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Abstract

Learning to control unknown nonlinear dynamical systems is a fundamental problem in
reinforcement learning and control theory. A commonly applied approach is to first explore the
environment (exploration), learn an accurate model of it (system identification), and then compute
an optimal controller with the minimum cost on this estimated system (policy optimization).
While existing work has shown that it is possible to learn a uniformly good model of the
system (Mania et al., 2022), in practice, if we aim to learn a good controller with a low cost on
the actual system, certain system parameters may be significantly more critical than others, and
we therefore ought to focus our exploration on learning such parameters.

In this work, we consider the setting of nonlinear dynamical systems and seek to formally
quantify, in such settings, (a) which parameters are most relevant to learning a good controller,
and (b) how we can best explore so as to minimize uncertainty in such parameters. Inspired
by recent work in linear systems (Wagenmaker et al., 2021), we show that minimizing the
controller loss in nonlinear systems translates to estimating the system parameters in a particular,
task-dependent metric. Motivated by this, we develop an algorithm able to efficiently explore
the system to reduce uncertainty in this metric, and prove a lower bound showing that our
approach learns a controller at a near-instance-optimal rate. Our algorithm relies on a general
reduction from policy optimization to optimal experiment design in arbitrary systems, and may
be of independent interest. We conclude with experiments demonstrating the effectiveness of our
method in realistic nonlinear robotic systems1.

1 Introduction

Controlling nonlinear dynamical systems is a core problem in robotics, cyber-physical systems,
and beyond, and a significant body of work in both the control theory and reinforcement learning
communities has sought to address this challenge (Slotine et al., 1991; Åström & Wittenmark, 2013;
Sutton & Barto, 2018). In many real-world scenarios (Shi et al., 2019; Ljung, 1998; Nguyen-Tuong
& Peters, 2011; Brunke et al., 2022), the dynamics of the system of interest is unknown, or only a
coarse model of them is available, which significantly increases the challenge of control—not only
must we control such systems, we must learn to control them. While a variety of methods exist
to address this challenge, a commonly applied approach is to first perform system identification,
learning an accurate model of the system’s dynamics, and then use this model to obtain a controller.
Despite its promising potential, there are still several fundamental questions that must be answered
to make this approach practically effective.
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Which parameters are most relevant to learning a good controller? Beyond some special
cases, little work has been done characterizing how the estimation error from system identification
translates to end-to-end suboptimality in the resulting controller of our nonlinear systems. In
particular, certain parameters of the system or regions of the state space may be irrelevant to
learning a good controller, and coarse estimates of these parameters would suffice, while other
parameters may be critical to learning a good controller, and we must therefore estimate these
parameters very accurately in order to effectively control the system. In the context of this work,
where nonlinearities are considered, the heterogeneity of the parameters is further accentuated. For
instance, around a point of equilibrium, some system parameters might be completely inactive,
having no impact on the dynamics (see the example in Section 1.1 for an illustration of this).

How can we best explore so as to minimize uncertainty in relevant parameters? Even
if we are able to determine which parameters are most important for obtaining a good controller
on the true system, it is not obvious how to use this information. How can we direct our system
identification phase in order to focus on learning these parameters as quickly as possible, without
spending time estimating the parameters of the system less critical for control? This is fundamentally
a question of exploration. While it is known in linear systems that random excitation will efficiently
explore (Simchowitz et al., 2018), exploration in nonlinear systems is significantly more challenging
since, in order to excite all parameters of interest, non-trivial planning may be required to ensure
all relevant states are reached (as is the case in the example considered in Section 1.1).

We address both these questions in a particular class of nonlinear systems parameterized as:

xh+1 = A⋆φ(xh,uh) +wh. (1.1)

Here xh ∈ R
dx denotes the state of the system, uh ∈ U ⊆ R

du the input, wh ∼ N (0, σ2
w · I) random

noise, φ(·, ·) ∈ R
dφ a (possibly nonlinear, known) feature map, and A⋆ ∈ R

dx×dφ the (unknown)
system parameter. Systems of this form are able to model a variety of real-world settings (Shi et al.,
2021a; O’Connell et al., 2022; Boffi et al., 2021; Song & Sun, 2021; Richards et al., 2021)2, and
have been the subject of recent attention in the reinforcement learning community (Mania et al.,
2022; Kakade et al., 2020; Song & Sun, 2021), yet the aforementioned questions have remained
unanswered. Towards addressing this, in this work we make the following contributions:

1. For systems of the form (1.1), given some cost of interest which we wish to find a controller to
minimize, we (a) formally characterize how estimation error translates into suboptimality in the
learned controller, under the certainty equivalent control rule and (b) provide a lower bound on
the loss of any (sufficiently regular) control rule learned from T rounds of interaction with (1.1).

2. Motivated by this characterization, we present an algorithm which achieves the instance-optimal
rate, with controller loss matching our lower bound. To the best of our knowledge, this is the first
statistically optimal algorithm in the setting of nonlinear dynamical systems. Our algorithm relies
on a generic reduction from policy optimization to optimal exploration in arbitrary dynamical
systems (not necessarily of the form (1.1)), which may be of independent interest.

2In real-world settings, φ is typically (1) from physics (i.e., the system structure is known but some parameters
such as drag coefficient are unknown (Slotine et al., 1991)), (2) learned using representation learning or meta-
learning (O’Connell et al., 2022; Richards et al., 2021), and/or (3) from random features (e.g., any sufficiently regular,
smooth nonlinear system f(x,u) can be modeled by (1.1) using N random features up to a 1/

√

N error (Rahimi &
Recht, 2008)).
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2 Related Work

Online learning and control. Recently, there has been increased interest in studying online
learning and control from a learning-theoretic perspective, largely for settings with linear systems
such as online LQR or LQG with unknown dynamics (Abbasi-Yadkori et al., 2011; Simchowitz et al.,
2018, 2019; Mania et al., 2019; Cohen et al., 2019; Dean et al., 2020; Yu et al., 2020a; Wagenmaker
& Jamieson, 2020; Simchowitz & Foster, 2020; Simchowitz et al., 2020). In the nonlinear setting,
(Foster et al., 2020; Oymak, 2019; Sattar & Oymak, 2022) provide formal guarantees on system
identification in several different classes of nonlinear systems, yet they only consider noiseless
systems, or systems that are significantly easier to excite than (1.1) (rendering the problem of
exploration significantly easier). Kakade et al. (2020) study systems of the form (1.1), but consider
only the regret minimization problem. While their bounds would yield a polynomial complexity via
an online-to-batch conversion, our characterization is significantly tighter. The most relevant work,
Mania et al. (2022), proposes an active learning approach to identify unknown parameters in (1.1),
with the goal of minimizing the Euclidean distance in the parameter space. However, as we show,
learning a uniformly good model could be significantly worse than learning a model with the goal
task in mind. Also very related to our work is Wagenmaker et al. (2021), which seeks to answer a
similar set of questions as what we consider: performing system identification in order to learn a
good controller. This work is restricted to the setting of linear dynamics, however, and does not
address the additional complexity of exploration in nonlinear systems.

System identification, dual control, and iterative learning control. There is a large body
of classical work in system identification (Ljung, 1998), and our work can be seen as an instance of
active system identification. While a variety of approaches have been proposed which study similar
problems (Mehra, 1974; Gerencsér & Hjalmarsson, 2005; Katselis et al., 2012; Manchester, 2010;
Rojas et al., 2007; Goodwin & Payne, 1977; Lindqvist & Hjalmarsson, 2001; Gerencsér et al., 2007),
then tend to only consider linear systems, or lack rigorous theoretical guarantees. Recently deep
learning approaches have also been applied in system identification (Shi et al., 2019; Nguyen-Tuong
& Peters, 2011; Brunke et al., 2022; Williams et al., 2017; Shi et al., 2021b). In these works, the
system identification phase is separate from the downstream controller design. Instead, in the control
community, estimating parameters while simultaneously or iteratively optimizing for performance
has been formulated as a dual control problem (Feldbaum, 1960; Mesbah, 2018) or an iterative
learning control problem (Bristow et al., 2006). However, both settings focus on stability, robustness,
or asymptotic convergence whereas our work quantifies the end-to-end suboptimality gap with a
statistically optimal algorithm.

Model-based reinforcement learning. This paper falls into the broad category of model-based
reinforcement learning (MBRL), where an agent explores the environment to learn a model and
then computes an optimal policy using the learned model. On the empirical side, deep MBRL
has made exciting progress in many domains (Kaiser et al., 2019; Yu et al., 2020b; Chua et al.,
2018). Several task-aware methods have been designed to improve MBRL’s performance, such as
uncertainty-aware policy optimization (Yu et al., 2020b; Chua et al., 2018) and active exploration
to reduce model uncertainty (Nakka et al., 2020), yet these works lack formal guarantees. On the
theoretical side, a variety of different model-based approaches exist (Osband & Van Roy, 2014; Sun
et al., 2019; Agarwal et al., 2020; Zhou et al., 2021; Zanette & Brunskill, 2019; Azar et al., 2017;
Song & Sun, 2021); however, the majority of these consider restricted settings such as tabular or
linear MDPs. Of particular interest is the work of Song & Sun (2021) which presents a result in
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systems of the form (1.1). While they show that polynomial sample complexity is possible, our
results yield a significantly tighter characterization.

Adaptive nonlinear control. Adaptive nonlinear control also seeks to control an unknown
nonlinear system with parametric uncertainties (Slotine et al., 1991; Åström & Wittenmark, 2013).
In particular, the key idea of model-reference adaptive control (MRAC) bears affinity to this paper,
in that the adaptation law in MRAC adapts unknown parameters in a task-aware manner, by
relating the tracking error with the estimated parameter in a closed loop. In fact, the parameter
estimation error in MRAC converges only when necessary, i.e., when the task is “rich” enough
(the formal condition is called persistent excitation (Åström & Wittenmark, 2013; Slotine et al.,
1991)). There are two main differences between MRAC and our work. First, adaptive control does
not explicitly optimize a cost function. The objective of adaptive control is often tracking error
convergence and Lyapunov stability, whereas our framework allows general cost functions. Moreover,
adaptive control theory typically focuses on asymptotic convergence, but we give non-asymptotic
optimality guarantees. Second, adaptive control has by and large been limited to specific system
classes (e.g., fully-actuated systems (Åström & Wittenmark, 2013; Richards et al., 2021)) and policy
classes (e.g., policy to directly cancel out the matched uncertainty (O’Connell et al., 2022; Boffi
et al., 2021)), whereas our framework allows more general systems and policy classes.

3 Preliminaries

Notation. ∥·∥op denotes the operator norm (matrix 2-norm), ∥·∥F the Frobenius norm, and ∥·∥M
the Mahalanobis norm, defined as ∥x∥M :=

√
x⊤Mx for M ⪰ 0. vec(A) denotes the vectorization

of matrix A. Bp(A; r) := {A′ : ∥A − A′∥p ≤ r}. [H] = {1, 2, . . . , H}. △X denotes the set of
distributions over set X . We let Sd−1 refer to the unit ball in d dimensions and S

d
+ (resp. Sd++) the

set of positive semi-definite matrices (resp. positive definite matrices) in R
d×d. We let EA[·] denote

the expectation over trajectories induced on system with parameter A, and EA,π[·] the expectation

induced when policy π is played. Throughout, O(·) denotes standard big-O notation, Õ(·) hides
additional logarithmic factors, and we use ≲ informally to highlight key parameters in an inequality.

Setting. In this work, we are interested in systems of the form (1.1). We consider the episodic
setting, where episodes are of length H , and assume that each episodes starts from a given state x1.
We also assume ∥A⋆∥op ≤ BA for some known BA > 0. We note that the setting considered here
encompasses many real-world systems of interest in robotics and control (e.g., (O’Connell et al.,
2022; Song & Sun, 2021; Shi et al., 2021a; Richards et al., 2021) and Section 6).

The goal of the learner is to find a policy (controller) π = (πh)
H
h=1 which achieves minimal cost

on (1.1), for the cost defined by some (known) function (costh(·, ·))Hh=1, with costh : Rdx × U → R+.
For a given policy π, we define the expected cost on system A as

J (π;A) := EA,π

[
H∑

h=1

costh(xh,uh)

]
.

We consider the following interaction protocol:

1. Learner interacts with system (1.1) for T episodes, at every episode playing an exploration
policy πexp ∈ Πexp.
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2. After T episodes, the learner proposes a policy π̂T ∈ Π⋆.

3. The learner suffers cost J (π̂T ;A⋆).

The goal of the learner is therefore first to explore and, after T episodes of exploration, to propose
its best guess at the optimal controller for (1.1), π̂T . Here we take Πexp to be a (known) set of
admissible exploration policies (for example, policies with bounded input power), and Π⋆ a (known)
set of admissible control policies. We assume that policies in Π⋆ are deterministic, but allow for
randomized policies in Πexp. Policies may be either open- or closed-loop. Note that we do not
assume Π⋆ = Πexp—in general Πexp need not be equal to Π⋆.

System Notation. Before proceeding, we introduce several additional pieces of notation. First,
we let T denote the space of all possible state-input trajectories, T ⊆ (Rdx × U)H × R

dx , and, for
any τ ∈ T , let τ1:h denote the first h states and inputs in τ. Second, for any policy π, we denote

ΛA,π := EA,π

[
H∑

h=1

φ(xh,uh)φ(xh,uh)
⊤

]

the expected covariance induced by playing π on system A. In particular, we set Λπ := ΛA⋆,π. We
also denote Λ̌ := Idx ⊗Λ the Kronecker product of Idx and Λ. Finally, we let Ω denote the set of
all possible covariance matrices induced by playing mixtures of policies in Πexp:

Ω :=
{
Eπ∼ω[Λπ] : ω ∈ △Πexp

}
,

where △Πexp
denotes the set of distributions over Πexp.

3.1 Regularity Assumptions

In order to make learning in (1.1) tractable, we need several regularity assumptions. We first
introduce assumptions on the boundedness of the feature map φ, the boundedness of the cost, and
the achievable minimum eigenvalue.

Assumption 1 (Bounded Features). For all x ∈ R
dx and u ∈ U , we have ∥φ(x,u)∥2 ≤ Bφ.

Assumption 2 (Bounded Cost). There exists some rcost(A⋆) > 0 such that, for all A ∈ BF(A⋆; rcost(A⋆))
and all π ∈ Π⋆, we have EA,π[(

∑H
h=1 costh(xh,uh))

2] ≤ Lcost.

Assumption 3 (Uniform Feature Excitation). There exists ω ∈ △Πexp
such that λmin(Eπexp∼ω[Λπexp ]) ≥

λ⋆
min for some λ⋆

min > 0.

We remark that these assumptions have appeared before in work on systems of the form (1.1)
(Mania et al., 2022; Kakade et al., 2020). In order to precisely quantify the optimal rates of learning,
we require that our system satisfy certain smoothness assumptions. First, we require that φ(·, ·) is
differentiable in its second argument.

Assumption 4 (Smooth Nonlinearity). For all x ∈ R
dx and u ∈ U , φ(x,u) is four-times

differentiable in u. Furthermore, ∥∇(i)
u φ(x,u)∥op ≤ Lφ, ∀i ∈ {1, 2, 3, 4}, x ∈ R

dx, and u ∈ U .

We also require that the class of admissible control policies, Π⋆, has the following parametric
form:

Π⋆ = {πθ : θ ∈ R
dθ}

and that the parameterization is smooth in the following sense.
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Assumption 5 (Smooth Controller Class). πθh(τ1:h) is four-times differentiable in θ for all τ ∈ T
and h ∈ [H]. Furthermore, ∥∇(i)

θ πθh(τ1:h)∥op ≤ Lθ for ∀i ∈ {1, 2, 3, 4}, θ ∈ R
dθ , and τ ∈ T .

Assumption 5 is satisfied for commonly considered classes of controllers, such as linear controllers,
but is also satisfied by more complex classes such as neural network controllers. While the learner
may propose any π̂T ∈ Π⋆, we are particularly interested in the certainty equivalence decision rule
(i.e., the learner decides π̂T as if the estimated system is the actual one), defined as:

π⋆(A) := πθ⋆(A) for θ⋆(A) := argminθ∈Rdθ J (πθ;A). (3.1)

To ensure that π⋆(A) is well-defined and sufficiently regular, we make the following assumption.

Assumption 6 (Unique Optimal Controller). We assume that the global minimum of J (πθ;A⋆),
θ⋆(A⋆), is unique, and that ∇2

θJ (πθ;A⋆)|θ=θ⋆(A⋆) ≻ 0.

In general, the policy optimization problem in (3.1) may not be computationally tractable. As we
show in Appendix D, the globally optimal decision rule of (3.1) can be replaced with a locally optimal
decision rule (i.e. π⋆(A) a local minimum of J (π;A)). Furthermore, Assumption 6 can be replaced
by assuming the differentiability of θ⋆(A) with respect to A for A near A⋆. For ease of exposition,
in the main text we assume that Assumption 6 holds and that π⋆(A) is defined as in (3.1). With
these definitions and under Assumptions 1, 2, 4 and 5, we can show that J (πθ;A⋆) is differentiable
in θ and, combined with Assumption 6, that θ⋆(A) is differentiable in A, for A ∈ BF(A⋆; rθ(A⋆))
and some rθ(A⋆) > 0. We let Lπ⋆ denote an upper bound on the norm of the derivatives of θ⋆(A).
We always take Bφ, Lcost, Lφ, Lθ, Lπ⋆ ≥ 1. Additional discussion on the setting of π⋆(A) and the
scaling of rθ(A⋆) and Lπ⋆ is given in Appendix D.

4 Optimal Exploration in Nonlinear Systems

In this work, we are interested in characterizing the instance-optimal rates of learning a controller
π ∈ Π⋆ which minimizes the loss J (π;A⋆). The following result, a generalization of Proposition 8.2
of Wagenmaker et al. (2021) to nonlinear systems, is the starting point of our analysis, and precisely
quantifies how estimation error translates to controller loss.

Proposition 1 (Informal). Under Assumptions 1, 2 and 4 to 6 and on the system (1.1), we have

J (π⋆(Â);A⋆)− J (π⋆(A⋆);A⋆) = ∥vec(A⋆ − Â)∥2H(A⋆)
+O⋆(∥A⋆ − Â∥3F)

for

H(A⋆) := ∇2
AJ (π⋆(A);A⋆)|A=A⋆

and where O⋆(·) hides factors polynomial in the regularity parameters of Assumptions 1 to 6.

The quantity H(A⋆) := ∇2
AJ (π⋆(A);A⋆)|A=A⋆ , referred to as the model-task Hessian in Wagen-

maker et al. (2021), corresponds to the curvature of the loss of the certainty-equivalence controller
π⋆(A) around A ← A⋆. It precisely quantifies how estimation error in each coordinate of A⋆

translates into suboptimality of the controller—providing an answer to our question of which
parameters are most relevant to learning a good controller—and reduces the problem of minimizing
the controller loss to estimating A⋆ in a particular norm. The following result gives a bound on this
estimation error, ∥vec(A⋆ − Â)∥2H(A⋆)

.
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Proposition 2 (Informal). Consider interacting with (1.1) for T episodes, and let

ΛT =

T∑

t=1

H∑

h=1

φ(xt
h,u

t
h)φ(x

t
h,u

t
h)

⊤

denote the observed covariates and

Â = argmin
A

T∑

t=1

H∑

h=1

∥xt
h+1 −Aφ(xt

h,u
t
h)∥22

the least-squares estimate of A⋆. Recalling that Λ̌T = Idx ⊗ΛT , we have, with high probability:

∥vec(A⋆ − Â)∥2H(A⋆)
≲ σ2

w · tr(H(A⋆)Λ̌
−1
T ).

4.1 Algorithm and Upper Bound

Proposition 2 motivates our algorithmic approach: explore to collect covariates ΛT minimizing
tr(H(A⋆)Λ̌

−1
T ). There are two primary challenges to achieving this: we do not know H(A⋆), as it

depends on the (unknown) parameter A⋆ and, even if we did know H(A⋆), it is not clear how to
explore so as to collect data minimizing tr(H(A⋆)Λ̌

−1
T ). We address both of these challenges with

our main algorithm, Algorithm 1.

