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Abstract

While in two-player zero-sum games the Mash equilibrium is
a well-established prescriptive notion of optimal play, its ap-
plicability as a prescriptive tool beyond that setting is limited.
Consequently, the study of decentrahized karmng dynamics
that guarantes comvergende to correlared solution concepts
in multiplayer, general-sum extensive-form (Le., tree-form)
games has become an important topic of active research. The
per-izration complexity of the cumrently known learning dy-
namics depends on the specific comelated solution concept
considered. For example, in the case of extensive-form cor-
related equilibrium (EFCE), all known dynamics require, as
an iniermediate step at each teration, to compute the station-
ary distribution of multiple Markov chans, an expensive op-
eration in practice. Oppositely, in the case of normal-form
coarse cormelated equilibrium (NFCCE), simple no-extemal-
regret keaming dynamics that amount to a linear-time traver-
sal of the tree-form decision space of each agent suffice to
guarantee convergence. This paper focuses on extensive-form
coarse correlated equlibriom (EFCCE), an intermediate so-
lution concept that 15 a subset of NFCCE and a superset of
EFCE. Being a superset of EFCE, any learning dynamics
for EFCE automatically guaraniees convergence to EFCCE.
However, since EFCCE 15 a simpler solution concept, this
begs the guestion: de learming dynamics for EFCCE thar
avield the expensive compurarion of sarionary disiribuions
exisi? This paper answers the previous question in the posi-
trve. (ur learming dy namics only require the orchestration of
no-external-regret minimizers, thus showing that EFCCE 15
maore akin to NFCCE than to EFCE from a learning perspec-
tive. Our dynamics guaransees that the empirical frequency
of play after T" iteration is a C"(éé&'?]-apprm[mat: EFCCE
with high probability, and an E almost surely in the
limit.

1 Introduction

In a normal-form game (i.e., 2 game with simultaneous
moves), a correlared straregy is defined as a probability
distribution over joint action profiles, and it is customarily
modeled via a trusted external mediator that draws an ac-
tion profile from this distribution, and privately recomme nds
to each player their component. A comrelated strategy is a
correlated equilibrium (CE) if. for each player. the media-
tor’s recommendation s the best action in expectation, as-

"Equal contribution.

suming all the other players follow their recommended ac-
tions @ CE is an appealing solution concept
in real-world strategic interactions involving more than two
plavers with arbitrary (i.e.. general-sum) utilities. Indeed, in
those settings, the notion of CE overcomes several weak-
nesses of the Nash equilibrium (NE) (Nash|[T95T). In par-
ticular, in settings beyond two-players zero-sum games, the
NE is prone to equilibrium selection issues, it is compu-
tationally intractable (being PPAD-complete even in two-
plaver games n in

fand Papadimitricul ). an social welfare that can
be attained at an NE may be arbitrarily lower than what
can be achieved through a CE (Koufsoupias and imi-
ftriou|[T999; Houghgarden and Tardu:usuf%ﬂmﬁ%%m
2018). In contrast, a CE explicitly models synchronization
between players, and it is computable in polynomial time
in normal-form games. Moreover, in arbitrary normal-form
games, the notion of CE arises naturally from simple de-
ceniralized learning dynamics (Foster and Vohra T597 [Hari|
fand Mas-Colell|[Z000). Decentralized learning dynamics of-

fer a parallel, scalable avenue for computing equilibria,
and allow players to circumvent the—often unreasonable—
assumption that they have perfect knowledge of other play-
ers’ payoff functions. In particular. players can adjust their
stratzgies on the basis of their own private payoff function,
and on the observed behavior of the other players. In the case
of NE, decentralized learning dynamics are only known in
the two-player zero-sum setting (see, e.g.,[Cesa-Bianchi and]
[Cugosi ({Z006): [Hart and Mas-Colell) {T003]).
Extensive-form games generalize normal-form games by
madeling both sequential and simultaneous moves, as well
as imperfect information. Because of their sequential nature,
extensive-form games admit various notions of correlated
equilibrium, which essentially differ in the time at which
each player can decide whether to deviate or to follow rec-
ommendations. Three natural extensions of CE o extznsive-
form games are the extensive-form correlaved equilibrium
{EFCE} by von Siengel and Forges| , the extensive-
form coarse correlawed equilibrium (EFCCE) by
[Bianchi. and Sandholm|{Z020), and the normal-form coarse
correlared equilibrium (NFCCE) by [Celli, Coniglio, and|
([20T5). The set of those equilibria are such that. for
any extensive-form game, EFCE C EFCCE C NFCCE. De-
centralized no-regret kearning dynamics are known for the




set of EFCE (Celli et al|[2020] [Farina et al| 2021} [Mor]
rill et al|[2021), and they require, as an intermediate step
at each iteration. to compute the stationary distribution of
multiple Markov chains, which can be an expensive opera-
tion in practice. On the other hand, the set of NFCCE admits
simple no-extzmal-regret learning dynamics that amount to
a linear-time traversal of the tree-form decision space of
each agent (Celli et al|2019). This paper studies decentral-
ized learning dynamics converging to the set of EFCCE. In
an EFCCE, before the beginning of the pame, the media-
tor draws a recommended action for ezch of the possible
information sets that players may encounter in the game,
according to some known probability distribution defined
ower joint deterministic strategies. Thess recommendations
are not immediately revealed to each player. Instead, the
mediator incrementally reveals relevant action recommenda-
tions as players reach new information sets. At each infor-
mation set the acting player has to commit to following the
recommended move before it is revealed to them, by only
knowing the mediator's policy used to draw mcommenda-
tions and the past recommendations issued from the root of
the game tree down to the current information set {Farina|

ics and equilibria in extensive-form games. While in two-
player zero-sum extensive-form games it is widely known
that mo- regrel learning d}rnamlcs converge to an NE (see,

eg. 20T, [Canciol
Blal 2 peneral case

; )

of multi-player general-sum games is less understood.

