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The Critical Locus and Rigidity of Foliations of
Complex Hénon Maps

Misha Lyubich and John W. Robertson

Abstract

We study Hénon maps which are perturbations of a hyperbolic polynomial p with
connected Julia set. We give a complete description of the critical locus of these maps.
In particular, we show that for each critical point ¢ of p, there is a primary component
of the critical locus asymptotic to the line y = ¢. Moreover, primary components are
conformally equivalent to the punctured disk, and their orbits cover the whole critical
set. We also describe the holonomy maps from such a component to itself along the
leaves of two natural foliations. Finally, we show that a quadratic Hénon map taken
along with the natural pair of foliations, is a rigid object, in the sense that a conjugacy
between two such maps respecting the foliations is a holomorphic or antiholomorphic
affine map.
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Preamble

This paper was written in 2005-2006, but has never appeared even as a preprint. Meanwhile,
the results have been developed further and have found some applications, see [Firl2, Tan16,
FL17]. We are grateful to Tanya Firsova for insisting that this paper should be made available
and for helping with the proof reading.

Introduction

The family of Hénon maps are a basic example of nonlinear dynamics. Both the real and
the holomorphic versions of these maps have been studied extensively, and yet there is still
a great deal that is not well understood about them. Some of the sources of fundamental
results about Hénon maps are [FM89], [FS92], [HOV94], [HOV95], [BS91a], [BS91b], [BS92],
[BLS93], [BS98al, [BS98b], and [BS99].

In this article we study holomorphic Hénon maps of C2. These are maps of the form

()¢

where p is a monic polynomial of degree d > 1. Hénon maps have constant Jacobian, and
the parameter a is the value of the Jacobian. In the degenerate case where a = 0 the map

reduces to fy (;) = (p E;)> and we see that the Hénon map degenerates to the polynomial

map p(x), acting on the copy of the complex plane given by the curve x = p(y).

The Hénon maps we study here are perturbations of hyperbolic polynomial maps with
connected Julia set. The Julia sets and natural foliations of these maps was described in
great detail by Hubbard and Oberste-Vorth in [HOV94] and [HOV95]. In this paper we will
describe the tangency locus between the natural foliations and will derive from it that the
Hénon map endowed with the pair of foliations is a rigid object.

Let us now outline the content of the paper in more detail.

Throughout Section 1 we will recap results of Hubbard & Oberste-Vorth [HOV94] keeping
careful track of what happens as the Jacobian of the Hénon map goes to zero. When the
Jacobian is equal to zero, the map degenerates, but the foliations and plurisubharmonic
functions associated to the map persist, and become easy to analyze.

In Section 2 we present basic facts about the critical locus and, by direct calculation,
obtain a description of the tangent spaces to its primary components at infinity.

In Section 3 we recall relevant material from [HOV95] concerning the stable and unstable
foliations and describe the critical locus when the Jacobian is zero.

In Section 4 we construct tubes that trap the components of the critical locus as the
Jacobian varies away from zero. This allows us to prove that the primary horizontal compo-
nents of the critical locus are punctured disks. We then show that every component of the
critical locus is an iterate of a primary component.

In Section 5 we describe the holonomy maps on a primary horizontal component of the
critical locus along the natural foliations.



CONTENTS
CONTENTS

The pair of natural of foliations of a Hénon map can be thought of as giving natural
coordinates near infinity. In Section 6 we prove that if a conjugacy between two Hénon maps
in question respects these foliations then it is forced to be holomorphic or antiholomorphic
near infinity. For degree two maps, this implies that it is actually affine, which is our main
rigidity result.

A list of notations is provided as a reference at the end of the paper. These notations
are used with the following convention.

Convention 0.1. When we extend a certain object from C? to P! x P! we add a hat to the
symbol to distinguish it, unless there is no chance for confusion. When referring to a set with

the subset {a = 0} removed we append the symbol x as a superscript to the symbol denoting
that set.



THE FOLIATIONS NEAR DEGENERACY

Part 1
Foliations.

1 The Foliations near Degeneracy

1.1 The Foliations.

In this section we define the foliations associated to a Hénon map. These foliations are not
new, they were introduced and studied in [HOV94]. We give a careful development of them
from scratch, following the same methods as [HOV94], in order to study what happens in the
degenerate case, and to have a good handle on these foliations as the Jacobian a is allowed
to vary.

In studying Hénon maps it is common to define domains V; and V_ such that f,(V) C
Vi and f,;1(V_) C V_ and such that every point that has unbounded forward orbit eventually
enters V., and every point with unbounded backward orbit eventually enters V_. We will
give precise definitions of these domains shortly.

We first recap the construction of the functions ¢, ,: V. — C and ¢, _: V_ — C, both
of which are holomorphic for a in some disk such that ¢, , o f, = api . and @, (x,y) ~ x for
2| > |y as |z| = oo and @, _o fi! = ¢ _/a holds' for a # 0 and @, _(x,y) ~ y for |y| > |z|
as |y| — oo.

Throughout this paper it will be convenient to consider the highest term of p(x) sepa-
rately, thus we write p(z) = x9+q(x) where d > 2 and deg q(z) < d. We also let d’ = deg q(z).

We want to construct domains V. and V_ where functions ¢, , and ¢, _ are defined for
all a in the disk Dy of radius R. We will need to control convergence of an infinite product to
construct ¢, , and ¢, and will choose a value r which will control the rate of convergence
of this series.

Fix values 0 < r <1 and R > 0, and choose o > 0 such that

R+1
. ‘ q(z) ‘ .
y ly*1|
 [p(y)l > 2R+ 1)yl

whenever |y| > a.
We then define the domains V, and V_ to be given by

V—i— = {(l’,y)”fﬂ > |y| and |JZ| > CY},
Vo =1z, y)llyl > |z] and [y[ > o,

We let (mn) =
Y

n

1
fon (";) for n € Z so x,, and y, are polynomial functions in z, y and —
a

a

for n < 0 and =z, and vy, are polynomial functions in z, y and a for n > 0.

