0 0 1

, MC→q =

∅ 1 2 3 4


∅ 1 0 0 0 0
1 0 1 0 0 0
2 0 0 1 0 0
3 1/2 0 0 0 0
4 1/2 0 0 0 0

.

Analogously to Claim A.2, one can show the following characterization.
Claim A.4. Every transformation ϕi ∈ Ψ̃i can be expressed as

∑
j∈Ji

λi[j]ϕj→qj
, where λi ∈ ∆(Ji) and qj ∈ Qj .

The connection between coarse trigger deviation functions and EFCCE is illuminated in the following fact.
Theorem A.5 (Anagnostides et al., 2022b). If each player i ∈ [[n]] incurs coarse trigger regret RegT

Ψ̃i
after T repetitions

of the game, the average product distribution of play is a 1
T maxi∈[[n]] Reg

T
Ψ̃i

-approximate EFCCE.

B. Omitted Proofs
In this section, we provide all the omitted proofs from the main body (Section 3). For the convenience of the reader, we
restate each claim before proceeding with its proof.

B.1. RVU Bounds for the Set of Deviations

Let us fix a player i ∈ [[n]]. First, we prove Lemma 3.1. To this end, let us provide some auxiliary claims. Recall that,
for each σ̂ = (j, a) ∈ Σ∗

i , Rσ̂ receives at every time t the utility U
(t)
i := u

(t)
i ⊗ x

(t)
i , and the next strategy is computed

via LRL-OFTRL (Farina et al., 2022a); namely, we first compute q̃
(t)
σ̂ := (q̃

(t)
σ̂ [0], (q̃

(t)
σ̂ [e])e∈Σj ) = (λ

(t)
σ̂ ,y

(t)
σ̂ ) ∈ Q̃j , for

a time t ∈ N, as

argmax
q̃σ̂∈Q̃j

η
〈
S

(t−1)
σ̂ , q̃σ̂

〉
+

∑
e∈Σj∪{0}

log q̃σ̂[e]

 , (7)

where,

(i) Q̃j := {(λσ̂,yσ̂) : λσ̂ ∈ [0, 1],yσ̂ ∈ λσ̂Qj};

(ii) Ũ
(t)
σ̂ := (−⟨q(t)

σ̂ ,U
(t)
σ̂ ⟩,U

(t)
σ̂ ), where in turn U

(t)
σ̂ is the component of U (t)

i that corresponds to sequence σ̂;

(iii) S
(t−1)
σ̂ := Ũ

(t−1)
σ̂ +

∑t−1
τ=1 Ũ

(τ)
σ̂ ; and

(iv) η > 0 is the learning rate—common among all Rσ̂ .

Finally, having determined q̃
(t)
σ̂ = (λ

(t)
σ̂ ,y

(t)
σ̂ ), we compute q

(t)
σ̂ :=

y
(t)
σ̂

λ
(t)
σ̂

∈ Qj . In turn, this gives the next strategy of

Rσ̂ as X(t)
σ̂ := M

σ̂→q
(t)
σ̂

(recall Definition A.1). It is evident that the regret minimization problem faced by each Rσ̂ is

equivalent to minimizing regret over Qj , since only the components of X(t)
σ̂ that correspond to q

(t)
σ̂ cumulate regret (the

rest are constant), leading to the regret bound below. We note that all the subsequent analysis operates under the tacit
premise that each local regret minimizer is updated via LRL-OFTRL, without explicitly mentioned in the statements in
order to lighten the exposition.
Proposition B.1. For any learning rate η ≤ 1

256∥Qi∥1
and T ≥ 2, max{0,RegTσ̂ } can be upper bounded by

2
|Σi| log T

η
+ 16η∥Qi∥2

T−1∑
t=1

∥U (t+1)
i −U

(t)
i ∥

2
∞ −

1

32η

T−1∑
t=1

∥∥∥∥∥
(
λ
(t+1)
σ̂

y
(t+1
σ̂

)
−

(
λ
(t)
σ̂

y
(t
σ̂

)∥∥∥∥∥
2

t

.
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Proof. This regret bound is an immediate implication of (Farina et al., 2022a, Proposition 2 and Corollary 1). More
precisely, we note that the regret bound by Farina et al. (2022a) applies if ∥U (t)

i ∥∞ ≤ 1
∥Qi∥1

, for any t ∈ N. That

assumption can be met by rescaling the learning rate by a factor of 1
∥Qi∥1

since in our setting it holds that ∥U (t)
i ∥∞ ≤ 1;

the latter follows from the definition of U (t)
i := u

(t)
i ⊗ x

(t)
i (Algorithm 1), and the fact that ∥u(t)

i ∥∞ ≤ 1 (by assumption)
and ∥x(t)

i ∥∞ ≤ 1 (since Qi ⊆ [0, 1]|Σi|).

In Proposition B.1 we used the shorthand notation∥∥∥∥∥
(
λ
(t+1)
σ̂

y
(t+1
σ̂

)
−

(
λ
(t)
σ̂

y
(t
σ̂

)∥∥∥∥∥
2

t

:=

∥∥∥∥∥
(
λ
(t+1)
σ̂

y
(t+1
σ̂

)
−

(
λ
(t)
σ̂

y
(t
σ̂

)∥∥∥∥∥
2

(λ
(t)
σ̂ ,y

(t)
σ̂ )

,

where for a vector w̃ ∈ Rd+1 and x̃ ∈ Rd+1
>0 , we used the notation

∥w̃∥x̃ :=

√√√√ ∑
e∈[[d+1]]

(
w̃[e]

x̃[e]

)2

for the local norm induced by x̃. Further, we will also use the notation

∥w̃∥x̃,∞ := max
e∈[[d+1]]

∣∣∣∣w̃[e]

x̃[e]

∣∣∣∣ .
Lemma B.2. For any sequence σ̂ = (j, a) ∈ Σ∗

i , learning rate η ≤ 1
50∥Qi∥1

and time t ∈ [[T − 1]],

max
σ∈Σj

∣∣∣∣∣1− q
(t+1)
σ̂ [σ]

q
(t)
σ̂ [σ]

∣∣∣∣∣ ≤ 4

∥∥∥∥∥
(
λ
(t+1)
σ̂

y
(t+1)
σ̂

)
−

(
λ
(t)
σ̂

y
(t)
σ̂

)∥∥∥∥∥
t,∞

≤ 100η∥Qi∥1.