Bl al] {Z079) provide variations of the classical CFR algo-
rithm, showing ﬂ]al. provably converge to the set of
NFCCE;. Eﬂ: describe learning dynamics that
comverge to the set of EFCE almost surely in the limit. Their
algorithm requires to instantiate and manage a number of
internal regrer minimizers growing linearly in the number
of information sets in the game. Each internal regret mini-
mizer internally requires the computation of a stationary dis-
tribution of a Markov chain (Cesa-Bianchi and Cugosi[I00&;
Blum and Mansour [2007). [Farina et al| (2021) extend the
work by (Celli et al| {2020), giving convergence guarantees
to the set of EFCES at finite time in high probability. The lat-
ter paper operates within the phi-regret minimization frame-
woork of Gordon, Greenw ald, and Marks| (2008}, and requires
the computation of the stationary distribution of multiple
Markov chains at each iteration. The recent work by [Mor-|

[Bianchi. and Sandholm|2020). If the acting player decides
to deviate (i.e., commits to nor following the rcommenda-
tiom), their recommendations will no longer be issued by
the mediator. Since the set of EFCEs is a subset of the set
of EFCCEs (Farina. Bianchi, and Sandholm| 2020, learn-
ing dynamics for EFCE automatically guarantees comver-
gence o EFCCE. However, since EFCCE is a simpler solu-
tion concept, the following natural question arises: do learn-
ing dynamics for EFCCE that aveid the expensive compu-
tatien af stavionary dismributions exis ? This paper answers
the previous question in the positive. In particular, we define
the notion of coarse rrfgger regrer as a particular instantia-
tion of the phi-regret minimizarion framework {Greenwal
3 ugosi| [Z007] [Gordon, Green-
] &) a.nd we show that if each player be-
haves ar.:mrdmg to a no-coarse-trigger-regret algorithm, then
the empirical frequency of play approaches the set of EFC-
CEs. Then, we provide an efficient algorithm for minimizing
coarse trigger regret based on the general emplate for con-
structing phi-regret minimizers by [Gordon, Gresnwald, and]
. We show that, in contrast to EFCE, any con-
vex combination of coarse trigger deviation functions admits
a fixed point strategy which can be computed in closed form,
without requiring to compute the stationary distribution of
any Markov chain. In particular, our leaming dynamics only
require the orchestration of no-external-regret minimizers,
thus showing that EFCCE is more akin to NFCCE than to
EFCE from a learning perspective. Our algorithm guaran-
tees that the empirical frequency of play afier T iteration is
a O(1/+T )-approximate EFCCE with high probability, and
an EFCCE almost surely in the limit.
Related work. The study of adaptive procedumes converg-
ing to a CE in normal-form games dates back to the works

cent yea.rs a grmmg_eﬁ'nrl has been devoted to understand-
ing the melationships between no-regret leaming dynam-

rill et al| (202 1) presents a general framework for achieving
hindsight rational learning in extensive-
form games for various types of behavioral deviations. It is
known that, when framework by [Morrill ef al) {EFR)
is instantiated with different chmﬂes of sets of behavioral de-
viations, EFR leads to different solution cnm:epu {including
EFCCE in the case of blind causal deviarions). Just like the
other menticned approaches, the EFR framework requines
the computation of fixed points of linear transformations at
each iteration. We conjecturs that a similar result as this pa-
per (ie., the existence of a fixed point that can computed
in closed form without the need to compute any stationary
distribution of a Markov chain) could also be derived within
the EFR framework, when blind causal deviations are con-
sidered, though we keave exploration of that direction open.

2 Preliminaries

The set {1,....n}, with n € M., is compactly denoted as
[m]. Given a set 5, we denote its convex hull with the symbol
co 5.

2.1 Extensive-Form Games

An extensive-form game is usually defined by means of an
oriented rooted game tree. The set of nodes that ane not a leaf
of the game tree is denoted by H. Each node k £ H is called
a decision node and has associated a player that acts at that
node by choosing one action from the set of available actions
at k. which we denote by (k)L In an n-plaver extensive-
form game, the set of players is the set [n] U {c}, where ¢
denotes the chance player, which is a fictitious player that se-
lects actions according to fixed probability distributions rep-
resenting exogenous stochasticity of the environment (e.g..
a roll of the dice). Leaves of the game tree are called rer-
minal nodes, and represent the outcomes of the game ; their
set of available actions is conventionally set to @ and they
are not assigned to an acting player. The set of such nodes is



denoted by Z. When the game transitions to a terminal node
z £ I, payoffs are assigned to each non-chance player ac-
cording to the set of pavoff functions {u'® : Z = B}icja).
Moreover, we let pio © Z — (0,1) denote the function as-
signing to each terminal node = the product of probabilities
of chance moves encountered on the path from the root of
the game tree to =.

Imperfect information. The set of decision nodes of each
plaver i € [n] is partitioned into a collection 7% of sets of
nodes, called informarion sers. Each information set I < 7%
groups together nodes that Player ¢ cannot distinguish be-
tween when Player i acts. Therefore, we have that A(h) =
A(h') for any pair of nodes h, &' < I. Then, we can safely
write A () to indicate the set of actions available at any de-
cision node belonging to I € 7). As it is customary in the
literature, we assume that the extensive-form game has per-
fect recall, that is, information sets are such that no player
forgets information once acquired. This means that, for any
playeri  [n] and any two nodes fi, " < T, with [ € 70,
the sequence of Player i's actions from the root to A must
coincide with the sequence of Player i's actions from the
root to &', Therefore, for any i < [n|, we can define a partial
ordering — on T as follows: for any I, 1" € 79 T = I'
if there exist nodes b’ ¢ I" and k € I such that the path
from the root of the pame to k' passes through k. An imme-
diate consequence of perfect recall is that for any i € [n),
7% is well-ordered by < (ie., given I & 7', the set of its
predecessors forms a chain).

