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Abstract

In this paper we establish efficient and uncoupled learning dynamics so that, when
employed by all players in a general-sum multiplayer game, the swap regret of
each player after T repetitions of the game is bounded by O(log T ), improving
over the prior best bounds of O(log4(T )). At the same time, we guarantee optimal
O(
√
T ) swap regret in the adversarial regime as well. To obtain these results,

our primary contribution is to show that when all players follow our dynamics
with a time-invariant learning rate, the second-order path lengths of the dynamics
up to time T are bounded by O(log T ), a fundamental property which could
have further implications beyond near-optimally bounding the (swap) regret. Our
proposed learning dynamics combine in a novel way optimistic regularized learning
with the use of self-concordant barriers. Further, our analysis is remarkably
simple, bypassing the cumbersome framework of higher-order smoothness recently
developed by Daskalakis, Fishelson, and Golowich (NeurIPS’21).

1 Introduction

Online learning and game theory share an intricately connected history tracing back to the inception
of the modern no-regret framework with Robinson’s analysis of fictitious play [Robinson, 1951]
and Blackwell’s approachability theorem [Blackwell, 1956]. Indeed, the no-regret framework
addresses the fundamental question of how independent and decentralized agents can “learn” with
only limited feedback from their environment, and has led to celebrated connections with game-
theoretic equilibrium concepts [Hart and Mas-Colell, 2000, Foster and Vohra, 1997]. One of the
remarkable features of these results is that the learning dynamics are fully uncoupled [Hart and
Mas-Colell, 2000]: each player is completely agnostic to the utilities of the other players. Thus, there
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is no communication between the players or any centralized authority dictating behavior throughout
the game. Instead, the only “coordination device” is the common history of play. An additional
desideratum, which is fundamentally tied to the no-regret framework, is what Daskalakis et al. [2011]
refer to as strong uncoupledness:1 players have no information whatsoever about the game (even their
own utilities), and they only make decisions based on the utilities received as feedback throughout
the repeated game.

In this context, it is well-known that there are broad families of no-regret learning algorithms that,
after T repetitions, guarantee regret bounded by O(

√
T ), and this bound is known to be insuperable

in adversarial environments [Cesa-Bianchi and Lugosi, 2006]. However, this begs the question:
What if the player is not facing adversarial utilities, but instead is competing with other learning
agents in a repeated game? This question was first formulated and addressed by Daskalakis et al.
[2011], who devised strongly uncoupled dynamics converging with a near-optimal rate of O( log T

T )

in zero-sum games, a substantial improvement over the O(1/
√
T ) rate obtained via traditional

approaches within the no-regret framework. Thereafter, there has been a considerable amount of
effort in strengthening their result, leading to extensions along several important lines [Rakhlin and
Sridharan, 2013, Syrgkanis et al., 2015, Chen and Peng, 2020, Farina et al., 2019, Daskalakis et al.,
2021, Anagnostides et al., 2022a, Wei and Luo, 2018, Foster et al., 2016, Anagnostides et al., 2022b].
In particular, in a recent breakthrough result, Daskalakis et al. [2021] showed that when all players in
a general game employ an optimistic variant of multiplicative weights update (MWU) (henceforth
OMWU), the external regret of each player grows as O(log4(T )). That result was also subsequently
extended to the substantially more challenging performance measure of swap regret [Anagnostides
et al., 2022a]. Perhaps the main drawback of the latter results is the complexity of the analysis,
relying on establishing a refined property for the dynamics they refer to as higher-order smoothness.
Our primary contribution in this paper is to develop a novel and much simpler framework, which
furthermore improves the prior state of the art O(log4(T )) regret bounds to O(log T ) in general
multiplayer games.

1.1 Overview of Our Contributions

Before we state our main result, let us first introduce some basic notation. We assume that each player
i ∈ [[n]] selects at every iteration t of the repeated game a probability distribution (mixed strategy)
over the set of available actions x

(t)
i ∈ ∆(Ai) (see Section 2 for further details). The following

theorem is the primary contribution of our work.2

Theorem 1.1 (Precise Statement in Theorem 4.4). There exist strongly uncoupled no-swap-regret
learning dynamics so that when employed by all players with learning rate η = Θ(1), the second-
order path lengths of the dynamics up to any time T ∈ N are bounded by O(log T ); that is,

T∑
t=1

n∑
i=1

∥x(t)
i − x

(t−1)
i ∥21 = O(log T ).