Algorithm 1 Optimal Exploration in Nonlinear Systems (informal)

1: inputs: episodes T , (costh)
H
h=1, confidence δ, control policies Π⋆, exploration policies Πexp

2: Â1 ← 0, ℓT ← ⌈log2 T/8⌉, Tℓ ← 2ℓ

3: for ℓ = 1, 2, 3, . . . , ℓT do
4: Compute estimate of model-task Hessian: Hℓ ← H(Âℓ)
5: Run DynamicOED on Φℓ(Λ)← tr(Hℓ ·Λ−1) to learn exploration policies Πℓ ⊆ Πexp

6: Rerun each policy in Πℓ Nℓ = ⌈Tℓ/|Πℓ|⌉ times, denote collected data Dℓ

7: Estimate A⋆: Â
ℓ+1 = argminA

∑H
h=1

∑
(xh+1,uh,xh)∈Dℓ

∥xh+1 −Aφ(xh,uh)∥22
8: return π̂T ← π⋆(Â

ℓT+1) ∈ Π⋆

Algorithm 1 proceeds in epochs of exponentially increasing length. At each epoch it first
approximates H(A⋆) by computing the model-task Hessian of the estimated system, Âℓ. Using
this approximatiom of H(A⋆), it seeks to explore to minimize tr(H(Âℓ)Λ̌−1

T ). This exploration
routine is encapsulated in the DynamicOED (dynamic optimal experiment design) function, an
adaptive experiment-design routine inspired by recent work in reinforcement learning (Wagenmaker
& Jamieson, 2022) and described in more detail in Section 5. DynamicOED returns a set of
exploration policies, Πℓ, which we run to collect data Dℓ. As we will show, the collected covariates,
Λℓ :=

∑H
h=1

∑
(uh,xh)∈Dℓ

φ(xh,uh)φ(xh,uh)
⊤, satisfy

tr(H(Âℓ)Λ̌−1
ℓ ) ≲ T−1

ℓ ·minΛ∈Ω tr(H(Âℓ)Λ̌−1),

which implies that DynamicOED collects data minimizing tr(H(Âℓ)Λ̌−1
ℓ ) at a near-optimal rate.

Given the data Dℓ, we form the least-squares estimate of A⋆, Â
ℓ+1, and the process repeats. After

running for T episodes, the certainty-equivalence controller on the last estimate obtained, π̂T =
π⋆(Â

ℓT+1), is returned. The following result bounds the suboptimality of π̂T as compared to π⋆(A⋆).
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Theorem 1. Under Assumptions 1 to 6, if T ≥ Cpoly ·max{1, rcost(A⋆)
−2, rθ(A⋆)

−2}, then with
probability at least 1− δ, Algorithm 1 explores with policies in Πexp at every episode, runs for at
most T episodes, and returns π̂T ∈ Π⋆ satisfying:

J (π̂T ;A⋆)− J (π⋆(A⋆);A⋆) ≤
σ2
w

T
· min
Λ∈Ω

tr
(
H(A⋆)Λ̌

−1
)
· C log

6dxdφ
δ

+
Cpoly

T 3/2

where we recall Ω is the set of possible expected covariates on (1.1), C is a universal constant, and

Cpoly = poly(dφ, dx, H,BA, Bφ, Lφ, Lθ, Lcost, Lπ⋆ , σw, σ
−1
w , 1

λ⋆
min

, log T
δ ).

Theorem 1 shows that Algorithm 1 is able to explore so as to optimally minimize the exploration
loss tr(H(A⋆)Λ̌

−1
T ), up to a lower-order term scaling as T−3/2 and polynomially in system parameters.

While Propositions 1 and 2 together show that collecting data which minimizes tr(H(A⋆)Λ̌
−1
T ) is in

some sense fundamental to minimizing the cost of the certainty equivalent controller, it is not clear
that this is necessary. In the following section, we show that this is indeed the case.

Remark 4.1 (Comparison to Tople Algorithm of Wagenmaker et al. (2021)). Algorithm 1 bears
many similarities to the Tople algorithm of Wagenmaker et al. (2021), which performs an analogous
task-driven exploration routine, but in the setting of linear dynamical systems. As noted in
Section 1.1, the key challenge present in the nonlinear case compared to the linear is that, while
in the linear case random noise will excite every direction, in the nonlinear case, the learner must
actually traverse the system in order to reach the states that will excite the nonlinear modes.
Though the overall structure of Algorithm 1 is similar to Tople, this added challenge requires a
much more powerful exploration routine, encapsulated in the DynamicOED function and described
in more detail in Section 5.

Remark 4.2 (Computational Efficiency of Algorithm 1). The primary computational burden of
Algorithm 1 is in the computation of H(Âℓ)—which involves differentiating π⋆(Â

ℓ)—the computation
of π⋆(Â

ℓT+1), and theDynamicOED subroutine. In general, if we define π⋆(A) as in (3.1), it may not
be efficiently computable, as it involves solving a possibly non-convex optimization problem. However,
as we show in Appendix D, we can instead set π⋆(A) to correspond to a local minimum rather than a
global minimum of the loss, which will render it efficiently computable (though note that Theorem 1
will still in this case only bound the suboptimality of π̂T as compared to π⋆(A⋆)). We discuss the
computational efficiency of DynamicOED in more detail in Section 5, but note that in general it
may not be computationally efficient as it relies on calls to the LC3 algorithm of Kakade et al. (2020),
which requires access to a computational oracle. Despite these computational challenges, in Section 6
we demonstrate that in practice, by making several reasonable approximations, Algorithm 1 can be
implemented efficiently, and that this efficient implementation performs very well on realistic systems.

4.2 Lower Bounds on Learning Controllers

Our goal is to show that, up to constants and lower-order terms, the bound given in Theorem 1 is not
improvable, regardless of which controller estimate we use. To obtain such lower bounds, we need
several additional assumptions. In particular, we require that the loss J (πθ;A) grows quadratically
in the distance θ is from θ⋆(A), and strengthen Assumption 3 to ensure (1.1) is sufficiently easy
to excite. Formal statements of these conditions are given in Appendix F. Our lower bound is as
follows.
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Theorem 2 (Informal). Under Assumptions 1 to 6 and the additional regularity assumptions
mentioned above, as long as T ≥ Clb, for any ωexp ∈ △Πexp

, we have

min
π̂

max
A∈BT

EDT∼A,ωexp
[J (π̂(DT );A)− J (π⋆(A);A)] ≥ σ2

w

3T
· min
Λ∈Ω

tr(H(A⋆)Λ̌
−1)− Clb

T 5/4

for BT := BF(A⋆;O(T−5/6)), EDT∼A,ωexp
[·] = Eπexp∼ωexp [EDT∼A,πexp

[·]] the expectation over trajec-
tories generated by running policies π ∼ ωexp on system A for T episodes, π̂ any mapping from
observations to policies in Π⋆, and Clb some value scaling polynomially in problem parameters.

Note that this lower bound holds for any A⋆ and mapping φ, as long as our assumptions are met.
Up to constants and lower-order terms, the scaling of Theorem 2 matches that of Theorem 1—both
scale with minΛ∈Ω tr(H(A⋆)Λ̌

−1)—which implies that Algorithm 1 is indeed optimal (under certain
additional regularity conditions). To the best of our knowledge, this is the first result characterizing
the optimal statistical rates for learning in nonlinear dynamical systems. We emphasize that
Theorem 2 holds for any decision rule π̂—it does not require that we use the certainty equivalence
decision rule. As Algorithm 1 does rely on certainty equivalence, this result also implies that the
certainty equivalence decision rule is optimal for (certain classes of) nonlinear dynamical systems.

The proof of Theorem 2 builds on the work Wagenmaker et al. (2021), which shows a similar
result for linear dynamical systems. It critically relies on our quadratic decomposition of the
controller loss in Proposition 1, which reduces the problem of obtaining a lower bound on controller
loss to a lower bound on estimating A⋆ in the H(A⋆) norm. Given this, the result can be obtained
by applying lower bounds on regression in general norms.

5 Optimal Experiment Design in Arbitrary Dynamical Systems

We turn now to the DynamicOED routine, which is the key algorithmic tool we use to prove
Theorem 1. DynamicOED is a general reduction from policy optimization to optimal experiment
design in arbitrary dynamical systems, and is an extension of a recently proposed approach for
experiment design in linear MDPs (Wagenmaker & Jamieson, 2022). This section may be of
independent interest.

To illustrate the generality of this reduction, in this section we consider the following system:

xh+1 = fh(xh,uh,wh), h = 1, 2, . . . , H, (5.1)

where xh ∈ X ⊆ R
dx denotes the state, uh ∈ U ⊆ R

du the input, and wh ∈ R
dw the noise. We take

the dynamics (fh)
H
h=1 to be unknown and arbitrary. We assume there is some known featurization of

our system that is of interest, φ(x,u)→ R
dφ , and an experiment design object on this featurization,

Φ : Rdφ×dφ → R. Our goal is to collect some set of trajectories {τt}Tt=1 which minimizes Φ:

Φ
(

1
TH ·

∑T
t=1

∑H
h=1φ(x

t
h,u

t
h)φ(x

t
h,u

t
h)

⊤
)
.

As an example, if Φ(Λ) = log det(Λ), this reduces to D-optimal design, and if Φ(Λ) = tr(H ·Λ−1),
the setting considered in Section 4, this reduces to weighted A-optimal design. As before, we assume
we have access to some set of exploration policies Πexp, and define Λπ and Ω as in Section 3, but

with respect to this new feature map φ and system (5.1). We also define Ω̂ to be the space of all
possible covariance matrices:

Ω̂ :=
{∑H

h=1φ(xh,uh)φ(xh,uh)
⊤ : xh ∈ X ,uh ∈ U , ∀h ∈ [H]

}
.

To facilitate efficient experiment design in this setting, we will make the following assumption on Φ.
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Assumption 7 (Regularity of Φ). Φ is regular in the following sense:

1. Φ is convex, differentiable, and β-smooth in the norm ∥ · ∥ (with dual-norm ∥ · ∥∗):

∥∇ΛΦ(Λ)−∇Λ′Φ(Λ′)∥∗ ≤ β · ∥Λ−Λ′∥, ∀Λ,Λ′ ∈ Ω̂.

2. There exists some M <∞ satisfying sup
Λ∈Ω̂

supx∈X ,u∈U |φ(x,u)⊤∇ΛΦ(Λ)φ(x,u)| ≤M.

The key algorithmic assumption we make is access to a regret minimization oracle on (5.1).

Assumption 8 (Regret Minimization Oracle). Let costh(x,u) = φ(x,u)⊤Qhφ(x,u) for some
Qh ∈ R

dφ×dφ such that |∑h costh(xh,uh)| ≤ 1 for all xh ∈ X ,uh ∈ U . We assume we have access
to some learner AR which is able to achieve low regret on costs {costh(·, ·)}Hh=1 with respect to policy
class Πexp. That is, with probability at least 1− δ:

T∑

t=1

Ef,πt

[
H∑

h=1

costh(x
t
h,u

t
h)

]
− T · min

π∈Πexp

Ef,π

[
H∑

h=1

costh(xh,uh)

]
≤ CR · logpR T

δ · Tα

for some CR > 0, pR > 0, and α ∈ (0, 1), and where πt is the policy AR plays at episode t.

Note that the regret minimization algorithm satisfying Assumption 8 may be arbitrary. For
example, for linear systems, we could apply provably efficient algorithms for the Linear Quadratic
Regulator (Simchowitz & Foster, 2020; Mania et al., 2019); for nonlinear systems of the form (1.1)
we could apply the LC3 algorithm of (Kakade et al., 2020); for more general settings of reinforcement
learning with function approximation, algorithms such as BiLin-UCB (Du et al., 2021) or E2D
(Foster et al., 2021) could be applied. In practice, though they may not formally satisfy the guarantee
of Assumption 8, deep RL approaches could be used. We have the following result.

Theorem 3. Fix T > 0 and denote R := sup
Λ,Λ′∈Ω̂

∥Λ−Λ′∥. Under Assumption 7, and assuming

we have access to a learner AR satisfying Assumption 8 with α = 1/2, DynamicOED runs for T
episodes on (5.1), and with probability at least 1− δ collects data {(xt

h,u
t
h)}h∈[H],t∈[T ] satisfying

Φ

(
1

T
·

T∑

t=1

H∑

h=1

φ(xt
h,u

t
h)φ(x

t
h,u

t
h)

⊤

)
− min

Λ∈Ω
Φ(Λ) ≤ βR2 log T +HM(CR logpR 2T

δ + 3 log1/2 4T
δ )

T 1/3

where R = sup
Λ,Λ′∈Ω̂

∥Λ−Λ′∥.

Theorem 3 shows that, given access only to a regret minimization oracle, it is possible to solve
experiment design problems on arbitrary dynamical systems. The requirement that α = 1/2 is for
expositional purposes only—we generalize this result to arbitrary α (and more general feature maps)
in Appendix C. Under certain conditions, it can be shown that, if the exploration policies Dynami-

cOED runs to collect D are rerun, the newly collected data satisfies a similar guarantee as Theorem 3.
This lets us run DynamicOED to learn an approximate solution of minΛ∈ΩΦ(Λ), and then rerun
the learned policies as many times as desired to collect additional data approximately minimizing Φ.

5.1 Overview of DynamicOED Algorithm

DynamicOED is inspired by recent work on experiment design in reinforcement learning (Hazan
et al., 2019; Zahavy et al., 2021; Wagenmaker & Jamieson, 2022; Wagenmaker & Pacchiano, 2022),
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and can be seen as an extension of the FWRegret algorithm of Wagenmaker & Jamieson (2022)
to arbitrary systems. We refer the reader to Wagenmaker & Jamieson (2022) for a more in-depth
discussion of the FWRegret algorithm, and briefly sketch its extension to arbitrary systems here
(see Appendix C and Algorithm 4 for precise definitions).

Algorithm 2 Dynamic Optimal Experiment Design (DynamicOED, Informal)

1: input: objective Φ, episodes T , confidence δ, regret algorithm AR, exploration policies Πexp

2: Set K ← O(T 2/3), N ← O(T 1/3), γn ← 1
n+1

// φk,n
h := φ(xk,n

h ,uk,n
h ) for (xk,n

h ,uk,n
h ) the state-input at step h of episode k of iteration n

3: Play any πexp ∈ Πexp for K episodes, set Λ0 ← 1
K

∑K
k=1

∑H
h=1φ

k,0
h (φk,0

h )⊤

4: for n = 1, 2, . . . , N do
5: Compute derivative of Φ(Λn−1), Ξn ← ∇ΛΦ(Λ)|Λ=Λn−1

6: Run AR on cost costnh(x,u)← 1
M · φ(x,u)⊤(Ξn)φ(x,u) for K episodes

7: Λn ← (1− γn)Λn−1 +
γn
K ·

∑K
k=1

∑H
h=1φ

k,n
h (φk,n

h )⊤

8: return 1
T

∑N
n=0

∑K
k=1

∑H
h=1φ

k,n
h (φk,n

h )⊤

Conceptually, DynamicOED runs a variant of conditional gradient descent on the objective Φ(Λ).
At each iteration, n, it computes the gradient of the loss at the current iterate, Ξn ← ∇ΛΦ(Λ)|Λ=Λn−1

.
To run a standard gradient descent algorithm on this objective, we would simply update Λn−1 by
taking a step in the direction Ξn. However, our objective is to minimize Φ over the constraint set,
Ω. Thus, rather than taking a step in the direction Ξn, we wish to take a step in the direction of
steepest descent within the constraint set.

The challenge is that the constraint set in our setting, Ω, is unknown, as it depends on the
expectation over trajectories induced on the unknown dynamics (fh)

H
h=1, and therefore we cannot

directly compute this steepest descent direction. The key observation is that the computation of
this steepest descent direction is equivalent to solving:

argmin
πexp∈Πexp

Ef,πexp

[
H∑

h=1

φ(xh,uh)
⊤(Ξn)φ(xh,uh)

]
.

This is simply a policy optimization problem, however, and can be solved approximately by AR

under Assumption 8. Thus, in the call to AR on Line 6, we approximate the steepest descent
direction, and on Line 7 update Λn−1 in this direction. Convergence of this procedure to the optimal
value, minΛ∈ΩΦ(Λ), can then be shown by the standard analysis of conditional gradient descent.
We remark that, under Assumption 7 and Assumption 8, this argument is completely generic and
does not require that our system, (5.1), exhibit any additional properties.

5.2 From Theorem 3 to Theorem 1

In Algorithm 1, our goal is to collect covariates, Λ̌−1
Tℓ

, such that tr(H(Âℓ)Λ̌−1
Tℓ

) is as small as possible.

To achieve this, we apply DynamicOED to the objective Φℓ(Λ) = tr(H(Âℓ)Λ̌−1), with Assumption 8
instantiated by the LC3 algorithm of Kakade et al. (2020). By the guarantee given in Theorem 3,
after running for a number of episodes N which scales polynomially in problem parameters,
DynamicOED will collect covariates ΛN such that Φℓ(

1
NΛN ) ≤ 2 ·minΛ∈ΩΦℓ(Λ), which implies

tr(H(Âℓ)Λ̌−1
N ) ≤ 2

N · minΛ∈Ω tr(H(Âℓ)Λ̌−1). By rerunning the policies DynamicOED used to
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approaches by roughly a factor of 2—for example, in the drone system, reaching excess controller
cost of 10 after less than 20 episodes, as compared to over 40 episodes for existing approaches.

Our implementation is very modular, and any piece (for example, the parameterization of Πexp

and Π⋆, the policy optimizer, or the exploration routine) can be easily replaced with other procedures.
Our results therefore highlight that, even when using, for example, a possibly suboptimal policy
optimizer, exploring so as to minimize uncertainty in the model-task hessian yields a non-trivial gain.
We expect that this would hold true regardless of the policy optimizer used—the model-task hessian
will adapt to the structure of the policy optimizer, inducing the exploration that will minimize
parameter uncertainty most relevant to the given optimizer. Integration of our approach with deep
model-based RL approaches is an interesting direction for future work, but we believe the approach
will scale to these settings as well.
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A Technical Tools

Lemma A.1. Let wi ∼ N (0, Idx) for all i ∈ {1, 2, . . . , n}. Then,

E

[(
n∑

i=1

∥wi∥2
)c]

≤ n2 · poly(dx).

for c an absolute constant.

Proof. We first bound

(
n∑

i=1

∥wi∥2)c ≤ n ·max
i
∥wi∥c2 ≤ n ·

∑

i

∥wi∥c2.

The result then follows since we can bound the E[∥wi∥c2] ≤ poly(d) for wi ∼ N (0, I) and c an
absolute constant.

Lemma A.2 (Lemma I.4 of Wagenmaker et al. (2021)). Assume A,B ∈ S
d
++, ∥A−B∥op ≤ ϵ, and

ϵ < λmin(B). Then

∥A−1 −B−1∥op ≤
ϵ

λmin(B)(λmin(B)− ϵ)
.

A.1 Martingale Regression in General Norms

For the following two results, we consider the martingale regression setting of Wagenmaker et al.
(2021) (referred to as the MDM setting). In particular, we consider observations of the form

yt = ⟨µ⋆, zt⟩+ wt, (A.1)

for yt ∈ R, unknown parameter µ⋆ ∈ R
dµ , wt | Ft−1 ∼ N (0, σ2

w), and zt Ft−1-measurable, for
a filtration (Ft)t≥1. This setting therefore encompasses general stochastic processes where the
observations are linear—the evolution of zt could be arbitrary.

We consider the setting where we interact with (A.1) for T steps, collecting observations
{(zt, yt)}Tt=1, and then form the least-squares estimate of µ⋆:

µ̂ =

(
T∑

t=1

ztz
⊤
t

)−1
T∑

t=1

ztyt.

We also denote ΣT :=
∑

T

t=1 ztz
⊤
t
. The following results characterize the estimation error of µ̂ in

the M -norm and 2-norm.