Sequences. For any player i < [r|, information set { < J7,
and action a € A(T), we denote by o = (I, a) the sequence
of Player i"s actions on the path from the root of the game
tree down to action a (included) taken at any decision node
in information set [. We denote by @ the empiy sequence
of Player i. Then, the set of Player i's sequences is defined
as X0 = [{J.a) : I € ¥ g c A(I)} U {@}. Given an
information set I € 7% we denote by o'"'(I) € £ the
parent sequence of I, that is, the last sequence encountered
by Player i on the path from the root of the game tree to any
node in . Whenaver ol (1) = (I, a), we say that I is im-
mediately reachable from sequence =% (I, If Player i never
acts before I, then #'% () = @, and we say that informa-
tion set [ is a root information set of Player 1. Moreover, for
any =z € Z, o'¥{z) £ Xl jg the last sequence of Player i's
actions encountered on the path from the root of the game
tree o terminal node x. We let ol (z) = @ if Player i never
plays on the path from the root to =, Analogously to what
we did for information sets, we introduce a partial ordering
on sequences: for every i  [n], and any pair 7, 0" € X,
the relation & « o' holds if ¢ = @ # o, or if the se-
guences are such that ¢ = ([, a), " = (I',a"), and the sat
of Player i's actions on the path from the root to ' include
playing action a at one node belonging to I. For any @ € [n),
ac B and I € 7%, we write ¢ = I to mean that the
sequence of Player i"s actions & must lead the player to pass
through I, formally & = ([',a") € E@\ {@} Al = I
Moreaver, for 7 < 2090 and T € 7 we write & == [ when

o = I oro = (I,a). Then, we let Bi¥ = {o ¢ B0 :
a = I} © ¥ be the set of Player i's sequences that ter-
minate at { or any of ils descendant information sets, and
27 = {2z € Z:a(z) = I'} be the set of terminal nodes
reachable from information set I € 7%,

Sequence-form strategies. A sequence-form sirawegy for
Player i € [n] is a vector g [R!f,:;' such that each entry
q|(I . a)| specifies the product of the probabilities of playing
all of Player i's actions on the path from the root down to ac-
tion a at information set I {included) (Koller, Megiddo, and|
won Steneel| [1996) [Romanovskii] [1962; von Steneel| |1 996).
The set of valid sequence-form strategies for Player 1 is
defined by some linear probability-mass-conservation con-
straints. Formally,

Definition 1. The sequence-form strategy polytope for
Player i < [n] is the convex polyrape Q%) = [g ¢ le{;, '

q|e] = l:arldq[gii;-([]: =¥ acamalll.a) VI j[i]}_

., p 3 | .
we kbt Q) = {q € RO Y ala) =
Land gla'™(I')] = Facagqal(l’.a)].¥I" = I} be the
set of sequence form strategies only specifying Player i's be-
havior at information set I and all of its descendant The set
of deterministic sequence-form siraregies for Player i € [n]
is defined as 11" == QU m {0, 1}/, and the set of de-
terministic sequence-form sirawegies for the subtree roored
arTisT = @' n {_ICI 1}|531"|._Kuhn’s Theorem implies
that, for any i < [n], Q% = coII'”, and @\ = coTI\” for
any I ¢ 0 1953). We denote as IT == 3¢, 1109
the set of joins delerministic sequence-form strategies of all
the players. Moreover, ) € X;; 1114 is a tuple specify-
ing one deterministic sequence form strategy for each player
other than i. It is often useful to express Player i's pay-
off function as a function of joint deterministic sequence-
form stralegy profiles belonging to I1. With a slight abuse
of notation let u'® : I — R be such that, for each w =
iy, =) eI,

ufm) = Z'F'[c;'{:}ﬂ:i”::]l1*“1{#“'&11=1'°'="F-I“|}'

zEL

2.2 Rezret Minimization and Phi-Regret
Minimization

A regrer minimizer for a set & is an abstract model for a
decision maker that repeatedly interacts with a black-box
environment. At each time £, a regret minimizer provides
two operations: (i) NEXTELEMENT will make the regret
minimizer output an element * < A&7 (i) OBSERVEU-
TILITY(') will inform the regret minimizer of the envi-
ronment’s feedback in the form of a linear utility function
£ - X — R which may depend adversarially on past choices
', .,x' ! of the regret minimizer. At each 1, the regret
minimizer will output a decision =° on the basis of previ-
ous outputs &', .., r* ! and comesponding observed util-
ity functions £', ... ' However, no information about



future losses is available to the decision maker. The perfor-
mance of a regret minimizer is usually evaluated in terms of
its cumularive repret

T
Z £(z*) — £(z"). (1

The cumulative regret represents how much Player i would
have gained by always playing the best action in hindsight,
given the history of utility functions cbserved up to iteration
T. Then, the objective is to guaraniee a cumulative megret
growing asymptotically sublinearly in the time T'. For exam-
ple. various m2gret minimizers guarani2e a cumulative regrat
RT = O(v/T) at all times T for any convex and compact
set A (see, e.g., [Cesa-Bianchi and Lugos ).

A phi-regrer minimizer (Siol and Lugos [Green-|

fwald and Jafari| [203) is a generalization of the notion of

regret minimizer which can be defined as follows.

Definition 2. Given a ser X' of poinis and a ser & of linear
transformations ¢ : X — X, a phi-regret minimizer relative
to & for the set X' —abbreviared “d-regret minimizer”™—is
an object with the same semantics and operations of a regret
minimizer, but whose quality mesric is ity cumulative phi-
regret relative to 4 (or $-regret for shar )

T
BT max (f=¢j¢-[z=;|}. —t“[m‘j). (2)
T =1

The goal for a phi-regrer minimizer is o guaraniee that its
pPhi-regret grows asymprotically sublinearty in T.

We observe that a regret minimizer is a special case of
a phi-regret minimizer as the cumulative regret defined in
Equation {[T) can be obtained from Equation (Z) by setting
P={¥zzi:2cd}

A general construction by [Gordon, Greenwald, and Marks|
gives a way to construct a <-regret minimizer for A
starting from any standard regret minimizer for the set of
functions <. Specifically. ket R be a deterministic regret
minimizer for the set of transformations 4 whose cumula-
tive regret grows sublinearly, and assume that every ¢ € &
admits a fixed point ¢(z) = ® € A" Then, a $-regret mini-
mizer 7 can be constructed starting from Ry as follows:

= Each call to R.NEXTELEMENT first calls NEXTELE-
MENT on Ry to obtain the next transformation ©°. Then,
a fixed point ' = &* (') is computed and outpat.

