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Abstract
Zero knowledge Neural Networks draw increasing atten-
tion for guaranteeing computation integrity and privacy of
neural networks (NNs) based on zero-knowledge Succinct
Non-interactive ARgument of Knowledge (zkSNARK) secu-
rity scheme. However, the performance of zkSNARK NNs
is far from optimal due to the million-scale circuit computa-
tion with heavy scalar-level dependency. In this paper, we
propose a type-based optimizing framework for e�cient
zero-knowledge NN inference, namely ZENO (ZEro knowl-
edge Neural network Optimizer). We �rst introduce ZENO
language construct to maintain high-level semantics and
the type information (e.g., privacy and tensor) for allowing
more aggressive optimizations. We then propose privacy-
type driven and tensor-type driven optimizations to further
optimize the generated zkSNARK circuit. Finally, we design
a set of NN-centric system optimizations to further acceler-
ate zkSNARK NNs. Experimental results show that ZENO
achieves up to 8.5⇥ end-to-end speedup than state-of-the-art
zkSNARK NNs. We reduce proof time for VGG16 from 6 min-
utes to 48 seconds, which makes zkSNARK NNs practical.
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1 Introduction
Zero Knowledge Neural Networks [24, 25, 28, 44, 46] draw
increasing attention to solving privacy issues of neural net-
works. Leveraging zero-knowledge Succinct Non-interactive
ARgument of Knowledge (zkSNARK) security scheme [2, 7–
9, 13, 14, 48, 52, 56], zkSNARK NNs protect the privacy of
user data and model weights. When protecting data privacy,
zkSNARK NNs allow users to prove their identity without
uploading face images to remote servers. When protecting
model privacy, zkSNARK NNs allow companies to prove the
model accuracy without releasing weights which are usually
treated as important intellectual properties.

zkSNARK is a security scheme where, given an arithmetic
function � ( Æ8=) and an output ~, the prover proves the exis-
tence of input Æ8= such that � ( Æ8=) = ~ while not revealing its
value. In zkSNARK NNs, arithmetic function is a plaintext
neural network described with multiplication and addition,
while Æ8= = ( ÆF , ÆG) includes both weights ÆF and data ÆG . zk-
SNARK NNs allow the prover to specify the privacy type
of inputs. For example, when protecting data privacy, the
prover can set ÆG (e.g., a face image) as private and weight ÆF
as public while proving � ( ÆF , ÆG) = ~ holds for a public ~ (e.g.,
a person name).
To prove such computation, zkSNARK NNs �rst trans-

form a complex arithmetic function into a simple circuit by
mapping each addition and multiplication operation into an
addition or multiplication gate, as demonstrated in Fig. 1. The
second step is circuit computation which condenses such cir-
cuit into uniform-format constraints (Eq. 1). Finally, security
computation further compresses constraints into a �xed-size
proof (e.g., 192 bytes [30]) which can be used to verify the
computation. While zkSNARK NNs provide privacy prop-
erties, existing works usually cannot scale to large neural
networks. For example, based on a popular zkSNARK frame-
work Arkworks [4], it takes hundreds of seconds to prove
zkSNARK LeNet on a single face image while non-zkSNARK
LeNet usually requires less than 100 ms on the same hard-
ware. We summarize three key challenges that hinder deeper
system optimizations for zkSNARK NNs.

Failing tomaintain high-level semantics during proof
generation. Existing zkSNARK systems [4, 13, 25, 33, 62]
map an arbitrary arithmetic function into a low-level arith-
metic circuit. During this procedure, NN semantics such as
privacy and tensor are not preserved and hard to recover. For

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


ASPLOS’24, April 27–May 01, 2024, San Diego, CA, USA Boyuan Feng, Zheng Wang, Yuke Wang, Shu Yang, Yufei Ding

Figure 1. Circuit in zero-knowledge proof for an arithmetic
function -1 ⇤ -2 ⇤ (-2 + -3). Here, all values are stored in
�nite-�elds (e.g., 254-bit integer [45]) for privacy.

example, reconstructing tensor semantic by scanning and
parsing the assembly-style circuit would introduce heavy
runtime overhead. Therefore, zkSNARK systems can only
consider individual gates in circuits and fail to exploit high-
level NN-specialized optimization opportunities.
Lack of semantic-aware optimizations during com-

piling zkSNARK NNs. Most zkSNARK optimizations [4,
10, 51]) focus on individual scalar gates and support only
local circuit optimization at small scale. These scalar gates
usually show heavy dependency and prevent parallel compu-
tation. For example, in Fig. 1, parent gates (e.g.,⌧0C43) cannot
be computed until all children gates (e.g., ⌧0C41 and ⌧0C42)
have been computed. However, most NN computations are
conducted at the tensor level (e.g., convolution layers and
fully connected layers) and provide abundant parallelization
opportunities. Moreover, NN computation usually requires
�oating-point values (e.g., single-precision or half-precision)
or small integers [20, 55, 57, 58, 61], such as int8 or even
int1, while zkSNARK operates on �nite �eld (e.g., ⇡ 2254
in case of BLS12-381 [11]) to provide security guarantees.
Naively representing these small values from NNs with �nite
�eld elements may lead to extra memory and computation
overhead.

Lack of NN-centric system optimizations. Neural net-
works usually contain abundant computation reuse opportu-
nities. For example, a zkSNARK NN shares the same circuit
when proving on di�erent images. Existing works usually
focus on proving individual images and repeatedly gener-
ate redundant constraints. Moreover, fusing NN layers can
usually save the number of addition and multiplication com-
putation. This can potentially save the number of constraints
in zkSNARK NNs. However, kernel fusion from existing NN
systems usually cannot directly bring bene�ts to zkSNARK
NNs. For example, ReLU is usually fused with convolution
layer in plaintext NNs but cannot be fused in zkSNARK NNs.

In this paper, we propose a type-based optimizing frame-
work for e�cient zero knowledge neural network inference,
namely ZENO (ZEro knowledgeNeural networkOptimizer).
We show the overview of ZENO in Fig. 2. First, we introduce
a ZENO language construct to maintain high-level semantics
(e.g., privacy and tensor) during zkSNARK proof generation.
Our key insight is that, instead of parsing an assembly-style
circuit, we maintain the privacy type and structured tensor

Figure 2. Overview of ZENO.

computation to guide e�cient zkSNARK proof generation.
We further propose a set of compute primitives to e�ectively
express zkSNARK NNs.

Second, we design an optimized circuit generation that
reduces both computation complexity and the number of
computations by exploiting high-level semantics. Our op-
timized circuit generation includes a privacy-type driven
optimization and a tensor-type driven optimization. The
privacy-type driven optimization reduces the number of
constraints while maintaining zkSNARK NN semantics. We
propose a knit encoding to e�ciently represent multiple
uint8 NN computation with a single �nite �eld (e.g., 254
bits [11]) to reduce the number of zkSNARK computation.
The tensor-type driven optimization exploits tensor com-
putation semantics in zkSNARK NNs to generate a ZENO
circuit with minimized dependency. We use ZENO circuit
as an in-place replacement for arithmetic circuit to reduce
dependency.

Third, we propose NN-centric system optimizations to fur-
ther accelerate zkSNARK NNs. We �rst propose NN-inspired
computation reuse to identify the computation reuse oppor-
tunities within images and cross images by exploiting NN
semantics. Then, we propose a zkSNARK-aware NN fusion
to fuse NN layers while considering both NN and zkSNARK
properties. Our zkSNARK-aware NN fusion can save the
number of constraints for reducing zkSNARK NN latency.

Overall, we make the following contributions:
• We propose ZENO, a framework that can deeply op-
timize zero-knowledge NNs with a synergy between
NN semantics and zkSNARK workload properties.