!The definition of ¢_ given in [HOV94] has an inconsistency that is trivial to correct, but is essential to
our calculations (specifically the conditions ¢, _ ~y and ¢, _o f~! = wgﬁ are incompatible).
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THE FOLIATIONS NEAR DEGENERACY
1.2 Degeneration of ¢, .

Lemma 1.1. Let a € Dg. If (z,y) € V_ then |x_1| = |y| > |z| and |y_1] > 2|y| = 2|x_4].
Thus f71 (V) CV_.

Proof. The statement about x_; is obvious. For y_; we have

—x - 2R
| = ‘p(y) > p(y)] = Iyl 2Rly|

> > > 2yl.
a |al |al

O

Lemma 1.2. Let a € Dg. If (x,y) € Vi then |yi| = |z| > |y| and |x1] > (R + 1)|y1| =

(R+ D|z|. Thus f,(V,)C V..

Proof. The statement about y; is obvious. For z; we have

1] 2 [p(2)] = |ay| = [p(x)| = Rlz[ = (R+1)|z[ = (R + 1)|u].

O

1.2 Degeneration of ¢, .

We are chiefly interested in the degenerate case (a = 0) and perturbations of this case (a
small). We start by working out the degree of x_; and y_; as polynomials in y and in —. In

a
doing so it will be convenient to make the definition o, =1 4+d +d?> +--- +d* ' for k > 1
and o5, = 0 for £ < 0.
By an easy induction we obtain

Lemma 1.3. Given that k > 1 then the leading term of y_i(x,y,a) is

1 dk—1
P (p(y) — =)
if y_x is considered as a polynomial in 1/a. The leading term of y_y(x,y,a) considered as
a polynomial in y is just the term ydk/a"’“ of it’s leading term in é Since v_i(r,y,a) =
Y—b—1y(x,y, a) this also gives us the leading terms of x_i(x,y,a) in % and in y except that
33',1(‘%, Y, Cl) =Y.

The function ¢, _ is constructed as a limit

Pa,— = lim (y—n : aan)d%7
n—oo
with an appropriate choice of the branch of the root. We are interested in this as a function
of V_ x Di where (z,y) € V_ and a € Dg. Sense is made of the above limit using the
telescoping formula

: 1. ay 1 ay—2
sﬁa,f(xay):g{)loy'exp@log i +$10gy7_1+m> (1.1)



THE FOLIATIONS NEAR DEGENERACY
1.2 Degeneration of ¢, .

We are most interested in this about the point a = 0 (where the map f, degenerates and
¢, can no longer be defined using its relationship with f,).
We note that

ay—r  PY-(k-1)) — T_(k-1) _
d = d =1+

Q(Y-(k—1)) — T—(k—1)

Y- (k-1) Y (k-1 yi(kq)
Let ( )
_ AQY—-(k-1)) = T—(k—1
sp(@y,a) = ——=De =D, (1.2)
Y1)
Lemma 1.4. |s.(z,y,a)| <7 forz,y € V_,a € Dg, k> 1.
Proof. We have:
—e—))| F |T_ 1
57| < lg(y- 1)d)| |7 (k1) ‘CI k-1) ‘ N _
Y2 ooy y? (k—1) Ui (k 1|
]

We evaluate log Z —

Y (k—1)
log(1+ s;,) < —log(l —r). Hence the series

= log(1 + s;,) using the principal branch of log. By Lemma 1.4,

1 ay-1
-1 1 1.3

converges uniformly and absolutely to a holomorphic function bounded by
—log(1—1r)
d—1

ay2

. Letting B = (r — 1)7ﬁ, we conclude:

Corollary 1.5. ¢, as defined by equation (1.1) is holomorphic as a function on V_ x Dg
with (z,y) € V_ and a € Dg. Moreover B~ < ‘ Lo ’ < B.

It will be convenient at times to understand the behavior of ¢, _ in a suitable compacti-
fication of C2. By the Riemann Extension Theorem (see e.g. [GR84] page 132),

Corollary 1.6. Let V_ denote the union of V_ and the line y = oo in P! x P!, with the
Pa

point (00, 00) excluded. Then === extends holomorphically to V_ x Dg and the norm of the
extension is bounded above by B and below by B~!

Later, when we study the extension of Pa- Jescribed above it will be useful to understand

the behavior of s, near infinity. Lemma 1.3 implies:
1

Lemma 1.7. Letting v = — then s, (x,y, a) vanishes to order at least d*~' in v.
Y

Corollary 1.8. ¢, _(z,y) ~y as |y| — 0.



THE FOLIATIONS NEAR DEGENERACY
1.2 Degeneration of ¢, .

1 1
Proof. We know that o (Ty) _ exp(c—llog(l +s7) + ﬁlog(l +s5) + > Since s,

vanishes in v for all k£ we see that this infinite sum is a holomorphic function in V_ x Dg
that vanishes in v. O

Let us now study the behavior of a — ¢, near a = 0.
Lemma 1.9. s; (z,y,a) vanishes in a precisely to order
e (d—d)-ox_1 for q nonconstant;
e d-0p_1— 0p_o for q constant.
Moreover, s; (x,1/v,a) vanishes in v precisely to order
o (d—d)d*t for ¢ nonconstant.
o d* — d"2 for q constant and k > 2,

e d for q constant and k = 1.

1

Proof. Tt follows from Lemma 1.3 that the denominator of s, is a polynomial in — of degree
a

d- Of—1-

1
The numerator of s, is a polynomial in — of degree
a

e d' -0, for ¢ nonconstant;
® 0,_o for g constant.

To justify that the highest degree terms in the numerator never cancel, observe that it is
impossible for the degree of ¢(y_(x—1)) to match the degree of x_(;_1) as polynomials in 1/a
except when k£ = 1 or when ¢ is constant and k& = 2. It is easy to check that the Lemma still
holds in these cases.

The last assertion also easily follows from Lemma 1.3. O

Lemma 1.10. ¢, (z,y) = (p(y) — 91:)é + ah(x,y,a) for some holomorphic function h on
V. x DR-

Proof. According to Lemma 1.9 all s, kK > 2, vanish at « = 0 and hence the series (1.3)
ay-1
d

1
takes the form pi log + ag(x,y, a) for some holomorphic function g(x,y,a) on V_ x Dg.