Proof. We will need the following stability bound, extracted from (Farina et al., 2022a, Proposition 3).

Lemma B.3 (Farina et al., 2022a). For any sequence σ̂ = (j, a) ∈ Σ∗
i , time t ∈ [[T − 1]] and learning rate η ≤ 1

50∥Qi∥1
,∥∥∥∥∥

(
λ
(t+1)
σ̂

y
(t+1)
σ̂

)
−

(
λ
(t)
σ̂

y
(t)
σ̂

)∥∥∥∥∥
t,∞

≤ 22η∥Qi∥1.

Now let us fix a time t ∈ [[T − 1]]. For convenience, we introduce the notation

µ(t) :=

∥∥∥∥∥
(
λ
(t+1)
σ̂

y
(t+1)
σ̂

)
−

(
λ
(t)
σ̂

y
(t)
σ̂

)∥∥∥∥∥
t,∞

. (8)

For our choice of the learning rate η ≤ 1
50∥Qi∥1

, Lemma B.3 implies that µ(t) ≤ 1
2 . By definition, we have

q
(t+1)
σ̂ :=

y
(t+1)
σ̂

λ
(t+1)
σ̂

≤
(1 + µ(t))y

(t)
σ̂

(1− µ(t))λ
(t)
σ̂

=

(
1 +

2µ(t)

1− µ(t)

)
q
(t)
σ̂ ≤ (1 + 4µ(t))q

(t)
σ̂ ,

where the last bound follows since µ(t) ≤ 1
2 . That is,

q
(t+1)
σ̂

q
(t)
σ̂

≤ (1 + 4µ(t)). (9)

Similarly,

q
(t+1)
σ̂ =

y
(t+1)
σ̂

λ
(t+1)
σ̂

≥ 1− µ(t)

1 + µ(t)

y
(t)
σ̂

λ
(t)
σ̂

=

(
1− 2µ(t)

1 + µ(t)

)
q
(t)
σ̂ ≥ (1− 2µ(t))q

(t)
σ̂ .
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Thus,
q
(t+1)
σ̂

q
(t)
σ̂

≥ 1− 2µ(t). (10)

As a result, the claim follows from (9) and (10).

We are now ready to establish Lemma 3.1, restated below.

Lemma 3.1. Fix any σ̂ ∈ Σ∗
i , and let RegTσ̂ be the regret of Rσ̂ up to time T ≥ 2. For any η ≤ 1

256∥Qi∥1
, max{0,RegTσ̂ }

can be upper bounded by

2|Σi| log T
η

+ 16η∥Qi∥21
T−1∑
t=1

∥U (t+1)
i −U

(t)
i ∥

2
∞ −

1

512η

T−1∑
t=1

∥q(t+1)
σ̂ − q

(t)
σ̂ ∥

2

q
(t)
σ̂ ,∞

.

Proof. The claim follows directly from Proposition B.1 and Lemma B.2.

Under the premise that R△ is also updated via LRL-OFTRL, similar reasoning yields the proof of Lemma 3.2.

Lemma 3.2. Let RegT△ be the regret of R△ up to time T ≥ 2. For any η△ ≤ 1
512|Σi| , max{0,RegT△} can be upper

bounded by

2|Σi| log T
η△

+ 16η△|Σi|2
T−1∑
t=1

∥u(t+1)
△ − u

(t)
△ ∥

2
∞ −

1

512η△

T−1∑
t=1

∥λ(t+1)
i − λ

(t)
i ∥

2

λ
(t)
i ,∞

.

Proof. The argument is analogous to the proof of Lemma 3.1, leveraging the fact that ∥u(t)
△ ∥∞ = |⟨X(t)

σ̂ ,U
(t)
i ⟩| ≤

∥X(t)
σ̂ ∥1∥U

(t)
i ∥∞ ≤ 2|Σi|, for any σ̂ ∈ Σ∗

i , by Cauchy-Schwarz inequality.

Lemma B.4. For any t ∈ [[T − 1]] and η△ ≤ 1
512|Σi| ,

max
σ̂∈Σ∗

i

∣∣∣∣∣1− λ
(t+1)
i [σ̂]

λ
(t)
i [σ̂]

∣∣∣∣∣ ≤ 200η△|Σi|.

Proof. The argument is analogous to Lemma B.2.

Next, we combine all those local regret minimizers, namely R△, (Rσ̂)σ̂∈Σ∗
i
, into a global regret minimizer RΨi for the set

Ψi via the regret circuit for the convex hull. Finally, we denote by R the Ψi-regret minimizer derived from Algorithm 1,
based on RΨi

.

Proposition 3.3. For any T ∈ N,

max{0,RegTΨi
} ≤ max{0,RegT△}+

∑
σ̂∈Σ∗

i

max{0,RegTσ̂ }.

Proof. Using the guarantee of the regret circuit for the convex hull (Farina et al., 2019b), we have

RegT ≤ RegT△ + max
σ̂∈Σ∗

i

RegTσ̂ ,

where RegT is the external regret cumulated by RΨi
up to time T . But, by Theorem 2.2, this is equal to the Ψi-regret of

R, constructed according to Algorithm 1. As a result,

RegTΨi
≤ RegT△ + max

σ̂∈Σ∗
i

RegTσ̂ ,
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In turn, this implies that

max{0,RegTΨi
} ≤ max

{
0,RegT△ + max

σ̂∈Σ∗
i

RegTσ̂

}
≤ max{0,RegT△}+ max

σ̂∈Σ∗
i

max{0,RegTσ̂ }

≤ max{0,RegT△}+
∑
σ̂∈Σ∗

i

max{0,RegTσ̂ },

where the last inequality follows from the fact that max{0,RegTσ̂ } ≥ 0, for any σ̂ ∈ Σ∗
i .