• We propose a set of zkSNARK NN tailored system op-
timizations. In particular, we design ZENO language
construct (§3) to expose high-level semantics, an op-
timized circuit generation by exploiting privacy type
(§4) and tensor type (§5), and NN-centric system opti-
mizations (§6) to further accelerate zkSNARK NNs.

• We extensively evaluate ZENO using six zkSNARK
NNs on multiple datasets. We achieve 8.5⇥ end-to-end
speedup over state-of-the-art systems.

2 Related Work and Motivation
In this section, we will �rst give an in-depth discussion on
background and related work of zkSNARK Neural Networks
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Figure 3.Work�ow of generating zero-knowledge proof. All
values are stored in ciphertext for privacy.

(NNs). Then, we will demonstrate the unique optimization
opportunities for zkSNARK NNs.

2.1 zkSNARK
Zero-Knowledge Succinct Non-interactive Argument of Knowl-
edge (zkSNARK) [2, 7–9, 13, 14, 30, 48, 52, 56] is a security
scheme where, given a function � (G) and a target output ~,
the prover shows that the prover knows a speci�c value G
such that � (G) = ~ while not revealing such value G . Here,
the function � (·) can describe an arbitrary computation.
One speci�c example is that, given a function � (G1, G2, G3, G4
, G5, G6) = (G1G2 + 3G3) (2(G4 + 2G5) + G6), the prover can
generate a proof that the prover knows a set of secrete val-
ues (G1, G2, G3, G4, G5, G6) such that � (G1, G2, G3, G4 , G5, G6) = ~
with a public value ~ while not revealing the exact values of
(G1, G2, G3, G4, G5, G6).
zkSNARKWork�ow. zkSNARK involves prover and ver-

i�er as two essential participants. During proof generation,
the prover knows both private data G and public data ~ such
that � (G) = ~, and generates a proof showing the equality
between � (G) and ~. This proof could be shared publicly
since the private data G cannot be recovered from the proof
and the public data ~. During proof veri�cation, the veri�er
checks if the proof is valid under the public data ~ and is
convinced that the prover knows private data G such that
� (G) = ~. Here, the veri�er only knows the public data ~ and
the proof, while not knowing the value of the private data G .
Proof veri�cation takes only a few milliseconds which are
several orders of magnitudes faster than proof generation
with second-level latency [30]. To this end, we build ZENO
to accelerate the proof generation.

Zero-knowledge Proof Generation. We illustrate zero-
knowledge proof generation in Fig. 3. There are three steps
in proof generation. The �rst step is Generate, which takes
a given arithmetic function F(x) 1 and generates a circuit 2 .
In this step, each scalar addition and multiplication in arith-
metic function is mapped to a addition gate (e.g., ⌧0C43) and
a multiplication gate (e.g., ⌧0C41) in the circuit, respectively.
For a large arithmetic function with millions of computation
(e.g., zkSNARK NNs [24, 25, 28, 44, 46]), the circuit contains
millions of gates. The latency of zkSNARK is proportional to

this number of gates such that million-level gates can easily
lead to hour-level latency.

The second step is Circuit Computation that condenses
the circuit 2 into constraints 3 , which is a specialized math-
ematical format:

(
=’
8=1

0 9,8-8 ) ⇤ (
=’
8=1

1 9,8-8 ) =,8A4 9 , 9 2 {1, 2, ...,<} (1)

Here, -8 are private input values (e.g., private NN weights)
and,8A4 9 are private output values which can be used in fol-
lowing constraints. = is the number of private values includ-
ing both private input values-8 and private output,8A4 9 .<
is the number of multiplication between private values (e.g.,
-1 and -2) or linear combination (LC) of private values (e.g.,
1 ⇤,8A41 + 3 ⇤ -4 + 2 ⇤ -5). The zkSNARK proof generation
latency is proportional to the number of private values =
and the number of constraints<. For a realistic arithmetic
function (e.g., a neural network), both < and = could be
million-level. We note several properties in the constraints.
First, privacy plays an important role where multiplying a
public value and a private value (e.g., 3 ⇤ -4) does not lead
to constraints. Second, the addition is “free" in zkSNARK in
terms of not introducing constraints, since a large number
of additions can be expressed in a single linear combination
(e.g., adding 1⇤,8A41, 3⇤-4, and 2⇤-5) by incorporating into
the linear combination of private values. Third, in the cir-
cuit computation, children gates (e.g., ⌧0C41 to ⌧0C44) need
to be computed before parent gates (e.g., ⌧0C45). This leads
to heavy dependency in circuits and is major bottleneck in
zkSNARK NNs (see Fig. 4).
The third step is Security Computation. Given a con-

straint system with a large number of = private values and
< constraints, security computation generates a small �xed-
size (e.g., 192 bytes) proof for e�cient veri�cation. The key
idea is to add carefully crafted random noises [30] upon =
private values for generating encrypted values. With these
encrypted values, the< constraints still holds but you can-
not derive original private value from encrypted values. We
remark that noises could be added only when the format of
constraints follows a simple math formula (Eq. 1). The la-
tency of this step depends on the number of = private values
and< constraints such that we can accelerate this step by
reducing< and =.

Bit Size in zkSNARK. zkSNARK relies on well-accepted
cryptography techniques such as �nite �eld and pairing-
friendly elliptic curves to provide cryptographical security.
These cryptography techniques involve computations on
large bit-size integers. Popular elliptic curves for zkSNARK
include BN254 [6, 53] with 254 bits and BLS12-381 [12] with
381 bits. ZENO is generic over diverse elliptic curves since
the choice of elliptic curves does not a�ect the zkSNARK
computation and optimizations.
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2.2 zkSNARK Neural Networks
Neural Networks. Neural network (NN) [23, 32, 43, 54]
is a function � (, ,- ) = . that maps an input image - 2
D8=C8�⇥, ⇥3 and weights, to a prediction . 2 R3 , where
3 is the number of labels (e.g., = = 2 when only distinguish
cat and dog). NN is usually de�ned as the composition of
a sequence of NN layers � (, ,- ) = �1 � �2 · · · � �= (, ,- ).
Popular layers include convolution, fully connected, pooling,
and ReLU, where each layer computes at tensor level. For
example, the convolution layer and fully connected layer take
two inputs: activation - (: ) and weight, . Then, these two
layers compute the output activation - (:+1) =, · - (: ) + 1.
zkSNARK NNs and Killer Applications. zkSNARK

NNs [24, 25, 28, 44, 46] draw increasing attention in recent
years by proving certain properties while protecting the
privacy of images or weights. These zkSNARK NNs treat
a NN as a function � (, ,- ) and generate proof following
the work�ow in Fig. 3. One popular application isWorld ID
[18] for user identity which protects the privacy of biometric
image - . In particular, a user (the prover) generates proof
with her eye iris image to prove that she is a unique and real
person. This proof serves as her digital passport or password
while keeping anonymity. This proof is submitted to servers
where other companies (the veri�er) could verify the proof.
Another application is Leela vs the World [40] which allows
users to play against an AI chess model and uses zkSNARK
NNs to prove each move of this model while protecting the
privacy of weight, and not leaking the model.