Hence by (1.1)

Yo (T, y) =y - exp(cll log %) . exp(ag(:c, Y, a)) = (p(y) — ac)é exp(ag(x, Y, a)),

and the conclusion follows. O

The domain f,(V_) swells as a — 0 to include all of C? except the curve C'(p). We make
this precise:



THE FOLIATIONS NEAR DEGENERACY
1.3 Degeneration of ¢,

Lemma 1.11. Given (z,y) € J; = C(p) then (z,y) € fu(V_) for all sufficiently small values
a. More generally if K @ C%\ C(p) then K C f.(V_) for all sufficiently small a.

Proof. This follows because (z,y) € f,(V_) iff |p(y) — x| > a|a| and |p(y) — z| > |y||la|. O

We let 05 _ = {(z,y,a)|(z,y) € f*(V_),a € D%} and we let U, _ be the union of Ty, _
and the set {(z,y,0)|(z,y) € C(p)}-

Lemma 1.12. Gwen k > 1 then gogi extends from a holomorphic function on V_, to a

holomorphic function on Uy _ by defining cpgi(x,y) = a%%p, _(f(x,y)) for a # 0 and
d* dk—1
et (z,y) = (p(y) — )

Proof. If a # 0 then we can extend the function cpgi to be holomorphic on f2*(V_) by
defining gogi (z,y) = a®pa_(f7*(x,y)). This agrees with gogi on V_.
According to our definition and Lemma 1.10

k g
5 (,y) = ™o (2 g, Y1)
1
= a”ky_k . (1 + C](Z/I;L_M) d + GJH_Ukh(l'—k,y—k) (1.4)
—k

= a%y_i(1+ 5, (@) +a P h(rp, y-r)
for (z,y,a) € By . Now (v_4,y,) € V- when (z,y,a) € U; _ and so y_, # 0. Also
g (x_g, y—) is defined and holomorphic since y_; # 0. From Lemma 1.3 we see that a”y

k—1

is a polynomial in z, y,a whose only term not divisible by a is (p(y) — x)d . By Lemma 1.9

k—1
s, vanishes in a and so gogi (z,y) = (py) — a:)d gives a continuous, and therefore, a

holomorphic, extension of gpﬁi to Yy, _. m

We let both J; and K| denote the curve p(y) —z = 0. It follows from the previous result
that this is consistent with the convention that J, and K, will denote the sets J_ and K_
for the parameter value a.

1.3 Degeneration of ¢, .

Here we include the corresponding constructions for forward iterates.

Lemma 1.13. The leading term of xy(x,y,a) is 2 if . is considered as a polynomial in
x. The leading term of yp(z,y,a) is 2" as a polynomial in x.

U1 z Yk

(p(l’k—l) - ayk_1>' O

Proof. This follows from an easy induction using (xl) = (p () —ay) and <$k) =

Tr—1

The function ¢, is constructed as a limit ¢, , = lim, o xndLn with an appropriate
choice of root on the domain V, x Dg. Sense is made of this using the telescoping formula,



THE FOLIATIONS NEAR DEGENERACY
1.3 Degeneration of ¢,

. 1 T 1 i)
Yo+ (2,Y) :nh_glox-exp(E logﬁjtﬁlogx—cll—i----) (1.5)
Letting s} = q(xk_l)d_ L gjk =1+ s, we see that
Th—1 Th—1

Lemma 1.14. |s;(z,y,a)| <1 for (z,y) € Vi,a € Dpg.

Proof.
q(zr—1)| + Rlyr—1] q(Tp_1) R
sl < d < d ‘ a1 <7
Tk—1 Th—1 |21
]
We evaluate log jk = log(1+ s;) using the principal branch of log. Since |s}| < r then
Th—1

|log(1 + s{)| < —log(1 — r) exactly as before for s;. It follows that the series

1 T 1 T 1 T3
Elogﬁ+ﬁlogx—?+$logx—g+~~ (1.6)
converges absolutely and uniformly.
1 —log(1 —
Since |ﬁ10g :gk | < og;k r) then the infinite sum (1.6) is no larger than log B =
Th—1
“oe(] —
%. We conclude that

Corollary 1.15. The function ¢, , defined by equation (1.5) is well defined and holomorphic
for all (z,y) € V, and all a € Dg. Additionally B~! < ‘ Por | < B,
x

Proof. The final claim follows immediately from the expression (1.5) and the bounds just
derived on the series (1.6). O

For the next lemma we consider C? as lying in P! x P!

Corollary 1.16. Let V+ denote the union of V_ and the line x = 0o in P! x P*, with the point

Pa extends holomorphically to V+ x Dg and B! < ‘ Pot < B.
x x

(00, 0) excluded. Then

Proof. This follows from the Riemann extension theorem (see e.g. [GR84] page 132). O]

In order to better understand this extension we will need to understand s;; on this ex-
tension. We extract the relevant information in the following lemma.

1
Lemma 1.17. Letting u = — then s} (z,y,a) vanishes to order at least d*~' in u.
x

(J(Zﬂk_l(l/U, Y, (I)) - ayk—l(l/ua Y, Cl)
xz—1(1/U, Y, (l)
and denominator by u® this follows from Lemma 1.13. O

Proof. Writing s, =

and multiplying the numerator

10



THE FOLIATIONS NEAR DEGENERACY
1.4 The Functions G and G, .

Corollary 1.18. ¢, (z,y,a) ~ z as |z| — oo.

a,+ (s 1 1 . :
Proof. We know that Par (TY) = exp(a log(1+sf)+ﬁ log(14s3)+- - > Since s} vanishes

X
in u for all £ we see that this infinite sum is a holomorphic function on V, x Dy that vanishes
in u. [l

We now have an expression for ¢, , as z multiplied by the exponent of a uniformly
convergent sum of functions which are holomorphic for (z,y) € V, and a € Dg.

We let Uiy = {(z,y,a)|f*(z,y) € V},a € Dg}.

Lemma 1.19. For each k > 0 the function gogi extends to a holomorphic function on Uy, 4

given by by gogi = @4 0 f¥. The function pq . is defined and holomorphic on all of C*\ K
and is the Bottcher coordinate b,(z) of p(x).