B.2. Characterizing the Fixed Points

We recall that (x(t)
i )1≤t≤T denotes the sequence of fixed points produced by Algorithm 1—that is, the strategies produced

by R. The next key result relates the deviation of the fixed points—in ℓ1 norm—in terms of the multiplicative deviation of
the transformations, assuming a particular rational function characterization of the fixed points.

Lemma 3.5. Let X(t)
i ∈ RD

>0 be defined for every time t ∈ N, for some D ∈ N. Further, suppose that for every time t ∈ N
and σ ∈ Σi,

x
(t)
i [σ] =

m∑
k=1

pσ,k(X
(t)
i )

qσ,k(X
(t)
i )

, (4)

for some multivariate polynomials {pσ,k}, {qσ,k} with positive coefficients and maximum degree degi ∈ N. If

max
e∈[[D]]

∣∣∣∣∣1− X
(t+1)
i [e]

X
(t)
i [e]

∣∣∣∣∣ ≤ 100

256 degi
, (5)

it holds that

∥x(t+1)
i − x

(t)
i ∥1 ≤ (4∥Qi∥1 degi) max

e∈[[D]]

∣∣∣∣∣1− X
(t+1)
i [e]

X
(t)
i [e]

∣∣∣∣∣ .
Proof. Let us define

µ(t) := max
e∈[[D]]

∣∣∣∣∣1− X
(t+1)
i [e]

X
(t)
i [e]

∣∣∣∣∣ . (11)

By assumption, it holds that µ(t) ≤ 100
256 degi

≤ 1
2 degi

. Further, suppose that

pσ,k : Xi 7→
∑

T ∈Tσ,k

CT
∏
e∈T

Xi[e], (12)

and
qσ,k : Xi 7→

∑
T ∈T′

σ,k

CT
∏
e∈T

Xi[e], (13)

for all (σ, k) ∈ Σi × [[m]], where CT > 0 for any T ∈ Tσ,k and CT > 0 for any T ∈ T′
σ,k. Here, T can be a multiset or

an empty set (the validity of (12) and (13) follows by assumption). Then, for (σ, k) ∈ Σi × [[m]],

pσ,k(X
(t+1)
i ) =

∑
T ∈Tσ,k

CT
∏
e∈T

X
(t+1)
i [e]

≤
∑

T ∈Tσ,k

CT
∏
e∈T

(1 + µ(t))X
(t)
i [e] (14)

≤ (1 + µ(t))degi

∑
T ∈Tσ,k

CT
∏
e∈T

X
(t)
i [e] (15)

= (1 + µ(t))degipσ,k(X
(t)
i )

≤ (1 + 1.5µ(t) degi)pσ,k(X
(t)
i ), (16)
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where (14) follows since X
(t+1)
i [e] ≤ (1 + µ(t))X

(t)
i [e], for any e ∈ [[D]], by definition of µ(t) in (11); (15) uses the

fact that |T | ≤ deg for any T ∈ Tσ,k; and (16) follows since (1 + µ(t))degi ≤ exp{µ(t) degi} ≤ 1 + 1.3µ(t) degi for
µ(t) ≤ 1

2 degi
. Similarly, for (σ, k) ∈ Σi × [[m]], we get

pσ,k(X
(t+1)
i ) =

∑
T ∈Tσ,k

CT
∏
e∈T

X
(t+1)
i [e]

≥
∑

T ∈Tσ,k

CT
∏
e∈T

(1− µ(t))X
(t)
i [e]

≥ (1− µ(t))degipσ,k(X
(t)
i )

≥ (1− µ(t) degi)pσ,k(X
(t)
i ), (17)

where the last bound follows from Bernoulli’s inequality. Analogous reasoning yields that for any (σ, k) ∈ Σi × [[m]],

qσ,k(X
(t+1)
i ) ≤ (1 + 1.3µ(t) degi)qσ,k(X

(t)
i ), (18)

and
qσ,k(X

(t+1)
i ) ≥ (1− µ(t) degi)qσ,k(X

(t)
i ). (19)

As a result, for σ ∈ Σi,

x
(t+1)
i [σ]− x

(t)
i [σ] =

m∑
k=1

pσ,k(X
(t+1)
i )

qσ,k(X
(t+1)
i )

−
m∑

k=1

pσ,k(X
(t)
i )

qσ,k(X
(t)
i )

≤
m∑

k=1

(
1 + 1.3µ(t) degi
1− µ(t) degi

)
pσ,k(X

(t))

qσ,k(X
(t)
i )
−

m∑
k=1

pσ,k(X
(t)
i )

qσ,k(X
(t)
i )

(20)

≤
(
1 +

2.3µ(t) degi
1− µ(t) deg

) m∑
k=1

pσ,k(X
(t)
i )

qσ,k(X
(t)
i )
−

m∑
k=1

pσ,k(X
(t)
i )

qσ,k(X
(t)
i )

=
2.3µ(t) degi
1− µ(t) degi

x
(t)
i [σ] ≤ 4µ(t) degi x

(t)
i [σ]. (21)

where (20) uses (16) and (19), and (21) follows from the fact that µ(t) ≤ 100
256 degi

. Similarly, by (17) and (18),

x
(t)
i [σ]− x

(t+1)
i [σ] =

m∑
k=1

pσ,k(X
(t)
i )

qσ,k(X
(t)
i )
−

m∑
k=1

pσ,k(X
(t+1)
i )

qσ,k(X
(t+1)
i )

≤ 4µ(t) degi x
(t)
i [σ].