We are not aware of even an o(T ) bound for the second-order path lengths—under a time-invariant
learning rate—prior to our work, except for very restricted classes of games such as zero-sum games.
The dynamics of Theorem 1.1 combine: (i) the celebrated no-swap-regret template of Blum and
Mansour [2007]; (ii) the optimistic follow the regularizer leader (OFTRL) algorithm of Syrgkanis
et al. [2015]; and (iii) using a self-concordant barrier as a regularizer. The latter was introduced
in online learning in the seminal work of Abernethy et al. [2008], where the authors obtained the
first near-optimal and efficient online learning algorithm for linear bandit optimization; the way
we leverage the log-barrier in the setting of no-regret learning in games is novel, and crucially
leverages the local norm induced by the regularizer. The dynamics of Theorem 1.1 are also efficiently
implementable (see Remark 4.7).

The implication of Theorem 1.1 is perhaps surprising in view of the inherent cycling aspect of
no-regret learning in general games. Indeed, it is by now well-understood that any no-regret dynamics

1Daskalakis et al. [2011] also impose that players are only allowed to (privately) store only a constant number
of observed utilities, an assumption also espoused in our work.

2For simplicity in the exposition, we use the O(·) notation in our introduction to suppress parameters that
depend (polynomially) on the natural parameters of the game; precise statements are given in Section 4.
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Reference Algorithm Swap Regret in Games Adversarial Swap Regret

Blum and Mansour [2007] E.g., BM-MWU —– O(
√

m log(m)T )

Chen and Peng [2020] BM-OMWU O(
√
n(m log(m))3/4)T 1/4) Õ(

√
mT )

Anagnostides et al. [2022a] BM-OMWU O(nm4 log(m) log4(T )) —–
This paper BM-OFTRL-LogBar O(nm5/2 log(T )) O(

√
m log(m)T )

Table 1: Prior results regarding the no-swap-regret algorithm of Blum and Mansour [2007] (BM).
The second column indicates the algorithm internally employed by the “master” BM algorithm; our
construction uses OFTRL with log-barrier regularization (Section 3). Further, m is the maximum
number of actions available to each player. We point out that in the adversarial swap regret bound we
have suppressed lower order factors in terms of T . We further remark that the near-optimal internal
regret guarantee of Anagnostides et al. [2022a] in turn implies O(nm log(m) log4(T )) swap regret
for each individual player, but is obtained via the algorithm of Stoltz and Lugosi [2005].

will fail to converge—at least for certain games (e.g., see [Milionis et al., 2022]). Nevertheless,
Theorem 1.1 implies that players will change their strategies arbitrarily slowly as the game progresses.
As such, players will observe utilities that exhibit very small variation over time, immediately
implying near-optimal swap regret.

Corollary 1.2 (Precise Statement in Corollaries 4.5 and 4.6). There exist strongly uncoupled no-
swap-regret learning dynamics so that when employed by all players, the individual swap regret of
each player is bounded by O(log T ). At the same time, when faced against adversarial utilities each
player guarantees O(

√
T ) swap regret.

Corollary 1.2 improves over the prior best bounds of O(log4(T )) [Daskalakis et al., 2021, Anagnos-
tides et al., 2022a]; a comparison with prior works regarding the algorithm of Blum and Mansour
[2007] is given in Table 1. In fact, Corollary 1.2 yields, to our knowledge, the first no-regret guar-
antee in general games for uncoupled methods when players use a time-invariant learning rate, a
feature that has been extensively motivated in prior works (see, e.g., the discussion in [Bailey and
Piliouras, 2019]). Corollary 1.2 also establishes near-optimality in the adversarial regime as well,
a crucial desideratum in this line of work. Finally, swap regret is a powerful notion of hindsight
rationality, trivially subsuming external regret. In particular, in light of well-established connections
(see Theorem 2.3), we obtain the best known rate of convergence of O( log T

T ) to correlated equilibria
in general games.

Corollary 1.3. There exist strongly uncoupled learning dynamics so that, when employed by all
players, the average correlated distribution of play after T repetitions of the game is an O( log T

T )-
approximate correlated equilibrium.