Proposition 3 (Theorem 7.2 of Wagenmaker et al. (2021)). Fix any matrices Γ ∈ S
dµ
++,M ∈ S

dµ
+ ,

with M ̸= 0. Given a parameter β ∈ (0, 1/4), define the event

E := {∥ΣT − Γ∥op ≤ βλmin(Γ)}.

Then, if E holds, the following holds with probability at least 1− δ:

∥µ̂− µ⋆∥2M ≤ 5(1 + ζ) · σ2
w log

6dµ
δ
· tr(MΓ−1)

where ζ = 26β2λmax(Γ)tr(Γ
−1).
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Proposition 4 (Lemma E.1 of Wagenmaker et al. (2021)). On the event

Eop := {λmin(ΣT) ≥ λT,ΣT ⪯ TΓ̄T},

then we have that with probability at least 1− δ:

∥µ̂− µ⋆∥2 ≤ C · σw

√
log 1/δ + dµ + log det(Γ̄T/λ+ I)

λT
.

A.1.1 Connection Between (1.1) and (A.1)

We will apply the results Proposition 3 and Proposition 4 in the setting of (1.1) in order to obtain
estimation bounds on A⋆. As the setting of (1.1) has vector observations, we briefly describe here
how it can be mapped into the setting described above.

Recall that (1.1) evolves as

xh+1 = A⋆φ(xh,uh) +wh, h = 1, . . . , H,

for xh ∈ R
dx , φ(x,u) ∈ R

dφ , and A⋆ ∈ R
dx×dφ . We assume that x1 is some fixed starting state. As-

sume that we have run for T episodes, and collected observations {(xt
1,u

t
1,x

t
2, . . . ,x

t
h,u

t
h,x

t
h+1)}Tt=1.

Now let µ⋆ := vec(A⋆). Furthermore, for any t, h, and i ∈ [dx], let t = (t, h, i) and zt =
[0dφ(i−1),φ(x

t
h,u

t
h),0dφ(dx−i)] ∈ R

dxdφ where 0d denotes the zero vector of length d. Then we see
that

[xt
h+1]i = ⟨µ⋆, zt⟩+ [wt

h]i.

Setting yt = [xt
h+1]i and wt = [wt

h]i, it is clear that this follows the observation model of (A.1) with
dµ = dφdx and T = dxTH. It is also straightforward to see that the measurability assumptions of
the setting of (A.1) are satisfied by this.

B Proof of Main Result

Theorem 4 (Full Version of Theorem 1). Assume Assumptions 1 to 5 and 13 hold. Then if

T ≥ poly
(
dφ, dx, H,BA, Bφ, Lφ, Lθ, Lcost, Lπ⋆ , σw, σ

−1
w , 1

λ⋆
min

, log T
δ

)
·max

{
1, 1

rcost(A⋆)2
, 1
rθ(A⋆)2

}
,

(B.1)

with probability at least 1− δ, Algorithm 3 plays exploration policies πexp ∈ Πexp at every episode,
runs for at most T episodes, and the controller π̂T returned Algorithm 3 satisfies, with probability at
least 1− δ:

J (π̂T ;A⋆)− J (π⋆(A⋆);A⋆) ≤
σ2
w

T
· min
Λ∈Ω

tr
(
H(A⋆)Λ̌

−1
)
· C log

6dxdφ
δ

+
Clot

T 3/2

for C a universal constant and

Cpoly := poly
(
dφ, dx, H,BA, Bφ, Lφ, Lθ, Lcost, Lπ⋆ , σw, σ

−1
w , 1

λ⋆
min

, log T
δ

)
.
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Algorithm 3 Optimal Exploration in Nonlinear Systems (Full Version of Algorithm 1)

1: inputs: number of episodes to run T , cost function (costh)
H
h=1, confidence δ, control policies

Π⋆, exploration policies Πexp

2: Â1 ← anything, ℓT ← ⌈log2 T/8⌉
3: for ℓ = 1, 2, 3, . . . , ℓT do
4: Tℓ ← 2ℓ, δℓ ← δ/8ℓ2

5: Compute estimate of cost matrix: Hℓ ← H(Âℓ)
6: Πℓ ← LearnExpΠ(Hℓ, Tℓ, δℓ,AR,Πexp) (Algorithm 7), with AR the LC3 algorithm (Kakade

et al., 2020)
7: Rerun each policy in Πℓ Nℓ = ⌈Tℓ/|Πℓ|⌉ times, denote collected data Dℓ

8: Estimate system parameters
9:

Âℓ+1 = argmin
A

H∑

h=1

∑

(xh+1,uh,xh)∈Dℓ

∥xh+1 −Aφ(xh,uh)∥22

10: return π̂T ← π⋆(Â
ℓT+1)

Proof. Let Eℓ denote that the good event of Lemma B.3 holds at round ℓ which, by Lemma B.3,
occurs with probability at least 1− 6δℓ. By our setting of δℓ = δ/12ℓ2, we have that the total failure
probability of Eℓ for all ℓ is bounded as

∞∑

ℓ=1

6 · δ

12ℓ2
≤ δ.

Henceforth we assume that E := ∩ℓEℓ holds. Let Â := ÂℓT+1, and Â− := ÂℓT .

Before proceeding to the main proof, we note that the conclusion that Algorithm 3 only explores
with policies in Πexp follows from the definition of LearnExpΠ and LC3. Note that LearnExpΠ
only interacts with (1.1) through calls to DynamicOED, which itself only interacts with (1.1)
through calls to AR, instantiated in Algorithm 3 by LC3. Inspection of the LC3 algorithm in
Kakade et al. (2020) reveals that LC3 only interacts with (1.1) by playing policies in Πexp, from
which the conclusion follows.

Bounding the Number of Episodes. Denote T oed
ℓ = |Πℓ|. Note that by construction we always

have NℓT
oed
ℓ ≥ Tℓ. By Lemma B.2, as long as (B.1) is met, we can bound the total number of

episodes collected up to and including round ℓ by 4Tℓ for ℓ ∈ {ℓT , ℓT − 1}. We therefore, in the
following, will make use of the fact that

c · T ≤ NℓKℓ ≤ c′ · T

for ℓ ∈ {ℓT , ℓT − 1} and absolute constants c, c′. Furthermore, it also follows from this that the total
number of episodes run by Algorithm 3 is bounded by

4TℓT = 4 · 2⌈log T/8⌉ ≤ 8 · T
8
= T,

so Algorithm 3 runs for at most T episodes.
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Approximating the Controller Loss. Let rest(A⋆) := min{1, rcost(A⋆), rθ(A⋆)}, for rcost(A⋆)
as in Assumption 2 and rθ(A⋆) as in Assumption 13. By Lemma D.2, under Assumptions 1, 2, 4, 5
and 13, as long as Â ∈ BF(A⋆; rest(A⋆)), we have

J (π̂T ;A⋆)− J (π⋆(A⋆);A⋆) ≤ ∥vec(Â−A⋆)∥2H(A⋆)

+ poly(Lπ⋆ , ∥A⋆∥op, Lφ, Lθ, Lcost, σ
−1
w , H, dx) · ∥Â−A⋆∥3op.

Furthermore, we can bound

∥vec(Â−A⋆)∥2H(A⋆)
= ∥vec(Â−A⋆)∥2H(Â−)

+ vec(Â−A⋆)
⊤(H(A⋆)−H(Â−))vec(Â−A⋆)

≤ (Â−A⋆)
⊤H(Â−)(Â−A⋆) + ∥Â− −A⋆∥2op∥H(A⋆)−H(Â−)∥op.

Bounding the Hessian Estimation Error. On E , by Lemma B.3 and as long as (B.1) is met, we
have (note that at the final epoch, the plug-in estimator H(Â−) is given as input to DynamicOED):

∥vec(Â−A⋆)∥2H(Â−)
≤ 60

NℓT T
oed
ℓT

· min
Λ∈Ω

tr
(
H(Â−)Λ̌−1

)
· σ2
w log

6dxdφ
δ

+ poly

(
dφ, dx,

1

λ⋆
min

, BA, Bφ, log
1

σw
, H, ∥H(Â−)∥op, log

TℓT

δ

)
· 1

N2
ℓT

≤ C

T
· min
Λ∈Ω

tr
(
H(Â−)Λ̌−1

)
· σ2
w log

6dxdφ
δ

+ poly

(
dφ, dx,

1

λ⋆
min

, BA, Bφ, log
1

σw
, H, ∥H(Â−)∥op, log

T

δ

)
· 1

T 2

where the last line uses that NℓT T
oed
ℓT

is within a constant of T , and that T oed
ℓT

can be bounded by

poly

(
dφ, dx,

1

λ⋆
min

, BA, Bφ, log
1

σw
, H, log

T

δ

)

by Lemma B.3. By Lemma B.4 we can bound

min
Λ∈Ω

tr
(
H(Â−)Λ̌−1

)
≤ min

Λ∈Ω
2tr
(
H(A⋆)Λ̌

−1
)
+

2dxdφ
λ⋆
min

· ∥H(A⋆)−H(Â−)∥op

and by Lemma D.3, under Assumptions 1, 2, 4, 5 and 13, and as long as Â− ∈ BF(A⋆; rest(A⋆)), we
can bound

∥H(A⋆)−H(Â−)∥op ≤ poly(Lπ⋆ , ∥A⋆∥op, Lφ, Lθ, Lcost, σ
−1
w , H, dx) · ∥Â− −A⋆∥op.

Let

Clot := poly

(
Lπ⋆ , BA, Bφ, Lφ, Lθ, Lcost, dx, dφ,

1

λ⋆
min

, σw, σ
−1
w , H, ∥H(A⋆)∥op, log

T

δ

)

denote some lower-order constant, whose precise polynomial dependence may change from line to
line. On E , by Lemma B.3 we can bound

∥Â−A⋆∥op, ∥Â− −A⋆∥op ≤ Clot ·
1√
T
, (B.2)
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and so assuming the burn-in (B.1) is met, we can bound ∥Â−−A⋆∥op ≤ 1
2rest(A⋆) and ∥Â−A⋆∥op ≤

1
2rest(A⋆). This then implies that

∥H(A⋆)−H(Â−)∥op ≤ Clot ·
1√
T
,

so in particular we can bound

poly

(
dφ, dx,

1

λ⋆
min

, BA, Bφ, H, log
1

σw
, ∥H(Â−)∥op, log

T

δ

)

≤ poly

(
dφ, dx,

1

λ⋆
min

, BA, Bφ, H, log
1

σw
, ∥H(A⋆)∥op, log

T

δ

)
.

We have therefore shown that

J (π̂T ;A⋆)− J (π⋆(A⋆);A⋆) ≤
C

T
· min
Λ∈Ω

tr
(
H(A⋆)Λ̌

−1
)
· σ2
w log

6dxdφ
δ

+ Clot ·
(
∥Â−A⋆∥3op + ∥Â− −A⋆∥3op +

1

T 2
+

1

T
· ∥Â− −A⋆∥op

)

≤ C

T
· min
Λ∈Ω

tr
(
H(A⋆)Λ̌

−1
)
· σ2
w log

6dxdφ
δ

+
Clot

T 3/2
,

The final result follows from using Lemma D.4 to bound

∥H(A⋆)∥op ≤ poly(∥A⋆∥op, Bφ, Lφ, Lθ, Lcost, Lπ⋆ , σ
−1
w , H, dx).

Proof of Theorem 1. The proof of Theorem 1 is identical to that of Theorem 4, the only difference
being that we replace Assumption 13 with Assumption 6. However, by Proposition 6, the conditions
of Assumption 13 are met when Assumption 6 holds.

B.1 Supporting Lemmas

Lemma B.1. Under Assumptions 1 and 3, the system (1.1) satisfies Assumptions 11 and 12 with

ψ(τ)← Idx ⊗
H∑

h=1

φ(xτ

h,u
τ

h)φ(x
τ

h,u
τ

h)
⊤, D = dxHB2

φ,

dψ ← dφdx, and where xτ

h (resp. uτ

h) denotes the state (resp. input) at step h of trajectory τ.
Furthermore, it satisfies Assumption 10 with AR instantiated with the LC3 algorithm of Kakade
et al. (2020) and

CR = C ·H
√

dφ(dφ + dx +BA) · log(1 +BφH/σw), pR = 3/2, α = 1/2

for a universal constant C.

Proof. That Assumption 12 is satisfied is immediate under Assumption 3. It is clear that ψ(τ) ∈
Sdφdx+ . To obtain a bound on D, we only need to bound the trace of ψ(τ):

tr(ψ(τ)) =
H∑

h=1

tr(Idx) · tr(φ(xτ

h,u
τ

h))φ(x
τ

h,u
τ

h))
⊤)
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= dx

H∑

h=1

∥φ(xτ

h,u
τ

h))∥22

≤ dxHB2
φ

where the inequality holds under Assumption 1.

To show that Assumption 10 is satisfied in this setting, we have by Theorem 6 that with
probability at least 1 − δ, LC3 has regret bounded as (using that cmax ≤ 1 in the setting of
Assumption 10):

RT ≤ C ·H
√

dφ · (dφ + dx +BA + log
1

δ
) · T · log (1 +BφHT/σw)

for C a universal constant. We can therefore take α = 1/2, pR = 3/2, and

CR = C ′ ·H
√
dφ(dφ + dx +BA) · log(1 +BφH/σw).

Lemma B.2. Let T̄ℓ denote the total number of episodes collected by Algorithm 3 at round ℓ. For

Tℓ ≥ poly

(
dφ, dx,

1

λ⋆
min

, BA, Bφ, log
1

σw
, H, log

Tℓ

δ

)
, (B.3)

on the success event of Lemma B.3, we have 2Tℓ ≥ T̄ℓ and

2Tℓ ≥
ℓ−1∑

i=1

T̄i.

Proof. Recall that Tℓ = 2ℓ and Nℓ = ⌈Tℓ/T
oed
ℓ ⌉ for T oed

ℓ = |Πℓ|. By Lemma B.3, T̄ℓ can be bounded
as

T̄ℓ ≤ NℓT
oed
ℓ + (16 + 2 log T oed

ℓ )T oed
ℓ

and T oed
ℓ can be bounded as

T oed
ℓ ≤ poly

(
dφ, dx,

1

λ⋆
min

, BA, Bφ, log
1

σw
, H, log

Tℓ

δ

)
. (B.4)

Note that we can bound

T̄i ≤ NiT
oed
i + (16 + 2 log T oed

i )T oed
i

≤ Ti + (17 + 2 log T oed
i )T oed

i

≤ Ti + poly

(
dφ, dx,

1

λ⋆
min

, BA, Bφ, log
1

σw
, H, log

Tℓ

δ

)
.

From this it is immediately obvious that 2Tℓ ≥ T̄ℓ as long as (B.3) is satisfied.

To show the second conclusion note that, by our choice of Ti = 2i, we have that Tℓ ≥
∑ℓ−1

i=1 Ti,
so it therefore remains to show that

Tℓ ≥
ℓ−1∑

i=1

poly

(
dφ, dx,

1

λ⋆
min

, BA, Bφ, log
1

σw
, H, log

Ti

δ

)
.
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However, we can bound

ℓ−1∑

i=1

poly

(
dφ, dx,

1

λ⋆
min

, BA, Bφ, log
1

σw
, H, log

Ti

δ

)
≤ poly

(
dφ, dx,

1

λ⋆
min

, BA, Bφ, log
1

σw
, H, log

Tℓ

δ

)
· log Tℓ,

so a sufficient condition is

Tℓ ≥ poly

(
dφ, dx,

1

λ⋆
min

, BA, Bφ, log
1

σw
, H, log

Tℓ

δ

)
· log Tℓ

which we see is met when (B.3) holds.

Lemma B.3. Consider running Algorithm 7 with weight matrix H, parameter Ñ , and confidence δ,
and rerunning each policy in Πout N ≤ Ñ times. Then, under Assumptions 1 and 3, with probability
at least 1− 6δ:

∥vec(Â−A⋆)∥2H ≤
60

NTout
· min
Λ∈Ω

tr
(
HΛ̌−1

)
· σ2
w log

6dxdφ
δ

+ poly

(
dφ, dx,

1

λ⋆
min

, BA, Bφ, log
1

σw
, H, ∥H∥op, log

Ñ

δ

)
· 1

N2

where Â denotes the least-squares estimate of A⋆ obtained on the data generated by rerunning Πout.
In addition, we have

∥Â−A⋆∥F ≤ poly

(
dφ, dx,

1

λ⋆
min

, BA, Bφ, σw, H, log
Ñ

δ

)
· 1√

N
.

Furthermore, we have

Tout ≤ poly

(
dφ, dx,

1

λ⋆
min

, BA, Bφ, log
1

σw
, H, log

Ñ

δ

)

and the total number of episodes collected by this procedure is bounded by NTout + (16+ 2 log(Tout)) ·
Tout, for Tout = |Πout|.

Proof. By Lemma B.1, the assumptions of Lemma C.6 and Lemma C.7 are met, so we can therefore
apply these results in our setting. By Lemma C.6, the event Eexp occurs with probability at least
1− δ. Throughout the remainder of the proof we union bound over the success event of Lemma C.7
and Eexp, which together occur with probability at least 1− 4δ.

Let

Λ̃ :=

NTout∑

t=1

ψ(τt) = Idx ⊗
NTout∑

t=1

H∑

h=1

φ(xt
h,u

t
h)φ(x

t
h,u

t
h)

⊤

denote the features returned by rerunning every policy in Πout N times. By Lemma C.7, we then
have that:

∥∥∥Λ̃−N ·∑π∈Πout
Λ̌π

∥∥∥
op
≤
√
Tout ·

√
8dφdx log(1 + 8

√
NTout) + 8 log 1/δ

√
N · 6272dφdx log 68Ñ

δ︸ ︷︷ ︸
=:β

·λmin

(
N ·∑π∈Πout

Λ̌π

)
.
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Applying Proposition 3 with E the event that the above conclusion holds and Γ := N ·∑π∈Πout
Λ̌π,

we obtain that, with probability at least 1 − δ (using the mapping to the martingale regression
setting described in Appendix A.1.1):

∥vec(Â−A⋆)∥2H ≤ 5(1 + ζ) · σ2
w log

6dxdφ
δ
· tr(HΓ−1)

for ζ = 26β2λmax(Γ)tr(Γ
−1) and β as defined above. Since ∥φ(x,u)∥2 ≤ Bφ under Assumption 1,

we have ∥Λ̌π∥2 ≤ B2
φ, so we can upper bound λmax(Γ) ≤ NToutB

2
φ. By Lemma C.7, we can also

bound (using that D = dxHB2
φ by Lemma B.1):

tr(Γ−1) ≤ 1

N · 6272dxHB2
φ log

68Ñ
δ

.

Combining these and using that

Tout ≤ poly

(
dφ, dx,

1

λ⋆
min

, BA, Bφ, log
1

σw
, H, log

Ñ

δ

)
(B.5)

as shown in Lemma C.8 (and using our bounds on CR and pR in Lemma B.1), we can therefore
bound

ζ ≤ poly

(
dφ, dx,

1

λ⋆
min

, BA, Bφ, log
1

σw
, H, log

Ñ

δ

)
· 1
N

.

Using that tr(HΓ−1) ≤ ∥H∥op · tr(Γ−1), and the bound on tr(Γ−1) given above, it follows that

∥vec(Â−A⋆)∥2H ≤ 5σ2
w log

6dxdφ
δ
· tr(HΓ−1) + poly

(
dφ, dx,

1

λ⋆
min

, BA, Bφ, log
1

σw
, H, ∥H∥op, log

Ñ

δ

)
· 1

N2
.

Finally, by Lemma C.7, we can bound

tr(HΓ−1) ≤ 12

NTout
· min
Λ∈Ω

tr(HΛ̌−1).

By Lemma C.8, we can bound the total number of episodes collected by Algorithm 7 by (16 +
2 log(Tout)) · Tout.

Bound on Frobenius Norm Error. By Lemma C.7, we can lower bound

λmin(Λ̃) ≥ N · 6272dxdφHB2
φ log

68Ñ

δ
.