As a result, we conclude that

∥x(t+1)
i − x

(t)
i ∥1 ≤ 4µ(t) degi ∥Qi∥1.

Lemma 3.5 makes the assumption that each polynomial in (4) has positive coefficients. While this might seem rather
restrictive, we next show that there is a procedure that eliminates the negative monomials, as long as the involved variables
are deriving from the sequence-form polytope. As a warm-up, we first establish this property for variables deriving from
the simplex.

We note that the processes described in the proofs below are not meant to be algorithmic meaningful, but instead highlight
the generality of Lemma 3.5. Indeed, the way one computes the fixed point should not be necessarily related to the rational
function formula postulated in (4); for example, computing the stationary distribution of a Markov chain using the Markov
chain tree theorem would make little sense, as it would require exponential time.
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Proposition B.5. Let p : X 7→ R be a non-constant multivariate polynomial of degree deg ∈ N such that p(0) = 0. If
X = (x1, . . . ,xm) such that xk ∈ ∆dk , for all k ∈ [[m]], p can be expressed as a combination of monomials with positive
coefficients and degree at most deg.

Proof. Let
p(X) =

∑
T ∈T

CT
∏
e∈T

X[e],

where T is a finite and nonempty set, and T ̸= ∅ and CT ̸= 0 for all T ∈ T; the validity of such a formulation follows
since, by assumption, p(0) = 0 and p is non-constant. To establish the claim, we consider the following iterative algorithm.

First, if it happens that CT > 0, for all T ∈ T, the algorithm terminates. Otherwise, we take any monomial of the
form CT

∏
e∈T X[e] with CT < 0. Since T ̸= ∅, we might take e ∈ T . Further, we let X[e] = xk[r], for some

k ∈ [[m]], r ∈ [[dk]], where xk ∈ ∆dk . As such, we have that xk[r] = 1−
∑

r′ ̸=r xk[r
′]. Thus,

CT
∏
e′∈T

X[e′] = CT
∏

e′∈T \{e}

X[e′] +
∑
r′ ̸=r

(−CT )xk[r
′]

∏
e′∈T \{e}

X[e′].

Here, by convention the product over an empty set is assumed to be 1. This step clearly cannot increase the degree of the
polynomial. Now to analyze this iterative process, we consider as the potential function the sum of the degrees of all the
negative monomials—monomials for which CT < 0. It should be evident that every step of the previous algorithm will
decrease the potential function by one. Further, the previous step can always be applied as long as the potential function is
not zero. As a result, given that T is finite, we conclude that after a finite number of iterations the potential function will
be zero. Then, we will have that

p(X) =
∑
T ∈T′

CT
∏
e∈T

X[e] + C,

where T ̸= ∅ and CT > 0. But, given that p(0) = 0, we conclude that C = 0, and the claim follows.

Proposition B.6. Let p : X 7→ R be a non-constant multivariate polynomial of degree deg ∈ N such that p(0) = 0. If
X = (q1, . . . , qm) such that qk ∈ Qdk , for all k ∈ [[m]], p can be expressed as a combination of monomials with positive
coefficients and degree at most deg.

Proof. As in Proposition B.5, let
p(X) =

∑
T ∈T

CT
∏
e∈T

X[e],

where T is a finite and nonempty set, and T ̸= ∅ and CT ̸= 0 for all T ∈ T. We consider the following algorithm.

First, if CT > 0, for all T ∈ T, the algorithm may terminate. In the contrary case, we consider any monomial
CT
∏

e∈T X[e] for which CT < 0. Further, take any e ∈ T , which is possible since T ̸= ∅. Now let us assume
that X[e] = qk[σ], for some k ∈ [[m]], σ = (j, a). By the sequence-form polytope constraints, we have

qk[σ] = qk[σj ]−
∑

a′∈Aj\{a}

qk[(j, a
′)].

Thus,

CT
∏
e′∈T

X[e′] = CT qk[σj ]
∏

e′∈T \{e}

X[e′] +
∑
a′ ̸=a

(−CT )qk[(j, a
′)]

∏
e′∈T \{e}

X[e′].

This step clearly does not increase the degree of the polynomial. To construct a potential function, we will say that the
depth of a monomial

∏
e∈T X[e], for T ̸= ∅, is the sum of the depths of each X[e]; more precisely, the depth of qk[σ] is 0

if σ = ∅, or 1 plus the depth of qk[σj ] otherwise. Now we claim that the sum of the depths of the negative monomials is a
proper potential function. Indeed, by construction every step reduces the potential by 1, while the previous step can always
be applied when the potential function is not zero. As a result, given that T is finite, we conclude that after a finite number
of iterations the potential function will be zero, which in turn implies that

p(X) =
∑
T ∈T′

CT
∏
e∈T

X[e] + C,
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where T ̸= ∅ and CT > 0. But, since p(0) = 0, it follows that C = 0, concluding the proof.

Now we show that the fixed points associated with EFCCE and EFCE can be analyzed through the lens of Lemma 3.5,
establishing Propositions 3.6 and 3.7.

Proposition 3.6. Let ϕ(t)
i ∈ Ψ̃i be a transformation defined by X

(t)
i = (λ

(t)
i , (q

(t)
j )j∈Ji) ∈ RD

>0, for some D ∈ N and

time t ∈ N. The unique fixed point x(t)
i of ϕ(t)

i satisfies (4) with degi ≤ 2Di.