From a technical standpoint, our approach is conceptually remarkably simple and direct. Specifically,
Theorem 1.1 is shown by first establishing the RVU bound—a fundamental property first identified
in [Syrgkanis et al., 2015, Definition 3]—for swap regret in Theorem 4.3; the key ingredient is
Lemma 4.2, which crucially leverages the local norm induced by the log-barrier regularizer over the
simplex. Next, Theorem 1.1 follows directly by making a seemingly trivial observation: swap regret
is always nonnegative. A related approach was recently employed in [Anagnostides et al., 2022c] for
external regret, but only works for very restricted classes of games such as zero-sum. As such, we
bypasses the cumbersome framework of higher-order smoothness recently introduced by Daskalakis
et al. [2021].

1.2 Further Related Work

The first accelerated dynamics in general games were established by Syrgkanis et al. [2015]. In
particular, they identified a broad class of no-regret learning dynamics—satisfying the so-called RVU
property—for which the sum of the players’ regrets is O(1). On the other hand, they only obtained
an O(T 1/4) bound for the individual external regret of each player. This is crucial given that the rate
of convergence to coarse correlated equilibria is driven by the maximum of the external regrets. It is
important to note that a bound for the sum of the external regrets does not necessarily translate to a
bound for the maximum since external regrets can be negative. This is in stark contrast to swap regret
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(Observation 2.1), a property crucially leveraged in our work. Furthermore, the O(T 1/4) bounds for
the individual external regret in [Syrgkanis et al., 2015] were only recently extended to swap regret
by Chen and Peng [2020]. The main challenge with swap regret—which is also the main focus of
our paper—is that the underlying dynamics are much more complex, maintaining and aggregating
over multiple independent external regret minimizers. In addition, the dynamics involve a fixed point
operation—namely, the stationary distribution of a Markov chain—posing new challenges compared
to the analysis of no-external-regret algorithms [Chen and Peng, 2020]. Finally, a very intriguing
approach for obtaining near-optimal no-external-regret dynamics was recently introduced by Piliouras
et al. [2021]. The main caveat of that result is that the dynamics they propose are not uncoupled,
which has been a central desideratum in the line of work on no-regret learning in games. For this
reason, the result in [Piliouras et al., 2021] is not directly comparable with the previous approaches.

2 Preliminaries

In this section we introduce the basic background on online optimization and learning in games.
For a comprehensive treatment on the subject we refer the interested reader to the excellent book
of Cesa-Bianchi and Lugosi [2006].

Conventions We denote by N = {1, 2, . . . } the set of natural numbers. We use the shorthand
notation [[n]] := {1, 2, . . . , n}. Subscripts are typically used to indicate the player, or a parameter
uniquely associated with a player (such as an action available to the player). On the other hand,
superscripts are reserved almost exclusively for the (discrete) time index, which is represented via the
variable t. Also, the r-th coordinate of a d-dimensional vector x ∈ Rd is denoted by x[r]. Finally,
we let log(·) be the natural logarithm.

2.1 Online Learning and Phi-Regret

Let X ⊆ Rd be a nonempty convex and compact set of strategies, for some d ∈ N. In the
online learning framework the learner has to select at every iteration t ∈ N a strategy x(t) ∈ X .
Then, the environment—be it the “nature” or some “adversary”—returns a (linear) utility function
u(t) : X ∋ x 7→ ⟨x,u(t)⟩, for some utility vector u(t) ∈ Rd, so that the learner receives a utility of
⟨x(t),u(t)⟩ at time t. In the full information model the learner receives as feedback the entire utility
function, represented by u(t). The canonical measure of performance in online learning is based on
the notion of regret, or more generally, on Phi-regret [Greenwald and Jafari, 2003, Stoltz and Lugosi,
2007, Gordon et al., 2008]. Formally, for a set of transformations Φ : X → X , the Φ-regret of a
regret minimization algorithm R up to a time horizon T ∈ N is defined as

RegTΦ := max
ϕ∗∈Φ

{
T∑

t=1

⟨ϕ∗(x(t)),u(t)⟩

}
−

T∑
t=1

⟨x(t),u(t)⟩. (1)

Naturally, a broader collection of transformations leads to a stronger notion of hindsight rationality;
canonical instantiations of Phi-regret include:

(i) External regret (denoted by Reg): Φ includes only constant transformations;

(ii) Swap regret (denoted by SwapReg): Φ includes all possible linear transformations.

As such, swap regret induces the more powerful notion of hindsight rationality. We point out that our
main focus in this paper (Section 4) will be for the special case where X is the probability simplex.
A crucial property of swap regret is that SwapReg ≥ 0, as formalized below.