Furthermore, since ∥φ(x,u)∥2 ≤ Bφ, we always have ∥Λ̃∥op ≤ NToutB
2
φ, which implies Λ̃ ⪯

NToutB
2
φ · I. By Proposition 4, we then have that with probability at least 1− δ (again using the

mapping to the martingale regression setting described in Appendix A.1.1):

∥Â−A⋆∥F ≤ C · σw

√√√√√
log 1/δ + dxdφ + log det( Tout

6272dxdφH log 68Ñ
δ

· I + I)

N · 6272dxdφHB2
φ log

68Ñ
δ

≤ poly

(
dφ, dx,

1

λ⋆
min

, BA, Bφ, σw, H, log
Ñ

δ

)
· 1√

N
.
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Lemma B.4. Under Assumption 3, for any H,H′, we can bound

min
Λ̌∈Ω

tr(HΛ̌−1) ≤ min
Λ̌∈Ω

2tr(H′Λ̌−1) +
2dxdφ
λ⋆
min

· ∥H −H′∥op.

Proof. We have

min
Λ̌∈Ω

tr(HΛ̌−1) = min
Λ̌∈Ω

tr(H′Λ̌−1) + tr((H−H′)Λ̌−1)

≤ min
Λ̌∈Ω

tr(H′Λ̌−1) + ∥H −H′∥op · tr(Λ̌−1)

Under Assumption 3, we know that there exists some Λ̌′ ∈ Ω such that λmin(Λ̌
′) ≥ λ⋆

min. We can
then bound

min
Λ̌∈Ω

tr(H′Λ̌−1) + ∥H −H′∥op · tr(Λ̌−1)

≤ min
Λ̌∈Ω

tr(H′(
1

2
Λ̌+

1

2
Λ̌′)−1) + ∥H −H′∥op · tr((

1

2
Λ̌+

1

2
Λ̌′)−1)

≤ min
Λ̌∈Ω

2tr(H′Λ̌−1) + 2∥H −H′∥op ·
dxdφ
λ⋆
min

which proves the result.

C Experiment Design in Arbitrary Dynamical Systems

In this section we generalize somewhat the setting of Section 5. In particular, our goal will now be
to collect some set of trajectories D = {τt}Tt=1, which minimize

Φ

(
1

T

T∑

t=1

ψ(τt)

)

for some general feature mapping ψ : T → R
d, Φ : Rd → R, and T = (X × U)H × X the space of

possible state-input trajectories, τ = (x0,u0,x1, . . . ,xH−1,uH−1,xH) ∈ T . We will assume that ψ
can be decomposed additively as

ψ(τ) =

H∑

h=1

ψh(xh,uh).

In Section 5 we considered the special case where ψh(x,u) = φ(x,u)φ(x,u)⊤; in this section ψ
could instead be any arbitrary mapping.

As before, we will be interested in defining optimal exploration with respect to some set of
exploration policies, Πexp. Let

Ωψ := {Eπ∼ω[Eπ[ψ(τ)]] : ω ∈ △Π}

denote the space of expected value of ψ(τ) for mixtures of policies in Πexp. To distinguish elements
Λ ∈ Ω from elements inΩψ, we will let Γ = Eπ∼ω[Eπ[ψ(τ)]] refer to elements ofΩψ, and in particular
define Γπ := Eπ[ψ(τ)] (where it is assumed that the expectation is collected over trajectories on
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(5.1)). We will usually denote unnormalized sums of features, e.g.
∑T

t=1ψ(τt), with Σ. We also

define Ω̂ψ to be the space of all possible combinations of ψ(τ):

Ω̂ψ := {Eτ∼ω[ψ(τ)] : ω ∈ △T }.

We generalize Assumption 7 and Assumption 8 as follows.

Assumption 9 (Regularity of Φ). We make the following assumptions:

1. Φ is convex, differentiable, and β-smooth in the norm ∥ · ∥:

∥∇ΓΦ(Γ)−∇Γ′Φ(Γ′)∥∗ ≤ β · ∥Γ− Γ′∥, ∀Γ,Γ′ ∈ Ω̂ψ

for ∥ · ∥∗ the dual norm of ∥ · ∥.

2. There exists some M <∞ satisfying

sup
Γ∈Ω̂ψ

sup
τ∈T
|⟨∇ΓΦ(Γ),ψ(τ)⟩| ≤M.

Assumption 10 (Regret Minimization Oracle). Let costh(τ) = ⟨Qh,ψh(τ)⟩ for some Qh ∈ R
d,

and cost(τ) =
∑H

h=1 costh(τ) the total cost of trajectory τ. We assume we have access to some
learner AR which, in the setting when |cost(τ)| ≤ 1 for all τ ∈ T , is able to achieve low regret on
{costh(·, ·)}Hh=1 with respect to policy class Πexp. That is, with probability at least 1− δ:

T∑

t=1

Ef,πt [cost(τt)]− T · inf
π∈Πexp

Ef,π[cost(τ)] ≤ CR · logpR
T

δ
· Tα

for some CR > 0, pR > 0, and α ∈ (0, 1), and where πt is the policy AR plays at episode t.

Algorithm 4 Dynamic Optimal Experiment Design (DynamicOED)

1: input: objective Φ, number of episodes T (OR number of iterates N , episodes per iterate K),
confidence δ, regret minimization algorithm AR, exploration policies Πexp

2: Play any policy πexp ∈ Πexp for K episodes, collect trajectories D0 = {τ0k}Kk=1, set Γ0 ←
K−1

∑K
k=1ψ(τ

0
k)

3: for n = 1, 2, . . . , N do
4: Set γn ← 1

n+1
5: Run AR on cost

costnh(τ)←
1

M
⟨Ξn,ψh(xh,uh)⟩ for Ξn ← ∇ΓΦ(Γ)|Γ=Γn−1

for K episodes, collect trajectories Dn = {τnk}Kk=1, denote policies run as Πn

6: Γn ← (1− γn)Γn−1 + γnK
−1
∑K

k=1ψ(τ
n
k)

7: return (N + 1)KΓN , ∪Nn=0Πn, ∪Nn=0Dn

We define DynamicOED as in Algorithm 4. We then have the following generalization of
Theorem 3.
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Theorem 5 (Full Version of Theorem 3). Let Assumption 7 hold, and assume that we have
access to a learner AR satisfying Assumption 8. Fix N,K > 0. Then, with probability at least
1 − δ, DynamicOED runs for at most (N + 1)K episodes, and collects a dataset satisfying
D = {{τnk}Kk=1}Nn=0 satisfying

Φ

(
1

K(N + 1)

N∑

n=0

K∑

k=1

ψ(τnk)

)
− min

Γ∈Ωψ
Φ(Γ) ≤ βR2(logN + 1)

2(N + 1)
+M ·

(
CR logpR

2NK

δ
·Kα−1

+

√
8 log(4N/δ)

K

)

where R = sup
Γ,Γ′∈Ω̂ψ

∥Γ− Γ′∥.

In this work we are particularly interested in the case where ψ(τ) ∈ Sdψ+ . We encapsulate this in
the following assumption.

Assumption 11 (Matrix Experiment Design). We assume that ψ(τ) ∈ Sdψ+ and that, for all τ ∈ T ,
tr(ψ(τ)) ≤ D for some D > 0.

The following corollary instantiates Theorem 3 under Assumption 11 with objective Φ(Γ) =
tr
(
H(Γ+ Γ0)

−1
)
, the objective considered in Algorithm 1.

Corollary 1. Consider the objective

Φ(Γ) = tr
(
H · (Γ+ Γ0)

−1
)

and assume that H ⪰ 0 and Assumption 10 holds with α = 1/2 and Assumption 11 holds. Fix N,K,
let T := (N + 1)K, and consider running Algorithm 4 on this objective and with these choices of N
and K. Then Algorithm 4 will run for at most T episodes, and, with probability at least 1− δ, will
return data satisfying

tr


H

(
T∑

t=1

ψ(τt) + TΓ0

)−1

 ≤ 1

T
· min
Γ∈Ωψ

tr
(
H(Γ+ Γ0)

−1
)
+

8D4∥H∥op∥Γ−1
0 ∥3op

T (N + 1)

+
8D∥H∥op∥Γ−1

0 ∥2op(log1/2 4T
δ + CR logpR 2T

δ )

T
√
K

C.1 Proof of Theorem 3 and Theorem 5

Lemma C.1 (Lemma C.1 of Wagenmaker & Jamieson (2022)). Consider running Algorithm 5 with
some convex function f that is β-smooth with respect to some norm ∥ · ∥, assume that yn ∈ Y for
some Y and all n, and let R := supz,y∈Z∪Y ∥z − y∥. Then for N ≥ 2, we have

f(zN+1)−min
z∈Z

f(z) ≤ βR2(logN + 1)

2(N + 1)
+

1

N + 1

N∑

n=1

ϵn.

Lemma C.2 (Lemma C.2 of Wagenmaker & Jamieson (2022)). When running Algorithm 5, we
have

zN+1 =
1

N + 1

(
N∑

n=1

yn + z1

)
.
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Algorithm 5 Approximate Frank-Wolfe

1: input: function to optimize f , number of iterations to run N , starting iterate x1

2: for t = 1, 2, . . . , N do
3: Set γn ← 1

n+1
4: Choose yn to be any point such that

∇f(zn)⊤yn ≤ min
y∈Z
∇f(zn)⊤y + ϵn

5: zn+1 ← (1− γn)zn + γnyn

6: return xN+1

Proof of Theorem 3. By our assumption on AR, Assumption 8, we have that, at round n, with
probability at least 1− δ/2N ,

K∑

k=1

Eπk
[costn(τk)]−K · inf

π∈Πexp

Eπ [cost
n(τ)] ≤ CR logpR

2NK

δ
·Kα

where we have used that, under Assumption 9 and by the definition of costnh(τ), |costn(τ)| ≤ 1 for
all τ ∈ T . This implies that

1

K

K∑

k=1

Eπk
[⟨Ξn,ψ(τk)⟩] ≤M · inf

π∈Πexp

Eπ [cost
n(τ)] +MCR logpR

2NK

δ
·Kα−1.

Furthermore, by Azuma-Hoeffding and under Assumption 9, we have that, with probability at least
1− δ/2N ,

∣∣∣∣∣
1

K

K∑

k=1

⟨Ξn,ψ(τk)⟩ −
1

K

K∑

k=1

Eπk
[⟨Ξn,ψ(τk)⟩]

∣∣∣∣∣ ≤
√

8M2 log(4N/δ)

K
.

This implies that

1

K

K∑

k=1

⟨Ξn,ψ(τk)⟩ ≤M · inf
π∈Πexp

Eπ [cost
n(τ)] +M ·

(
CR logpR

K

δ
·Kα−1 +

√
8 log(4N/δ)

K

)
.

(C.1)

Note that

⟨Ξn,ψ(τk)⟩ = ⟨∇ΓΦ(Γ)|Γ=Γn ,ψ(τ)⟩,

and that for any Γ ∈ Ωψ, we have

⟨∇ΓΦ(Γ)|Γ=Γn ,Γ⟩ = Eπ∼ω[Eπ[⟨∇ΓΦ(Γ)|Γ=Γn ,ψ(τ)⟩]]

for some ω. This implies that

inf
Γ∈Ωψ

⟨∇ΓΦ(Γ)|Γ=Γn ,Γ⟩ = inf
ω∈△Π

Eπ∼ω[Eπ[⟨∇ΓΦ(Γ)|Γ=Γn ,ψ(τ)⟩]]

= inf
π∈Πexp

Eπ[⟨Ξn,ψ(τ)⟩]
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= M · inf
π∈Πexp

Eπ[cost
n(τ)].

By (C.1) above, we have that

1

K

K∑

k=1

ψ(τk)

is an approximate minimizer ofM ·supπ∈Πexp
Eπ[cost

n(τ)], with approximation toleranceM(CR logpR 2NK
δ ·

Kα−1 +

√
8 log(4N/δ)

K ). We can therefore apply Lemma C.1 with

ϵn = M ·
(
CR logpR

K

δ
·Kα−1 +

√
8 log(4N/δ)

K

)

to get that

Φ(ΓN+1)− min
Γ∈Ωψ

Φ(Γ) ≤ βR2(logN + 1)

2(N + 1)
+M ·

(
CR logpR

2NK

δ
·Kα−1 +

√
8 log(4N/δ)

K

)
.

The result then follows since ΓN+1 =
1

K(N+1)

∑N
n=0

∑K
k=1ψ(τ

n
k) by Lemma C.2.

Proof of Corollary 1. By Theorem 5, for any setting of N and K, we have that with probability at
least 1− δ:

tr


H

(
1

K(N + 1)

N∑

n=0

K∑

k=1

ψ(τnk) + Γ0

)−1

−min

Γ∈Ω
tr
(
H(Γ+ Γ0)

−1
)

≤ βR2 logN

N + 1
+

MCR logpR 2NK
δ

K1−α
+M

√
8 log 4N

δ

K

which implies

tr


H

(
N∑

n=0

K∑

k=1

ψ(τnk) + TΓ0

)−1

− minΓ∈Ω tr

(
H(Γ+ Γ0)

−1
)

T

≤ βR2 logN

T (N + 1)
+

MCR logpR 2NK
δ

T
√
K

+M
1

T

√
8 log 4N

δ

K

This gives

tr


H

(
N∑

n=0

K∑

k=1

ψ(τnk) + TΓ0

)−1

 ≤ minΓ∈Ω tr

(
H(Γ+ Γ0)

−1
)

T

+
βR2 log T

T (N + 1)
+

M(3 log1/2 4T
δ + CR logpR 2T

δ )

T
√
K

.
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It then remains to bound R, β, and M . By Lemma D.6 of Wagenmaker & Jamieson (2022), we
have that

∇ΓΦ(Γ)[Γ̃] = −tr
(
H(Γ+ Γ0)

−1Γ̃(Γ+ Γ0)
−1
)
.

We can then compute the second derivative as, using Lemma D.6 of Wagenmaker & Jamieson
(2022):

∇2
ΓΦ(Γ)[Γ̃, Γ̄] =

d

dt

[
−tr

(
H(Γ+ Γ0 + tΓ̄)−1Γ̃(Γ+ Γ0 + tΓ̄)−1

)]

= tr
(
H(Γ+ Γ0)

−1Γ̄(Γ+ Γ0)
−1Γ̃(Γ+ Γ0)

−1
)

+ tr
(
H(Γ+ Γ0)

−1Γ̃(Γ+ Γ0)
−1Γ̄(Γ+ Γ0)

−1
)
.

Recall that M is any bound on

sup
Γ∈Ω̂ψ

sup
τ∈T
|⟨∇ΓΦ(Γ),ψ(τ)⟩|.

By the above computation of the gradient, we can bound this as

sup
Γ∈Ω̂ψ

sup
τ∈T
|⟨∇ΓΦ(Γ),ψ(τ)⟩| ≤ sup

Γ∈Ω̂ψ

sup
τ∈T

∣∣tr
(
H(Γ+ Γ0)

−1ψ(τ)(Γ+ Γ0)
−1
)∣∣

≤ ∥H∥op∥Γ−1
0 ∥2op · sup

τ∈T
tr(ψ(τ))

≤ D∥H∥op∥Γ−1
0 ∥2op.

(C.2)

To bound β, by the Mean Value Theorem it suffices to bound the operator norm of ∇2
Γ
Φ(Γ). Using

the expression above, we can bound this as

sup
Γ̃,Γ̄∈Ω̂ψ

|∇2
ΓΦ(Γ)[ψ(τ1),ψ(τ2)]| ≤ 2∥H∥op∥Γ−1

0 ∥3op · sup
Γ̃,Γ̄∈Ω̂ψ

tr(Γ̃Γ̄)

≤ 2D2∥H∥op∥Γ−1
0 ∥3op.

Finally, it’s straightforward to bound R ≤ 2D. Putting all of this together gives the result.

C.2 Collecting Full-Rank Data

Algorithm 6 Minimum Eigenvalue Maximization (MinEig)

1: input: scale N , confidence δ, regret minimization algorithm AR, exploration policies Πexp

2: for j = 1, 2, 3, . . . do

3: Nj ← ⌈2j/3⌉ − 1,Kj ← ⌈22j/3⌉, Tj ← (Nj + 1)Kj , λj ← T
−1/18
j , δj ← δ

4j2

4: Σj ,Πj ← DynamicOED(Φ, Nj ,Kj , δj ,AR,Πexp) for Φ(Γ) = tr((Γ+ λj · I)−1)

5: if λmin(Σj) ≥ 12544Ddψ log
2N(2+32Tj)

δ then
6: break
7: return Πj

In this section, we consider the setting where ψ(τ) ∈ Sdψ+ , and our goal is to collect {τt}Tt=1

such that ψ( 1
T

∑T
t=1ψ(τt)) > 0. For this to be achievable, we need the following assumption, a

generalization of Assumption 3.
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Assumption 12 (Full-Rank Data). Consider ψ(τ) such that ψ(τ) ∈ S
dψ
+ . Then we have

supΓ∈Ωψ λmin(Γ) ≥ λ⋆
min for some λ⋆

min > 0.

Throughout this section we also assume that Assumption 10 is satisfied with α = 1/2 (though
all results generalize in a straightforward way for α ̸= 1/2). We have the following result.

Lemma C.3. Under Assumptions 10 to 12, running Algorithm 6 we have that with probability at
least 1− δ, it will terminate after collecting at most

poly

(
dψ,

1

λ⋆
min

, D,CR, log
pR

N

δ

)

episodes, and return policy set Π such that

λmin

(∑
π∈ΠΓπ

)
≥ 6272Ddψ log

68N

δ
.

Furthermore, if we rerun each policy in Π once, the resulting features Σ will satisfy, with probability
at least 1− δ/N :

λmin (Σ) ≥ 6272Ddψ log
68N

δ
.

Proof. By Lemma C.4 and our choice of Nj and Kj in Algorithm 6, we have that if λj ≤ λ⋆
min

4dψ
and

T
1/3
j ≥ Ω̃

((
Dλ−2

j (D3λ−1
j + CR · logpR

1

δj
)

)
· λ

⋆
min

dψ

)
, (C.3)

then λmin(Σj) ≥ λ⋆
min

4dψ
· Tj with probability at least 1− δj . It follows that, with probability at least

1− δj , the if statement on Line 5 will be true once λj ≤ λ⋆
min

4dψ
, (C.3) holds, and

λ⋆
min

4dψ
· Tj ≥ 12544Ddψ log

2N(2 + 32Tj)

δ
. (C.4)

By our choice of λj = T
−1/18
j , a sufficient condition to ensure λj ≤ λ⋆

min

4dψ
, (C.3), and (C.4) is

Tj ≥ Ω̃

(
max

{(
dψ
λ⋆
min

)18

,

(
D4λ⋆

min

dψ

)6

,

(
DCR · logpR

1

δj
· λ

⋆
min

dψ

)9/2

,
Dd2ψ
λ⋆
min

· log NTj

δ

})
.

Since Tj = ⌈2j/3⌉⌈22j/3⌉ ∈ [2j , 4 · 2j ], it follows that the if statement on Line 5 will be met after
running for at most

Õ
(
max

{(
dψ
λ⋆
min

)18

,

(
D4λ⋆

min

dψ

)6

,

(
DCR · logpR

1

δj
· λ

⋆
min

dψ

)9/2

,
Dd2ψ
λ⋆
min

· log N

δ

})
(C.5)

episodes.

By Lemma C.5, if λmin(Σj) ≥ 12544Ddψ log
2N(2+32Tj)

δ and we rerun all policies in Πj , then we

will collect data Σ̃ such that λmin(Σ̃) ≥ 1
2λmin(Σj), with probability at least 1− δ/2N . As the if
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statement on Line 5 will only be true once this is met, it follows that, with probability at least
1− δ/2N , rerunning all policies in Πj once, we will collect data Σ which satisfies

λmin(Σ) ≥ 1

2
λmin(Σj) ≥ 6272Ddψ log

2N(2 + 32Tj)

δ
≥ 6272Ddψ log

68N

δ
.

The lower bound on λmin(
∑

π∈Π Γπ) follows analogously from Lemma C.5.