Proof. Consider any coarse trigger deviation function ϕ
(t)
i =

∑
j∈Ji

λ
(t)
i [j]ϕ

j→q
(t)
j

, where q
(t)
j ∈ Qj (Claim A.4). Given

that we are updating R△ using LRL-OFTRL, it follows that λ(t)
i [j] > 0 for any j ∈ Ji. As a result, by (Anagnostides

et al., 2022b, Theorem 5.1), the (unique) fixed point x(t)
i ∈ Qi can be computed in a top-down fashion as follows.

x
(t)
i [σ] =

∑
j′⪯j λ

(t)
i [j′]q

(t)
j′ [σ]x

(t)
i [σj′ ]∑

j′⪯j λ
(t)
i [j′]

, (22)

for any sequence σ = (j, a) ∈ Σ∗
i . We will prove the claim by induction. For the basis of the induction, we note that the

empty sequence is trivially given by a 0-degree rational function with positive coefficients; namely, xi[∅] = 1
1 .

Now for the inductive step, let us take any sequence σ = (j, a) ∈ Σ∗
i . We suppose that for any sequence σj′ , for j′ ⪯ j, it

holds that

x
(t)
i [σj′ ] =

mσ
j′∑

k=1

pσj′ ,k(X
(t)
i )

qσj′ ,k(X
(t)
i )

,

where {pσj′ ,k}, {qσj′ ,k} are multivariate polynomials with positive coefficients and maximum degree at most h ∈ N∪{0}.
Then, the term

λ
(t)
i [j′]q

(t)
j′ [σ]∑

j′⪯j λ
(t)
i [j′]

·
pσj′ ,k(X

(t)
i )

qσj′ ,k(X
(t)
i )

is a rational function in X
(t)
i with positive coefficients and maximum degree at most h + 2. Hence, the term below is a

sum of rational functions with positive coefficients and maximum degree at most h+ 2:∑
j′⪯j λ

(t)
i [j′]q

(t)
j′ [σ]x

(t)
i [σj′ ]∑

j′⪯j λ
(t)
i [j′]

As a result, by (22) we conclude that

x
(t)
i [σ] =

mσ∑
k=1

pσ,k(X
(t)
i )

qσ,k(X
(t)
i )

,

where {pσ,k}, {qσ,k} have positive coefficients and maximum degree h+2. This establishes the inductive step, concluding
the proof.

Next, for the proof of Proposition 3.7, we will need the following key refinement of the Markov chain tree theorem (Anag-
nostides et al., 2022b, Corollary A.8).

Theorem B.7 (Anagnostides et al., 2022b). Let M be the transition matrix of a d-state Markov chain such that M =
v1⊤

d + C, where C ∈ Rd×d
>0 and v ∈ Rd

>0 has entries summing to λ > 0. Further, let v = r/l, for some l > 0. If
x ∈ ∆d is the (unique) stationry distribution of M, then for each r ∈ [[d]] there exist a nonempty and finite set Fr, and
F = ∪dr=1Fr, and parameters bk ∈ {0, 1}, 0 ≤ pk ≤ d− 2, |Sk| = d− pk − bk − 1, for each k ∈ Fr, such that the r-th
coordinate of w := lx can be expressed as

w[r] =

∑
k∈Fr

λpk+1(r[qk])
bk l1−bk

∏
(a,b)∈Sk

C[a, b]∑
k∈F λpk+bkCk

∏
(a,b)∈Sk

C[a, b]
,

for each r ∈ [[d]], where Ck = Ck(d) > 0.
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Let us also introduce the following terminology, borrowed from the work of Farina et al. (2022b).

Definition B.8 (Farina et al., 2022b). Let J ⊆ Ji be a subset of i’s information sets. We say that J is a trunk of Ji if for
all j ∈ J , all predecessors of j are also in J .

Definition B.9 (Farina et al., 2022b). Let ϕi ∈ Ψi and J be a trunk of Ji. We say that a vector xi ∈ R|Σi|
≥0 is a J-partial

fixed point if it satisfies all the sequence-form constraints at all information sets j ∈ Ji, and

ϕi(xi)[∅] = xi[∅] = 1,

ϕi(xi)[(j, a)] = xi[(j, a)], ∀j ∈ Ji, a ∈ Aj .

Proposition 3.7. Let ϕ(t)
i ∈ Ψi be a transformation defined by X

(t)
i = (λ

(t)
i , (q

(t)
σ̂ )σ̂∈Σ∗

i
) ∈ RD

>0, for some D ∈ N and

time t ∈ N. The (unique) fixed point x(t)
i of ϕ(t)

i satisfies (4) with degi ≤ 2Di|Ai|, where |Ai| := maxj∈Ji |Aj |.

Proof. For the base of the induction, the claim trivially holds for x(t)
i [∅] = 1

1 . For the inductive step, let us first define a

vector r(t) ∈ R|Aj∗ |
≥0 , so that r(t)[a] is equal to∑

j′⪯σj∗

∑
a′∈Aj′

λ
(t)
i [(j′, a′)]q

(t)
(j′,a′)[(j

∗, a)]x
(t)
i [(j′, a′)].

Further, we let W(t) ∈ S|Aj∗ | be a stochastic matrix, so that for any ar, ac ∈ Aj∗ , W(t)[ar, ac] is equal to

1

x
(t)
i [σj∗ ]

r(t)[ar] + λ
(t)
i [(j∗, ac)]q

(t)
(j∗,ac)

[(j∗, ar)] +

1−
∑

σ̂⪯(j∗,ac)

λ
(t)
i [σ̂]

1{ar = ac},

By (Farina et al., 2022b, Proposition 4.14), if b(t) ∈ ∆(Aj∗) is the (unique) stationary distribution of W(t), extending by
x
(t)
i [σj∗ ]b

(t) at information set j∗ yields a (J ∪ {j∗})-partial fixed point (Definition B.9). To bound the increase in the
degree of the rational function, we will use Theorem B.7. In particular, we define a matrix C(t) ∈ R|Aj∗ |×|Aj∗ |, so that for
any ar, ac ∈ Aj∗ ,

C(t)[ar, ac] := λ
(t)
i [(j∗, ac)]q

(t)
(j∗,ac)

[(j∗, ar)] +

1−
∑

σ̂⪯(j∗,ac)