Observation 2.1. Fix any time horizon T ∈ N. For any sequence of utilities u(1), . . . ,u(T ) and any
sequence of strategies x(1), . . . ,x(T ) it holds that SwapRegT ≥ 0.

In proof, just consider the identity transformation Φ ∋ ϕ : x 7→ x in (1). In contrast, this property
does not necessarily hold for external regret.

Moreover, it will be convenient to model a regret minimization algorithm R as a black box which
interacts with its environment via the following two subroutines.
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(i) R.NEXTSTRATEGY(): R returns the next strategy of the learner;
(ii) R.OBSERVEUTILITY(u): R receives as feedback from the environment a utility vector u,

and may adapt its internal state accordingly.

2.2 No-Regret Learning and Correlated Equilibria

A fundamental connection ensures that as long as all players employ no-swap-regret learning dynamics
(in the sense that SwapRegT = o(T )), the average correlated distribution of play converges to the
set of correlated equilibria [Hart and Mas-Colell, 2000, Foster and Vohra, 1997, Blum and Mansour,
2007]. Before we formalize this connection, let us first introduce some basic background on games.

Finite Games Let [[n]] := {1, 2, . . . , n} be the set of players, with n ≥ 2. In a (finite) game,
represented in normal form, each player i ∈ [[n]] has a finite set of actions Ai; for notational
simplicity, we will let mi := |Ai| ≥ 2. For a given joint action profile a = (a1, . . . , an) ∈
×n

i=1
Ai, the (normalized) utility received by player i is given by some arbitrary function ui :

×n

i=1
Ai → [−1, 1]. Players are allowed to randomize by selecting a (mixed) strategy xi ∈

∆(Ai) :=
{
x ∈ R|Ai|

≥0 :
∑

ai∈Ai
x[ai] = 1

}
; that is, a probability distribution over the available

actions. For a joint strategy profile x = (x1, . . . ,xn), player i receives an expected utility of
Ea∼x[ui(a)] =

∑
a∈A ui(a)

∏
j∈[[n]] xj [aj ].

In the problem of no-regret learning in games, every player receives as feedback at time t ∈ N a utility
vector u(t)

i ∈ R|Ai|, so that u(t)
i [ai] := ui(ai;x

(t)
−i) := Ea−i∼x−i [ui(ai,a−i)], for any ai ∈ Ai;

here, we used the notation a−i to represent the joint action profile excluding i’s component, and
analogously for the notation x−i. No other information is available to the player. We are now ready
to introduce the concept of a correlated equilibrium due to Aumann [1974].

Definition 2.2 (Correlated Equilibrium [Aumann, 1974]). A probability distribution µ over×n

i=1
Ai

is an ϵ-approximate correlated equilibrium, for ϵ ≥ 0, if for any player i ∈ [[n]] and any swap function
ϕi : Ai → Ai,

Ea∼µ[ui(a)] ≥ Ea∼µ[ui(ϕi(ai),a−i)]− ϵ.

Theorem 2.3 (Folklore). Suppose that each player i ∈ [[n]] employs a no-swap-regret algorithm
such that the cumulative swap regret up to time T ∈ N is upper bounded by SwapRegTi . Further, let
µ(t) := x

(t)
1 ⊗ x

(t)
2 ⊗ · · · ⊗ x

(t)
n be the product distribution at time t ∈ [[T ]], and µ̄ := 1

T

∑T
t=1 µ

(t)

be the average correlated distribution of play up to time T . Then, µ̄ is a maxni=1{SwapReg
T
i /T}-

approximate correlated equilibrium.

Consequently, a central challenge for correlated equilibria is that the rate of convergence is driven
by the maximum of the swap regrets; this is in contrast to, for example, the rate of convergence of
the (utilitarian) social welfare in smooth games, which is driven by the sum of the players’ external
regrets [Syrgkanis et al., 2015, Roughgarden, 2015].

3 Optimistic Learning with Self-Concordant Barriers

Optimistic follow the regularizer leader (OFTRL) [Syrgkanis et al., 2015] is a predictive variant of the
standard FTRL paradigm. Specifically, OFTRL maintains an internal prediction vector m(t) ∈ Rd,
and can be expressed with the following update rule for t ∈ N.

x(t) := argmax
x∈X

{
Φ(t)(x) := η

〈
x,m(t) +

t−1∑
τ=1

u(τ)

〉
−R(x)

}
; (OFTRL)

here, η > 0 serves as the learning rate, and R is the regularizer. For convenience, we also
define x(0) := argminx∈X R(x). Unless specified otherwise, (OFTRL) will be instantiated with
m(t) := u(t−1), for t ∈ N. (For convenience in the analysis, and without any loss, we assume that
players initially obtain the utilities corresponding to the other players’ strategies at time t = 0.)