The result then follows noting that the failure probability of running DynamicOED is at most

∞∑

j=1

δ

4j2
≤ δ/2.

C.2.1 Supporting Lemmas

Lemma C.4. Under Assumptions 10 to 12, consider running DynamicOED on the objective

Φ(Γ) = tr((Γ+ λ · I)−1)

with N = ⌈2i/3⌉ − 1 and K = ⌈22i/3⌉, for some λ > 0 and i. Let T := (N + 1)K. Then if λ ≤ λ⋆
min

4dψ
and

T 1/3 ≥ Ω̃

((
Dλ−2(D3λ−1 + CR · logpR

1

δ
)

)
· λ

⋆
min

dψ

)
, (C.6)

with probability at least 1− δ,

λmin

(
T∑

t=1

ψ(τt)

)
≥ λ⋆

min

4dψ
· T.

Proof. Applying Corollary 1 with H = I and Γ0 = λ · I, we have that, with probability at least
1− δ:

tr



(

T∑

t=1

ψ(τt) + Tλ · I
)−1


 ≤ 1

T
· min
Γ∈Ωψ

tr((Γ+ λ · I)−1) +
8D4λ−3

T (N + 1)
+

8Dλ−2(log1/2 T
δ + CR logpR T

δ )

T
√
K

≤ 1

T
· min
Γ∈Ωψ

tr((Γ+ λ · I)−1) +
24D4λ−3

T 4/3
+

24Dλ−2(log1/2 T
δ + CR logpR T

δ )

T 4/3

where the second inequality follows since

T = ⌈2i/3⌉⌈22i/3⌉ ≤ 4 · 2i

which implies N + 1 = ⌈2i/3⌉ ≥ T 1/3/41/3 and K = ⌈22i/3⌉ ≥ T 2/3/42/3. If T satisfies (C.6), then
we can bound

24D4λ−3

T 4/3
+

24Dλ−2(log1/2 T
δ + CR logpR T

δ )

T 4/3
≤ 1

T
· dψ
λ⋆
min

.
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Furthermore, under Assumption 3 there exists some Γ ∈ Ωψ such that Γ ⪰ λ⋆
min · I, so we can upper

bound

min
Γ∈Ωψ

tr((Γ+ λ · I)−1) ≤ dψ
λ⋆
min

and we can lower bound

tr



(

T∑

t=1

ψ(τt) + Tλ · I
)−1


 ≥ 1

λmin(
∑T

t=1ψ(τt)) + Tλ
.

Thus,

1

λmin(
∑T

t=1ψ(τt)) + Tλ
≤ 1

T
· 2dψ
λ⋆
min

=⇒ λmin

(
T∑

t=1

ψ(τt)

)
≥ Tλ⋆

min

2dψ
− Tλ.

It follows that if λ ≤ λ⋆
min

4dψ
, then we have

λmin

(
T∑

t=1

ψ(τt)

)
≥ T · λ

⋆
min

4dψ

which proves the result.

Lemma C.5. Consider running some policies (πτ )
T
τ=1, for πτ Fτ−1-measurable, and collecting

covariance ΣT =
∑T

t=1ψ(τt). Then under Assumption 11, as long as

λmin(ΣT ) ≥ 12544Ddψ log
2 + 32T

δ

with probability at least 1− δ, if we rerun each (πτ )
T
τ=1, we will collect features Σ̃T such that

λmin(Σ̃T ) ≥
1

2
λmin(ΣT ).

Furthermore,

λmin

(
T∑

τ=1

Γπτ

)
≥ 1

2
λmin(ΣT ).

Proof. This follows from applying Lemma D.7 of Wagenmaker & Jamieson (2022) to the matrix
1
DΣT . Note that while Wagenmaker & Jamieson (2022) considers the setting of linear MDPs, the
proof of Lemma D.7 of Wagenmaker & Jamieson (2022) does not make use of the linear MDP
assumption, and the proof therefore extends immediately to our setting. Furthermore, though
it is not explicitly stated, the lower bound on λmin(

∑T
τ=1 Γπτ ) is also proved in Lemma D.7 of

Wagenmaker & Jamieson (2022).
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Algorithm 7 Learn Minimizing Exploration Policies (LearnExpΠ)

1: input: H, iterates bound Ñ , confidence δ, regret minimization algorithm AR, exploration
policies Πexp

2: for i = 1, 2, 3, . . . do
3: Ni ← ⌈2i/3⌉ − 1,Ki ← ⌈22i/3⌉, Ti ← (Ni + 1)Ki, δi ← δ/4i2

4: Πi
MinEig

←MinEig(ÑTi, δi,AR,Πexp)
5: Run policies in Πi

MinEig
⌈Ti/|Πi

MinEig
|⌉ times, set Γi

0 to collected features
6: Φ(Γ)← tr(H(Γ+ T−1

i Γi
0)

−1)
7: Γi

fw,Π
i
fw ← DynamicOED(Φ, Ni,Ki, δ,AR,Πexp)

8: if

max
j=1,...,i

|Πj
MinEig

| ≤ Ti (C.7)

16D4∥H∥op∥(T−1
i Γ0)

−1∥3op
Ti(Ni + 1)

+
16D∥H∥op∥(T−1

i Γ0)
−1∥2op(log1/2 4Ti

δ + CR logpR 2Ti

δ )

Ti

√
Ki

≤ tr
(
H
(
Γi
fw + Γi

0

)−1
)

(C.8)

tr(H) ·D
√
2Ti

√
8dψ log(1 + 8

√
2Ti) + 8 log 1/δ · 2

λmin

(
Γi
fw + Γi

0

)2 ≤ tr
(
H
(
Γi
fw + Γi

0

)−1
)

(C.9)

D
√
2Ti

√
8dψ log(1 + 8

√
2Ti) + 8 log 1/δ ≤ 1

2
λmin

(
Γi
fw + Γi

0

)
(C.10)

9: then
10: Γout ← Γi

fw + Γi
0,Πout ← Πi

MinEig
∪ (∪⌈Ti/|ΠMinEig|⌉

j=1 Πi
fw)

11: return Γout,Πout

C.3 Rerunning Policies

In this section, we build on the analysis of the DynamicOED algorithm to show that, not only
do the features collected by DynamicOED approximately minimize Φ, but that, under certain
conditions, if we rerun the policies that DynamicOED ran to collect this data, we will collect a
new set of features which also approximately minimizes Φ.

In particular, we specialize this argument to objectives of the form Φ(Γ) = tr(HΓ−1). Learn-
ExpΠ (Algorithm 7) proceeds by first calling MinEig to collect full-rank data, using this data as
a regularizer of Φ(Γ), and the running DynamicOED on this objective. After meeting a certain
termination criteria, it terminates, and returns the policies it has run over its operation.

Lemma C.6. Let Eexp denote the event that, for all i = 1, 2, 3, . . ., the success event of MinEig

and DynamicOED occur, and

λmin(Γ
i
0) ≥ ⌈Ti/|Πi

MinEig|⌉ · 6272Ddψ log
68Ñ

δ
.

Then if Assumptions 10 to 12 hold, P[Eexp] ≥ 1− δ.

Lemma C.7. Consider rerunning each policy in Πout N ≤ Ñ times, and let Γ̃ denote the obtained
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features. Then, if Assumptions 10 to 12 hold, with probability at least 1− 3δ, on the event Eexp:

∥∥∥Γ̃−N ·∑π∈Πout
Γπ

∥∥∥
op
≤
√
Tout ·

√
8dψ log(1 + 8

√
NTout) + 8 log 1/δ

√
N · 6272dψ log 68Ñ

δ

· λmin

(
N ·∑π∈Πout

Γπ

)
,

(C.11)

N · 6272Ddψ log
68Ñ

δ
≤ min

{
λmin

(
N ·∑π∈Πout

Γπ

)
, λmin(Γ̃)

}
, (C.12)

and

tr
(
H
(∑

π∈Πout
Γπ

)−1
)
≤ 12

Tout
·min
Γ∈Ω

tr
(
HΓ−1

)
(C.13)

for Tout := |Πout|.

Lemma C.8. On the event Eexp, under Assumptions 10 to 12, we can bound

Tout ≤ poly

(
dψ,

1

λ⋆
min

, D,CR, log
pR

Ñ

δ

)
.

Furthermore, the total number of episodes collected by Algorithm 7 is bounded by (16 + 2 log(Tout)) ·
Tout.

C.3.1 Supporting Lemmas and Proofs

Lemma C.9. Under Assumption 11, for any Γ = Eτ∼ω[ψ(τ)] and H ⪰ 0 we can bound

tr(HΓ−1) ≥ D−1 · tr(H).

Proof. By Von Neumann’s Trace Inequality we can lower bound

tr(HΓ−1) ≥ λmin(Γ
−1) · tr(H) = ∥Γ∥−1

op · tr(H).

By our assumption that tr(ψ(τ)) ≤ D, we can bound ∥Γ∥op ≤ D, which proves the result.

Lemma C.10. Assume tr(ψ(τ)) ≤ D for all τ. Let ΓK denote the time-normalized features
obtained by playing policies {πk}Kk=1, where πk is Fk−1-measurable. Then, with probability at least
1− δ,

∥∥∥∥∥
1

K

K∑

k=1

Γπk
− ΓK

∥∥∥∥∥
op

≤ D

√
8dψ log(1 + 8

√
K) + 8 log 1/δ

K
.

Proof. This follows from an argument identical to the proof of Lemma C.4 of Wagenmaker &
Jamieson (2022). While Wagenmaker & Jamieson (2022) considers the setting of linear MDPs, we
note that the proof of Lemma C.4 of Wagenmaker & Jamieson (2022) nowhere relies on the linear
MDP assumption. The result stated here then follows identically as Lemma C.4 of Wagenmaker &
Jamieson (2022), after normalizing ψ(τ) by D.

37



Proof of Lemma C.6. By Lemma C.3, the failure probability of running MinEig at round i is
δi = δ/8i2, and by Corollary 1 the failure probability of DynamicOED at round i is also bounded
by δi = δ/8i2. It follows that the total failure probability of running MinEig and DynamicOED is
bounded by

∞∑

i=1

2 · δ
8i2
≤ δ

2
.

Furthermore, by Lemma C.3, we have that rerunning all policies in Πi
MinEig

, we will obtain features

Γ satisfying, with probability at least 1− δi/ÑTi:

λmin(Γ) ≥ 6272Ddψ log
68Ñ

δi
.

Repeating this ⌈Ti/|Πi
MinEig

|⌉ times and union bounding, we have that

λmin(Γ
i
0) ≥ ⌈Ti/|Πi

MinEig|⌉ · 6272Ddψ log
68Ñ

δi

with probability at least 1− δ/ÑTi · ⌈Ti/|Πi
MinEig

|⌉ ≥ 1− δ/Ñ .

Proof of Lemma C.7. Let ΠMinEig,Γ0,Πfw,Γfw denote the policies and features obtained on the
round at which Algorithm 7 terminates. Let Tfw = |Πfw| denote the number of episodes of
DynamicOED on the terminating round, and Nfw,Kfw the corresponding values of Ni and Ki.
Throughout the proof we make use of the fact that at termination of Algorithm 7, all of (C.7)-(C.10)
are met.

Proof of (C.11) and (C.12). By Lemma C.10 we have that, with probability at least 1− δ:
∥∥∥Γ̃−N ·∑π∈Πout

Γπ

∥∥∥
op
≤ D

√
NTout ·

√
8dψ log(1 + 8

√
NTout) + 8 log 1/δ.

On Eexp, by Lemma C.3, we can bound

|ΠMinEig| ≤ poly

(
dψ,

1

λ⋆
min

, D,CR, log
pR

ÑTout

δ

)

and, furthermore, we can lower bound

λmin

(∑
π∈ΠMinEig

Γπ

)
≥ 6272Ddψ log

68Ñ

δ
.

Since ΠMinEig ⊆ Πout, it follows that

λmin

(
N ·∑π∈Πout

Γπ

)
≥ N · 6272Ddψ log

68Ñ

δ
.

Combining these, we therefore have that, with probability at least 1− δ:

∥∥∥Γ̃−N ·∑π∈Πout
Γπ

∥∥∥
op
≤
√
NTout ·

√
8dψ log(1 + 8

√
NTout) + 8 log 1/δ

N · 6272dψ log 68Ñ
δ

· λmin

(
N ·∑π∈Πout

Γπ

)
.

In addition, also by Lemma C.3, we have that with probability at least 1− δ/ÑTout ·N ≥ 1− δ, that

λmin(Γ̃) ≥ N · 6272Ddψ log
68Ñ

δ
.
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Proof of (C.13). By Corollary 1, on Eexp we have that:

Φ(Γfw) = tr
(
H (Γfw + Γ0)

−1
)
≤ minΓ∈Ω tr

(
H(Γ+ T−1

fw Γ0)
−1
)

Tfw

+
8D4∥H∥op∥(T−1

fw Γ0)
−1∥3op

Tfw(Nfw + 1)
+

8D∥H∥op∥(T−1
fw Γ0)

−1∥2op(log1/2 4Tfw

δ + CR logpR 2Tfw

δ )

Tfw

√
Kfw

.

Since Tfw satisfies (C.8), we can bound

8D4∥H∥op∥(T−1
fw Γ0)

−1∥3op
Tfw(Nfw + 1)

+
8D∥H∥op∥(T−1

fw Γ0)
−1∥2op(log1/2 4Tfw

δ + CR logpR 2Tfw

δ )

Tfw

√
Kfw

≤ 1

2
Φ(Γfw).

It follows that

Φ(Γfw) ≤
minΓ∈Ω tr

(
H(Γ+ T−1

fw Γ0)
−1
)

Tfw
+

1

2
Φ(Γfw)

=⇒ Φ(Γfw) ≤ 2 · minΓ∈Ω tr
(
H(Γ+ T−1

fw Γ0)
−1
)

Tfw
. (C.14)

By Lemma C.10, we have that, with probability at least 1− δ:

∥∥∑
π∈Πout

Γπ − (Γfw + Γ0)
∥∥
op
≤ D

√
Tout

√
8dψ log(1 + 8

√
Tout) + 8 log 1/δ.

Since (C.10) is satisfied and |Πi
MinEig

| ≤ Ti, we have

D
√
Tout

√
8dψ log(1 + 8

√
Tout) + 8 log 1/δ ≤ 1

2
λmin (Γfw + Γ0) .

By Lemma A.2 it follows that
∥∥∥
(∑

π∈Πout
Γπ

)−1 − (Γfw + Γ0)
−1
∥∥∥
op
≤ D

√
Tout

√
8dψ log(1 + 8

√
Tout) + 8 log 1/δ · 2

λmin (Γfw + Γ0)
2 .

This implies that

tr
(
H
(∑

π∈Πout
Γπ

)−1
)
≤ tr

(
H (Γfw + Γ0)

−1
)

+ tr(H) ·D
√
Tout

√
8dψ log(1 + 8

√
Tout) + 8 log 1/δ · 2

λmin (Γfw + Γ0)
2 .

Now if

tr(H) ·D
√

Tout

√
8dψ log(1 + 8

√
Tout) + 8 log 1/δ · 2

λmin (Γfw + Γ0)
2 ≤ tr

(
H (Γfw + Γ0)

−1
)
,

(C.15)

we can bound this all by

≤ 2tr
(
H (Γfw + Γ0)

−1
)
≤ 4

Tfw
·min
Γ∈Ω

tr
(
H(Γ+ T−1

fw Γ0)
−1
)

where the last inequality follows from (C.14). However, note that (C.15) since (C.9) holds. Finally,
note that

Tout = Tfw + ⌈Tfw/|ΠMinEig|⌉|ΠMinEig| ≤ 2Tfw + |ΠMinEig| ≤ 3Tfw

where the last inequality follows since (C.7) holds. We can therefore upper bound 4
Tfw
≤ 12

Tout
.

Putting this together proves the result.
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Proof of Lemma C.8. To bound Tout, it suffices to show that (C.7)-(C.10) are satisfied for sufficiently
large Ti.

On Eexp, by Lemma C.3, we can bound

|Πi
MinEig| ≤ poly

(
dψ,

1

λ⋆
min

, D,CR, log
pR

ÑTi

δ

)
,

so to ensure (C.7) is met it suffices that

Ti ≥ poly

(
dψ,

1

λ⋆
min

, D,CR, log
pR

Ñ

δ

)
.

On Eexp, we have

λmin(Γ
i
fw + Γi

0) ≥ λmin(Γ
i
0) ≥ ⌈Ti/|Πi

MinEig|⌉ · 6272Ddψ log
68Ñ

δ
.

Which also implies

∥(T−1
i Γi

0)
−1∥op =

Ti

λmin(Γi
0)
≤ Ti

⌈Ti/|Πi
MinEig

|⌉ ·
1

6272Ddψ log 68Ñ
δ

≤ |Πi
MinEig

|
6272Ddψ log 68Ñ

δ

Furthermore, by Lemma C.9 we can lower bound

tr
(
H
(
Γi
fw + Γi

0

)−1
)
≥ tr(H)

D(Ti + ⌈Ti/|Πi
MinEig

|⌉|Πi
MinEig

|) ≥
tr(H)
3DTi

.

Combining these and using that Ni = O(T 1/3
i ) and Ki = O(T 2/3

i ), it is easy to see that (C.8)-(C.10)
will be met once

Ti ≥ poly

(
dψ,

1

λ⋆
min

, D,CR, log
pR

Ñ

δ

)
.

The bound on Tout then follows since Ti = ⌈2i/3⌉⌈22i/3⌉ ∈ [2i, 4 · 2i], so it can be at most a constant
larger than the sufficient condition before terminating.

Let i⋆ denote the round that Algorithm 7 terminates on. Note that at round i, MinEig runs
for at most |Πi

MinEig
|, DynamicOED runs for at most Ti episodes, and we run for an additional

⌈Ti/|Πi
MinEig

|⌉ · |Πi
MinEig

| episodes on Line 5. In total, then, the number of episodes Algorithm 7
runs for is bounded by

i⋆∑

i=1

(Ti + |Πi
MinEig|+ ⌈Ti/|Πi

MinEig|⌉ · |Πi
MinEig|) ≤ 2

i⋆∑

i=1

(Ti + |Πi
MinEig|)

≤ 16Ti⋆ + 2

i⋆∑

i=1

|Πi
MinEig|

where the last inequality follows since Ti ∈ [2i, 4·2i]. Now note that, since Algorithm 7 only terminates
once (C.7) is met, we will have maxj=1,...,i⋆ |Πj

MinEig
| ≤ Ti⋆ . This implies that 2

∑i⋆

i=1 |Πi
MinEig

| ≤
2i⋆Ti⋆ ≤ 2 log(Ti⋆) · Ti⋆ . Bounding Ti⋆ ≤ Tout gives the result.
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D Smooth Nonlinear Systems

In this section we restrict to the nonlinear regulator system of (1.1). Our goal will be to show that,
under our assumptions, the nonlinear regulator system exhibits certain smooth behavior. As we
have assumed

Π⋆ = {πθ : θ ∈ R
dθ},

it will be convenient to define J (θ;A) := J (πθ;A) and θ⋆(A) = θ⋆. For the remainder of this
section, we will typically use θ in place of πθ. In addition, when considering radius terms such as
rθ(A⋆) and rcost(A⋆), to simplify results we assume that rθ(A⋆) ≤ 1 and rcost(A⋆) ≤ 1. Note that this
does not change the validity of the result since, for example, if a result holds with A ∈ BF(A⋆; r) for
some r > rθ(A⋆), it also holds for A ∈ BF(A⋆; rθ(A⋆)). Throughout this section, we let ∇xf(x)[∆]
refer to the directional gradient of f(x) in direction ∆.

We first have the following result, which shows that under our assumptions, the controller loss is
differentiable.

Lemma D.1. Under Assumptions 1, 2, 4 and 5, for any A satisfying A ∈ BF(A⋆; rθ(A⋆)), the
controller loss J (θ;A) is four-times differentiable in θ and A. Furthermore, we can bound

∥∇(i)
A ∇

(j)
θ J (θ;A)∥op ≤ poly(∥A∥op, Bφ, Lφ, Lθ, Lcost, σ

−1
w , H, dx)

for i, j ∈ {0, 1, 2, 3, 4} satisfying 1 ≤ i+ j ≤ 3.