To facilitate the development of zkSNARK programs, sev-
eral frameworks have been proposed such as Arkworks
[4, 13], Bellman [62] and Ginger [33]. However, these frame-
works usually focus on scalar computation and ignore opti-
mization opportunities from tensor-level computations, lead-
ing to prohibitive latency. In this paper, we propose ZENO
to exploit tensor-level computation and privacy type for
e�cient zkSNARK NN inference.
Diverse Types of zkSNARK NN Layers. Besides addi-

tion and multiplication, zkSNARK NNs could also support
other operations such as Pooling layers and > in ReLU at a
higher cost [25]. Take the ReLU circuit as an example. While
zkSNARK does not directly support comparing two integers,
it e�ciently supports checking bit equality. Thus ReLU cir-
cuit �rst decomposes an integer into n(=254) bits and checks
whether the �rst bit equals zero, deciding the sign of this
integer and the output of ReLU layer.
In zkSNARK NNs, a NN is �rst trained with Stochastic

Gradient Descent (SGD) [49] in plaintext and then proofs
are generated for NN inference with zkSNARK. Following
existing zkSNARK NN application scenarios, ZENO focuses
on inference and does not support SGD for training.

2.3 Opportunities and Challenges
In this section, we introduce optimization opportunities and
challenges in enabling e�cient zkSNARK NNs.

Figure 4. Proof latency: private images and public weights.

We show the latency of individual proof generation steps
in Fig. 4 for private images and public NN weights. We have
similar observations on other privacy settings (e.g., private
weights and private images, or private weights and public
images). We pro�le this latency based on state-of-the-art
zkSNARK framework, Arkworks [4], on a single image. Note
that these three steps need to be executed sequentially and
the total time is the sum of individual steps. We have three
major observations. First, the total time of zkSNARK NN can
easily exceed 5000 seconds, while the corresponding non-
zkSNARK NNs usually take less than 1 second to compute.
Second, the latency of circuit computation increases signif-
icantly as NN sizes increase. Third, the latency of security
computation also increases as NN sizes increase.

Opportunities. There are two major opportunities to ac-
celerate zkSNARK NNs. The �rst opportunity is to exploit
privacy types (e.g., private weights or public weights, as
discussed in §3). Our investigation shows a signi�cant im-
pact from privacy types, which motivates privacy-driven
optimizations. The second opportunity is to exploit tensor
computation in NNs for optimizing circuits and exploiting
parallelism. This opportunity has not been explored in exist-
ing zkSNARK frameworks that focus on scalar operations.
Challenges. Although these ideas sound promising, the

e�orts to capitalize on their bene�ts are non-trivial due
to several challenges. First, while tensor operations may
provide optimization opportunities, it is highly non-trivial
to identify and reconstruct such high-level semantics from
assembly-style circuits. We need a language construct to
maintain these high-level semantics and facilitate optimiza-
tions for zkSNARK NNs. Second, the zkSNARK computation
procedure usually shows complex dependency across Gates
and synergy between privacy types. For example, circuits
(as discussed in Fig. 3) are inherently sequential since ear-
lier computation results (e.g., ⌧0C41) may be used by later
computation (e.g.,⌧0C43). We need specialized optimizations
based on type information in zkSNARK NNs to reduce the
computation workload and mitigate the dependency.

3 ZENO Language Construct
In this section, we introduce ZENO language construct to
facilitate the zkSNARK NN development and maintain the
semantic information during zkSNARK computation.
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Table 1. ZENO Type Information.

Type Description

St
an

da
rd

Const Public constant value in _-bit �nite
�eld.

Variable Private scalar value in circuit for input.

Gate Private scalar value in circuit for inter-
mediate results.

Wire Private scalar value in constraint sys-
tem.

LC Linear Combination of wires in con-
straint system.

ZE
N
O

Privacy ’private’ or ’public’
Tensor A tensor of �nite �eld data.

zkTensor Tuple (T, P) where "T" is a Tensor and
"P" speci�es privacy.

Type Information with Tensor and Privacy. The goal
of ZENO type information is to express the two important
information in zkSNARK NN – tensor and privacy. We sum-
marize ZENO type information in Table 1. There are two com-
plications in zkSNARK systems. First, previous zkSNARK
systems contain only scalar-level data types, which make it
complicated to implement zkSNARK NNs with intensive ten-
sor computations. Second, individual scalar data types have
di�erent privacy properties. This makes it challenging to
manually set the privacy type for scalar values in zkSNARK
NNs.

To tackle these challenges, we introduce tensor-level data
types to directly express zkSNARK NN tensor computation
and hide the complexity of privacy selection. zkTensor is
the basic data unit in zkSNARK NNs, which can represent
weight tensors and feature tensors in NNs. When "P" is pub-
lic, "T" is a tensor of Const scalars for public constant values.
When "P" is private, "T" is a tensor of Variable, Gate, Wire,
and LC, where the speci�c type can be inferred automati-
cally. Our type information abstracts details of zkSNARK
implementations and enables users to focus on complex NN
structures.

Tensor Compute Primitives. We propose a set of tensor-
level compute primitives respecting the privacy and tensor
types. The goal of tensor compute primitives is to maintain
the high-level semantics of zkSNARK NN computation and
maps directly to gate-level circuits. In particular, the tensor
compute primitives hide the complexity of scalar-level oper-
ations and expose tensor computation capability, which is
the building block of many zkSNARK NNs. The tensor com-
pute primitives also allow users to easily specify the privacy
type of images and weights, which mitigates the manual
e�orts in specifying the privacy of each scalar. The tensor
compute primitives directly support dotProductwhich con-
sumes most computation in neural networks. This high-level
dotProduct can be directly mapped to gate-level circuits
with optimized circuit generation (discussed in §4 and §5).

We then introduce fullyConnected, convolution, pool,
and ReLU to support popular layers in NNs. We also pro-
vide addTensor and mulTensor to facilitate user-de�ned
NN operations such as residual connection [32].

4 Privacy-type Driven Optimization
In this section, we propose privacy-type driven optimizations.
Our key insight is that fully exploiting privacy of input data
can signi�cantly reduce the number of constraints (Eq. 1),
which leads to proportional performance improvement for
zkSNARK NNs. To this end, we propose privacy-adaptive
circuit generation and privacy-aware knit encoding to squeeze
the number of constraints.

4.1 Privacy-adaptive Circuit Generation
We propose privacy-adaptive circuit generation to reduce
the number of constraints in zkSNARK NNs. We observe
that many zkSNARK NNs algorithmic designs [24, 25, 28,
44, 46] only require one of features or weights to be private.
For example, ZEN [25] only keeps privacy of NN weights
and use a public dataset to prove the NN accuracy. A naive
implementation usually ignores privacy type of input data
and generate constraints for each multiplication in zkSNARK
NN, which leads to a large number of constraints and high
latency. Our key insight is that privacy comes with costs in
zkSNARK.We should introduce privacy onlywhen necessary
and exploit as many “free” operations as possible to reduce
cost. For example, multiplying a public scalar and a private
scalar are “free” but multiplying two private scalars costs 1
constraint. The number of constraints largely decides the
latency. So, we exploit privacy types of features and weights
to minimize the number of constraints.

We present our privacy-adaptive circuit generation for dot
products which can be easily applied to many zkSNARK NN
layers (e.g., fully-connected, convolution, and average pool-
ing). Formally, we consider aweight vector, = [F1,F2, ...,F=]
with privacy ?F and a feature vector - = [G1, G2, ..., G=] with
privacy ?- where ?, and ?- are user-speci�ed privacy type
("private" or "public"). zkSNARK �rst computes a reference
value ref in plaintext according to dot product. Then, zk-
SNARK proves in constrains that ref =

Õ=
8=1F8 ⇤ G8 . In the

last layer of zkSNARK NN, ref is the NN prediction such as
a "cat" or "dog". We show the mapping from high-level dot
product computation

Õ=
8=1 G8 ⇤ F8 to low-level constraints

(Õ=
8=1 0 9,8-8 ) ⇤ (

Õ=
8=1 1 9,8-8 ) =,8A4 9 , 9 2 {1, 2, ...,<} where

-8 and,8A4 9 are private values, and 0 9,8 and 1 9,8 are public
coe�cients (see background in Eq. 1).