In [Syrgkanis et al., 2015] the regularizer R was assumed to be 1-strongly convex with respect to
some (static) norm ∥ · ∥ on Rd. On the other hand, we are introducing an important twist: R will
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be a self-concordant barrier function over X .3 In this context, we first extend (in Appendix B) the
so-called RVU bound established in [Syrgkanis et al., 2015] under self-concordant regularization.
More precisely, we assume that X has nonempty interior int(X ). Further, for u ∈ Rd the primal
local norm with respect to x ∈ int(X ) is defined as ∥u∥x :=

√
u⊤∇2R(x)u, while the dual norm

is defined as ∥u∥∗,x :=
√
u⊤(∇2R(x))−1u, assuming thatR nondegenerate—in the sense that its

Hessian is positive definite. Finally, for the purpose of the analysis, we let g(t) denote the be the
leader sequence (see (BTL) in Appendix B); no attempt was made to optimize universal constants.

Theorem 3.1 (RVU for Self-Concordant Regularizers). Suppose that R is a nondegenerate self-
concordant function for int(X ). Moreover, let η > 0 be such that η∥u(t) −m(t)∥∗,x(t) ≤ 1

2 and
η∥m(t)∥∗,g(t−1) ≤ 1

2 for all t ∈ [[T ]]. Then, the regret RegT (x∗) of (OFTRL) with respect to any
comparator x∗ ∈ int(X ) under any sequence of utilities u(1), . . . ,u(T ) can be bounded by

R(x∗)

η
+ 2η

T∑
t=1

∥u(t) −m(t)∥2∗,x(t) −
1

4η

T∑
t=1

(
∥x(t) − g(t)∥2x(t) + ∥x(t) − g(t−1)∥2g(t−1)

)
.

Here, we also used the standard notation RegT (x∗) :=
∑T

t=1⟨x∗ − x(t),u(t)⟩. Next, we instantiate
Theorem 3.1 using the log-barrier on the (probability) simplex: R(x) = −

∑d
r=1 log(x[r]). While

the probability simplex has empty interior, there is a simple transformation on the relative interior
relint(∆d) that addresses that issue (see Appendix B).

Corollary 3.2 (RVU for Log-Barrier on the Simplex). Suppose thatR is the log-barrier on the simplex
and η ≤ 1

16 . Then, the regret of (OFTRL) under any sequence of utilities u(1), . . . ,u(T ) can be
bounded as

RegT (x∗) ≤ R(x
∗)

η
+ 2η

T∑
t=1

∥u(t) − u(t−1)∥2∗,x(t) −
1

16η

T∑
t=1

∥x(t) − x(t−1)∥2x(t−1) ,

for any x∗ ∈ relint(∆d), where ∥x(t) − x(t−1)∥2
x(t−1) :=

∑d
r=1

(
x(t)[r]−x(t−1)[r]

x(t−1)[r]

)2

.

We remark that a similar regret bound for optimistic mirror descent [Rakhlin and Sridharan, 2013]
under log-barrier regularization was shown by [Wei and Luo, 2018, Theorem 7].

4 Main Result

In this section we sketch the proof of our main result, namely Theorem 1.1, leading to Corollaries 1.2
and 1.3; detailed proofs are deferred to Appendix C. In this context, we first employ the general
template of Blum and Mansour [2007] for constructing a no-swap-regret minimizer Rswap over the
simplex. We proceed with a brief overview of their construction (summarized in Algorithm 1). In
the sequel, we first perform the analysis from the perspective of a single player, without explicitly
indicating so in our notation.

The Algorithm of Blum and Mansour Blum and Mansour [2007] construct a “master” regret
minimization algorithm Rswap by maintaining a separate and independent external regret minimizer
Ra for every action a ∈ A. To compute the next strategy, Rswap first obtains the strategy x

(t)
a ∈

∆(A) of Ra, for every a ∈ A. Then, a (row) stochastic matrix Q(t) ∈ S|A| is constructed, so that the
row associated with action a ∈ A is equal to the distribution x

(t)
a , while Rswap outputs as the next

strategy x(t) ∈ ∆(A) any stationary distribution of Q(t); that is, (Q(t))⊤x(t) = x(t). Next, upon
observing a utility u(t) ∈ R|A|, Rswap forwards to each individual regret minimizer Ra the utility
u
(t)
a := u(t)x(t)[a] ∈ R|A|. This construction is summarized in Algorithm 1.