λ
(t)
i [σ̂]

1{ar = ac}. (23)

For a fixed ac ∈ Aj∗ , we have ∑
ar∈Aj∗

C(t)[ar, ac] = λ
(t)
i [(j∗, ac)] +

∑
σ̂ ̸⪯(j∗,ac)

λ
(t)
i [σ̂], (24)

where we used the fact that for any ac ∈ Aj∗ ,
∑

ar∈Aj∗
q(j∗,ac)[(j

∗, ar)] = 1 since q(j∗,ac) ∈ Qj∗ . Thus, from (24) we
obtain that

1−
∑

ar∈Aj∗

C(t)[ar, ac] =
∑

σ̂≺(j∗,ac)

λ
(t)
i [σ̂]. (25)

Now for the inductive step, suppose that for any information set j′ ⪯ σj∗ and a′ ∈ Aj′ , the partial fixed point x(t)
i [σ′],

with σ′ = (j′, a′), can be expressed as

x
(t)
i [σ′] =

mσ′∑
k=1

pσ′,k(X
(t)
i )

qσ′,k(X
(t)
i )

, (26)

where {pσ′,k}, {qσ′,k} are multivariate polynomials with positive coefficients and maximum degree h. By (23), (25), the
inductive hypothesis (26), and Theorem B.7, we conclude that for any a ∈ Aj∗ ,

x
(t)
i [(j∗, a)] =

m∑
k=1

pa,k(X
(t)
i )

qa,k(X
(t)
i )

,

where {pa,k}, {qa,k} are multivariate polynomials with positive coefficients and maximum degree h+2|Aj∗ | ≤ h+2|Ai|.
This concludes the inductive step, and the proof.
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Before we proceed, we note that while Lemmas 3.1 and 3.2 and Lemmas B.2 and B.4 were stated for the construction
relating to trigger deviations, those results readily apply for the construction relating to coarse trigger deviations as well;
we omit the formal statements as they are almost identical to Lemmas 3.1 and 3.2 and Lemmas B.2 and B.4.

In this context, combining Propositions 3.6 and 3.7 with Lemma 3.5 we arrive at the following conclusions.

Lemma B.10. For any parameters η ≤ 1
512∥Qi∥1Di

, η△ ≤ 1
1024|Σi|Di

, and time t ∈ [[T − 1]],

∥x(t+1)
i − x

(t)
i ∥1 ≤ 8∥Qi∥1DiM(X

(t)
i ),

where M(X
(t)
i ) is defined as

max

{
max
j∈Ji

∣∣∣∣∣1− λ
(t+1)
i [j]

λ
(t)
i [j]

∣∣∣∣∣ ,max
j∈Ji

max
σ∈Σj

∣∣∣∣∣1− q
(t+1)
j [σ]

q
(t)
j [σ]

∣∣∣∣∣
}
.

Proof. By Proposition 3.6, it follows that the fixed point x(t)
i can be expressed, for any σ ∈ Σi, as

x
(t)
i [σ] =

m∑
k=1

pσ,k

(
λ
(t)
i , (q

(t)
j )j∈Ji

)
qσ,k

(
λ
(t)
i , (q

(t)
j )j∈Ji

) ,
such that {pσ,k}, {qσ,k} are multivariate polynomials in X

(t)
i = (λ

(t)
i , (q

(t)
j )j∈Ji

) with positive coefficients and maximum
degree degi := 2Di. As a result, similarly to Lemmas B.2 and B.4, it follows that

max
σ∈Σj

∣∣∣∣∣1− q
(t+1)
j [σ]

q
(t)
j [σ]

∣∣∣∣∣ ≤ 100η∥Qi∥1 ≤
100

256 degi
,

for any j ∈ Ji, and

max
j∈Ji

∣∣∣∣∣1− λ
(t+1)
i [j]

λ
(t)
i [j]

∣∣∣∣∣ ≤ 200η△|Σi| ≤
100

256 degi
.

As a result, the claim follows from Lemma 3.5.

Lemma 3.8. Consider any parameters η ≤ 1
256∥Qi∥1 degi

and η△ ≤ 1
512|Σi| degi

, where degi := 2|Ai|Di. Then, for any
time t ∈ [[T − 1]],

∥x(t+1)
i − x

(t)
i ∥1 ≤ 8∥Qi∥1|Ai|DiM(X

(t)
i ),

where M(X
(t)
i ) is defined as

max

{
max
σ̂∈Σ∗

i

∣∣∣∣∣1− λ
(t+1)
i [σ̂]

λ
(t)
i [σ̂]

∣∣∣∣∣ ,max
σ̂∈Σ∗

i

max
σ∈Σj

∣∣∣∣∣1− q
(t+1)
σ̂ [σ]

q
(t)
σ̂ [σ]

∣∣∣∣∣
}
.

Proof. By Proposition 3.7, it follows that the fixed point x(t)
i can be expressed, for any σ ∈ Σi, as

x
(t)
i [σ] =

m∑
k=1

pσ,k

(
λ
(t)
i , (q

(t)
σ̂ )σ̂∈Σ∗

i

)
qσ,k

(
λ
(t)
i , (q

(t)
σ̂ )σ̂∈Σ∗

i

) ,
such that {pσ,k}, {qσ,k} are multivariate polynomials in X

(t)
i = (λ

(t)
i , (q

(t)
σ̂ )σ̂∈Σ∗

i
) with positive coefficients and maximum

degree degi := 2|Ai|Di. As a result, in light of Lemmas B.2 and B.4,

max
σ∈Σj

∣∣∣∣∣1− q
(t+1)
σ̂ [σ]

q
(t)
σ̂ [σ]

∣∣∣∣∣ ≤ 100η∥Qi∥1 ≤
100

256 degi
,
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for any σ̂ = (j, a) ∈ Σ∗
i , and

max
σ̂∈Σ∗

i

∣∣∣∣∣1− λ
(t+1)
i [σ̂]

λ
(t)
i [σ̂]

∣∣∣∣∣ ≤ 200η△|Σi| ≤
100

256 degi
.