* Each call to R.OBSERVEUTILITY(f*} with linear util-
ity function £* constructs the linear utility function L* :
des F{a(x")), where z' is the last-output straegy, and
passes it to W by calling R OBSERVEUTILITY (L)

3 Coarse Trigger Regret and Relationship
with EFCCE

In this section we describe the notion of coarse trigger de-
viarion function building on an idea by [Gordon, Greenwald,|

phi-regret minimizer. Finally, we establish a formal connec-
tion betwesn the set of EFCCESs and the behavior of agents
minimizing their coarse trigger ragret

31 Coarse Trigger Deviation Functions

For any i € [n], information set [ < 7% and % Hi.i], a
coarse wigger deviation function for | and 7 is a linear func-
tion which manipulates |E'|-dimensional vectors so that
any deterministic sequence form strategy that do not lead
Player i down to [ is left unmodified. On the other hand. if
a deterministic sequence form strategy prescribes Player i to
pass through I, then its behavior at 1 and all of its descen-
dant information sets is replaced with the behavior specified
by the continuation strategy 7 []

Definition 3 (Coarse Trigger Deviation Function). Given
an informearion set I ¢ 79 and a cominuarion SIratEgy
= l'l[ji:', we say that a linear funciion f - B 5 RIEYI
is a coarse trigger deviation function corresponding to infor-
mation set [ and continuation strategy 7 if the following two
conditions hold:

= fiw) =, forall T 114

s foranmy o & 20 and o W o

?r[a:r“][f]: =1
)] =1

wla] e # T
wlo] ifo T

flm)le] = {

Forany I € 7% and % < 11", it is useful to instantiate
a codrse trigger cbvjaticm function in the form of a linear

map:'n;i:,_,m BFY 5w oo My, where M. €

RI:;.:, 1= is the matrix such that, for any o, o, € £,
1 lfaczfanda,:ﬂrc

M; , lov.0, = o] ifo, = o (f)and o, = | .

1] otherwise

As a simple example of how such linear mappings are built
is given in in Figure [T where it is reported the matrix cor-
responding to ¢y, + with @ being the continuation strategy
corresponding to always playmg 4 at information set B.

Let ¥l — {@J‘—rw Fed® e H[”} be the set of

all possible linear mappings defining coarse trigger devia-
tion functions for Player i. Then, we define the concept of
coarse trigger regret minimizer. This notion will be shown
to have a close connection with extensive-form coarse cor-
related equilibria.
Definition 4 (Coarse Trigger Regret Minimizer). For e
ery i € [n]. we call coarse trigger regret minimizer for
player i any T pegrer minimizer for the ser of determin-
istic sequence-form sirarepies 110,

Section 3). Then, we use this notion to
formally characterize the set of EFCCES, and to define the
notion of coarse trigger regrer minimizer as an instance of a

"Our definition of coarse trigger deviation function can be seen
as the sequence-form counterpart to the blind causal behavioral

deviarions defined by Mol cf al] (ZUZT).
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Figure 1: (Left) A simple sequential game with two play-
ers. Black round nodes are decision node s of Player 1, white
round nodes are decision nodes of Player 2. White square
nodes represent terminal nodes. The set of sequences of
Player 1 is XY = [@,1,...,6}. (Right) Example of the
matrix defining a coarse trigger deviation.

3.2 Extensive-Form Coarse Correlated Equilibria

Equipped with the notion of coarse trigger deviation func-
tion we can provide the following definition of extensive-
form coarse correlared equilibria (EFCCE).

Definition 5 (e-EFCCE. EFCCE). Given e = 0, a probabil-
ity distribueion p = AW iy an c-approximare EFCCE (e-
EFCCE for shore) if, by lening w = (wl, ., w™) 2 101
for every player i € [n|, and every coarse wigger deviation
function ¢y, . € Wit holds

Exep :ﬂ:i;(i;,r._’i(ﬁ:-‘a)mt—i;) _u:-';,:ﬂ] <e (3)

A probability distribution ¢ A" is an EFCCE if it is a
EFCCE

The above definition can be easily interpreted as the canon-
ical definition of EFCCE by [Farina, Bianchi, and Sandholm|
{Z0Z. In their erminology, Equation (&) means that the ex-
pected utility of any trigger agent (I, ) is never larger than
the expected utility that Player { would obtain by following
recommendations by more than the amount &

We can now prove one of the central results of the paper,

which shows that if each player ¢ £ [n] in the game plays
according to a ¥ _epret minimizer, then the empirical fre-
quency of play approaches the set of EFCCEs (all omitted
proofs are reported in Appendix [A}.
Theorem 1. For each player i € [n], ler i1, rléh T
be a sequence of deterministic sequence form sirategies with
cumudative Ui regret BT with respect to the sequence
of linear functions

gt L L) 5 i)y yl8) (.ﬂti]:ﬁ:—fm)

and let g = AN be the comrespanding empirical frequency
af play, defined as the probabilivy diseribution such thai, for

eachw = (wll), . winl) 210,
1 T
pm] = T Zl{*=[*(LI|L:____‘1.|n|.I.:I].
=1

Then, the empirical J_f_reiquenc}' af play s is an e EFCCE, with
€ = g MAXe ) ROT.

4  An Efficient No-Coarse-Trigger-Regret
Algorithm

In this section we describe our efficient no-coarse-trigger
regret minimizer. Our approach follows the framework by
[Gordon, Greenwald, and Marks| (2008} (see Section 2] In
order to apply the framework by [Gordon, Greenwald, and]
we need (i) to provide a regret minimizer for

e set of coarse trigger deviation functions (Section fET]),
and (ii} to show that for any ¢ € ¥ it is possible o com-
pute in poly-time a sequence-form strategy g < Q') such
that (g} = g (Section[4.2). We will provide an efficient
closed form solution for the latter problem by exploiting the
particular structure of coarse trigger deviation functions.

4.1 Regrei Minimization for the Set co &)

Fix any player i. In this subsection, we discuss how one can
construct an efficient regret minimizer for the comvex hull
o B of the set of coarse trigaer deviation functions. Since
coPli o ¢ any such regret minimizer for co T js in
particular a regret minimizer for ¥, At a high level, our
construction decomposes the problem of minimizing regrat
on &' into |70)| subproblems, one for each possible trigger
information set. Intuititevely, given any I € 7', the sub-
problem for I corresponds Lo learning a continuation strate-
gies for the trigger [. In particular, each subproblem is itself
a regret minimization problem, on the set of all continuation
strategies g € Q?’, for which efficient regret minimization
algorithms are known.