Proof. Unlike the case of ¢, _, there is no difficulty in case a = 0 here. It is immediate that
©q,+ 1s holomorphic as a function on Vi x Dg. It is clear from the definition that ¢g , is the
Bottcher coordinate by,(z) of p(z). The rest of the Lemma is obvious. O

1.4 The Functions G/ and G,.
Definition 1.20. We follow the standard convention that U = C*\ K} and U, = C*\ K.
We define Ut = {(z,y,a)|(z,y) € Uf,a € Dg} and U~ = {(x,y,a)|(z,y) € U, ,a € Dg}
with the convention that U, = C?\ C(p).

Lemma 1.21. The sets Ut and U~ are open in C3.

Proof. Ut =, f(V}) (even when a = 0) and therefore U+ is open. The result follows
for U~ by a similar construction for a # 0 and by Lemma 1.11 for a = 0. O

Another fact we will want is
Lemma 1.22. If p is hyperbolic then no point interior to K lies in the closure of Ut.

Proof. This is a trivial consequence of the fact that any point interior to K is attracted to
an attracting cycle. O

We recall? the Green’s functions

_ | log|pa(z,y)| (x,y) € US
g;(xvy):{o | +( )| Ex7y§€K+

and

) [ loglpa-(zy)l (z,y) € Ug
G @,y) = logla|  (z,y) € K.

d—1

2Again with the correction in G, similar to the one made for ¢, . Notice that it makes the second
Green function to be a non-zero constant on K, .

11



THE FOLIATIONS NEAR DEGENERACY
1.4 The Functions G and G, .

We take the value of G; (z,y) to be —c0 if (z,y) € C(p), i.e. if x = p(y). These satisfy
g; o fa =d- g;_

and
G-of.t=d-G; —logla] fora# 0.

This second relation is sometimes more conveniently written

(G -

loglal) o fi' =d- (G, —

log |al).

d—1 d—1

Convention 1.23. We will sometimes write G (z,y,a) for Gi(x,y) and G~ (x,y,a) for
G, (z,y). This will be convenient, for instance, when postcomposing G* with function whose
output lies in C? x Dpg.

Hubbard & Oberste-Vorth proved that the Green’s functions are continuous when f, is
nondegenerate and the same argument gives continuity in x, y and a for G when a = 0. We
extend this to G, when a = 0.

Theorem 1.24. The functions G} (x,y) and G, (x,y) are continuous in xz, y and a for
a € Dg.

Proof. This follows by the same argument as is used in [HOV94] except in the case of G~
when a = 0. For (2/,y') € C(p) the continuity of G, at (z/,y') and a = 0 follows from
Lemma 1.12. For (2/,y') € C(p) more work is required. If we restrict G, to the slice a = 0
then we already have shown continuity, so we will assume for most of the rest of this proof

that a # 0 (so f; ! is defined).
If f~"(x,y) € V_ then B~! <

‘ Pa,(T—n; Y-n) ‘ < B by Corollary 1.5. and so B! <
Y-n

a" (. 1
| M | < B. Applying log to the right hand inequality yields G, (z,y) < o log B +
a"ny,n n
1 1
o log | a®y_y | . Now (x_n,y—n) = fo"(,y) = [ (T (a=1)s Y=(n—-1)) = (Y=(n-1) a(p(y_m_l))—
1
l'_(n_l))). Therefore y_,, = a(p(y_(n_l)) — y_(n_g)) for n > 2.

We let z_,, = a’"y_,, from which it follows that

B—n = p(z,(n,1)7 aanfl) - agn_gnfz_lzn_z for n > 2.

where zp = y and z_; = p(y) — x. Writing our bound for G, (z,y) in terms of z_, we get:

1 1
G (2,y) < -7 log B+ - log |z (1.7)
it £ (x,y) € V..
We use the convention that p(z,y) = y?p(z/y). Now fix a constant C' > £ to be greater
than (d + 1) times the absolute value of the largest coefficient of p(x,y). It is then evident
that |p(z,y)| < C max{|z|?, |y|*}. Thus from the recursion relation for z_,, we have

l2_n] S max{2- | plz_no1),a™ ) |,2 |a” 72 2 gy | }

12



THE FOLIATIONS NEAR DEGENERACY
1.4 The Functions G and G, .

< max{2C|z_(u1)|%, 2Cal* 7 2a ™ T 2 )}

1
Let €, be an arbitrary positive number satisfying €, < Yol Given a point (2/,y") € C(p)

consider the neighborhood
~ 1
U(e,) = {(x,y,a) ‘ Ip(y) — 2| < €, |a] < min{2Ce%, 5} and |a|?ty| < C’eg}

of (a',4/,0) € C? x Dg. Let U*(e,) = U(e,) N (C? x D) Tt can be shown by induction that

|2_p| < (2C)7"e?" for (z,y,a) € U*(e,) and n > 1. (1.8)
1 1 n
Combining equation (1.7) and equation (1.8) gives G, (x,y) < o log B—i—d—n log ‘ (2C)omed

if (z,y,a) € U*(e,) and f;"(x,y) € V_. If (x,y) & J; then f"(z,y) € V_ for all sufficiently
large n so we can take the limit as n — oo and conclude that G, (z,y) < 10g(|2C’|ﬁev). On

the other hand, if (z,y) € J, then G, (z,y) = p—

We conclude that given any M > 0 and any (2/,y') € C(p) then there is some €, such that
G (z,y) < —M when (x,y,a) € U*(e,)\ J;, and some ¢, such that if [a| < €, and (z,y) € J;
then G, (z,y) < —M. Also there is an open subset of a = 0 about (2’,y’) on which the values
of G, are always smaller than —M. Combining these sets gives a neighborhood of (z’, 4/, 0)
on which G, (z,y) < —M. Hence G, is continuous in x, y and a. O

log |a| by definition.

13



THE CRITICAL LOCUS NEAR INFINITY.

Part 11
The Critical Locus.