Both private feature and private weights. When both
feature and weights are private, we have = multiplications
between private scalarsF8 and G8 and = � 1 addition to sum
the multiplication output. Since bothF8 and G8 are private
values, we generate one constraint for each multiplication
F8 ⇤G8 =,8A48 . Formally, each multiplication can be written
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as constraints (1 ⇤ F8 ) ⇤ (1 ⇤ G8 ) = ,8A48 . This leads to =
constraints for multiplying private scalars. Then, we gener-
ate a linear combination !⇠ =

Õ=
8=1 1 ⇤,8A48 to represent

the computation result in zkSNARK and check the equality
between !⇠ and a reference value ref for dot product, · - .
Intuitively, this circuit checks that the dot product of private
input, and - equals to ref without releasing the value of
, and - . Checking equality leads to an extra constraint.
Formally, we have = + 1 constraints:

(1 ⇤F8 ) ⇤ (1 ⇤ G8 ) =,8A48 , 8 2 {1, 2, ...,=}

(
=’
8=1

1 ⇤,8A48 + (�1) ⇤ ref ) ⇤ (1 ⇤ ⇡1) = ⇡0
(2)

where ⇡1 = 1, ⇡0 = 0, and �1 is conducted on �nite �eld.

Either private feature or private weights. We consider
public weight, and private feature - since the design can
be easily applied to the case with public weight and private
feature. When weight, is private and feature - is public,
we have = multiplications between private weight scalarF8

and public feature scalar G8 and = � 1 additions to sum the
multiplication output. One naive design is to still generate
one constraint for each multiplication. However, our key
insight is that the public weight scalarF8 can be treated as
public coe�cients in Eq. 1 which eliminates unnecessary
constraints. To this end, we can directly generate a linear
combination !⇠ =

Õ=
8=1F8 ⇤ G8 with public scalars F8 as

coe�cients and check equality with ref . This design requires
only 1 constraint

(
=’
8=1

F8 ⇤ G8 + (�1) ⇤ ref ) ⇤ (1 ⇤ ⇡1) = ⇡0 (3)

This is signi�cantly smaller than = + 1 constraints required
for both private feature and private weights.

4.2 Privacy-aware Knit Encoding
We propose privacy-aware knit encoding to further reduce
the number of constraints when only features or weights are
private. This could signi�cantly reduce the latency of secu-
rity computation phase which is proportional to the number
of constraints. Knit encoding combines multiple low-bit (e.g.,
8-bit) scalars into a high-bit (e.g., 254-bit) scalar to check
equality simultaneously and reduce the number of equality
checks. This leads to a lower number of constraints and bet-
ter performance. The key insight is that the output scalars of
a NN layer are usually low-bit (e.g., 8 bits) while zkSNARK
natively supports large bits (e.g., 254 bits). For example, sup-
pose we prove the computation over two dot products in a
NN layer, naive encoding needs 2 equality checks leading
to 2 constraints. In knit encoding, we can use the “free” ad-
dition to combine the results of these two dot products and
introduce only 1 equality check.

Figure 5. Knit encoding with batch size B = 2. !⇠1 and !⇠2
are two �nite �elds with leading bits as 0. X = 22⇤18=+d;>6 (28= ) e
is a �nite �eld such that multiplying X is equivalent to bit
shifting. ":=" indicates equality check.

Naive encoding. Consider a fully connected layer with
a public weight, = [,1,,2] 2 uint82⇥28= , a private fea-
ture - = [G1, G2, ..., G28= ] 2 uint828= , and the output . =
[~1,~2] 2 uint82. The fully-connected layer can be treated
as two dot products ~8 = ,8 · - , 8 2 {1, 2}. One naive ap-
proach is to independently encode individual dot products
following Eq. 3. This approach leads to 1 constraint for each
dot product and require 2 constraints for the fully connected
layer. However, this approach encodes low-bit quantized
neural network values (e.g., uint8) with high-bit �nite �elds
(e.g., 254-bit), which leads to extra constraints and higher
latency.

Knit encoding with batch size B = 2. We propose to
batch multiple low-bit values (e.g., uint8) into one high-bit
�nite �eld (e.g., 254-bit) to reduce the number of constraints,
as illustrated in Fig. 5. We �rst generate two LCs

!⇠1 =
28=’
8=1

F1,8 ⇤ G8 , !⇠2 =
28=’
8=1

F2,8 ⇤ G8

Generating !⇠1 and !⇠2 does not introduce constraints since
we are multiplying public scalars with private scalars. Here,
both !⇠1 and !⇠2 are �nite �elds. We note that only 2 ⇤18= +
d;>6(28=)e bit of each LC are non-zero values where 18=(=8)
is the bit width of weights and features.
Instead of naively introducing constraints for checking

equality between !⇠8 and ~8 , we further encode these two
LCs into one LC:

!⇠3 = !⇠1 + !⇠2 ⇤ X

=
28=’
8=1

F1,8 ⇤ G8 +
28=’
8=1

(F2,8 ⇤ X) ⇤ G8

Here, X = 22⇤18=+d;>6 (28= ) e is su�ciently large to ensure the
correctness of encoding. X is also a public scalar such that
generating !⇠3 does not introduce constraints.

Finally, we compute the encoded output value ref = ~1 +
~2 ⇤ X and introduce 1 constraint to check equality of these
two dot products simultaneously

(
28=’
8=1

F1,8 ⇤ G8 +
28=’
8=1

(F2,8 ⇤ X) ⇤ G8 + (�1) ⇤ ref ) ⇤ (1 ⇤⇡1) = ⇡0
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Table 2. Comparing knit encoding and stranded encoding.
We consider 8 bits for features and weights and 254 bits for
�nite �elds.

Knit Encoding Stranded Encoding [25]
Max Constraint Saving 8⇥ 4⇥
Encoding Overhead 0 Constraint 0 Constraint
Decoding Overhead 0 Constraint 632 Constraints

Privacy One private Both Private

This constraint bitwisely checks equality such that,1 · - =
~1 and,2 · - = ~2 when X is su�ciently large.

Knit encoding for arbitrary batch size s. Knit encod-
ing can be generalized to arbitrary batch size B . Formally,
knit encoding takes a public weight, = [,1,,2, ...,,B ] 2
uint8B⇥28= , a private feature- = [G1, G2, ..., G28= ] 2 uint8228= ,
and the output . = [~1,~2, ...,~B ] 2 uint8B . We �rst gener-
ates B LCs for dot products

!⇠ 9 =
28=’
8=1

F 9,8 ⇤ G8 , 9 2 {0, 1, ..., B � 1}

Then, we encode B LCs into one LC

!⇠B =
B�1’
9=0

28=’
8=1

(F 9,8 ⇤ X 9 ) ⇤ G8

Since we only require multiplication between public scalars
and private scalars, we do not introduce constraints when
generating these LCs. Finally, we can compute the encoded
output value ref =

ÕB�1
9=0 ~ 9 ⇤ X 9 and use 1 constraint to

bitwisely check the euqality of B dot products:

(
B�1’
9=0

28=’
8=1

(F 9,8 ⇤ X 9 ) ⇤ G8 + (�1) ⇤ ref ) ⇤ (1 ⇤ ⇡1) = ⇡0

Security Analysis. Relying on a well-known “free" ad-
dition property of zkSNARK [30], knit encoding is crypto-
graphically secure if and only if bit over�ow is avoided for
all possible input weights and features. Bit over�ow happens
when batching too many low-bit values into a high-bit �nite
�eld using a large batch size B .
ZENO automatically selects the batch size B to maximize

the performance while avoiding bit over�ow. Formally, given
the vector length =, input data bitwidth 18= , and �nite �eld
bitwidth 1>DC , each dot product requires 2 ⇤18= + dlog=e bits
and all B dot products require B⇤(2⇤18=+dlog=e) bits. To avoid
bit over�ow and maximize bene�ts, we select a batch size as
the largest integer satisfying B  1>DC/(2 ⇤18= + dlog=e). For
example, on dot product with 18= = 8-bit data, 18= = 8-bit
weight, 1>DC = 254-bit �nite �eld, and length = = 1024, we
select B = 9 to maximize bene�ts while avoiding bit over�ow.