To make the above regret decomposition formal, we op-
erate within the framework of reprer circuits
fand Sandholm| Z0T9). Regret circuits provide ways to de-
compose the problem of minimizing regret over a composite
set into the problem of minimizing regret over the individ-
ual sets. Onee regret minimizers for the individual sets have
been constructed, an appropriate regret circuit will combine
their outputs to guarantee low regret over the original com-
posite set. For our purposes we will only need two regret
circuit constructions: one for the convex hull, and one for
affine transformations. We recall their main properties next

Proposition 1. Ler X, ..., X, be a finite colleciion of sets,
Ri,.... Ry be any regree minimizers for them, and Ram
be a regrer minimizers for the m-simplex. A regret minimizer
Reo for the set co{ X1, ..., X} can be built as follows:

* W.o NEXTELEMENT owpus the elemenm Mzt + ..+
AT € co{ Ay, ... A}, where, for each j € [m], 25
is obtained by calling NEXTELEMENT on T, and the
vector (AL, ..., AL,) is obiained by calling NEXTELE-
MENT cn Wam.

* oo OBSERVEUTILITY(L®) forwards the linear wility
Junction L' 1o each Wy § € |m|. and rhen calis
Roam OBSERVEUTILITY with the linear wility function
(Ate oo dm) = LYz + .o+ L8] ) Ame

Furthermore, the composite regrer minimizer R, savisfies
the regret bound RY, < R} . + max; ;. B} forall T.

jelm
Proposition 2. Ler X' be a convex and compact ser, g - ' —
V be an affing map, and T 5 any repres minimizer for the set



X. Then, a regret minimizer Wy ) for the set g(X') can be
obtained as follows:

* Ryx)-NEXTELEMENT oupuss g(x'), where = is ob-
rained by calling NEXTELEMENT on T 5.

* Wyix) OBSERV EUTILITY (L'} forwards the linear wil-

ity z — L¥{giz)) — LE(g(0)) to the R x regret minimizer

Furthermore, the composite regret minimizer R, o, savisfies
the regret bound R} .. = R at all timesT.

We start from the following observation:
co B = u:u:r{ ¥iie ZTW}, where
@ . @
= DD{i;'J;_’i_ o = Hr'”}'
Hence, by virue of the convex hull regret circuit (Proposi-
tion Eb in order to construct a regret minimizer for co ¥ it
suffices to construct regret minimizers for each of the \I-Ei”.
4y
Consider now the mapping g7 RE 3z @i, . Which
is promptly verified to be affine by definition of coarse trig-
ger deviation function (see Section[5-T). Then,

v = g (colt?) = g7 (")

In other words, the set \I-Eﬂ is the image of Qi—i] under an
affine transformation. By using the affine transformation re-
gret circuit (Proposition|2)). a regret minimizer for \I-'E;” can

CE =

be constructed from any regret minimizer for Qi.i]. Because

efficient regret minimizers for Q}" are well known in the lit-
erature {e.g.. the CFR algorithm by [Zinkevich et al.|(2008)),
our approach based on regret circuits yields an efficient re-
gret minimizer for co (), summarized in Algorithm1]

Theorem 2. Let B be a repret minimizer insansiared as
specified in Algorichm 1| and emploving the CFR algo-
rithm for each Wy and the regret marching algorichm for
R_,_.L qu . After observing a sequence of linear usility flnc-
vions LY, L7 o co W o B with range upper bounded
by U fthar is, for all t ¢ T MAXY b o gies [L () —
LAV} = U, the regret cumudared by the rransformarions
al, . a7 £ co U produced by R is such that

T
BT = max 3" (L¥(¢") - L(e)) < 20|50 |VT.

in )
LAk |

4.2 Closed-Form Fixed Point Computation

We complete the construction of our ¥'%_regret minimizer
by showing that, for any player i € [n] and ¢ € co 319, it
is possible to compute a sequence-form strategy q* £ Q'Y
such that d(g*) = g* in linear time in [E'| D where
D% denotzes the maximum depth of the pame tree consid-
ering only actions of Player i (ie., D' = max_.o |{o <
B g < gl z)}]). Unlike all known results for EFCE,
our result does not rely—as an intermediate step—on the

Algorithm 1: Regret minimizer for the set co ki)

Data: player i < [n|. one regret minimizer &; for the set
'-I-E.'j foreach [ € 79 one regret minimizer R, a1, for the
|70} |-simplex.

function NEXTELEMENT( )
10 Af — 'Ral_ﬂ.;l.NExTELEMENTI:]

2 for [ 7 do Of gy R NEXTELEMENT()
35 return 50, MU0

function OBSERYEUTILITY[LY)
1 for [ ¢ 7' do R;.OBSERVEUTILITY (L')
28— AT 3 A e Y g ALY
3 R, 0, OBSERVEUTILITY ({5 )

J'—.*q"%}

Algorithm 2: FIXEDPOINT(¢)

Input: ¢ = 3 cqw All]67., 4, € co ¥l
Output: g = Q' fixed point of ¢
1 g —0cBRE" ge] 1
: for ¢ = (I,a) € 5@, {2} in top-down (=) order do
dy E;aEgll::;a__{; ALl
g [ ()]
AT}

Led B

4 if dy = O then g* 7] «

=

3 Al arlo] @*[e@(I")]

T O

. 1
lse —
[2 q*.glea

=4

return q*

computation the stationary distributions of some stochas-
tic matrices (Farina et al] (2021} [Momill et al|[Z0Z1), and
does not require to manage any internal-regret minimizer as

in (Z0200). Instead, we show that the fixed-point
strateey q* can be found in closed form for any & € co b0,

Let ¢ = Yieqm h:”'ﬁf—wr be any deviation function
returned by A]gﬂrldunlzl.where A€ alP™ and g; € QY
for each [ € 7', Equipped with this additional notation,
Algorithm [Z] describes an efficient procedure to compute a
fixed point of a given ransformation ¢ < co ¥, The algo-
rithm iterates over sequences of Player i according to their
partial ordering - (Le.. it is never the case that a sequence
o = (I, a) is considered before #'# (I')). For each sequence
a = (I,a), the algorithm computes d, £ R~ as the sum of
the weights of the convex combination corresponding to in-
formation sets preceding [ (Line ). If d; = 0, then the ma-
trix M corresponding to the transformation ¢ must be such
that Mo, o] = 1, and M|z, 0] = 0 for all & # . There-
fore, the choice we make at o is indifferent as long as the re-
sulting g* is a well-formed sequence-form strategy. 'We set
* so that the probability-mass flow is evenly divided among




Algorithm 3: Regret minimizer for the set co 3%

Data: plaver i < [n|, B regret minimizer for the set co @0
defined in Algorithm[T]

function NEXTSTRATEGY()
1 ¢ = T g0 A ¢,-_>q; + R.NEXTELEMENT()
2: return x* + FIXEDPOINT{)

function OBSERVEUTILITY [(£*)
1: Define the linear function L® © ¢ — £(d(x*))
2: R.OBSERVEUTILITY (L)

sequences originating in [ (Line [g). Finally, when d, # 0,
Line [3] assigns to g*[z] a value equal to a weighted sum of
gy [o]g*[o'] for sequences o' = (I, a") preceding informa-
tion set 1. The following theorem shows that Algorithm[3)is
indeed commect and behaves as desired.