2 The Critical Locus near Infinity.

2.1 The Foliations and the Critical Locus.

The fibers of ¢, , and ¢, _ form holomorphic foliations of V, and V_ respectively. These
foliations naturally extend to much larger sets using dynamics.

Lemma 2.1. The holomorphic foliations defined by @, . on Vi and p,_ on V_ can be
extended to all of U and U~ respectively. The resulting foliations, which we denote F and

F, respectively, are respected by the dynamics.

Proof. This is a consequence of Lemma 1.12 and Lemma 1.19. O]

Notation. We will use £} (z) to mean the entire leaf of F passing through z, and similarly
for £ (z). Given a set B C C* and a point z € B, we will use £ (z, B) (resp. L;(z,B)) to
denote the connected component of £ (z) N B (resp. £,(z) ) containing z.

Definition 2.2. Given any holomorphic foliation F on a two dimensional complex manifold
M and a point z € M we will say that a holomorphic function g defined in a neighborhood
N of zis a local defining function for F if for each leaf L of F, g is constant on each connnect
component of LN N and if dg is never zero.

Given a pair of holomorphic foliations F; and F; on a two-dimensional complex manifold,
the critical locus C of F; and F5 is the complex variety given locally as the zero set (counting
multiplicity) of the holomorphic function h satisfying hdx Ady = dg; Adgs for a pair of local

991092 092 Og1

definining functions ¢g; and g, of F; and JF5 respectively. Equivalently h = — — — ———
Oor Oy Ox Oy

and hence C is equal to the critical set (counting multiplicity of components) of the map
(@, 9) = (91(,9), g2(2,9)).

It is straightforward to check that altering the choice of local defining functions for the
foliations only results in multiplying A by a nonvanishing holomorphic function. It is clear
that the critical locus of a pair of foliations is exactly the set of points on which the foliations
are tangent. However, some care must be taken, as it is possible that some components of
the critical locus have multipliciy higher than one. An example is given by the foliations
with local defining functions x and z 4 2%y. The critical locus is defined by 22, which is the
y axis, but with multiplicity two. Under the circumstances we are interested in we will be
able to verify that every component of the critical locus has multiplicity one. Until that is
done we will need to take into account multiplicity of components when dealing with the
critical locus.

Definition 2.3. Let €, be the critical locus of the foliations F,; and F,. It is easy to

a
confirm that €, is a closed analytic subvariety of U} N U, invariant under f,.
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THE CRITICAL LOCUS NEAR INFINITY.
2.1 The Foliations and the Critical Locus.

Observe that since we can define ¢, , on all of U, up to local choice of a root then we
can define log ¢, , on all of U} up to local addition of a constant, and therefore dlog ¢, , is
a global holomorphic form on U/ . Similarly for dlogy, on U,. If we fix a and consider
dlogp, . ANdlogy, = w.(z,y)dz A dy we get the same result as if we compute d with a
nonconstant obtaining

dlogy, Adlogy_ Ada =w(x,y,a)dz Ady A da

in the sense that w(z,y,a) = we(z,y). Since p,, and ¢,_ do not vanish in C? then
dlog ., Adlogg, A da and any local branch® of de7! A dp~? A da are just multiples
of each other by a nonvanishing holomorphic function. Thus on the common domain of
definition w and w, are multiples of each other by a nonvanishing holomorphic function.

Definition 2.4. The variety defined by @ in U N U~ will also be called the critical locus
and will be denoted by %. For each a it is exactly the locus along which the foliations defined
by ¢, and ¢,  are tangent, and is equal to .

Lemma 2.5. Assume X is a one dimensional complex variety in D? and Y is a smooth
holomorphic curve in D?. Assume Y is not contained in X and that z is an intersection
point of X andY. Let r: D — Y be a local parameterization of Y about z with r(0) = z and
let h be a local defining function for X about z. Then the order of contact, or intersection
multiplicity, of X andY at z (counting multiplicity of the components of Y at z) is the order
of the zero of hor at 0 € D.

Proof. Since everything is local then without loss of generality we can assume that Y is the
y axis and z is the origin. Then the intersection multiplicity is

(X, Y) = dim(c OC2’(0’0)/(ZE, h(ﬁ, y)) = dim(C O(QO/(h(xa y)) =

dime Oc o/ (h(0,y)) = dime Cly]/(y*) = k

where h(0,y) = apy* +ap 1y +- -+, ap # 0. This is easily seen to be the order of vanishing
of hor at zero. O

Lemma 2.6. If the critical locus of a pair of holomorphic foliations in D? has a singularity
at a point z then the leaves of the foliations must have order of contact greater than two at
zZ.

Proof. We can assume without loss of generality that z is the origin, that one foliation is
the vertical complex lines, and that the other foliation has local defining function h in a
neighborhood of the origin.

Ooh
One calculates that critical locus is defined by 8_3/ = 0. If either (‘3272 ‘ o, 7 0or %h ‘ 070

0xdy
then o 0 defines a smooth variety at zero. Hence if the critical locus of the pair of
Y
foliations has a singularity at zero then 3272 ‘ o = 0, and so by lemma 2.5 the leaves of the
two foliations have contact of order at least three at zero. [

3We use 90:1 and ~? because these are single valued and extend holomorphically about (oo, c) € P* x P,
See Section 2.2.

15



THE CRITICAL LOCUS NEAR INFINITY.
2.2 The Critical Locus near Infinity.

Lemma 2.7. Given two holomorphic foliations Fi and Fs of a two dimensional complex
manifold and their critical locus C then:

1. Given any point z € C, the order of contact of the leaves of Fy and Fy at z is one
more than the order of contact of the leaf of either foliation with C at z (counting the
multiplicity of components of C).

2. The subset Kj, C C of points of C where the foliations have contact of order at least k
is an analytic subset of C.

Proof. We will confirm both properties locally. Without loss of generality we can assume
that F; is the foliation of D? by vertical complex lines and F; is defined by some local defining
function h: D? — C. Assume z = (21, z) € D? and parameterize the leaf of F; through z
by y — (z1,y). Then by lemma 2.5 the order of contact between the leaves through z is the
order of vanishing of h(z,y) — h(21,22) in y at y = z5. This is precisely the smallest k € N

oh
such that % ‘ =0for j =1,...,k — 1. However, since C is defined by — we also
Yl | (21,22) dy

conclude by lemma 2.5 that the order of contact of the vertical leaf throuth z with C at z is

the vanishing order of —(z1,y) in y at y = 2 which is exactly one less than the vanshing

Ay
order of h(z1,y) — h(z1, 22) in y at y = 2. This completes the proof of part 1.