Comparing with Stranded Encoding. Existing work
[25] proposed stranded encoding which shares similar high-
level motivation as our knit encoding. It focuses on the case

with private weights and private features by reducing the
number of multiplications. However, stranded encoding and
knit encoding are signi�cantly di�erent in multiple perspec-
tives, as summarized in Table 2. Stranded encoding can be
applied when both features and weights are private while
knit encoding can be applied when only features or weights
is private. By exploiting privacy type, knit encoding can
save more constraints with signi�cantly reduced decoding
overhead.

5 Tensor-type Driven Optimization
In this section, we propose tensor-type driven optimizations.
We �rst propose ZENO circuit as an e�cient intermediate rep-
resentation (IR) between high-level NN layers and low-level
constraints. Then, we propose workload-specialized parallel
scheduler to identify parallel computation opportunities in
ZENO circuit across NN layers. All these optimizations focus
on the system level and do not introduce any cryptographical
changes, thus guaranteeing security.

5.1 ZENO Circuit for E�cient IR
We present our ZENO circuit as an e�cient intermediate
representation (IR) from high-level zkSNARK NN arithmetic
function to low-level constraints. Since low-level constraints
require a specialized mathematical format (Õ=

8=1 0 9,8-8 ) ⇤
(Õ=

8=1 1 9,8-8 ) =,8A4 9 (see Eq. 1), it is challenging to manu-
ally write constraints for an arbitrary arithmetic function.
Existing work [4] utilizes circuit as an intermediate repre-
sentation to automatically map arithmetic functions into
constraints during the circuit computation phase. However,
it is designed for scalar computations and ignores intrinsic
tensor types in zkSNARN NNs which leads to unsatisfac-
tory performance. We �rst analyze the bottleneck in circuit
and then propose ZENO circuit as an e�cient intermediate
representation.

Circuit. Circuit �rst breaks an arbitrary arithmetic func-
tion into a sequence of scalar multiplication and scalar ad-
dition operations. Then, it maps each operation to a corre-
sponding multiplication gate and addition gate, as discussed
in §2.1. We show an example of circuit for dot product in
Fig. 6(a).
Consider a weight vector, = [F1,F2,F3,F4], a feature

vector - = [G1, G2, G3, G4], and an arithmetic function

� (, ,- ) = F1 ⇤ G1 +F2 ⇤ G2 +F3 ⇤ G3 +F4 ⇤ G4
Circuit �rst maps each multiplication to a multiplication gate
(e.g., ⌧0C41 and ⌧0C42) and maps each addition to an addi-
tion gate (e.g., ⌧0C43 and ⌧0C45), leading to 4 multiplication
gates and 3 addition gates. Here, all computations related
to private variables are symbolic since the circuit describes
computation in the arithmetic function regardless of speci�c
values. For example, public weight and private feature indi-
cate that features - are symbolic variables but weights,
are numeric coe�cients.
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Figure 6. Illustration of ZENO IR for dot product ofW ·X =
[,1,,2,,3,,4] · [-1,-2,-3,-4].

Given this circuit, we need to conduct circuit computa-
tion which converts individual gates into constraints with
a specialized mathematical format (Eq. 1). Without loss of
generality, we consider public weight and private feature
here. We can �rst check privacy of each scalar and generate a
tuple where public inputF8 is coe�cient (i.e., 0 9,8 and 1 9,8 in
constraints Eq. 1) and private input G8 is a symbolic variable:
(1,⌧0C48 ) = (F8 , G8 ), 8 2 {1, 2, 4, 6}
(1,⌧0C48 ) = (28,1,⌧0C48�2) + (28,2,⌧0C48�1), 8 2 {3, 5, 7}

For addition gates, we have 28,1 = 28,2 = 1 as the coe�cient
for dot product, which can be an arbitrary integer in general.

Then, we need to recursively expand children gates for an
addition gate, if one of its children gates is still an addition
gate. This recursive expansion from “binary" gates to “multi-
input" format (Eq. 1) leads to $ (=2) costs where = is the
vector length. For example, suppose we have expanded⌧0C45
as

(1,⌧0C45) = (F1, G1) + (F2, G2) + (F3, G3)
where ⌧0C45 has three coe�cients F1, F2, and F3. When
expanding⌧0C47 = (27,1,⌧0C45)+(27,2,⌧0C46), there are$ (=)
multiplications since we need to multiply the coe�cient 27,1
of ⌧0C45 with all expanded coe�cients, including F1, F2,
andF3. Since we need to repeat for all = addition gates, this
expansion costs $ (=2), leading to prohibitive latency for
zkSNARK NNs with millions of gates in circuit.

ZENO Circuit for Dot Product. To address this problem,
we propose a ZENO circuit to minimize the number of gates
and reduce the computation complexity to $ (=) where =
is the vector length, leading to reduced latency during the
circuit computation phase. The core idea is to exploit the
commutative property of addition gates in zkSNARK. In par-
ticular, the order of addition gates can be exchanged while
the order between two multiplication gates and the order be-
tween a multiplication gate and an addition gate need to be
maintained. We show ZENO circuit for dot product of length
4 in Fig. 6(b). We introduce 4 multiplication gatess (⌧0C41,
⌧0C42,⌧0C43, and⌧0C44) and only one addition gate (⌧0C45).
Note that ZENO circuit has the same number of multipli-
cation gates but a signi�cantly smaller number of addition

gates. This reduced number of addition gates signi�cantly
saves the number of computations during circuit computation.
On ZENO circuit, we can skip circuit computation operation
for addition gates and directly generate constraints. In partic-
ular, we only need 5 operations for converting ZENO circuit
while requiring 12 operations for converting circuit. We also
note that ZENO circuit shows short critical path length (=2)
than conventional circuit with length (=4).
Formally, given two vectors [F1,F2, ...,F=] and [G1, G2,

..., G=] of length =, ZENO circuit contains binary multiplica-
tion gates and multi-child addition gates. The binary multi-
plication gate takes two input gates. To support dot product
on two vectors of length =, we need = multiplication gates
for eachF8 ⇤ G8 . The multi-child addition gate takes = inputs
where = can be arbitrarily large number. This gate e�ciently
supports summation over a large number of scalars in dot
product and signi�cantly reduces the number of addition
gates. In comparison, conventional circuit for dot product
requires = � 1 binary addition gates. In total, ZENO circuit
for dot product generates = + 1 gates while conventional
circuit generates 2=� 1 gates. We also stress that both ZENO
circuit and conventional circuit generate the same constraint
systems. Thus ZENO circuit maintains the semantic and can
be used as an in-place replacement of conventional circuit.