Theorem 3. For any player i € [nl and ransformartion
b = Yieam All105 g, € co ¥, the vector q* € RIZ"|
obtained through Alporithm [2 is such that g* € Qii[ and
#(g*) = q*. Algorithm |} runs in linear time in |£49| D1,

As a direct consequence of the correctness (Theorem
and Theorem[3)) of the two steps required by . Green-

ald, and M (2008)’s construction (recalled in Sec-
tion[2.2)) we have the following.
Corollary 1. Algorithm [3|is a co ¥'5-regrer minimizer for
the set Q' Thus, when all player %‘J‘.iﬂ_}’ according o Al-
porithm |3 where ar all ¢ the wility £ of each player is set
to their own linear wility function given the opponents” ac-
tions, the empirical frequency of play in the game after T it-
erations converges to a (1T - EFCCE with high proba-
bility, and converges almost surely to an EFCCE in the limit.

5 Experimental Evaluation

We experimentally investigate the convergence of our no-
regret leaning dynmamics for EFCCE on four standard
benchmark games: 3-player Kuhn poker, 3-player Leduc
poker, 3-player Goofspiel, 2-player {generzl-sum) Battle-
ship. See Appendix [B] for a description of each game. For
each game we investigate the rate of convergence to EFCCE,
measured as the maximum expected increase in utility that
any player can obtain by optimally responding to the medi-
ator that recommends strate gies based on the correlated dis-
tribution of play induced by the learning dynamics, of our
EFCCE learning dynamics and of the very related EFCE
learning dynamics in , which were ob-
tained using the same framework as this paper. Experimen-
tal results are available in Figure 7] In each game, we ran
our EFCCE dynamics and the EFCE dynamics for the same
number of iterations {1000 ilerations in Leduc poker and
Goofspiel, 3000 in Kuhn poker, 10000 in Battleship). Ezch
fixed-point computation in the EFCE dynamics was per-
formed through an optimized implementation of the power
iteration method. The power iteration was interrupted when

3-player Kuhn poker 3-player Leduc poker
1P
——— B dyn L ——— FFOCEdyn
=] — EHE — EFCE
s ™ et "
I T
et L kY
ol e s s
& \“*--,__':"——_.-_. o[- S |
D2 4 & 0 S0 100 1510
Runtim [s] Rumsime [s]
I-player Goofspiel 2-player Baitleship
. | [ —— ey ——- EFCCE dvm
e 0T — ErEdge =
-] = =]
m o —, m
Z T LINTH (=
= iy @
i
0 10 )
Funtime [s]

Figure 2: Rate of convergence to EFCCE (measured through
the EFCCE gap) of the EFCCE leaming dynamics intro-
duced in this paper and of the related EFCE learning dy-
namics by on four standard benchmark

games. The y-axis is on a log scale.

the Euclidean norm of the fixed-point residual got below the
threshold value of 10~ (this typically was achieved in less
than 10 iterations of the method).

In all four games, we obhserve that our EFCCE dynamics
outperform the EFCE dynamics, often by a significant mar-
gin. This is consistent with intuition, as the EFCE dynamics
are solving a strictly harder problem {minimizing the EFCE
gap. instead of the EFCCE gap). In Goofspizl, the EFCCE
dynamics induce a correlated distribution of play that is an
exact EFCCE after roughly 500 iterations.

In Kuhn, Leduc, and Goofspiel the runtime of each it-
eration is comparable between EFCE and EFCCE dynam-
ics, while in the Battleship game, the EFCCE dyanmics are
roughly 30% faster per iteration. This is consistent with the
observation that the amout of work necessary to find a sta-
tionary distribution grows approximately cubically with the
maximum number of actions at any decision point in the
game, which is higher in Battleship compared to the other
games.

&  Conclusions and Future Research

We showed that—at least when analyzed through the phi-
regret minimization framework—the computation of the
fixed point required at each iteration in EFCCE learning dy-
namics can be carried out in closed form using a simple for-
mula that avoids the computation of stationary distributions
of Markov chains. This is contrast to all known learning dy-
namics for EFCE.

We conjecture that a similar result could be derived within
the EFR framework, when blind causal deviations are con-
sidered, though we leave exploration of that direction open.
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A Proofs
A.1  Proof for Section 3]
Theorem 1. For each player i € [n], der w1 wliT be g seguence of dererministic sequence form sirategies with
climulaive !I":i]-rfgrfr R T ek respect to the sequence of linear funcions

OB § (LI I L (,,t-‘]_,:—im)_

and let j'l:.‘l = Alm Ff the corresponding empirical frequency of play, defined as the probabilivy disiribution such that, for each
=z, 7™ ell

T
. 1
j'.i_ﬂ'l = ? Z 1 [m={mi}, ¢, ___ miml, L)]-

i=1
Then, the empirical frequency of play pu is an e-EFCCE, with € i= $ max;e () BT,
Proof. Foranyi € [n], we have RU-T < ¢T. Then, by definition of B'9-T as per Equation (J), for any coarse trigger deviation
function & € ¥ is must hold

T

Te > i(f[ﬂ:: (d.[ﬂ_[ij,!]) _ f[ﬂ.r(,.[i]:e)) _ Z(u[ih(til[w[i:l.!],w[—i],t) _ ﬂii?[r'}).
t=1

i=1

This yields the following

Te = i 3 Lmer) (ﬂ:-‘; (¢{,ti;}:,t—ih} _ u[ﬂ{,]}

t=1 =&l
= I.{“-:“-I.]) 'tl!':";I -Iﬁ'liﬂ'il]].ﬂ'i_l'l —'H.:l'l{ﬂ':l
% (210 (0 etrx) u0m)
=Ty ;.|:|'.lr](1.1[‘"J (ql'l[ﬂ'[i:'],ﬂ'[_i]) - u“][:lr}).
well
This is precisely the definition of e-EFCCE (Definition[5). as we wanted to show. O

A.2  Proof for Section &.1]

Theorem 2. Let R be a regret minimizer insiantiated as specified in Algorithm{T} and employing the CFR algorithm for each R ;
and the regret marching algorithm for R, ;o . After observing a sequence of linear wility funciions L', .. LT 1 co¥¥) — B
with range upper bounded by U (that is, for all t € T maxy grecogn (L' (@) — L&)} = U), the regret cumulared by the
transformarions ¢t ..., @7 € co VW produced by R is such thar

g* o B}

T
BT = max ¥ (L'(6") - L(¢")) < 2U|E@|VT.
=1

Progf We start by recalling the known regret bounds for CFR (Zinkevich et al|[Z008] Theorems 3 and 4) and regret match-
ing (Harl and Mas-Colell|[Z000).