We also conclude that for each integer ¢, the set K, C C is the common zero set of %
for j =1,...,¢ — 1. This completes the proof of part 2. n

Corollary 2.8. Assume we are given two holomorphic foliations F, and Fo defined on some
complex two dimensional manifold. Let C be the critical locus. If the leaves of Fi and Fo
have order of contact two at every point of some component X of C then X is smooth, X
meets no other component of C, X is a component of C with multiplicity one, and X 1is
everywhere transverse to both foliations.

Proof. Since C is smooth everywhere the leaves have order of contact two then X is smooth
and meets no other component of C by lemma 2.6. It follows by part 1 of Lemma 2.7 that X
must meet each leaf with order of contact one, i.e. X must be transverse to each leaf, and
X must have multiplicity one as a component of C. n

2.2 The Critical Locus near Infinity.

We consider the critical locus for the extension of f, to P* x P'. The map f, is well defined
except at (0o,00). The map f, ! is well defined except at (co,00) or when a = 0 and
(z,y) € C(p).

The map f, sends the line y = oo to the line x = oo and sends the line x = oo in turn
to the point (0o, 00) at which f, is undefined. Similarly, the map f, ! sends the line x = oo
to the line y = co and sends the line y = co in turn to the point (0o, 00) at which f,! is
undefined.

In this section we will show that for each critical point ¢ of the polynomial p, and for
each a € D the critical locus has a branch asymptotic to the curve y = ¢ as |z| — co. We
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THE CRITICAL LOCUS NEAR INFINITY.
2.2 The Critical Locus near Infinity.

will do this by showing that the critical locus (extended to P* x P!) contains the point (oo, ¢)
and by computing the tangent line to the critical locus at (oo, ).

Because we will be working in P! x P! x Dy it will be convenient at times to use the
coordinate systems (u, y, a) where u = 1/x or (x, v, a) where v = 1/y instead of using (z,y, a).
Corollary 1.16, written using (u,y, a) coordinates, states that

1

h SR S
<u7 y7 a) ugoar‘r(u’ y7 a)

(2.1)

is holomorphic on V, x Dy and B~' < |h*| < B. Similarly Corollary 1.6, written using
(x,v,a) coordinates, states that

1

h~ =
(@,v,0) Vo, (z,v,a)

(2.2)

is holomorphic on V_ x Dp and B! < |h~| < B. We find it useful here to write f;
with input written in the (u,y,a) coordinates, but the output is written in the coordinates

(513,’0,&), Le. fa_l(u,y,a) = (ya T )
Let U* = {(z,y,a)|(z,y) € fo(V_),a € D%} and let

B =97 U (U5 U({oo} x €)) x {0}) € P! x P! x Dy

The set U_ is just the interior of the closure of U* in P! x P! x Dg. Then from the recursion

relation it follows that ¢, ¢ (u,y,a) = S (v, L, a) on 2* . Since both sides
up(y) — 1 up(y) — 1
of the equality are holomorphic on B_ they are equal on 2B_.
Therefore
_ oh* oh*t
dp,(u,y,a) = (h++u8u Jdu +u 9 5 (2.3)

Also, letting A = up(y) — 1 we obtain,

dgpjd(u,y, a) = A 2. h o fa_ldu
Oh~
— A\ %? P (y )-h’Ofa_ldy—i-)\_lu- 5 ofa_ldy

+ Aty % oft. ()fluda — A 2adu — A_Qauzp’(y)dy>

+ A aaha of'da onU_. (24)

One then calculates
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dp ' Adp ™ Ada =

((h++ua€)f2)(—/\_2u2 ()b o f' + a2

ot X an ) - 2o g

th
—l—ua—()\ 2 hmo fit b aunT?
Ay

h/7
0 o f(l_l))du/\dy/\da
v

A

on U_N (Vo x Dg). (2.5)

It is easy to show that the domain U_N(V, xDg) contains the plane u = 0 in P* x P! x D.

Corollary 2.9. The Foliations .7:; and F, extend to holomorphic foliations on V. and
B_ respectively and g0a+ and gpa are local defining functions for these foliations. In both

extended foliations the leaf thmugh u =0,y = c 1s the line u = 0 regardless of the value of a.

Proof. Clearly, for each a € Dpg, gp;i and go;‘f define the same foliations as ¢, , and ¢, on
V. and on U_ N (U, x {a}). Since ¢! and =% are holomorphic functions on V., x Dg and

27_ which both vanish on u = 0 by equations (2.1) and (2.2) then we need only confirm that
dy,} and dy; ¢ do not vanish on u = 0. But this follows from equations (2.3) and (2.4). [

oh™*
Lemma 2.10. h* ‘ o =1, and 5 vanishes in u to order at least d. Similarly, h™ ‘ o=1L
U= y v=
oh~
and s vanishes in v to order at least d.
x

Proof. From equation (2.1), equation (1.5) and the definition of s we know

ht = (14 sf) 4 exp(—— log(l +s5)+) (2.6)

d

We know from Lemma 1.17 that if £ > 2 then s; vanishes to order at least d in w.
Q(x) —ay 1 d ds|

Since s7 = ———- = ulq(=) — ayu so — = —au?, it follows from equation (2.6)
xd u dy
+
that 5 vanishes to order at least d in u. The claim about A* ‘ _, follows from equation
Y “=
2.6.
The results for h~ are proven similarly. O

Corollary 2.11. The critical locus of the extensions of F+ and Fo in (V, x Dg) NY_

a
contains the plane uw = 0 with multiplicity two.

Proof. Since the v coordinate of f;'(u,y,a) is Ll one concludes from Lemma 2.10

up(y) —
that equation (2.5) is divisible by u?. O
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2.2 The Critical Locus near Infinity.