3To keep the exposition reasonably self-contained, we give an overview of self-concordant barriers in
Appendix A.
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Algorithm 1: Blum and Mansour [2007]
Input: A set of external regret minimizers {Ra}a∈A, each for the simplex ∆(A)

1 function NEXTSTRATEGY()
2 Q(t) ← 0 ∈ R|A|×|A|

3 for a ∈ A do
4 Q(t)[a, ·]← Ra.NEXTSTRATEGY()

5 x(t) ← STATIONARYDISTRIBUTION(Q(t))

6 return x(t)

7 function OBSERVEUTILITY(u(t))
8 for a ∈ A do
9 Ra.OBSERVEUTILITY(x(t)[a]u(t))

Blum and Mansour [2007] showed that this algorithm guarantees no-swap-regret as long as each
individual regret minimizer has sublinear external regret; this is formalized in the theorem below.

Theorem 4.1 (From External to Swap Regret [Blum and Mansour, 2007]). Let SwapRegT be the
swap regret of Rswap and RegTa be the external regret of Ra, for each a ∈ A, up to time T ∈ N.
Then,

SwapRegT =
∑
a∈A

RegTa .

In this context, we will instantiate each individual regret minimizer Ra with (OFTRL) under log-
barrier regularization—and the same learning rate η > 0. We will refer to the resulting algorithm
as BM-OFTRL-LogBar. A central ingredient in our proof of Theorem 1.1 is to establish that the
resulting no-swap-regret algorithm Rswap will enjoy an RVU bound, as stated in Theorem 4.3.
To this end, we first apply Corollary 3.2 for each individual regret minimizer Ra, implying that
SwapRegT =

∑
a∈A RegTa (by Theorem 4.1) is upper bounded as

SwapRegT ≤ 2m2 log T

η
+ 2η

∑
a∈A

T∑
t=1

∥u(t)x(t)[a]− u(t−1)x(t−1)[a]∥2
∗,x(t)

a

− 1

16η

∑
a∈A

T∑
t=1

∥x(t)
a − x(t−1)

a ∥2
x

(t−1)
a

. (2)

The log T factor derives from the diameter of the log-barrier regularizer (see Theorem A.9), and
appears to be unavoidable using our approach. Now the crux in establishing an RVU bound for Rswap

is to upper bound the last term in (2) in terms of the “movement” of the stationary distribution. This
is exactly where the local norm induced by the log-barrier turns out to be crucial, leading to the
following key technical ingredient.
Lemma 4.2. Suppose that each regret minimizer Ra employs (OFTRL) with log-barrier regulariza-
tion and η ≤ 1

16 . Then, for any t ∈ N,

∥x(t) − x(t−1)∥21 ≤ 64|A|
∑
a∈A
∥x(t)

a − x(t−1)
a ∥2

x
(t−1)
a

.

Intuitively, this lemma ensures that the “movement” of the stationary distribution is smooth in terms
of the “movement” of each row of the transition matrix Q(t). To show this, we use the Markov
chain tree theorem (Theorem C.3), which provides a closed-form combinatorial formula for the
stationary distribution of an ergodic Markov chain, along with the fact that the log-barrier regularizer
guarantees “multiplicative stability” of the iterates (Corollary C.1). While similar in spirit results
have been documented in the literature for dynamics akin to MWU [Candogan et al., 2013, Chen and
Peng, 2020], our proof of Lemma 4.2 crucially hinges on the local norm induced by the log-barrier
regularizer. Thus, we are now ready to derive an RVU bound for swap regret.
Theorem 4.3 (RVU Bound for Swap Regret). Suppose that each Ra employs (OFTRL) with log-
barrier regularization and η ≤ 1

128
√
m

. Then, for T ≥ 2, the swap regret of Rswap is bounded
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as

SwapRegT ≤ 2m2 log T

η
+ 4η

T∑
t=1

∥u(t) − u(t−1)∥2∞ −
1

2048mη

T∑
t=1

∥x(t) − x(t−1)∥21.