As a result, the claim follows from Lemma 3.5.

B.3. Completing the Proof

Finally, here we combine all of the previous ingredients to complete the proof of Theorem 3.10.
Proposition B.11. Let η ≤ 1

256|Σi|1.5 and η△ ≤ 1
512|Σi|2.5 . Then, for any T ≥ 2,

max{0,RegTΨi
} ≤ 2|Σi|2 log T

η
+

2|Σi| log T
η△

+ (32η|Σi||Qi|2 + 256η△|Σi|4)
T−1∑
t=1

∥u(t+1)
i − u

(t)
i ∥

2
∞

+(32η|Σi||Qi|2 + 256η△|Σi|4)
T−1∑
t=1

∥x(t+1)
i − x

(t)
i ∥

2
∞ −

1

512η△

T−1∑
t=1

∥λ(t+1)
i − λ

(t)
i ∥

2

λ
(t)
i ,∞

− 1

1024η

∑
σ̂∈Σ∗

i

T−1∑
t=1

∥q(t+1)
σ̂ − q

(t)
σ̂ ∥

2

q
(t)
σ̂ ,∞

.

Proof. Fix any t ∈ [[T − 1]]. By definition of U (t)
i (Algorithm 1),

∥U (t+1)
i −U

(t)
i ∥

2
∞ ≤ ∥u

(t+1)
i ⊗ x

(t+1)
i − u

(t)
i ⊗ x

(t)
i ∥

2
∞

≤ 2∥u(t+1)
i ⊗ (x

(t+1)
i − x

(t)
i )∥2∞ + 2∥x(t)

i ⊗ (u
(t+1)
i − u

(t)
i )∥2∞ (27)

= 2∥u(t+1)
i ∥2∞∥x

(t+1)
i − x

(t)
i ∥

2
∞ + 2∥x(t)

i ∥
2
∞∥u

(t+1)
i − u

(t)
i ∥

2
∞ (28)

≤ 2∥x(t+1)
i − x

(t)
i ∥

2
∞ + 2∥u(t+1)

i − u
(t)
i ∥

2
∞, (29)

where (27) follows from the triangle inequality for the ∥ · ∥∞ norm, as well as Young’s inequality; (28) uses the fact that
∥x ⊗ u∥∞ = ∥x∥∞∥u∥∞, for any vectors x,u; and (29) follows from the assumption that ∥u(t)

i ∥∞, ∥x(t)
i ∥∞ ≤ 1.

Similarly, for any t ∈ [[T − 1]],

∥u(t+1)
△ − u

(t)
△ ∥

2
∞ = |⟨X(t+1)

σ̂ ,U
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(t)
i ⟩|
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σ̂ ⟩|
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≤ 8|Σi|2∥U (t+1)
i −U

(t+1)
i ∥2∞ + 2∥q(t+1)

σ̂ − q
(t)
σ̂ ∥

2
1, (32)

for some σ̂ ∈ Σ∗
i , where (30) follows from the definition of u(t)

△ ; (31) uses Young’s inequality; and (32) uses the Cauchy-

Schwarz inequality, along with the fact that ∥U (t)
i ∥∞ ≤ 1 and ∥X(t)

σ̂ ∥1 ≤ 2|Σi|. Further, for any σ̂ ∈ Σ∗
i , η ≤ 1

256|Σi|1.5

and η△ ≤ 1
512|Σi|2.5 ,

− 1

1024η
∥q(t+1)

σ̂ − q
(t)
σ̂ ∥

2

q
(t)
σ̂ ,∞

+ 32η△|Σi|2∥q(t+1)
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(t)
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2
1 ≤

(
− 1

1024η
+ 32η△|Σi|4

)
∥q(t+1)

σ̂ − q
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2
∞

≤
(
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4
+
|Σi|1.5

16

)
∥q(t+1)

σ̂ − q
(t)
σ̂ ∥

2
∞ ≤ 0. (33)

As a result, the proof follows from Lemmas 3.1 and 3.2 and Proposition 3.3, (29), (32), and (33).

As a result, we are now ready to establish Corollary 3.9, the statement of which is recalled below.

Corollary 3.9. Suppose that η ≤ 1
212|Σi|1.5∥Qi∥1 degi

and η△ = 1
2|Σi|η, where degi := 2|Ai|Di. For any T ≥ 2,

max{0,RegTΨi
} can be upper bounded by

8|Σi|2 log T
η

+ 256η|Σi|3
T−1∑
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2
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2
1.
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Proof. By Lemma 3.8,

1

512η△

T−1∑
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∥λ(t+1)
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(t)
i ∥

2

λ
(t)
i ,∞

+
1

1024η
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i
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q
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σ̂ ,∞

≥ 1

214η∥Qi∥21 deg
2
i
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(t)
i ∥

2
1.

Thus, the proof follows directly from Proposition B.11 since for any t ∈ [[T − 1]],(
256η|Σi|3 −

1

215η∥Qi∥21 deg
2
i

)
∥x(t+1)

i − x
(t)
i ∥

2
1 ≤ 0,

for any η ≤ 1
212|Σi|1.5∥Qi∥1 degi

.

So far we have performed the analysis from the perspective of a fixed player i ∈ [[n]], while being oblivious to the mech-
anism that produces the sequence of utilities (u

(t)
i )1≤t≤T . Having established the RVU bound of Corollary 3.9, we are

ready to show that when all players employ our learning dynamics, the second-order path length is bounded by O(log T ).
(In what follows, we tacitly assume that each player uses η△ := 1

2|Σi|η, in accordance with Corollary 3.9.)

Theorem B.12. Suppose that each player i ∈ [[n]] uses learning rate η ≤ 1
212(n−1)|Σ|1.5∥Q∥1|Z| deg , where deg = 2|A|D.