ZENO circuit for fully connected, convolution, and
pooling layers. We propose ZENO circuit for fully con-
nected, convolution, and pooling layers as an extension to
ZENO circuit for dot product. Fully-connected layer takes
two input tensorsW 2 R<⇥= and X 2 R= and generates one
output tensor Y = WX 2 R< . With the help of img2col algo-
rithm [17], convolution layer can also be transformed into
a matrix-matrix multiplication. It takes two input tensors
W 2 R<⇥= and X 2 R=⇥: and computes an output tensor
Y = WX 2 R<⇥: . Since fully connected and convolution
layer can be viewed as< and<: independent dot products,
we simply duplicate dot product circuits for< and<: times
as ZENO circuit for fully-connected and convolution layers,
respectively. For the pooling layer, we focus on average pool
following state-of-the-art zkSNARK NN security scheme
[25]. Given an input tensor of shape< ⇥ = and a constant B ,
average pool splits the tensor into small grids of shape B ⇥ B
and computes the average value in each grid. Thus average
pool can be viewed as a dot product between a one vector 1
of length B2 (i.e., all elements are 1’s) and a vector of all values
in a grid. On the ReLU layer, ZENO shares the same circuit
as scalar-level zkSNARK frameworks since ReLU contains
only elementwise comparison.

Theoretical bene�t analysis. We summarize theoretical
bene�ts of ZENO circuit in Table 3. One signi�cant result is
that ZENO circuit requires $ (=) computation for dot prod-
uct while conventional circuit requires $ (=2) computation.
This generalizes to fully connected, convolution, and pool
layers with signi�cantly reduced complexity. This saving
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Table 3. NN layer complexity comparison between conventional circuit and proposed ZENO circuit.

IR Layer Input Shape # Gate # Wire # LC len(CriticalPath) Computation

Arithmetic
Circuit

Dot Product (=, =) 2= � 1 = = � 1 = $ (=2)
Fully Connected (< ⇥ =, =) <(2= � 1) <= <(= � 1) = $ (<=2)
Convolution (< ⇥ =, = ⇥ :) <: (2= � 1) <:= <: (= � 1) = $ (<:=2)
Pool (< ⇥ =), s <=

B2 (B2 � 1) 0 <=
B2 (B2 � 1) B2 � 1 $ (<=B2)

ZENO
Circuit

Dot Product (=, =) = + 1 = 1 2 $ (=)
Fully Connected (< ⇥ =, =) <(= + 1) <= < 2 $ (<=)
Convolution (< ⇥ =, = ⇥ :) <: (= + 1) <:= <: 2 $ (<:=)
Pool (< ⇥ =), s <=

B2 0 <=
B2 1 $ (<=)

leads to signi�cant performance improvement on zkSNARK
NNs with millions of gates. ZENO circuit also introduces a
constant critical path length of 2, in contrast to the length =
in conventional circuit. This exposes parallel opportunities
that can hardly be identi�ed in conventional circuit due to
complex dependency.

5.2 Workload-specialized Parallel Scheduler
Workload-specialized parallel scheduler identi�es the par-
allel computation opportunities during circuit computation
phase and exploits these opportunities for speedup. While
NNs have parallel opportunities in the same NN layer (e.g.,
fully connected layer), NNs are also intrinsically sequen-
tial across layers where leading layer needs to be computed
before following layers. This cross-layer dependency still
hurdles paralleling zkSNARK NN computation even with
ZENO circuit that improves parallelism within NN layer.
Naively parsing the circuit at NN level still leads to heavy
overhead.
We propose a lightweight dependency-aware workload

scheduler to identify cross-layer dependency in circuit and
map parallel workloads to individual threads. We have two
major observations. First, gates in the same zkSNARK NN
layer usually can be computed independently while gates
in later layers depend on gates in leading layers. Second,
the number of gates for a NN layer is proportional to the
number of computation in this layer. To this end, we pro-
pose a three-step design. First, based on the plaintext NN
with speci�c layer shapes, we �rst count the number of ad-
dition and multiplication in each layer. For example, given
a fully connected layer with shape" ⇥ # , there are" ⇥ #
multiplications and" ⇥ (# � 1) additions. Then, based on
this number of computation, we directly identify the gates
for each NN layer since each addition and multiplication is
mapped to exactly one gate in the circuit. Finally, we evenly
assign gates in the same layer to each thread for acceleration.

6 NN-centric System Optimization
In this section, we propose NN-centric system optimization
to further accelerate zkSNARK NN computation.

6.1 NN-inspired Computation Reuse
ZENO identi�es redundant computation in zkSNARK NNs
and removes such redundancy for improving performance. In
particular, we identify two types of computation reuse oppor-
tunities – frequency-based cache service for mitigating redun-
dancy when computing a single image and batch-specialized
constraint system sharing for mitigating redundancy when
computing a batch of images.

Frequency-based Cache Service. We build a lightweight
cache service to cache computation results of frequent operand
pairs during circuit computation phase, such as public weights
and constant coe�cients in average pooling. We have two
insights behind this design. First, zkSNARKNNs usually com-
pute with uint8 values since zkSNARK supports only com-
putation on �nite �elds (e.g., 254-bit integers). Since there
are at most 256 values for uint8, the same value appears
frequently. Second, NN weights and features usually follow
Normal distribution where many weights and features are
around zero, as widely observed in the NN algorithmic area
[31, 34]. This distribution makes many values around zero
appear frequently. To this end, cache service can improve
performance by reducing the number of expensive compu-
tations on _-bit �nite �elds (_ � 254). Since we only apply
cache service to public data, this does not lead to security
vulnerabilities such as timing side channels.

To mitigate the runtime overhead, we adopt a two-phase
design. During the o�ine pro�ling phase, we evaluate the
plaintext NN on a small set (=100) of images and pro�le the
frequency of addition and multiplication operand pairs. We
rank all pairs by frequency and keep the top-k(=5) values
and the computation results in a hash table. This o�ine
pro�ling introduces negligible overhead since it is only con-
ducted once on a plaintext NN. During the online compu-
tation phase, for each weight and data pair, we �rst search
the pair in the hash table and reuse the results in the hash
table. In this way, we can mitigate expensive security com-
putation for a large number of weight and data pairs that
appear frequently.

Batch-specializedConstraint System Sharing. We share
the constraint system across images when using the same
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zkSNARK NN to process a batch of images. Our key insight
is that the constraint system is a description of the zkSNARK
NN computation. Since we usually use the same zkSNARK
NNs to process a batch of images, the same computation
applies to each image such that the constraint system can
be shared. One speci�c example is the accuracy scheme in
ZEN [25], where the same zkSNARK NN is used to process
=(= 100) images for proving the accuracy of the zkSNARK
NN. To this end, ZENO provides a batch mode that takes
a zkSNARK NN and a batch of images. The generate and
circuit computation steps are only conducted once and the
constraint system is reused for di�erent images, leading to
improved overall performance. In particular, in the same con-
straint system, we assign di�erent values to input variables
according to images.

6.2 zkSNARK-aware NN Fusion
We propose zkSNARK-aware NN fusion to further reduce
the number of constraints for performance improvement.
Our key insight is that the number of constraints is pro-
portional to the number of computation in zkSNARK NNs.
While fusion has been utilized to accelerate non-zkSNARK
NNs [16, 26, 59], there are several intrinsic di�erences in ten-
sor fusion for zkSNARK NNs. First, fusion in non-zkSNARK
NNs usually target reducing memory access by avoiding
saving intermediate results in memory. In zkSNARK NNs,
we target reducing the number of computations which de-
cides the number of constraints and the latency of generating
zero-knowledge proofs. Second, fusion in non-zkSNARKNNs
usually fuses all element-wise computation (e.g., relu) with
convolution layers. However, many element-wise computa-
tion cannot be fused in zkSNARK NNs. For example, relu
layer cannot be fused since relu requires expensive compari-
son operator with hundreds of constraints in zkSNARK.
To this end, we propose pre-computation-based fusion to

reduce computation in zkSNARK NNs. Many NN layers in-
volve injective computation such as one-to-one scale and
addition. We can fuse such injective layers with convolution
and fully-connected layers. For example, consider a fully
connected layer . = ,- and a batch normalization layer
⌫# (. ) = W ⇤ . + V which is an injective layer. Naive ap-
proach is to independently prove the computation of these
two layers which leads to extra constraints. Instead, we can
precompute the fused weight value W ⇤, and directly prove
the computation of (W ⇤, )- + V to save constraints.