This theorem follows directly from (2) and Lemma 4.2. So far we have focused on bounding the swap
regret of each player when faced against arbitrary utilities. Next, we use Theorem 4.3 to establish a
new fundamental property when all players employ the dynamics. Our proof crucially relies on the
seemingly insignificant fact that SwapRegTi ≥ 0 (recall Observation 2.1).
Theorem 4.4 (Log-Bounded Second-Order Path Lengths). Suppose that each player i ∈ [[n]] employs
BM-OFTRL-LogBar with η = 1

128(n−1)maxj∈[[n]]{
√
mj} . Then, for T ≥ 2,

n∑
i=1

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21 ≤ 8192 max

i∈[[n]]
{mi}

n∑
i=1

m2
i log T.

Proof. Consider any player i ∈ [[n]]. Given that |ui(a)| ≤ 1, for any a ∈ A (by the normalization
assumption), we have that for any t ∈ [[T ]],

∥u(t)
i − u

(t−1)
i ∥∞ ≤

∑
a−i∈A−i

∣∣∣∣∣∣
∏
j ̸=i

x
(t)
j [aj ]−

∏
j ̸=i

x
(t−1)
j [aj ]

∣∣∣∣∣∣ ≤
∑
j ̸=i

∥x(t)
j − x

(t−1)
j ∥1,

where we used that the total variation distance between two product distributions is bounded by the
sum of the total variations of each individual marginal distribution [Hoeffding and Wolfowitz, 1958].
Thus,

(
∥u(t)

i − u
(t−1)
i ∥∞

)2

≤

∑
j ̸=i

∥x(t)
j − x

(t−1)
j ∥1

2

≤ (n− 1)
∑
j ̸=i

∥x(t)
j − x

(t−1)
j ∥21.

As a result, using Theorem 4.3 we conclude that
∑n

i=1 SwapReg
T
i can be upper bounded by

2 log T

n∑
i=1

m2
i

η
+ 4η(n− 1)

n∑
i=1

∑
j ̸=i

T∑
t=1

∥x(t)
j − x

(t−1)
j ∥21 −

n∑
i=1

1

2048miη

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21

=2 log T
n∑

i=1

m2
i

η
+

n∑
i=1

(
4η(n− 1)2 − 1

2048miη

) T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21

≤ 2 log T
n∑

i=1

m2
i

η
− 1

4096

n∑
i=1

1

miη

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21,

since η = 1
128(n−1)maxj∈[[n]]{

√
mj} . But, given that 0 ≤

∑n
i=1 SwapReg

T
i , we conclude that

1

maxi∈[[n]]{
√
mi}

n∑
i=1

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21 ≤ 8192 max

i∈[[n]]
{
√
mi}

n∑
i=1

m2
i log T.

We are not aware of even o(T ) bounds for the second-order path lengths in prior works (using a
time-invariant learning rate), except in very restricted classes of games such as zero-sum and potential
games [Anagnostides et al., 2022c]. An example of the implication of Theorem 4.4 in a variant of
Shapley’s game [Shapley, 1964, Daskalakis et al., 2010] is illustrated in Figure 1. Although the
dynamics appear to cycle, and the Nash gap—the maximum of the best response gaps—is always
large, the players are changing their (mixed) strategies with gradually diminishing speed; further
discussion and experiments are included in Appendix D.

As an immediate consequence, combining Theorem 4.4 with Theorem 4.3 implies near-optimal
individual swap regret.
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Figure 1: The trajectories of the BM-OFTRL-LogBar algorithm.

Corollary 4.5 (Near-Optimal Individual Swap Regret). Suppose that all players use
BM-OFTRL-LogBar with η = 1

128(n−1)maxi∈[[n]]{
√
mi} . Then, the individual swap regret SwapRegTi

up to time T ≥ 2 of each player i ∈ [[n]] can be bounded as

SwapRegTi ≤ 256 max
j∈[[n]]

{√mj}

(n− 1)m2
i +

n∑
j=1

m2
j

 log T.

We point out that our distributed protocol makes the very mild assumption that each player knows
an upper bound on the total number of players and the maximum number of actions in order to
appropriately tune the learning rate. Further, as is the case with the result in [Daskalakis et al., 2021],
the individual regret of each player predicted by Corollary 4.5 grows linearly with the number of
players. This can be unsatisfactory in games with a large number of players—i.e., n≫ 1. For this
reason, in Theorem C.4 we refine and improve the guarantee of Corollary 4.5 in games where the
utility of each player depends only on a small number of other players, and each player’s actions only
affect a small number of others players; no other constraint is imposed on the game. Understanding
whether the linear dependence on n is necessary to obtain near-optimal (swap) regret is left as an
interesting question for future work.