Lemma 1 (Known regret bound for CFR). Let i € [n]and I € 1), and consider the CFR algorithm run on the set Qii}. Then,
for any sequence of linear urility funciions 1, .. 7T - QU _ B with range upper bounded as max (g —g')) =
L7 at all t, the regret cumulated by the CFR algorithm satisfies the ineguality

R, < UEPT.

Lemma 2 (Known regret bound for regret matching), Censider the regrer marching algorithm applied o a simplex domain A™.
For any sequence of linear wility functions £, . . | 7 A™ _y B with ranpe upper bounded as MAKp o cam(f(x)—F(z")) =
U ar all t, the regrer cumulared by the regrer marching algorichm satisfies the inequality

RL, < UmvT.

gaeaf®



By Proposition[T]and by construction of Algorithm [Z]we have that
+ max AT @
Fegm
The loss function observed by the regret minimizer R a- at time t is £+ A7 3 X s ) I8 - l|f'|L*[r.‘.'1].-_,q}:| (Liruz.
Since d; . (g) € @7 for any g € @'Y, we have that the maximum range of £ is at most equal to the maximum range
of Lt. Therefore, by LemmaElwe have BT A, < [7|34|+/T. We not turn our attention to the regret minimizers R ;. Fix
I e 7%, by Pmposlu'un@me loss n:ul:lsenred at time ¢ by the CFR algorithm running on the set Qf is L*{gp(-)) — L*{gz(0)).
Then, the range of this linear function is equal to WX, pregtt L gilg)) — L'{g7iq")). which is upper bounded by [V since g7
maps sequence-form strategies into valid sequence-form strategies. By Prupcslnun@we have that HT is at most equal to the
regret cumulated by CFR run on Q}'"’. This, together with L.emmalzl vields that, for any [ € 70, RY < b’|E}i5'|v"']_". Then, by
substituting into [F_I]}.
< U|T9|T + max I |E“"|-u"']_" U|7%)T 4+ UIE¥ T < 2jZ9|T.
feam
This concludes the proof. O
Corollary 1. Algorithm|[3]is a co ¥'%)-regret minimizer for the set QU%). Thus, when all player play according 1o Algorithm|[3]
where ar all t the wility I of each player is set to their own linear wility funcrion given the opponents” aciions, the empirical
frequency of play in the game after T iterations converges 1o a O[1/+'T -EFCCE with high probabiliry, and converges almoss
surely to an EFCCE in the limi.
Proaf. Thecumm @estah]tsl‘es that Algorithm |I| is a regret minimizer for the set co ¥ 2 ¥, Theorem [ establishes that

leorithm [2] returns a ﬁxed point g £ @' for any ¢ € co ', Hence, by using the result by [Gordon, Greemwald, and|
* Marks] (2008, Algurld‘tm is a ") _regret minimizer for the set Q') for each player i. At each time t, Algorithm 3| returns

a randomized strategy g < Q¥ that Player i should play. A standard application of the Azuma-Hoeffding inequality
shows that by sampling actions according to g'™+*, the ') regret incured by Player i grows by an amount bounded above by
O/T log(1/4)) with probability at least 1 — &, for any & < (0, 1). Hence, by invoking Thmremm with probability at least
1 — &, after any T iterations the empirical frequency of play is an «-EFCCE where

:D(%[f"]_"+ m]) :D(%[l +lng{1|.-'6]]|). (5)

This concludes the proof of the first part of the statement. Going from the high-probability regret guarantse for any & < (0, 1)
and T given in {{) to almost-sure convergence in the limit as T — oo is a direct application of the classic Borel-Cantelli
lemmi. O

A3 Proof for Section B3
The following result will be useful when proving Theorem [f]
Lemma 3. Forany ¢ =3, ;0 All'|01sq, € oV, g € QU and g = (I.a) € X1, it holds

o(q)lo] — qlo] = (Z h:f'lm—lﬂﬁqﬁﬂfm{f]:) — dgqlo].

r=r

Proof. Fix a sequence 7 € X', Then, by definition of the linear mappings ¢, . we have
dl@)s] = Y AMI'ér-sq,(@)]o]

rrein
{ayire § ¥
— Z h[fr] {q’:r[.ﬂ']q[ﬂ' 'III:I }] if o t'_{
) qlo otherwise
Iregis :
: (1 -2 h[f’l) alo] + 3 All'lgr|olgie ™ (I')].
I <o I'<o

By re-arranging the above equation we obtain the statement. A



Theorem 3. For any player i € [nl. and wransformation ¢ = %" .. All]é: € co ¥, the vector g* € BRI="| obrained
P } Fegon AL IPF g,
through Mgarfrhmi's such thar q= € @9, and ¢(g*) = g~ Mgamffm@ runs in linear time in |50 D0,

Proof. The proof is divided into three parts: (i) we show that, for any ¢ € co ¥, the vector g* € R™"™' obtained through
Algorithm |2|is such that g* € Q' (ie., it is a valid sequence-form strategy); (i) we show that, for any ¢ € co P, the
sequence-form stratepy g* obtained via Algnnmmis such that ¢(g*) = g*; (iii) finally, we show that Algm’lmm rns in
time O]9 D),

Part 1: g* is a sequence-form sirategy. By construction {I_.inem], g*[2] = 1. Then, we need to show that, for each I < 76,
¥ e @[(1.a)] = g*[o"(I)] (see Definition Eh For any [ < 7' such that d, = 0 it is immediate to see that the above
constraint holds by construction {I_.iru:Eb. Foreach I £ 7% such that d, + 0 we have that