Corollary 2.11 is one of the reasons these calculations are done so carefully. If we had
simply approximated the critical locus at infinity using a Taylor series we could not make
this conclusion.

While we need to extend € to a variety on (V+ x Dg) N 2_, the double component
u = 0 is spurious for our purposes. We let @ be the holomorphic function satisfying de ! A
do~? A da = v?w(u,y,a)du A dy A da. Then the zero set of w gives an extension of € to
(V+ x Dg) N 2_. We will abuse notation and refer to the extended variety as € as well.
It will be obvious from the context whether we are using the extension or not. Extending
% automatically extends %, to (V+ x Dg) N U_ for each a € Dy since %, is the zero set of

wa(“v y) = u?(u, Y, CL).

Lemma 2.12. Given a € Dg and a point (0,yo,a) (written in (u,y,a) coordinates) the
defining function for € takes the form w(u,y,a) = —p'(y) — uH for some holomorphic
function H defined in a neighborhood of (0,yo,a0). Thus (0,c,a) is in € iff ¢ is a critical
point of p. Moreover if ¢ is an order one critical point of p then € is smooth at (0,¢,a) and
the tangent plane to (0,c,a) is given by

p'(c)dy + Cdu =0

for some C' depending upon c and a.
au
up(y) — 1

= u?Hy for holomorphic functions

Proof. From Lemma 2.10 we can write: h™ o f; ' (u,y,a) = h~(y,

oh~ . | Oh~ au d oh™*
—= - H
(91: Ofa (u7 Y, a) ax (y7 Up(y) _ 1,@) U 4 and

H,, Hy and Hg. From equation (2.5) one obtains u?w(u,y,a) = (1 + uH1)<{—u2p’(y)(1 -

,Cl) = 1+UH2,

uHy)} +uHs - uHy — u3H5> —u-ulHg - H;y = —u®p'(y) — u® Hg where each H; is a function
which is holomorphic in a neighborhood of the given yy,a € Dg and for u sufficiently close
to zero. Simplifying gives w(u,y,a) = —p'(y) — uHg for some holomorphic Hs. O

Theorem 2.13. If ¢ is an order one critical point of p then the critical locus €, passes
through the point (0,c,a) (written in (u,y,a) coordinates) and is smooth at this point. More-

over gp;i ‘ o — C is a local biholomorphism about this point.

Proof. Smoothness follows directly from Lemma 2.12. Combining equation (2.3) with Lemma 2.10
gives dgo;l+ { v (0,¢,a) = du. By Lemma 2.12 this is nondegenerate on the tangent line of
6. at (0,¢,a). O
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STABLE AND UNSTABLE MANIFOLDS

3 Stable and Unstable Manifolds

3.1 Crossed Mappings

In this section we recall the definition of and basic results about crossed mappings from
[HOV95]. This is a holomorphic version of a standard construction of stable and unstable
manifolds such as Theorem 6.4.9 criteria (4) in [KH95]. We will only define degree one
crossed mappings, and we will not consider any crossed mappings of degree higher than one
in this paper.

Let By = U; x Vi and By = Uy x V5 be bidisks.

Definition 3.1. A (degree one) crossed mapping from By to Bs is a triple (W7, Ws, f), where
1. Wy is an open subset of Uy x V; for some open U] € U;.
2. Wy is an open subset of Uy x V; for some open Vj € V5.

3. f: Wy — Wy is a holomorphic isomorphism, such that for all y € V; the mapping
pryof: Win (Uy x {y}) — Us
is a biholomorphism, and for all x € U; the mapping
proof t: Won ({z} x Vo) = W,
is a biholomorphism.

To make the notation less cumbersome, f: B; — B, is often written leaving the precise
Wy and W5 to be determined by the context.

Given a hyperbolic polynomial map p, Hubbard & Oberste-Vorth construct a family of
bidisks in C? such that if |a| is sufficiently small then f, induces crossed mappings between
the bidisks of the family. They use this to get good hold on the stable and unstable manifolds
of J,.

Proposition 3.2. If f: By — By is a crossed mapping of degree one and X C By 1is the
graph of an analytic map from Uy to Vi then the image of X in By is the graph of an analytic
map from Uy to V5.

Proof. This is Proposition 3.4 of [HOV95] for degree one crossed mappings. m

Proposition 3.3. (a) Let f: By — B, be a crossed mapping of degree 1. Then f~': By — By
1s also a crossed mapping if all the coordinates are flipped.

(b) If By, By and Bs are bidisks, W, C By, Wo C By, Wa C By and W3 C Bs and
fi: Wiy — Wy and fo: Wo — W3 are degree one crossed mappings, then

fao fit fi (Wa) = fo(We)

s a degree one crossed mapping from By to Bs.
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Proof. This is Proposition 3.7 of [HOV95]. O

Suppose that B1~, ..., Byt are bidisks such that B; = U; x V;. Suppose als~0 that W; C V;,
(t=1,...,n)and W; C B; (i =2,...,n+ 1) are open subsets so f;: W; — W, are crossed
mappings of degree 1. Let

SE=Winfi(Wo)n---n(fito--ofily)(Wa1)
and . . .
Sy =W 0 f(Wo)N...0(fuo...o fo)(Ws)

so that that the restriction g of f, o... 0 f; to ST makes g: ST — SI a crossed mapping of
degree 1 from B to B,y1.
Let U be a disk, and U’ a relatively compact open subset. Define the size of U’ in U to

1
be i where M is the largest modulus of an annulus U \ V for V' a compact contractible set

containing U’.

Definition 3.4. Given a crossed mapping f: Uy x V; — Us x V5 we will let the horizontal
size of f be the size of pry(W;) in U; and we will let ;he vertical size of f be the size of
pry(Ws) in V5.

Proposition 3.5. Let By = Uy x Vy, By = Uy X Vi, ... be an infinite sequence of bidisks,
and fi: B; — Bii1 be crossed mappings of degree 1, with U] of uniformly bounded horizontal
size in Uj;. %hen the set

{m € By

1s an analytic disk in By, which maps by pry, isomorphically to Vi, which we will call the
stable disk of the sequence of crossed mappings.

fno"'oft)([ﬂ) € B, for alln}

Proof. This is Corollary 3.12 of [HOV95]. O

Similarly, when we have a backward sequence of crossed mappings

"'—>B_1—>B0
x X

with uniformly bounded vertical sizes, it will have an unstable disk, which maps by pry
isomorphically to Uy.