Finally, we adapt the learning dynamics so that each player enjoys at the same time near-optimal
swap regret in the adversarial regime as well.

Corollary 4.6 (Adversarial Robustness). There exist dynamics such that when all players follow
them the individual swap regret of each player grows as in Corollary 4.5. Moreover, when faced
against adversarial utilities, such that ∥u(t)

i ∥∞ ≤ 1 for all t ∈ [[T ]], the algorithm guarantees that

SwapRegTi ≤ 256 max
j∈[[n]]

{√mj}

(n− 1)m2
i +

n∑
j=1

m2
j

 log T + 2
√
mi logmiT + 2.

Our adaptation is particularly natural: If all players follow the prescribed protocol, Theorem 4.4
implies that the observed utilities of each player i will be such that

∑t
τ=1 ∥u

(τ)
i − u

(τ−1)
i ∥∞ =

O(log t). So, if at any time the player identifies that the previous condition was violated, it suffices to
switch to a no-swap-regret minimizer (such as BM-MWU) tuned to face advarsarial losses—in which
case it is crucial to use a vanishing learning rate η = O(1/

√
T ).

Remark 4.7 (Numerical Precision). As is standard, we assumed that the iterates of (OFTRL) were
computed exactly, without taking into account issues relating to numerical precision. To justify this,
one can use Damped Newton’s method in order to determine an ϵ-nearby point to the optimal in
O(log log(1/ϵ)) iterations [Nemirovski and Todd, 2008]. This would extend all the regret bounds
with up to an O(ϵT ) error. So, with only O(log log T ) repetitions of Damped Newton’s method (per
iteration) the error in the regret bounds becomes O(1), and all of our guarantees immediately extend;
see [Farina et al., 2022, Appendix A.5] for an analogous extension under approximate iterates.
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5 Discussion

Our main contribution in this paper was to establish a fundamental new property characterizing
the trajectories of certain uncoupled no-regret learning dynamics, summarized in Theorem 1.1.
This property directly guarantees the best known and near-optimal bound of O(log T ) for the swap
regret incurred by each player in a general multiplayer game. Investigating further consequences
of Theorem 1.1 is an interesting direction for the future. We also believe that our framework could
have new implications for learning in games with partial information; e.g., see [Wei and Luo, 2018].
Another interesting avenue is to extend our scope to more general and combinatorial sets beyond the
probability simplex, in order to (efficiently) encompass, for example, games in extensive form.

Further, our no-swap-regret learning dynamics have external regret trivially bounded according to
Corollary 4.5. Consequently, our construction yields no-external-regret learning dynamics with
a more favorable dependence on T compared to [Daskalakis et al., 2021] (log T compared to the
log4(T ) of the latter), but with a worse dependence on the number of actions (polynomial rather than
logarithmic). Our method also has higher per-iteration complexity. For these reasons, extending the
scope of our framework beyond self-concordant regularization is an important direction for future
research. Indeed, we conjecture that OMWU has bounded second-order path lengths, a property that
would imply the first uncoupled learning dynamics with bounded regret, but establishing that likely
requires new insights.
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games: Robustness of fast convergence. In Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016, pages 4727–4735, 2016.

Ioannis Anagnostides, Gabriele Farina, Christian Kroer, Andrea Celli, and Tuomas Sandholm. Faster
no-regret learning dynamics for extensive-form correlated and coarse correlated equilibria. In EC

’22: The 23rd ACM Conference on Economics and Computation, 2022, pages 915–916. ACM,
2022b.

Avrim Blum and Yishay Mansour. From external to internal regret. J. Mach. Learn. Res., 8:
1307–1324, 2007.

Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient algorithm
for bandit linear optimization. In In Proceedings of the 21st Annual Conference on Learning
Theory (COLT), 2008.

Jason Milionis, Christos Papadimitriou, Georgios Piliouras, and Kelly Spendlove. Nash, conley, and
computation: Impossibility and incompleteness in game dynamics, 2022.

James P. Bailey and Georgios Piliouras. Fast and furious learning in zero-sum games: Vanishing
regret with non-vanishing step sizes. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, pages
12977–12987, 2019.
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