7 Evaluation
In this section, we comprehensively evaluate ZENO over
various datasets and popular NNs.

Baselines. We compare ZENO with Arkworks [4, 13],
which is the state-of-the-art zkSNARK framework andwidely
used in industry zkSNARK products [3, 15, 41]. We also com-
pare with two other representative zkSNARK frameworks,

Table 4. Neural Networks for Evaluation

Network Abbr. #FLOPs (K) Acc.(%)
ShallowNet SHAL 102 94.91
LeNetCifarSmall LCS 530 55.35
LeNetCifarLarge LCL 7,170 63.68
VggNet-16 VGG16 19,917 84.19
ResNet-18 RES18 32,355 85.45
ResNet-50 RES50 69,191 87.05

Bellman [62] and Ginger [33] for comprehensive compari-
son.

Datasets.We evaluate with two popular datasets (MNIST
and CIFAR-10) in secure deep learning �eld [22, 25, 29, 35,
36, 60]. MNIST [42] is a large dataset for handwritten digits
classi�cation with 60, 000 training images and 10, 000 testing
images in gray-scale with the shape of 28⇥28⇥1. CIFAR-10
[39] is a classi�cation dataset with 10 classes (e.g., cat and
dog). It contains 50, 000 training images and 10, 000 testing
images of shape 32 ⇥ 32 ⇥ 3.

Models.We evaluate six neural networks, as summarized
in Table 4. The evaluation of these six variants demonstrates
the performance of ZENO under diverse model sizes. In par-
ticular, ShallowNet [25] contains two fully connected layers
and one ReLU layer. LeNetCifarSmall and LeNetCifarLarge
are two variants of LeNet [43] with 5 layers but di�erent num-
ber of computation. VggNet-16 [50], ResNet-18 [32], ResNet-50
[32] have 16, 18, and 50 NN layers, respectively. We evaluate
ShallowNet on MNIST and all other models on CIFAR-10.

Experiment Con�guration. All the evaluations run on
a server with Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
and 503 GB DRAM.

7.1 End-to-End Evaluation
In this section, we show the end-to-end performance im-
provement fromZENO on various privacy settings. For exam-
ple, the privacy setting of private image and public weights
can be used when we only protect the user image privacy
(e.g., face image) and prove the user’s identity on a public
NN (e.g., a face recognition based door lock system). The
privacy setting of private weights and private images can
be used when we aim to protect both privacy-sensitive im-
ages (e.g., medical images) and weights (e.g., private NNs as
we discussed in §1). We skip the privacy setting of private
weights and public images since it shows similar results as
private images and public weights. We report the end-to-end
execution time summing all three phases for proof genera-
tion, including Generate, Circuit Computation, and Security
Computation. We measure the proof generation latency of a
single image with a batch size of 1.
Overall Speedup. We �rst show the overall speedup

when proving private images and public weights in Fig. 7.
Overall, ZENO achieves upto 8.5⇥ speedup than Arkworks.
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Figure 7. Overall speedup: private image & public weight. Figure 8. Overall speedup: private image & private weight.

Figure 9.Circuit computation speedup: private image & public
weight.

Figure 10. Circuit computation speedup: private image &
private weight.

Figure 11. Circuit computation speedup: convolution. Shape:
[#c_out, #c_in, kernel_width, kernel_height]

Figure 12.Circuit computation speedup: fully-connected layer.
Shape: [#c_in, #c_out]

This result shows that ZENO can signi�cantly improve the
performance of zkSNARK NNs. We also observe that ZENO
achieves higher speedup on large NNs (e.g., 8.5⇥ on VGG16)
than small NNs (e.g., 2.4⇥ on SHAL). The reason is that
tensor-type driven optimization (§5) reduces the quadratic
computation complexity to linear complexity for many NN
layers (e.g., fully connected, convolution, and pool). We high-
light that we reduce the latency of ResNet-50 from 5154 sec-
onds (around 1.5 hours) to 680 seconds (around 11 minutes),
which makes it promising to construct practical zkSNARK
NNs.

We show overall speedupwhen proving private NNweights
and private images in Fig. 8. We achieve up to 2.01⇥ speedup,
which shows the e�ectiveness of ZENO optimizations. We
also observe a similar trend as Fig. 7 that ZENO achieves
higher speedup on larger zkSNARK NNs. This validates the

bene�ts of tensor-driven optimizations in reducing the com-
putation complexity. Compared with Fig. 7, we observe a
smaller speedup. The reason is that our type-sensitive circuit
generation provides more aggressive optimization for the
setting with private weights and public images. This shows
the importance of considering privacy information (§4) when
optimizing zkSNARK NNs.

Raw Latency Comparison. We provide the raw latency
on an image in Table 5. We show latency on CPU following
popular zkSNARK frameworks. We observe a signi�cant
latency reduction from 398 seconds to 48 seconds for VGG16.
Although this is still a gap from non-zkSNARK NNs due to
the overhead from zkSNARK security scheme such as 254-
bit �nite �elds instead of 8-bit integers, we are the �rst to
bring zkSNARK NN into the practical realm. For example,
a user may spend 8.5 seconds for lightweight models such
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Figure 13. Security comput. speedup from knit encoding Figure 14. Overall performance: proving n (=100) images

Figure 15. Speedup over Bellman and Ginger

Table 5. Latency measured on Intel Xeon Gold 5218 CPU.
Unit: Seconds

Model Arkworks ZENO non-zkSNARK NN
SHAL 5.1 2.1 0.2
LCS 19.6 8.5 0.8
LCL 120 15.3 1.4

VGG16 398 48 4.2
RES18 826 102 8.9
RES50 5440 680 54

as LeNet or 48 seconds for heavy models such as VGG16 to
prove his identity without revealing his face image to the
access control system. This is a signi�cant improvement in
protecting user privacy given the wide deployment of such
systems. We note that GPUs can further accelerate zkSNARK
by an order of magnitude [27] and may reduce the zkSNARK
NN latency to millisecond-level. We leave GPU support as
future work.

7.2 Optimization Analysis
In this section, we show speedup from individual ZENO
optimizations.

Performance bene�ts on circuit computation step for
entire NNs.We show speedup on circuit computation step
for private images and public weights in Fig. 9. Overall, we
achieve speedup of 67.7⇥ on average (from 15⇥ to 150⇥) for
circuit computation step. This speedup increases as zkSNARK
NN size increases due to our ZENO circuit (§5.1) that reduces

quadratic complexity to linear complexity. On individual
optimizations, we observe 8.7⇥ speedup from ZENO Circuit
(§5.1), 1.2⇥ speedup from frequency-based cache service
(§6.1), and 6.2⇥ speedup from workload-specialized parallel
scheduler (§5.2). These results show bene�ts of individual
optimizations on reducing zkSNARK NN latency.
We show speedup on circuit computation step for pri-

vate images and private weights in Fig. 10. We have sim-
ilar observations as the case in private image and public
weights. In particular, we observe 9.4⇥ speedup on aver-
age (from 2.5⇥ to 24.6⇥). On individual optimizations, we
observe 2.9⇥ speedup from ZENO circuit, 1.1⇥ speedup
from frequency-based cache service, and 2.9⇥ speedup from
workload-specialized parallel scheduler. Similar to the case in
§7.1, this speedup is smaller than the case for private weights
and public images. This shows importance of privacy-type
driven optimizations (§4) that customize the circuit genera-
tion and encoding methods according to privacy types.