In this section, we generalize Assumption 6 to the following.

Assumption 13. We assume there exists some rθ(A⋆) > 0 such that, for all A ∈ BF(A⋆; rθ(A⋆)),
θ⋆(A) satisfies:

• ∇θJ (θ;A)|θ=θ⋆(A) = 0,

• θ⋆(A) is three-times differentiable in A, and we can bound ∥∇(i)
A θ⋆(A)∥op ≤ Lπ⋆ for some

Lπ⋆ > 0 and i ∈ {1, 2, 3}.

The first condition requires that θ⋆(A) corresponds to a stationary point of the loss. This will be
met, for example, by choosing θ⋆(A) to be a minima (local or global) of J (θ;A). It is not obvious,
however, that the first and second condition can be simultaneously satisfied. In the following we
show that, assuming ∇2

θJ (θ;A⋆)|θ=θ⋆(A⋆) is full-rank (which will be the case, for example, when

θ⋆(A⋆) is a strict local minimum of J (πθ;A⋆)), there always exists some θ⋆(A) satisfying both
conditions of Assumption 13, with Lπ⋆ scaling polynomially in problem parameters, and rθ(A⋆)
scaling inverse polynomially in problem parameters. Note that this definition of π⋆(A) is general
enough to capture settings where the global minimum of J (π;A) cannot be efficiently computed—it
suffices to take π⋆(A) a local minimum of the loss.

Proposition 5. Assume that Assumptions 1, 2, 4 and 5 hold and that λmin(∇2
θJ (θ;A⋆)|θ=θ⋆(A⋆)) >

0. Let rθ(A⋆) > 0 be some value satisfying

rθ(A⋆) = min



rcost(A⋆), poly

(
1

λmin(∇2
θJ (θ;A⋆)|θ=θ⋆(A⋆))

, ∥A⋆∥op, Bφ, Lφ, Lθ, Lcost, σ
−1
w , H, dx

)−1


 .

Then there exists some function θ⋆(A) such that, for all A ∈ BF(A⋆; rθ(A⋆)):
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• ∇θJ (θ;A)|θ=θ⋆(A) = 0,

• θ⋆(A) is three-times differentiable in A,

and it suffices that we take

Lπ⋆ = poly

(
1

λmin(∇2
θJ (θ;A⋆)|θ=θ⋆(A⋆))

, ∥A⋆∥op, Bφ, Lφ, Lθ, Lcost, σ
−1
w , H, dx

)
.

While Proposition 5 shows that there exists some θ⋆(A) satisfying Assumption 13, it does not
directly give a recipe for constructing such a map. The following result shows that under a mild
additional assumption, the minimizer of the loss satisfies Assumption 13.

Proposition 6. Let

θ⋆(A) := argmin
θ∈Rdθ

J (θ;A).

Then under Assumptions 1, 2 and 4 to 6, there exists some rθ(A⋆) > 0 and Lπ⋆ < ∞ such that
θ⋆(A) satisfies Assumption 13.

The scaling of Lπ⋆ in Proposition 6 can be shown to match that of Proposition 5, but in general
rθ(A⋆) could be smaller than the value of rθ(A⋆) given in Proposition 5. In particular, in the setting of
Proposition 6, we can only show that rθ(A⋆) scales with minθ ̸∈B2(θ⋆(A⋆);r) J (θ;A⋆)−J (θ⋆(A⋆);A⋆)
for some r > 0 which scales inverse polynomially in problem parameters. While we can show
that J (θ;A⋆) − J (θ⋆(A⋆);A⋆) scales inverse polynomially in problem parameters, including in
λmin(∇2

θJ (θ;A⋆)|θ=θ⋆(A⋆)), for θ approximately a distance of r from θ⋆(A⋆), it is possible J (θ;A⋆)
has some local minimizer θ′ arbitrarily far away from θ⋆(A⋆), such that J (θ′;A⋆) and J (θ⋆(A⋆);A⋆)
are arbitrarily close, in which case ∆⋆, and therefore rθ(A⋆), could be arbitrarily small. The failure
mode here is that, while θ⋆(A⋆) may be the global minimum of J (θ;A⋆), for A arbitrarily close to
A⋆, the global minimum of J (θ;A) could instead be near θ′, which would render the map θ⋆(A)
discontinuous.

By making further assumptions on J (θ;A⋆) which exclude this case, we can obtain a value of
rθ(A⋆) scaling similarly to in Proposition 5. For example, in the following, we show that under the
assumption that J (θ;A) is convex, this holds.
Proposition 7. Assume that there exists some rconv(A⋆) > 0 such that, for all A ∈ BF(A⋆; rconv(A⋆)),
J (θ;A) is convex in θ, and set

θ⋆(A) = argmin
θ∈Rdθ

J (θ;A).

Then we have that θ⋆ satisfies Assumption 13 with

rθ(A⋆) = min

{
rconv(A⋆), rcost(A⋆),

poly

(
1

λmin(∇2
θJ (θ;A⋆)|θ=θ⋆(A⋆))

, ∥A⋆∥op, Bφ, Lφ, Lθ, Lcost, σ
−1
w , H, dx

)−1}

and it suffices that we take

Lπ⋆ = poly

(
1

λmin(∇2
θJ (θ;A⋆)|θ=θ⋆(A⋆))

, ∥A⋆∥op, Bφ, Lφ, Lθ, Lcost, σ
−1
w , H, dx

)
.

Note that, if J (θ;A) is µ-strongly convex in θ for all A near A⋆, we can lower bound
λmin(∇2

θJ (θ;A⋆)|θ=θ⋆(A⋆)) ≥ µ.
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Approximating the Controller Loss. In order to efficiently direct our exploration, it is
convenient to derive a quadratic approximation to the controller loss. The following result shows
that, under our assumptions, this is indeed possible.

Lemma D.2 (Formal Version of Proposition 1). Under Assumptions 1, 2, 4 to 5 and 13, for
Â ∈ BF(A⋆; min{rcost(A⋆), rθ(A⋆)}), we have

J (θ⋆(Â);A⋆)− J (θ⋆(A⋆);A⋆) ≤ vec(Â−A⋆)
⊤H(A⋆)vec(Â−A⋆) +M [Â−A⋆, Â−A⋆, Â−A⋆].

for some tensor M such that

∥M [Â−A⋆, Â−A⋆, Â−A⋆]∥op ≤ poly(Lπ⋆ , ∥A⋆∥op, Bφ, Lφ, Lθ, Lcost, σ
−1
w , H, dx) · ∥Â−A⋆∥3op.

In practice we do not know H(A⋆) and must estimate it. The following result shows that the
distance between H(A⋆) and H(Â) can be bounded.

Lemma D.3. Under Assumptions 1, 2, 4, 5 and 13, and if Â ∈ BF(A⋆; min{rcost(A⋆), rθ(A⋆)}),
we can bound

∥H(A⋆)−H(Â)∥op ≤ poly(Lπ⋆ , ∥A⋆∥op, Bφ, Lφ, Lθ, Lcost, σ
−1
w , H, dx) · ∥Â−A⋆∥op.

D.1 Proof of Smoothness of Nonlinear System

We let fw(·) denote the density of the noise (which, by assumption, is simply an isotropic Gaussian
density). We let fA,θ(·) denote the density over trajectories induced by playing controller θ on
system A. We will overload notation somewhat and let fA,θ(xh+1 | τ1:h) denote the density
over xh+1 induced by playing controller θ given trajectory τ1:h. Note that fA,θ(xh+1 | τ1:h) =
fw(xh+1 −Aφ(xτ

h, π
θ
h(τ1:h))) and

fA,θ(τ) =
H∏

h=1

fA,θ(xh+1 | τ1:h).

Throughout this section we let xτ

h (resp. uτ

h) denote the state (resp. input) at step h of trajectory
τ. Under our regularity assumptions (Assumptions 1, 2, 4 and 5) and since the noise is Gaussian,
we can swap derivatives and integrals, which we make use of throughout the following proofs.

Proof of Lemma D.1. Let cost(τ) denote the cost of trajectory τ. Then we have

J (θ;A) =
∫

cost(τ)fA,θ(τ)dτ.

Let At := A + t1∆
A
1 + t2∆

A
2 + t3∆

A
3 and θs := θ + s1∆

θ
1 + s2∆

θ
2 + s3∆

θ
3 , for some ∆A

i and ∆θj ,

which we assume satisfy ∥∆A
i ∥op, ∥∆θj ∥op ≤ 1. Rather than differentiating J (θ;A) with respect to θ

or A, we will differentiate J (θs;At) with respect to some x1, x2, x3, x4 ∈ {t1, t2, t3, s1, s2, s3}. Note
that, for example,

d

dt1
J (θs;At)|t=s=0 = ∇AJ (θ, A)[∆A

1 ],

i.e. the directional gradient of J (θ, A) with respect to A in direction ∆A
1 , and that this similarly

holds for gradients with respect to other ti, sj , or higher-order derivatives. Thus, if we can show
that J (θs;At) is differentiable with respect to any x1, x2, x3, x4 ∈ {t1, t2, t3, s1, s2, s3}, and this
holds for any choice of ∆A

i ,∆
θ
j , then we have that J (θ, A) is four-times differentiable with respect

to θ and A. Furthermore, we can bound the operator norm of ∇AJ (θ, A), by bounding the value
of d

dt1
J (θs;At)|t=s=0 for all ∆A

1 satisfying ∥∆A
1 ∥op ≤ 1 (and we can similarly bound the operator

norm of the higher order derivatives of J (θ, A)).
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J (θ;A) is Differentiable. Let x1, x2, x3, x4 ∈ {t1, t2, t3, s1, s2, s3}. We have

d

dx1
J (θs;At) =

d

dx1

∫
cost(τ)fAt,θs(τ)dτ

=

∫
fAt,θs(τ)

fAt,θs(τ)

d

dx1
fAt,θs(τ)cost(τ)dτ

=

∫
d

dx1
log fAt,θs(τ) · cost(τ)fAt,θs(τ)dτ.

Differentiating this gives

d

dx2

d

dx1
J (θs;At) =

d

dx2

∫
d

dx1
log fAt,θs(τ) · cost(τ)fAt,θs(τ)dτ

=

∫ (
d

dx1
log fAt,θs(τ)

)(
d

dx2
log fAt,θs(τ)

)
· cost(τ)fAt,θs(τ)dτ

+

∫
d

dx2

d

dx1
log fAt,θs(τ) · cost(τ)fAt,θs(τ)dτ,

and

d

dx3

d

dx2

d

dx1
J (θs;At) =

∫ (
d

dx1
log fAt,θs(τ)

)(
d

dx2
log fAt,θs(τ)

)(
d

dx3
log fAt,θs(τ)

)
· cost(τ)fAt,θs(τ)dτ

+

∫ (
d

dx3

d

dx1
log fAt,θs(τ)

)(
d

dx2
log fAt,θs(τ)

)
· cost(τ)fAt,θs(τ)dτ

+

∫ (
d

dx1
log fAt,θs(τ)

)(
d

dx3

d

dx2
log fAt,θs(τ)

)
· cost(τ)fAt,θs(τ)dτ

+

∫
d

dx3

d

dx2

d

dx1
log fAt,θs(τ) · cost(τ)fAt,θs(τ)dτ

+

∫ (
d

dx2

d

dx1
log fAt,θs(τ)

)(
d

dx3
log fAt,θs(τ)

)
· cost(τ)fAt,θs(τ)dτ.

The fourth derivative of J (θ;A) can be similarly calculated by differentiating d
dx3

d
dx2

d
dx1
J (θs;At);

we omit it for brevity. We have

log fAt,θs(τ) = log
H∏

h=1

fAt,θs(x
τ

h+1 | τ1:h)

=
H∑

h=1

log fw(x
τ

h+1 −Atφ(x
τ

h, π
θs(τ1:h)))

=

H∑

h=1

− 1

2σ2
w

∥xτ

h+1 −Atφ(x
τ

h, π
θs(τ1:h))∥22 + C

for some C which does not depend on t or s. Given that φ(x,u) is four-times differentiable in u
and πθsh (τ1:h) is four-times differentiable in x (which hold by Assumption 4 and Assumption 5), it
is clear that log fAt,θs(τ) is four-times differentiable in ti or si, regardless of the choice of ∆A

i or ∆θi .
This proves the first result.
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Norm Bounds on Gradient. Note that

d

dti
log fAt,θs(τ)|t=s=0 =

H∑

h=1

1

σ2
w

(xτ

h+1 −Aφ(xτ

h, π
θ
h(τ1:h)))

⊤ ·∆A
i φ(x

τ

h, π
θ
h(τ1:h)),

d

dsi
log fAt,θs(τ)|t=s=0 =

H∑

h=1

1

σ2
w

(xτ

h+1 −Aφ(xτ

h, π
θ
h(τ1:h)))

⊤ ·A∇uφ(xτ

h, π
θ
h(τ1:h)) · ∇θπθh(τ1:h) ·∆θi .

Furthermore, differentiating these expressions further with respect to tj or sj will simply yield
higher-order derivates of φ(x,u) and πθh(τ1:h). Using the norm bounds on the gradient of φ(x,u)
and πθh(τ1:h) given in Assumption 4 and Assumption 5, and the norm bound of φ(x,u) given in
Assumption 1, we can then bound

∥∇(i)
A ∇

(j)
θ log fA,θ(τ)∥op ≤ poly(∥A∥op, Bφ, Lφ, Lθ, σ−1

w ) ·
H∑

h=1

(1 + ∥xτ

h+1 −Aφ(xτ

h, π
θ
h(τ1:h))∥2)

for i, j ∈ {0, 1, 2, 3, 4} satisfying 1 ≤ i+ j ≤ 4 (where we have used the fact noted above that, to

bound the operator norm of ∇(i)
A ∇

(j)
θ log fA,θ(τ), it suffices to bound the directional gradient in

every direction). It follows that we can bound

∥∇(i)
A ∇

(j)
θ J (θ;A)∥op

≤ poly(∥A∥op, Bφ, Lφ, Lθ, σ−1
w ) ·

∫ ( H∑

h=1

(1 + ∥xτ

h+1 −Aφ(xτ

h, π
θ
h(τ1:h))∥2)

)4

· cost(τ)fA,θ(τ)dτ

(a)

≤ poly(∥A∥op, Bφ, Lφ, Lθ, σ−1
w ) ·

√∫
cost(τ)2fA,θ(τ)dτ

·

√√√√
∫ ( H∑

h=1

(1 + ∥xτ

h+1 −Aφ(xτ

h, π
θ
h(τ1:h))∥2)

)8

fA,θ(τ)dτ

(b)

≤ poly(∥A∥op, Bφ, Lφ, Lθ, Lcost, σ
−1
w , H, dx)

where (a) follows from Cauchy-Schwarz, and (b) follows from Lemma A.1 and Assumption 2, since
we have assumed A ∈ BF(A⋆; rcost(A⋆)).

Proof of Proposition 5. Existence and Differentiability of θ⋆. By Lemma D.1 we have that
J (θ;A) is four-times differentiable in its arguments. By the Implicit Function Theorem, since
λmin(∇2

θJ (θ;A⋆)|θ=θ⋆(A⋆)) > 0 by assumption, we have that there exists some r′θ(A⋆) > 0 and
unique function θ⋆(A) defined on BF(A⋆; r

′
θ(A⋆)) such that ∇θJ (θ;A)|θ=θ⋆(A) = 0, and θ⋆(A) is

three-times differentiable (note that, while the Implicit Function Theorem is typically stated to give
that the resulting function is only one-time differentiable, it can be extended to k-times differentiable,
assuming the implicit equation is k-times differentiable (Dieudonné, 2011)).

By Lemma D.1 and the continuity of eigenvalues, it follows that for A close enough to A⋆,
we have λmin(∇2

θJ (θ;A)|θ=θ⋆(A)) ≥ 1
2λmin(∇2

θJ (θ;A⋆)|θ=θ⋆(A⋆)) > 0. We can therefore apply the
Implicit Function Theorem as above to any A satisfying this, to get that there exists some unique
θ̃⋆(A

′) defined for all A′ near A such that ∇θJ (θ;A′)|
θ=θ̃⋆(A′)

= 0 and θ̃⋆(A
′) is differentiable. By

the uniqueness of θ⋆(A) on BF(A⋆; r
′
θ(A⋆)), it follows that any θ̃⋆(A

′) defined in this way must be
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identical to θ⋆(A) on BF(A⋆; r
′
θ(A⋆)) (assuming the regions on which they are defined overlaps).

We can therefore define θ⋆(A) to simply be the extension of θ⋆(A) to all such θ̃⋆(A), defined for all
A near A⋆ such that λmin(∇2

θJ (θ;A)|θ=θ⋆(A)) ≥ 1
2λmin(∇2

θJ (θ;A⋆)|θ=θ⋆(A⋆)), and will have that
θ⋆(A) is three-times differentiable and satisfies ∇θJ (θ;A)|θ=θ⋆(A) = 0 for all such A.

We then choose rθ(A⋆) to be defined such that, for allA ∈ BF(A⋆; rθ(A⋆)), we have λmin(∇2
θJ (θ;A)|θ=θ⋆(A)) ≥

1
2λmin(∇2

θJ (θ;A⋆)|θ=θ⋆(A⋆)). By Lemma D.1, we know that ∇2
θJ (θ;A) is continuous and further-

more we know that eigenvalues are continuous. Using the gradient bounds given in Lemma D.1 to
bound the Lipschitz constant of ∇2

θJ (θ;A), it follows that we can take

rθ(A⋆) = poly

(
1

λmin(∇2
θJ (θ;A⋆)|θ=θ⋆(A⋆))

, ∥A⋆∥op, Bφ, Lφ, Lθ, Lcost, σ
−1
w , H, dx

)−1

.

Bounding Norm of Gradients. Fix A ∈ BF(A⋆; rθ(A⋆)). We know that θ⋆(A) satisfies

∇θJ (θ;A)|θ=θ⋆(A) = 0.

We wish to differentiate θ⋆(A) with respect to A, and bound the magnitude of up to the third
derivative. Similar to the proof of Lemma D.1, we let At := A+ t1∆

A
1 + t2∆

A
2 + t3∆

A
3 for some ∆A

i

satisfying ∥∆A
i ∥op ≤ 1. As noted in the proof of Lemma D.1, we have

d

dti
θ⋆(At)|t=0 = ∇Aθ⋆(A)[∆

A
i ]

(and similarly for higher-order derivatives). Thus, to show the result, it suffices to show that θ⋆(At)
is differentiable in t1, t2, t3 for all ∆A

i , and to bound the magnitude of this derivative for all ∆A
i with

∥∆A
i ∥op ≤ 1. We have

d

dt1
∇θJ (θ;At)|θ=θ⋆(At)

∣∣
t=0

= 0

=⇒ ∇A′∇θJ (θ;A′)|θ=θ⋆(A),A′=A[∆
A
1 ]︸ ︷︷ ︸

=:G1(A,∆A
1 )

+∇2
θJ (θ;A)|θ=θ⋆(A) · ∇Aθ⋆(A)[∆

A
1 ] = 0 (D.1)

which implies

∇Aθ⋆(A)[∆A
1 ] = −

(
∇2
θJ (θ;A)|θ=θ⋆(A)

)−1 ·G1(A,∆
A
1 )

which is well-defined since we have assumed that ∇2
θJ (θ;A)|θ=θ⋆(A) is full-rank, and J is differen-

tiable in both its arguments by Lemma D.1. To compute the second derivative of θ⋆, we differentiate
through (D.1) which gives

d

dt2

(
G1(At,∆

A
1 ) +∇2

θJ (θ;At)|θ=θ⋆(At) · ∇Aθ⋆(At)[∆
A
1 ]
) ∣∣
t=0

= 0

=⇒ d

dt2

(
G1(At,∆

A
1 ) +∇2

θJ (θ;At)|θ=θ⋆(At) · ∇Aθ⋆(A)[∆A
1 ]
) ∣∣
t=0

︸ ︷︷ ︸
=:G2(A,∆A

1 ,∆A
2 )

+∇2
θJ (θ;A)|θ=θ⋆(A) · ∇2

Aθ⋆(A)[∆A
1 ,∆

A
2 ] = 0.
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Note that G2(A,∆
A
1 ,∆

A
2 ) involves at most a third-order derivative of J (θ;A) and first-order

derivative of θ⋆(A), both of which we know exist by Lemma D.1 and what we showed above. This
then further implies

∇2
Aθ⋆(A)[∆A

1 ,∆
A
2 ] = −

(
∇2
θJ (θ;A)|θ=θ⋆(A)

)−1 ·G2(A,∆
A
1 ,∆

A
2 ),

which is well-defined since we have assumed that ∇2
θJ (θ;A)|θ=θ⋆(A) is full-rank. Finally, we compute

d

dt3

(
G2(At,∆

A
1 ,∆

A
2 ) +∇2

θJ (θ;At)|θ=θ⋆(At) · ∇2
Aθ⋆(At)[∆

A
1 ,∆

A
2 ]
) ∣∣
t=0

= 0

=⇒ d

dt3

(
G2(At,∆

A
1 ,∆

A
2 ) +∇2

θJ (θ;At)|θ=θ⋆(At) · ∇2
Aθ⋆(A)[∆A

1 ,∆
A
2 ]
) ∣∣
t=0

︸ ︷︷ ︸
=:G3(A,∆A

1 ,∆A
2 ,∆A

3 )

+∇2
θJ (θ;A)|θ=θ⋆(A) · ∇3

Aθ⋆(A)[∆
A
1 ,∆

A
2 ,∆

A
3 ] = 0.