Then, for any T ≥ 2,
T−1∑
t=1

n∑
i=1

∥x(t+1)
i − x

(t)
i ∥

2
1 ≤ 219n|Σ|2∥Q∥21 deg

2 log T.

Proof. For any time t ∈ [[T − 1]] and player i ∈ [[n]],
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2
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2
1,

by (Anagnostides et al., 2022b, Claim 4.16). Further, for η ≤ 1
212(n−1)|Σ|1.5∥Q∥1|Z| deg ,(

256η(n− 1)2|Σ|3|Z|2 − 1

216η∥Q∥21 deg
2

)
≤ 0.

As a result, using Corollary 3.9,
∑n

i=1 max{0,RegTΨi
} can be upper bounded by

8n|Σ|2 log T
η

− 1

216η deg2 ∥Q∥21

n∑
i=1
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t=1

∥x(t+1)
i − x

(t)
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But, given that
∑n

i=1 max{0,RegTΨi
} ≥ 0, we conclude that

n∑
i=1

T−1∑
t=1

∥x(t+1)
i − x

(t)
i ∥

2
1 ≤ 219n|Σ|2 deg2 ∥Q∥21 log T.

We now arrive at Theorem 3.10, which is restated below with the precise parameterization.

Corollary B.13. Suppose that all players employ Algorithm 1 instantiated with LRL-OFTRL for all local regret minimiz-
ers, R△ and {Rσ̂}σ̂∈Σ∗

i
, with η = 1

213(n−1)|Σ|1.5∥Q∥1|Z||A|D and η△ = 1
2|Σi|η. Then, the trigger regret of each player

i ∈ [[n]] after T repetitions will be bounded as

RegTΨi
≤ 217n|Σ|3.5∥Q∥1|Z||A|D log T.

Proof. This follows directly from Corollary 3.9 and Theorem B.12.

24



Near-Optimal Φ-Regret Learning in Extensive-Form Games

Corollary B.14. Suppose that all players employ Algorithm 1 instantiated with LRL-OFTRL for all local regret minimiz-
ers, R△ and {Rj}j∈Ji , with η = 1

213(n−1)|Σ|1.5∥Q∥1|Z|D and η△ = 1
2|Σi|η. Then, the trigger regret of each player i ∈ [[n]]

after T repetitions will be bounded as

RegTΨi
≤ 217n|Σ|3.5∥Q∥1|Z|D log T. (34)

Proof. The proof is analogous to Corollary B.13.

We remark that for coarse trigger regret, our bound (34) is loose, as the analysis is not optimized to handle coarse trigger
deviation functions; instead, Corollary B.14 follows the construction of trigger deviations, with the exception of using
Lemma B.10 in order to obtain a slightly improved RVU bound. Further refining Corollary B.14 was not within our scope.

C. Description of the Game Instances
In this section, to keep our paper self-contained, we describe the games we used in our experiments (Section 4), as well as
the precise parameterization for each instance.

Kuhn poker Kuhn poker is a simple poker variant studied by Kuhn (1953). For simplicity, below we describe the
2-player version of Kuhn poker; the 3-player version we consider in our experiments is analogous.

In Kuhn poker each player initially submits an ante worth of 1 in the pot. Then, each player is privately dealt one card from
a deck of r unique cards—or ranks; in our experiments we used r = 3. Next, a single round of betting occurs: First, player
1 gets to decide either check or bet. Then,

• If player 1 checked, the second player can either check or raise.

– If player 2 also checked, a “showdown” occurs, meaning that the player with the highest card wins the pot,
thereby terminating the game.

– On the other hand, if player 2 raised, player 1 can either fold or call; in the former case player 2 wins the pot,
while in the latter a showdown follows.

• If player 1 raised, player 2 can either fold or call.

– If player 2 folded, then player 1 wins the pot, while
– if player 2 called, a showdown occurs.

Sheriff Sheriff (Farina et al., 2019c) is a 2-player bargaining game inspired by the board game “Sheriff of Nottingham.”
Initially, player 1 (or the “Smuggler”) secretly loads his cargo with m ∈ {0, 1, . . . ,mmax} illegal items. The game then
proceeds for r bargaining rounds. In each round,

• the Smuggler first gets to decide a bribe amount b in {0, 1, . . . , bmax}. This amount also becomes available to player 2
(the “Sheriff”), although the smuggler does not transfer than amount unless it is the ultimate round.

• The Sheriff then decides whether to accept the bribe.

– If the Sheriff accepts the bribe of value b, the smuggler gets a payoff of p ·m− b, while Sheriff receives a payoff
of b.

– In the contrary case, Sheriff decides whether to inspect the cargo.

* If the Sheriff does not inspect the cargo, the Smuggler receives a payoff of v · m, while the Sheriff gets 0
utility;

* Otherwise, if the Sheriff detects illegal items, the Smuggler must pay the Sheriff an amount of p ·m, while if
no illegal items were loaded, the Sheriff has to compensate the Smuggler with a utility of s.

In our experiments, we use the baseline version of Sheriff, wherein v = 5, p = 1, s = 1,mmax = 5, bmax = 2, and r = 2.
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Goofspiel Goofspiel is a 2-player card game introduced by Ross (1971). The game is based on three identical decks
of r cards each, with values ranging from 1 to r; we use r = 3 in our experiments. Initially, each player is dealt a full
deck, while the third deck (the “prize” deck) is faced down on the board after being shuffled. In each round, the topmost
card from the prize deck is revealed. Then, each player privately selects a card from their hand with the goal of winning
the card that was revealed from the prize deck. The players’ selected cards are revealed simultaneously, and the card
with the highest value prevails; in case of a tie, the prize card is discarded. This tie-breaking mechanism makes the game
general-sum. Finally, the score of each player is the sum of the values of the prize cards that player has won.
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