Performance bene�ts on circuit computation step at
NN layer level.We further show the circuit computation
speedup at NN layer level in Fig. 11 and Fig. 12. We focus
on the two most time consuming layers – convolution and
fully connected layers, under the privacy setting of private
images and public weights. We omit the privacy setting of
private images and private weights due to page limits. We
achieve up to 315.6⇥ speedup on convolution layers and
10.5⇥ speedup on fully connected layers. This result matches
up to 150⇥ circuit computation speedup at NN level in Fig. 9.
We achieve higher speedup on convolution layers which gain
more bene�t from ZENO circuit due to the larger number of
dot products. We also observe an increasing speedup on both
convolution layers and fully connected layers as the layer
size increases, thanks to the tensor-driven optimization that
reduces computation complexity of circuit computation step.
Speedup on security computation from knit encod-

ing.We show knit encoding bene�ts in Fig. 13. We show the
result for private weights and public images, as discussed in
§4.2. Overall, we achieve up to 3.63⇥ speedup. The reason is
that knit encoding can e�ectively reduce the number of con-
straints, which decides the latency in security computation
step. We observe that speedup increases from 1.03⇥ to 3.63⇥
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as NN size increases. The reason is that, in larger zkSNARK
NNs, fully-connected, convolution, and pooling layers ac-
count for larger portion of security computation latency such
that knit encoding can bring more bene�ts.

Bene�ts from sharing when proving n (=100) images.
We show the speedup from batch-specialized constraint sys-
tem sharing (§6.1) in Fig. 14. While the latency of circuit
computation step has been signi�cantly reduced, we can still
observe 6.5% speedup from this optimization. The reason
is that the constraint system represents the computation
procedure of a zkSNARK NN with constraints which can be
assigned di�erent values for di�erent images.

7.3 Compared with other Frameworks
In this section, we further compare ZENO with two other
representative general zkSNARK frameworks – Bellman
[62] and Ginger [33]. These two frameworks are general
zkSNARK framework and do not provide direct support for
zkSNARKNNs. They require constraints (Eq. 1) as inputs and
cannot automatically compile arbitrary arithmetic function
to constraints. We manually port compiled constraints from
ZENO into Bellman and Ginger and compare security com-
putation latency. We show results in Fig. 15. We demonstrate
the performance on two fully-connected layers with shape
[#in_channels, #out_channels] and two convolution layers
with shape [#out_channels, #in_channels, kernel_width, ker-
nel_height]. Overall, we observe that ZENO achieves 4.09⇥
speedup over Bellman and 5.26⇥ speedup over Ginger. These
bene�ts come from our NN-tailored optimizations such as
privacy-aware knit encoding. Comparing across layers, we
observe 1.7⇥ to 6.8⇥ speedup over Bellman and 4.9⇥ to 6⇥
speedup over Ginger. This result demonstrates the consistent
bene�ts from ZENO on various layers.

8 Discussion
Privacy-preserving NN Techniques. To protect diverse
aspects of NN privacy, many techniques have been designed.
On the training side, MPC [37, 38] enables multiple parties
to collaboratively train a NN without sharing training data.
Di�erential privacy [1, 5] prevents extracting sensitive in-
formation in training data (e.g., data related to a speci�c
person).

On the inference side, FHE [19, 21, 22] helps private com-
putation outsourcing to remote servers where other persons
cannot know the encrypted data or computation results.
Instead, zkSNARK NN [24, 25, 28, 44, 46] enables users to
generate proof on local machines which could be veri�ed
by other persons or companies. This proof could serve as a
digital passport, as deployed in World ID.

Practical Applications of zkSNARK NNs.We envision
that zkSNARK NN will play a critical role in NN industry
given the increasing awareness and regulation of privacy.
Existing applications include World ID [18] for user identity

and Leela vs the World [40] for AI chess models. Furthermore,
we envision more applications in access control systems
where zkSNARK NNs allow users to prove their identity
without sharing face images with commercial companies.
With ZENO, a laptop can generate proof within 2.1 seconds
on a CPU which makes it possible to deploy in access control
systems. This latency can be signi�cantly reduced by orders
of magnitudes with the help of server GPUs or even mobile
GPUs such as Jetson Nano. We leave this as future work.
We expect this application to become an industry standard
when deploying neural networks in access control systems
and more.

9 Conclusion
In this paper, we propose a ZENO (ZEro knowledge Neural
network Optimizer) framework for e�cient zero-knowledge
NN inference. Speci�cally, we design a set of ZENO lan-
guage constructs to maintain high-level semantics and type
information while accommodating a more aggressive compi-
lation from a zkSNARK NN to a gate-level circuit. We then
propose several privacy-type driven and tensor-type driven
optimizations to further optimize the generated zkSNARK
circuit. Finally, we propose NN-centric system optimizations
to further accelerate zkSNARK NNs. Extensive experimental
results show that ZENO outperforms the state-of-the-art
zkSNARK framework across diverse applications.
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A Artifact Appendix
ZENO is a type-based optimization framework for accel-
erating zero-knowledge neural network (zkNN) inference.
It exploits the privacy type and tensor type information of
zkNN to accelerate the computation of zero-knowledge proof
generation. ZENO supports diverse neural networks from
small models (e.g., LeNet) to large models (e.g., ResNet-50).

A.1 Artifact check-list (meta-information)
• Compilation: Rust 1.43.0

• Hardware: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz and
503 GB DRAM

• How much time is needed to prepare work�ow (ap-
proximately)?: 30 minutes

• How much time is needed to complete experiments
(approximately)?: 10 hours

• Publicly available?: Yes

A.2 Description
A.2.1 How to access. The project is open-sourced at Github
1. It consists of three parts.

• Arkworks: A fork of Arkworks implementation for ZK
Proof as the baseline.

• ZENO-engine: Implementation of ZENOoptimizations.
• zkNN-circuit: Implementation of zkNN circuits, in-
cluding both baseline implementations and optimized
implementations with knit encoding.

A.2.2 Hardware dependencies. A consumer laptop is
su�cient to generate zk proof for small neural networks such
as LeNet. To generate zk proof for large neural networks
such as ResNet-50, a machine with large (e.g., 256 GB or
more) RAM is necessary.

A.3 Installation & Experiment
• Please follow this instruction to install Rust 2.
• We test the code using rustc 1.43.0. Use ‘rustup
override set 1.43.0’ to specify the rust version for
compilation.

• Since many Rust dependency packages may not be
backward-compatible, we strongly recommend build-
ing the code with the provided Cargo.lock. Please refer
to run.sh �le for details.

A.4 Evaluation and expected results
In zkNN-circuit/, we include three directories

• baseline-one-private/: Baseline with private im-
age and public weight.

• baseline-both-private/: Baseline with private im-
age and private weight.

• all-optimizations/: Optimized circuit implemen-
tation.

In each directory, please use ‘sh run.sh’ to run experi-
ments, which show results in ‘result/’ directory. For exam-
ple, on AWS c6a.48xlarge, we expect the circuit computa-
tion latency of LeNet-Cifar-Large (LCL) to be 47.8 seconds
in ‘baseline-one-private/result/’ and 1.1 seconds in
‘all-optimizations/result’, leading to a 43.5⇥ speedup.
This is slightly better than the reported speedup of 35⇥ in
Fig. 9.

1https://github.com/BoyuanFeng/ZENO
2https://www.rust-lang.org/tools/install
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