Note that G3(A,∆
A
1 ,∆

A
2 ,∆

A
3 ) involves at most a fourth-order derivative of J (θ;A) and second-order

derivative of θ⋆(A), both of which we know exist by Lemma D.1 and what we showed above. We
therefore have

∇3
Aθ⋆(A)[∆A

1 ,∆
A
2 ,∆

A
3 ] = −

(
∇2
θJ (θ;A)|θ=θ⋆(A)

)−1 ·G3(A,∆
A
1 ,∆

A
2 ,∆

A
3 )

which is well-defined since we have assumed that ∇2
θJ (θ;A)|θ=θ⋆(A) is full-rank. As each of these

expressions is defined for all choice of ∆A
i , the differentiability of θ⋆(A) follows.

Note that the above expressions for ∇Aθ⋆(A)[∆A
1 ],∇2

Aθ⋆(A)[∆A
1 ,∆

A
2 ], and ∇3

Aθ⋆(A)[∆A
1 ,∆

A
2 ,∆

A
3 ]

all depend on at most a fourth derivative of J (θ;A), as well as (∇2
θJ (θ;A)|θ=θ⋆(A))

−1. The norm
bounds are then a direct consequence of Lemma D.1.

Proof of Proposition 6. By Lemma D.1 we have that J (θ;A) is four-times differentiable in its
arguments. Since we have assumed ∇2

θJ (θ;A⋆)|θ=θ⋆(A⋆) ≻ 0, by the Implicit Function Theorem

(Dieudonné, 2011), it follows that there exists some r′θ > 0 and mapping θ̃(A) such that, for all

A ∈ BF(A⋆; r
′
θ), ∇θJ (θ;A)|

θ=θ̃(A)
= 0, and θ̃(A) is three-times differentiable.

Our goal is now to show that θ̃(A) = θ⋆(A) for A close enough to A⋆. By the continuity of
eigenvalues, J (θ;A), and θ̃(A), we have that there exists some r and r′′θ such that, for all θ ∈
BF(θ⋆(A⋆); r) and A ∈ BF(A⋆; r

′′
θ), we have∇2

θJ (θ;A) ≻ 0 and, furthermore, θ̃(A) ∈ B2(θ⋆(A⋆); r/2)

for all A ∈ BF(A⋆; r
′′
θ). This implies that θ̃(A) is strict local minimum of J (θ;A) and, in particular,

that

J (θ;A) > J (θ̃(A);A), ∀θ ∈ B2(θ⋆(A⋆); r),θ ̸= θ̃(A).

Let ∆⋆ := minθ ̸∈B2(θ⋆(A⋆);r) J (θ;A⋆) − J (θ⋆(A⋆);A⋆) and note that, since we have assumed the
global minimum of J (θ;A⋆) is unique, we have ∆⋆ > 0.

Fix some A ∈ BF(A⋆; r
′′
θ) and assume that θ̃(A) is not the global minimum of J (θ;A). This

implies that θ⋆(A), the global minimum of J (θ;A), is outside of B2(θ⋆(A⋆); r). Furthermore, by
the continuity of J (θ;A), we have, for some L,L′ > 0,

J (θ⋆(A);A⋆) ≤ J (θ⋆(A);A) + L∥A−A⋆∥F
≤ J (θ̃(A);A) + L∥A−A⋆∥F
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≤ J (θ̃(A);A⋆) + 2L∥A−A⋆∥F
≤ J (θ⋆(A⋆);A⋆) + 2L∥A−A⋆∥F + L∥θ̃(A)− θ⋆(A⋆)∥2
≤ J (θ⋆(A⋆);A⋆) + L′∥A−A⋆∥F.

This implies that

L′r′′θ ≥ L′∥A−A⋆∥F ≥ J (θ⋆(A);A⋆)− J (θ⋆(A⋆);A⋆) ≥ ∆⋆.

However, for r′′θ small enough, this is a contradiction. Thus, it follows that θ̃(A) is the global

minimum of J (θ;A), so θ̃(A) = θ⋆(A).

The result then follows since we already have that θ̃(A) is three-times differentiable and satisfies
∇θJ (θ;A)|

θ=θ̃(A)
= 0, and by taking rθ(A⋆) to be the minimum of r′θ and r′′θ. The boundedness of

Lπ⋆ follows as in the proof of Proposition 5.

Proof of Proposition 7. Note that, by convexity and the KKT conditions, the solutions to argminθ∈Rdθ J (θ;A)
are described by

∇θJ (θ;A)|θ=θ⋆(A) = 0.

Thus, an equivalent definition for θ⋆(A) is that it satisfies ∇θJ (θ;A)|θ=θ⋆(A) = 0. Assumption 13
can then be shown to hold by an argument analogous to Proposition 5.

Proof of Lemma D.2. Let A(t) = tÂ+ (1− t)A⋆ and g(t) := J (θ⋆(A(t));A⋆). By Lemma D.1 and
under Assumption 5, we have that both J (θ;A) and θ⋆(A) are three-times differentiable for all
A = tÂ + (1 − t)A⋆, t ∈ [0, 1], so it follows that g(t) is three-times differentiable in t. We can
therefore apply Taylor’s Theorem to expand g(1) about the point t = 0 to get:

g(1) = g(0) +∇θJ (θ;A⋆)|θ=θ⋆(A⋆) · ∇Aθ⋆(A)|A=A⋆ [Â−A⋆]

+∇Aθ⋆(A)|⊤A=A⋆
∇2
θJ (θ;A⋆)|θ=θ⋆(A⋆)∇Aθ⋆(A)|A=A⋆ [Â−A⋆, Â−A⋆]

+∇θJ (θ;A⋆)|θ=θ⋆(A⋆) · ∇2
Aθ⋆(A)|A=A⋆ [Â−A⋆, Â−A⋆]

+∇3
AJ (θ⋆(A);A⋆)|A=A′ [Â−A⋆, Â−A⋆, Â−A⋆]

where A′ = A(t′) for some t′ ∈ [0, 1]. Under Assumption 13, we have that ∇θJ (θ;A⋆)|θ=θ⋆(A⋆) = 0,
which implies that, plugging in the definition of g(1) and g(0),

J (θ⋆(Â);A⋆) = J (θ⋆(A⋆);A⋆) +∇Aθ⋆(A)|⊤A=A⋆
∇2
θJ (θ;A⋆)|θ=θ⋆(A⋆)∇Aθ⋆(A)|A=A⋆ [Â−A⋆, Â−A⋆]

+∇3
AJ (θ⋆(A);A⋆)|A=A′ [Â−A⋆, Â−A⋆, Â−A⋆].

We can bound

|∇3
AJ (θ⋆(A);A⋆)|A=A′ [Â−A⋆, Â−A⋆, Â−A⋆]| ≤ ∥∇3

AJ (θ⋆(A);A⋆)|A=A′∥op · ∥Â−A⋆∥3op.

The expression for ∇3
AJ (θ⋆(A);A⋆) contains up to the third derivative of both J (θ;A⋆) and

θ⋆(A). By Lemma D.1 and under Assumption 13, since A′ ∈ BF(A⋆; min{rcost(A⋆), rθ(A⋆)}) by
construction, we can then bound

∥∇3
AJ (θ⋆(A);A⋆)|A=A′∥op ≤ poly(Lπ⋆ , ∥A⋆∥op, Bφ, Lφ, Lθ, Lcost, σ

−1
w , H, dx).

The result follows by the definition of H(A⋆).
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Proof of Lemma D.3. Recall that H(Â) = ∇2
AJ (θ⋆(A); Â)|

A=Â
. To prove this, we will use that this

is differentiable by Lemma D.1, and will apply Taylor’s Theorem.

First, note that by Taylor’s Theorem we have

∇2
AJ (θ⋆(A); Â)|

A=Â
= ∇2

AJ (θ⋆(A); Â)|A=A⋆ +∇3
AJ (θ⋆(A); Â)|A=A′ [Â−A⋆]

for A′ = tÂ+ (1− t)A⋆ for some t ∈ [0, 1]. The third derivative of J (θ⋆(A); Â) will involve up to
the third derivative of both J (θ; Â) and θ⋆(A), so using Lemma D.1 and Assumption 13, since
A′ ∈ BF(A⋆; min{rcost(A⋆), rθ(A⋆)}) by assumption, we can bound

∥∇3
AJ (θ⋆(A); Â)|A=A′ [Â−A⋆]∥op ≤ poly(Lπ⋆ , ∥A⋆∥op, Bφ, Lφ, Lθ, Lcost, σ

−1
w , H, dx) · ∥Â−A⋆∥op.

Next, we wish to relate ∇2
AJ (θ⋆(A); Â)|A=A⋆ to ∇2

AJ (θ⋆(A);A⋆)|A=A⋆ = H(A⋆). Again applying
Taylor’s Theorem, we have

∇2
AJ (θ⋆(A); Â)|A=A⋆ = ∇2

AJ (θ⋆(A);A⋆)|A=A⋆ +∇A′∇2
AJ (θ⋆(A);A′)|A=A⋆,A′=A′′ [Â−A⋆]

for A′′ = tÂ+ (1− t)A⋆ for some t ∈ [0, 1]. By Lemma D.1 and Assumption 13, we can bound

∥∇A′∇2
AJ (θ⋆(A);A′)|A=A⋆,A′=A′′ [Â−A⋆]∥op
≤ poly(Lπ⋆ , ∥A⋆∥op, Lφ, Lθ, Lcost, σ

−1
w , H, dx) · ∥Â−A⋆∥op.

The result follows.

Lemma D.4. Under Assumptions 1, 2, 4, 5 and 13, for all A ∈ BF(A⋆; min{rcost(A⋆), rθ(A⋆)}),
we can bound

∥H(A)∥op ≤ poly(∥A⋆∥op, Bφ, Lφ, Lθ, Lcost, Lπ⋆ , σ
−1
w , H, dx)

Proof. Recall that H(Â) = ∇2
AJ (θ⋆(A); Â)|A=Â

. The bound then follows from Lemma D.1 and
Assumption 13.

E High-Probability Regret Bounds in Nonlinear Systems

In this section, we modify the proof the main result of Kakade et al. (2020) slightly to show a high
probability regret bound for LC3. For the sake of brevity, we omit details that are identical to the
proof given in Kakade et al. (2020). We will need the following assumption.

Assumption 14 (Bounded Cost). We assume that, for all trajectories τ, we have cost(τ) ≤ cmax.

We adopt the notation used in this work, modifying somewhat the notation from Kakade et al.
(2020). In particular, we let J (π;A) denote the expected cost of playing policy π under system A,
and we set

Σt =

t∑

s=1

H∑

h=1

φ(xt
h,u

t
h)φ(x

t
h,u

t
h)

⊤ + λI

denote the covariates obtained by the first t episodes of LC3 (plus a regularizer). We let πt denote
the policy played at episode t of LC3. For a policy set Π, we define regret as

RT (Π) :=

T∑

t=1

J (πt;A⋆)− T ·min
π∈Π
J (π;A⋆).
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We will also denote π⋆ := argminπ∈Π J (π;A⋆).

In addition to these notational changes, we modify LC3 slightly to use the parameter

βt :=
√
λBA +

√
8dx log 5 + 8 log(T det(Σt) det(Σ0)−1/δ)

in the construction of the confidence set, Ball
t.

Besides the aforementioned changes, in the following proofs we adopt the same notation as
Kakade et al. (2020). We have the following result.

Theorem 6. Under Assumptions 1 and 14 and with any policy class Π, with probability at least
1− δ, LC3 has regret bounded as

RT (Π) ≤ C · cmaxH

√
dφ · (dφ + dx +BA + log

1

δ
) · T · log (1 +BφHT/σw)

for a universal constant C.

Proof of Theorem 6. By Lemma E.2, we have that the event E1 holds with probability at least 1− δ.
We therefore assume E1 holds for the remainder of the proof.

By the definition of the confidence set in LC3, on E1 we have that A⋆ is the in confidence set for
all t ≤ T . It follows that on E1,

RT =

T∑

t=1

[
J (πt;A⋆)− J (π⋆;A⋆)

]

(a)

≤
T∑

t=1

[
J (πt;A⋆)− J (π⋆; Ât)

]

(b)

≤
T∑

t=1

cmax · EA⋆,πt

[
H∑

h=1

min

{
1

σw
∥(A⋆ − Ât) · φ(xh,uh)∥2, 1

}]
(E.1)

where (a) follows from the optimistic property of LC3 when A⋆ ∈ Ball
t, and (b) follows from

Lemma E.1. On E1, we have

∥(A⋆ − Ât)φ(xh,uh)∥2 ≤ ∥(A⋆ − Ât)Σ
1/2
t ∥2∥Σ

−1/2
t φ(xh,uh)∥2

≤
(
∥(A⋆ − Āt)Σ

1/2
t ∥2 + ∥(Āt − Ât)Σ

1/2
t ∥2

)
· ∥Σ−1/2

t φ(xh,uh)∥2
≤ 2βt∥φ(xh,uh)∥Σ−1

t

where the last inequality follows from the definition of Ball
t since Ât ∈ Ball

t by construction,
and by the definition of E1. This gives

(E.1) ≤
T∑

t=1

cmax · EA⋆,πt

[
H∑

h=1

min

{
2βt

σw
∥φ(xh,uh)∥Σ−1

t
, 1

}]
.

By Lemma E.3, with probability 1− δ we can bound this as

≤ 2cmaxβ
T

σw
·

T∑

t=1

H∑

h=1

min
{
∥φ(xt

h,u
t
h)∥Σ−1

t
, 1
}

︸ ︷︷ ︸
(a)

+4cmaxH
√

T log 1/δ.
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By Cauchy-Schwarz, we can bound (a) as

(a) ≤ 2cmaxβ
T

σw
·
√
T

√√√√
T∑

t=1

H∑

h=1

min
{
∥φ(xt

h,u
t
h)∥2Σ−1

t

, 1
}
.

We have

T∑

t=1

H∑

h=1

min
{
∥φ(xt

h,u
t
h)∥2Σ−1

t

, 1
}
H ≤

T∑

t=1

min

{
H∑

h=1

∥φ(xt
h,u

t
h)∥2Σ−1

t

, 1

}

≤ 2H log(det(ΣT ) det(Σ0)
−1)

where the last inequality uses Lemma B.6 of Kakade et al. (2020). Putting all of this together, we
have shown that with probability at least 1− 2δ, we have

RT ≤
2cmaxβ

T

σw
·
√
T ·
√

2H log(det(ΣT ) det(Σ0)−1) + 4cmaxH
√
T log 1/δ.

It remains to bound βT and log(det(ΣT ) det(Σ0)
−1). We have Σ0 = λI, so det(Σ0) = λdφ .

Furthermore, if ∥φ(x,u)∥2 ≤ Bφ, then we can bound det(ΣT ) ≤ (λ + B2
φTH)dφ . Putting this

together we have

log(det(ΣT ) det(Σ0)
−1) ≤ dφ · log(1 +B2

φTH/λ).

Recalling that

βT =
√
λBA + σw

√
8dx log 5 + 8 log(T det(ΣT ) det(Σ0)−1/δ)

we can similarly bound

βT /σw ≤
√
λBA/σw +

√
8dx log 5 + 8dφ · log(1 +B2

φTH/λ) + 8 log(T/δ)

≤
√
λBA/σw + c

√
dx + dφ log(1 +BφTH/λ) + log 1/δ.

Choosing λ = σ2
w completes the proof.

E.1 Supporting Lemmas

Lemma E.1. Under Assumption 14, we can bound

J (π;A⋆)− J (π;A) ≤ cmax · EA⋆,π

[
H∑

h=1

min

{
1

σw
∥(A⋆ −A)φ(xh,uh)∥2, 1

}]
.

Proof. Following the proof of Lemma B.3 of Kakade et al. (2020), and adopting the same notation,
we have

J (π;A⋆)− J (π;A) ≤
H∑

h=1

EA⋆,π

[√
Ahmin

{
1

σw
∥(A⋆ −A)φ(xh,uh)∥2, 1

}]
.

Under Assumption 14 we have Ah ≤ c2max. Plugging this in gives the result.
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Lemma E.2. Let βt :=
√
λBA + σw

√
8dx log 5 + 8 log(T det(Σt) det(Σ0)−1/δ) and let E1 denote

the event

E1 :=
{
∀t ≤ T :

∥∥∥
(
Āt −A⋆

)
Σ

1/2
t

∥∥∥
op
≤ βt

}
.

Then running LC3 we have PA⋆ [E1] ≥ 1− δ.

Proof. The proof of Lemma B.5 of Kakade et al. (2020) shows that with probability at least 1− δ,

∥∥∥
(
Āt −A⋆

)
Σ

1/2
t

∥∥∥
op
≤
√
λ∥A⋆∥op + σw

√
8dx log 5 + 8 log(det(Σt) det(Σ0)−1/δ).

The result then follows from this, since ∥A⋆∥op ≤ BA, and a union bound.

Lemma E.3. With probability 1− δ, we have

T∑

t=1

EA⋆,πt

[
H∑

h=1

min

{
2βt

σw
∥φ(xh,uh)∥Σ−1

t
, 1

}]
≤ 2βT

σw

T∑

t=1

H∑

h=1

min
{
∥φ(xt

h,u
t
h)∥Σ−1

t
, 1
}

+ 4H
√

T log 1/δ.

Proof. This is an immediate consequence of Azuma-Hoeffding, since
∑H

h=1min
{

2βt

σw
∥φ(xh,uh)∥Σ−1

t
, 1
}
≤

H almost surely, and from upper bounding

min

{
2βt

σw
∥φ(xt

h,u
t
h)∥Σ−1

t
, 1

}
≤ 2βT

σw
min

{
∥φ(xt

h,u
t
h)∥Σ−1

t
, 1
}
.

F Lower Bounds on Learning in Nonlinear Systems

In this section, we assume that θ⋆ and π⋆ correspond to the global minimizer:

θ⋆(A) := argmin
θ∈Rdθ

J (θ;A), π⋆(A) := argmin
π∈Π⋆

J (π;A). (F.1)

Here we formally state the additional assumptions needed in Section 4.2, and provide a formal
version of Theorem 2.

Assumption 15. There exists some rµ(A⋆) > 0 such that, for all A ∈ BF(A⋆, rµ(A⋆)), π⋆(A) is
unique and, furthermore, there exists some µ > 0 such that

J (θ;A) ≥ J (θ⋆(A);A) + µ
2∥θ − θ⋆(A)∥22.