Y ¢l(l.a) :d'%( D m:;q,,[u..:.];q*[g:-':.;;r;u)

acA(l} ae AT} r=<I

- d% (Z Mg o' (I")] ( 3 ar [{f.u]j))

el AT
_ b oty e J@rele@ ()] I < T
- (E}A{f}q AURE frel )

where the first equality holds by L.ine@ in Algorithm [2| and the last equality holds because gq;. < Q;fl_ We distinguish betwesn
two cases: if dyoogy = 0, then AlI'] = 0 for each I — I, Therefore, since we are assuming d; # 0, it must be the case that
d> = A|I] # 0. This vields the following

* 1 PR qr (oI il =1
> @.a)] = 4 (Z Al |g* [t (1 ;.|.{1 hermice
asA(l) =i

s (ANg (1)) = ¢*o (1))

~ A
Contrarily, if d,.,ry # 0. then g*|o'")(I)] was set according to Line E|. and thus
_— 1 B o
eI = 5 (Z ’*.F.Q"‘[f‘"’(f’lllm—_cr[”im)' ©
ato(ry \ frap

By definition of d, (Line ), ds = d, o gy + A[T]. Then,

o 1 o e gy farle®(D] € <I
> @) =g | ¥ A S
acA(l) Ie=r

- m (":flq*lﬂ“l[ﬂl + E ’tﬁf’ﬁq*[ﬂ“}(f’ilmvZJ[”{II'])
B 1
 dyoogny + Al
where the second to last equality is obtained by Equation (&]. This concludes the first part of the proof.
Part 2: q* is a fived point of ¢ Fix a sequence ¢ = (I,a) € . We want to show that &(g*)[7] — g*[o] = 0. If
3 peep M) = 0, then it immediately holds that ¢(g*)(o] = g*[o]. Otherwise, if 3°,, ; A[I'] 3 0. by applying L.emmaa.nd
by subsequently substituting q*[o] according to Line E|. we obtain

(Z All'lgr [ﬂﬁﬂ*[ﬂ:”(f’il) — d.q"[0]

(AlTg* 1™ (1] + dyeorya'le ™ (1)]) = @' [0 (7).

o{q*)[7] — g*[o]
Ie=r

(Z Alllgr [ﬂ:ﬂ'*[ﬂ“?(ml) -

I=r

S

(Z J‘”']*Irr[ﬂ]q*:-:r[""{_r’]:) =0

I+<r



This concludes this part of the proof.
Farr 3 time complexiry. For each sequence in 0% Y [@] (Line @:l Algunmmlzl has to visit at most D' information sets as
part of the sums required on LinesFand[F] This completes the proof. |

B Experimental Evaluation
B.1  Description of game Instances

The size {in terms on number of infosets and sequences) of the parametric instances we use as benchmark is described in Fig-
ure [3] In the following, we provide a detailed explanation of the rules of the games,

Flayers HRanks Flayer Infosets Sequences

Player 1 16 33
Kuhn 3 4 Player 2 16 33
Player 3 16 33
Player 1 B37 034
Goofspiel 3 k] Player 2 B37 034
Player 3 B37 34
Player 1 3294 T687
Leduc 3 3 Player 2 3204 7687
Player 3 3204 Tad7

Grid  Rounds Player Infosets  Sequences

Player 1 1413 0635
Player 2 1873 4101

Battleship (3.2) 3

Figure 3: Size of our game instances in terms of number of sequences and infosets for each player of the game.

Kuhn poker The two-player version of the game was originally proposed by {Kuhn|[T95). while the three-player variation
is due to {Farina el al|[Z0T8). In a three-player Kuhn poker game with rank r. there are r possible cards. Each plaver initially
pays one chip to the pot, and she/he is dealt a single private card. The first player may chect or ber (Le.. put an additional chip
in the pot). Then, the second player can check or bet after a first player's check, or foldfcall the first player's bet. If no bet was
previously made, the third player can either check or bet. Otherwise, she/he has o fold or call. After a bet of the second player
{resp., third player), the first player (resp., the first and the second players) still has to decide whether to fold or to call the bet.
At the showdown, the player with the highest card who has not folded wins all the chips in the pot.

Goofspiel This game was originally introduced by . Goofspiel is essentially a bidding game where each player
has a hand of cards numbered from 1 to r (ie., the rank of the game). A third stack of r cards is shuffled and singled out as
prizes. Each turn, a prize card is revealed, and each player privately chooses one of her/his cards to bid, with the highest card
winning the current prize. In case of a tie, the prize card is discarded. After r turns, all the prizes have been dealt out and
the payoff of each player is computed as follows: each prize card's value is equal to its face value and the players’ scomes are
computed as the sum of the values of the prize cards they have won. We remark that due to the tiz-breaking rule that we employ,
even two-player instances of the game are peneral-sum. All the Goofspiel instances have limited information, Le., actions of
the other players are observed only at the end of the game. This makes the game strategically more challenging, as players have
less information regarding previous opponents” actions.

Leduc We use a three-player version of the classical Leduc hold’em poker introduced by [Southey et al] {Z005]. In a Leduc
game instance with r ranks the deck consists of three suits with r cards each. As the pame starts players pay one chip to the
pot. There are two betting rounds. In the first one a single private card is dealt to each player while in the second round a single
board card is revealed. The maximum number of raise per round is set to two, with raise amounts of 2 and 4 in the first and
second round, respectively.

Battleship Battleship is a parametric version of the classic board game, where two competing fleets take turns at shooting at
each other. For a detailed explanation of the Battleship game see the work by (Farina et al.[2019) that introduced it. Our instance
has loss multiplier equal to 2, and one ship of length 2 and value 1 for each player

B.2  Detalls about experimental setup
All experiments were run on a machine with a 16-core 2.80GHz CPU and 32GB of RAM. Fized points for EFCE dynamics
were computed via the Eigen library version 3.3.7 {Guennebaud, Jacob et al|[2010).

At each time t, we let all players in the game pick their mired strategy g € Q%) according to Algorithm [3] Each player
then observed their own linear utility function.




Mote that no randomization is used in the experiments. Indeed, while it would technically be possible to have all players
sample and play a deterministic strategy w ¥ from g'®* and later compute the empirical frequency of the /%!, we instead
compute the EFCCE gap of the expected empirical frequency directly. This greatly improves the convergence rate in practice.