Assumption 15 will be satisfied in cases where J (πθ;A) is strongly convex in θ, but may hold even
when this is not the case. Intuitively, it requires that our controller class is not overparameterized—
moving θ away from its optimal value will cause the loss to increase. We will additionally make the
following regularity assumptions on policies in Πexp and their induced covariates set, Ω.

Assumption 16. There exists some λ > 0 such that, for each Λ ∈ Ω, we have λmin(Λ) ≥ λ.
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Assumption 16 requires that every exploration policy we consider excites all directions in φ
space (in contrast, Assumption 3 only assumes there exists some distribution over policies in Πexp

which excite all directions). We remark that this assumption is relatively mild if Assumption 3
holds. As we show in Appendix C.2, under Assumption 3, a mixture over policies, ω, satisfying
λmin(Eπ∼ω[Λπ]) > 0 can be learned using only a number of samples scaling polynomially in problem
parameters. Given ω, a policy class Πexp satisfying Assumption 16 can be obtained by simply
mixing ω with every other exploration policy. We are now ready to state our main lower bound.

Theorem 7 (Formal Version of Theorem 2). Under Assumptions 1, 2, 4, 5, 13, 15 and 16 and if
π⋆ is defined as in (F.1), as long as T ≥ Clb, for any ωexp ∈ △Πexp

, we have

min
π̂

max
A∈BT

EDT∼A,ωexp
[J (π̂(DT );A)− J (π⋆(A);A)] ≥ σ2

w

3T
· min
Λ∈Ω

tr(H(A⋆)Λ̌
−1)− Clb

T 5/4

for BT := {A : ∥A − A⋆∥2F ≤ 5dxdφ/(λdxTH)5/6}, EDT∼A,ωexp
[·] = Eπ∼ωexp [EDT∼A,π[·]] denotes

the expectation over trajectories generated by running policies π drawn according to ωexp on system
A for T episodes, π̂ any mapping from observations to policies in Π⋆, and

Clb := poly
(
dφ, dx, H, ∥A⋆∥op, Bφ, Lφ, Lθ, Lcost, Lπ⋆ , σw, σ

−1
w , 1

λ ,
1
µ ,

1
rcost(A⋆)

, 1
rθ(A⋆)

, 1
rµ(A⋆)

)
.

Proof of Theorem 7. This proof follows immediately from Lemma F.1, by lower bounding the
right-hand side of (F.2) by the min over all policies in Π.

Lemma F.1. Under Assumptions 1, 2, 4, 5, 13, 15 and 16 and if θ⋆ is defined as in (F.1), as long
as

T ≥ poly(∥A⋆∥op, Lφ, Lθ, Lπ⋆ , Lcost, σw, σ
−1
w , Bφ, H, dx, dφ, λ

−1, µ−1, rcost(A⋆)
−1, rθ(A⋆)

−1, rµ(A⋆)
−1),

for any ωexp ∈ △Π, we have

min
θ̂

max
A∈BT

EDT∼A,ωexp
[J (θ̂(DT );A)− J (θ⋆(A);A)] ≥ σ2

w

3T
· tr(H(A⋆)Eπ∼ωexp [Λ̌π]

−1)− Clb

T 5/4
(F.2)

for BT := {A : ∥A−A⋆∥2F ≤ 5dxdφ/(λTH)5/6}, where EDT∼A,ωexp
[·] = Eπ∼ωexp [EDT∼A,π[·]] denotes

the expectation over trajectories generated by running policies π drawn according to ωexp on system
A for T episodes, and

Clb := poly(∥A⋆∥op, Lφ, Lθ, Lπ⋆ , Lcost, σw, σ
−1
w , Bφ, H, dx, dφ, λ

−1, µ−1, rcost(A⋆)
−1, rθ(A⋆)

−1, rµ(Ast)
−1).

Proof. This result is a direct consequence of Theorem 6.1 of Wagenmaker et al. (2021)—to obtain
the result we must only verify that the assumptions of this result are met. We verify each assumption
below.

Verifying Assumption 3 of Wagenmaker et al. (2021). Part 1 of Assumption 3 of Wa-
genmaker et al. (2021) is met by Assumption 15 within diameter rµ(A⋆). Furthermore, under
Assumptions 1, 2, 4, 5 and 13 and by Lemma D.1, the additional parts of Assumption 3 of Wa-
genmaker et al. (2021) are also met with diameter min{rcost(A⋆), rθ(A⋆)} and smoothness constant
poly(∥A⋆∥op, Lφ, Lθ, Lπ⋆ , Lcost, σ

−1
w , H, dx).
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Verifying Assumption 4 and Assumption 5 of Wagenmaker et al. (2021). Assumption 4
of Wagenmaker et al. (2021) is immediately met by Assumption 16. Furthermore, Assumption 5 is

met by Lemma F.2 with ccov = 1, Lcov(θ⋆, γ
2) =

H2B3
φ

σ2
w
· poly(dx), and Ccov = 0.

Given that these assumptions are met, the result follows noting that, if we run for T episodes,
then the effective horizon is dxTH (using the mapping from the setting of (1.1) to the martingale
regression setting described in Appendix A.1.1). Note that the final bound scales with 1

T instead of
1

dxTH as we are able to bring the dxH factor into the Λ̌πexp term, since Λπexp is not normalized by
dxH.

Lemma F.2. Under Assumption 1, for any policy distribution ω ∈ △Πexp
and A,A′, we have

Eπ∼ω[ΛA,π] ⪯ Eπ∼ω[ΛA′,π] +
H2B3

φ

σ2
w

· poly(dx) · ∥A−A′∥F · I.

Proof. We will prove that the desired bound follows for a particular π ∈ Πexp, which immediately
implies that it holds for ω ∈ △Πexp

. By definition we have

ΛA,π =

∫ ( H∑

h=1

φ(xτ

h,u
τ

h)φ(x
τ

h,u
τ

h)
⊤

)
· fA,π(τ)dτ

and

fA,π(τ) =

H∏

h=1

fA(x
τ

h+1 | xτ

h,u
τ

h)πh(u
τ

h | xτ

h).

Fix some v ∈ Sdφ−1, and note that, given the expression above, we have

v⊤ΛA,πv =

∫ H∑

h=1

(v⊤φ(xτ

h,u
τ

h))
2 · fA,π(τ)dτ.

It follows that

∇Av
⊤ΛA,πv =

∫ H∑

h=1

(v⊤φ(xτ

h,u
τ

h))
2 · ∇AfA,π(τ)dτ

=

∫ H∑

h=1

(v⊤φ(xτ

h,u
τ

h))
2 · fA,π(τ)∇A log fA,π(τ)dτ.

As in the proof of Lemma D.1, we have, for any ∆,

∇A log fA,π(τ)[∆] =

H∑

h=1

1

σ2
w

(xτ

h+1 −Aφ(xτ

h,u
τ

h)) ·∆φ(xτ

h,u
τ

h),

so we can bound

∥∇A log fA,π(τ)∥op ≤
Bφ
σ2
w

H∑

h=1

∥xτ

h+1 −Aφ(xτ

h,u
τ

h)∥2.
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Furthermore, we can also bound (v⊤φ(xτ

h,u
τ

h))
2 ≤ B2

φ. We therefore have

∥∇Av
⊤ΛA,πv∥op ≤ HB3

φ

∫ H∑

h=1

∥xτ

h+1 −Aφ(xτ

h,u
τ

h)∥2 · fA,π(τ)dτ

≤
H2B3

φ

σ2
w

· poly(dx)

where the last inequality follows from Lemma A.1. It follows from the Mean Value Theorem that

|v⊤ΛA,πv − v⊤ΛA′,πv| ≤
H2B3

φ

σ2
w

· poly(dx) · ∥A−A′∥F.

As this holds for all v ∈ Sd−1, it follows that

∥ΛA,π −ΛA′,π∥op ≤
H2B3

φ

σ2
w

· poly(dx) · ∥A−A′∥F.

G Additional Experimental Details

In this section, we provide additional details on our experimental results presented in Section 6. All
experiments were run on a machine with 56 Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz CPUs,
and 64GB RAM. All code was implemented in PyTorch.

G.1 Details on Problem Settings and Controller Parameterizations

We first expand on the precise definitions of the systems considered. As noted in Section 6, for
the drone and car examples we set H = 50, and for the system of Section 1.1 we set H = 10. In
addition, for all examples the noise is distributed as wh ∼ N (0, 0.1 · I). In all cases we set γ2 = 10H
(where γ2 is a bound on Eπexp [

∑H
h=1 u

⊤
huh]), and we therefore let Πexp denote the set of all policies

satisfying Eπexp [
∑H

h=1 u
⊤
huh] ≤ γ2.

G.1.1 System of Section 1.1 (Figure 1)

The dynamics for this system are given by

xh+1 = 0.8xh + uh −
10∑

i=1

3φi(xh) +wh

for φi(x) = max{1− 100(x− ci)
2, 0}, and cost(x,u) = (x− c1)

2 + 100−1 · u2. We set

c1 = 10, c2 = −14, c3 = −11, c4 = −8, c5 = −5, c6 = −2, c7 = 1, c8 = 4, c9 = 7.

This then corresponds to a system in the form (1.1) with

A⋆ = [0.8, 1,−3, . . . ,−3], φ(x,u) = [x,u,φ1(x), . . . ,φ10(x)].
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For this system, we parameterize our controller class Π⋆ as, for any πθ ∈ Π⋆ with parameter θ,

πθ(x) = θ1x+

10∑

i=1

θi+1φi(x) + θ12.

Note that the form of this controller lets us simply “match” the parameters of the system, and
cancel undesirable parameters. Given this, for this system we let π⋆(A) be the controller which sets
θ1:11 to cancel the dynamics of the system A, and set θ12 = c1 = 10.

See Appendix G.1.3 for details on the computation of H(A) on this system.

G.1.2 Drone System (Figure 2)

The dynamics of this system are given by

xh+1 =




1 0 0 0.1 0 0
0 1 0 0 0.1 0
0 0 1 0 0 0.1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



xh +




0 0 0
0 0 0
0 0 0
0.1 0 0
0 0.1 0
0 0 0.1



uh +




0
0
0
0
0

−0.98



+wh. (G.1)

Here we interpret [x]1:3 as the x, y, and z positions, respectively, and [x]4:6 as the x, y, z velocities.
This system is therefore equivalent to three double integrator systems, with an affine term (which
we interpret as “gravity”) affecting only the z coordinate. We set the cost to

cost(x,u) =
0.1

5
·

dx∑

i=1

[x]2i +
1

5
· [u]21 + [u]22 + [u]23

This then corresponds to a system in the form (1.1) with

A⋆ =




1 0 0 0.1 0 0 0 0 0 0
0 1 0 0 0.1 0 0 0 0 0
0 0 1 0 0 0.1 0 0 0 0
0 0 0 1 0 0 0.1 0 0 0
0 0 0 0 1 0 0 0.1 0 0
0 0 0 0 0 1 0 0 0.1 −0.98



, φ(x,u) = [x,u, 1].

For this system, we parameterize our controller class Π⋆ as, for any πθ ∈ Π⋆ with parameter θ,

πθh(x) = θ
fb
h x+ θoffseth

where θfbh ∈ R
3×6 is the state-feedback portion of the controller, and θoffseth ∈ R

3 is an offset term.
It can be shown that the optimal controller for a system of the form (G.1) can be parameterized in
this way Yu et al. (2020a). Furthermore, the optimal parameters can be computed in closed-form.
As such, for this system we set π⋆(A) to be with the optimal parameters, computed using this
closed-form solution.

In addition to computing the optimal controller in closed-form, we can also compute the cost of
a controller, J (π;A), in closed-form. To compute H(A) in this example, we then simply apply the
torch.autograd.functional.hessian function to J (π⋆(A);A).
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G.1.3 Car System (Figure 3)

The dynamics of this system are given by

xh+1 =




1 0 0.1 0 0 0
0 1 0 0.1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0.1
0 0 0 0 0 1



xh +




0 0
0 0

0.1 · cos([xh]5) 0
0.1 · sin([xh]5) 0

0 0
0 0.1



uh +wh (G.2)

where [xh]5 denotes the 5th element of xh. Here we interpret [xh]1 as the x position, [xh]2 as the y
position, [xh]3 as the x velocity, [xh]4 as the y velocity, [xh]5 as the angle of orientation (that is,
the direction the car is facing), and [xh]6 as the angular velocity. The first control dimension, then,
corresponds to the “gas”, the power given to the car to move forward or backward, and the second
control dimension corresponds to altering the direction of the steering wheel. Similar to the drone
system, we set the cost to

cost(x,u) =

[
x

u

]⊤
Q

[
x

u

]
with Q =

0.1 · I + v1v⊤1 + v2v
⊤
2

∥0.1 · I + v1v⊤1 + v2v⊤2 ∥op

for some v1,v2. To write this in the form of (1.1), in order to make the problem more challenging
we choose an overparameterized φ(x,u):

φ(x,u) =
[
x,u, cos([x]5), sin([x]5), [u]1 · cos([x]5), [u]1 · sin([x]5), [u]2 · cos([x]5), [u]2 · sin([x]5)

]

and set

A⋆ =




1 0 0.1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0.1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0.1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0.1 0 0
0 0 0 0 1 0.1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0.1 0 0 0 0 0 0



.

For the car system, the controller class Π⋆ is a hierarchical controller parameterized by some
θ ∈ R

4. This controller first uses PD control to compute a “goal input”, the direction we would like
to modify the state in, as:

ugoal(x) = −θ1[x]1:2 − θ2[x]3:4.

Given the underactuated structure of the system in (G.2), we cannot directly push the state in the
direction of ugoal(x). Instead, we set u to the following:


 ugoal(x)

⊤

[
cos([x]5)
sin([x]5)

]

−θ3([x]5 − βgoal(x))− θ4[x]6


 for βgoal(x) = tan−1([ugoal(x)]2/[ugoal(x)]1).

Given the complex form of this controller and the dynamics, there does not exist a closed-form way
to set θ optimally. Instead, for this system, we rely on a simple random search procedure to compute
π⋆(A). To find an optimal controller for system A, we randomly sample parameters θ, compute
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the cost they incur on system A, and then set π⋆(A) to the randomly generated controller with
lowest cost. Note that this procedure is not differentiable, but we require π⋆(A) is differentiable. To
remedy this, in situations where a differentiable π⋆(A) is needed (in particular, in the computation
of H(A)), rather than returning a single controller, we return the softmin distribution over all
controllers sampled, weighting each controller by its estimated cost. As the softmin distribution can
be differentiated, this parameterization of π⋆(A) is differentiable.

For this system, there does not exist a closed-form expression for J (π;A) and, as such, to compute
J (π;A), we simply perform many roll-outs of policy π on system A and average the cost. Given this
and the search-based implementation of π⋆(A) outlined above, we found that computing the hessian
H(A) using the torch.autograd.functional.hessian as in Appendix G.1.2 was very memory-
intensive. Instead, we computed the Jacobian G(A) := ∇A′J (π⋆(A′);A)|A′=A, and then, in place of
H(A), we use G(A)G(A)⊤. To compute G(A), we use the torch.autograd.functional.jacobian
function. While using G(A)G(A)⊤ in place of H(A) is not justified by our theoretical analysis, if
we are in settings where π⋆(A) is not precisely the minimum of J (π;A) (which will likely be the
case here since we are relying on a sampling-based implementation of π⋆(A), which will incur some
small error), then we argue that this is a reasonable metric to use. In particular, in this setting, the
approximation of J (π⋆(Â);A⋆) given in Proposition 1 should have an additional first-order term of
the form G(A)⊤vec(A⋆ − Â). As we can upper bound

G(A)⊤vec(A⋆ − Â) ≤
√
∥vec(A⋆ − Â)∥2

G(A⋆)G(A⋆)⊤
,

optimizing for the metric G(A)G(A)⊤ instead of H(A) can be seen as minimizing the first-order
Taylor-approximation of the excess loss. Intuitively, this metric quantifies the sensitivity of the
loss to particular parameters in A⋆, and in practice we found that optimizing this metric produced
significant improvements over existing methods. The implementation of the example from Section 1.1
relied on this same approximation.

G.2 Implementation Details

For all methods considered, our implementation follows the basic structure of Algorithm 1: at every
epoch, we explore so as to minimize some exploration objective, form an estimate of A⋆ on the
collected data, and then compute π⋆(Ât) on our estimate. Our main experimental results (Figures 1
to 3) show the loss of π⋆(Ât) as the time horizon t increases. For each method, to collect an initial
set of data, we begin each trial by exploring randomly for some fixed number of episodes (10 for
the drone example, 100 for the car example). The first point in each plot then corresponds to the
performance after this initial random exploration. Each aspect of our implementation is modular,
and any given component can be easily replaced. Below we highlight our implementation of the
exploration routine, and choice of exploration objective, for the various approaches we consider.

G.2.1 Implementation of DynamicOED

Implementing the exploration procedure, DynamicOED, requires access to a regret minimization
oracle. While in principle the LC3 algorithm of Kakade et al. (2020) could be applied to this problem
to give such an oracle, the LC3 algorithm requires access to a computation oracle which is not
clear how to implement in practice. To remedy this, we implement a Thompson Sampling-inspired
modification to the LC3 algorithm of Kakade et al. (2020).

The primary computational challenge of implementing the LC3 algorithm is the computation of
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the optimistic policy:

argmin
π∈Πexp

min
A∈Ball

t
J exp(π;A)

where J exp(π;A) denotes the exploration cost that is minimized in LC3 (i.e. the expected cost on
the cost function costnh(x,u) ← 1

M · φ(x,u)⊤(Ξn)φ(x,u) set in DynamicOED), and Ball
t the

confidence set for A⋆ at iteration t.

To avoid solving this optimization, we adopt a Thompson Sampling-inspired variation of this
procedure. In particular, at iteration t, we sample Ãt ∼ N (Ât,Λ

−1
t ). Standard Thompson Sampling

would then compute argminπ∈Πexp
J exp(π; Ãt), but even this can be challenging, so we instead rely

on a sampling MPC-inspired approach. Given that we are at state xh and have played inputs
u1, . . . ,uh−1, we aim to approximately solve the following optimization:

min
uh,uh+1,...,uH∈Rdu

H∑

h′=h

costnh(xh′ ,uh′)

s.t. xh+1 = Ãtφ(xh,uh),

H∑

h=1

u⊤
huh ≤ γ2.

(G.3)

To solve this approximately, we sample many possible u randomly, compute the value of the objective
of (G.3) on the trajectories induced by these u, and finally choose the input that minimizes this
objective. Rather than playing the entire sequence of chosen inputs, however, we simply play the
first input in the sequence, observe the new state on the actual system, and re-solve (G.3) on this
new state. Note that the implementation of LC3 used for the experiments given in Kakade et al.
(2020) relies on a similar Thompson Sampling-based approximation to the LC3 algorithm.

G.2.2 Implementation of Uniform Exploration

The goal of the procedure we have referred to as Uniform Exploration is to collect data which
will result in the estimation error, ∥A⋆ − Â∥op, being minimized, the goal of the method given in
Mania et al. (2022). It can be shown that this is equivalent to maximizing λmin(ΛT ), so this method
reduces to choosing inputs that maximize λmin(ΛT ). To implement this procedure, we rely on the
same sampling-based MPC approach as we outlined above, with the primary difference being that
instead of minimizing the objective of (G.3), we choose the inputs that maximize

λmin

(
Λt +

H∑

h=1

φ(xh,uh)φ(xh,uh)
⊤

)
,

where Λt denote the covariates we have obtained so far at iteration t. While very similar in spirit to
the algorithm of Mania et al. (2022), the implementation details are somewhat different than the
algorithm proposed in that work. We found that in practice our implementation performed better
than directly implementing (a sampling-based variant of) the algorithm from Mania et al. (2022),
and all reported results for Uniform Exploration are therefore on this version.

G.2.3 Exploring via Cost Minimization

A natural point of comparison to our methods would be to forsake the system identification phase
entirely, and simply run standard policy optimization algorithms such as TRPO or PPO (Schulman
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