3.2 Recalling Context and Constructions.

In Section 2 of [HOV95] Hubbard & Oberste-Vorth an open neighborhood U of J(p) C C
is constructed such that U’ = p~}(U) € U and the map p: U' — U is a covering map.
This is a standard construction. We can assume without loss of generality that U is chosen
sufficiently small that it is a finite distance from any critical points of p. Open neighborhoods
U, C U in C are attached to each point z € J(p). Later in section 4 of the same paper these
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neighborhoods are used to associate an open subset B, of C? to each point z € J(p) so that
fa: B. = By,) is a crossed mapping for each z € J(p) and each a with |a| sufficiently small.
A radius r is chosen and U, is defined to be the ball of radius r about the point z, where
the distance is measured in the Kobayashi metric of U. The radius r is only special in that
it is chosen so be so small that the neighborhoods U, create telescopes for p of uniformly
bounded modulus.

We will strengthen this requirement on r a small amount here by requiring that r is small
enough that for each z € J(p) the map p°? is a biholomorphism of U, onto its image and the
map p is a biholomorphism from the ball of radius 3r about z onto its image.

The neighborhoods B, are constructed in [HOV95] by first selecting a small value §
(which must satisfy various requirements). One then defines v: C* — C by

v(r,y) = ply) — . (3.1)

Taking
V' =pr;HU) o~ (Ds) (3.2)

then a well-defined function u: V/ — U’ is constructed, which is given by u(z,y) = p~'(z),
the inverse image always being chosen to be the one “close to y”. We make this precise in
Lemma 3.7.

We define m,, to be the minimum of |p'| on U. Since U is a finite distance from the
critical set of p then m, > 0.

Lemma 3.6. There exists some 3 >0 such that

1. p maps the (Euclidean) ball of radius [ about an arbitrary point y € U biholomorphi-
cally onto its image.

2. B is smaller than the FEuclidean distance from U’ to OU.

3. The Euclidean ball of radius B/2 about any point w € U’ is mapped biholomorphically
onto its image, which contains the Euclidean disk of radius m,(/8.

Proof. Part 1 follows from a straightforward proof by contradiction. Part 2 is obvious. Part
3 follows from the Koebe 1/4 theorem. O

1
We shrink é as necessary so that § < gmpﬁ . We accordingly shrink the sets V'’ and the

boxes B,.

Lemma 3.7. There is a well defined holomorphic function w: V' — U’ which satisfies

1
p(u(z,y)) = = and u(x,y) is the unique preimage of x within a distance §ﬁ of y.

Proof. That u is well defined follows using Lemma 3.6 and the definition of V’. Holomorphy
of u follows from the fact that p: U’ — U is a local biholomorphism. n
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Then for each z € J(p) the set

B, = {(Z) eV |u(z,y) € UZ} (3.3)

is an open neighborhood of the point (p(z), z)
Hubbard & Oberste-Vorth then prove that the mapping

()~ (o)

is a biholomorphic isomorphism of B, onto the bidisk U, x Dg, where u and v are defined in
Lemma 3.7 and equation (3.1).
This can be extended to all of V.

()~ ()

is a biholomorphic isomorphism of V' onto U’ x Ds.

Lemma 3.8.

Proof. Using Lemma 3.6 and Lemma 3.7 one can construct a holomorphic inverse. O]

3.3 The Stable and Unstable Manifolds as a Varies

Given that p is a hyperbolic polynomial, there is some A > 0 such that f,: B, — B,
is a crossed mapping for each z € J(p) whenever 0 < |a] < A. It can be verified that
A can be chosen so that these crossed mappings have uniformly bounded horizontal and
vertical sizes. Given any z = (+-+ ,2_9,2.1,2) € J (p) the sequence of neighborhoods - - - —
B. , = B. , = B., = Bp) = Bpe2(z,) - -+ (all mapped by f,) form a sequence of crossed
neighborhoods. Then for each |a| < A there is a natural map 7, from the natural extension
J (p) of the Julia set to J, which is a homeomorphism for each a # 0 and is the standard
projection of J(p) to J(p) for a = 0.

By definition, the point m,(z) is the unique point in B, which lies in both the stable and
the unstable manifold of the sequence of crossed mappings. We note that given a sequence
of crossed mappings Uy x Vj — U; x V; — --- then the construction of the stable manifold
of a crossed mapping in [HOV95] is found by first taking a point u, € U, and taking the
preimage of {u,} x V,, by fi o---o0o f,, which is, by the hypothesis on crossed mappings,
necessarily the graph of a function g: V; — U;. One then takes a limit of these graphs as
n — oQ.

We will use the notation f(z,y,a) = (fa(z,y), a) when it is convenient to think of f,(z,y)
as a self map in x, y and a.

Lemma 3.9. Given z € j(p) there is a unique holomorphic map g, : Vo xD4 — Uy such that
the local stable manifold through the point wy(2) € Jur, a’ # 0 is the graph of g, (-, a'): Vo —
Uy. In the case where a = 0 this graph gives a vertical line through (p(z),z) (the natural
analogue of the stable manifold in the degenerate case).
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Proof. As the maps f, depend holomorphically on a then for a # 0 these graphs fit together
holomorphically, since they are just the preimage of {u,} x V,, x D4 by f"", which is holo-
morphic in both (x,y) € C? and in a € Dy. Thus, the stable manifold of f, through z € J
is the graph of a holomorphic map ¢.,: Vo x D% — Uy. At a = 0 the map is not a crossed
mapping, however g,, is holomorphic and clearly bounded on 1 x D% and so g, has a
unique holomorphic extension to a map (which we will still call g, ) from Vj x Dy to U,.

Now the function u — g, Qv, a) vanishes on the stable manifold and by continuity there
is a neighborhood N of mo(f~(2)) such that f,(N) C Uy x Vp for sufficiently small a.
Therefore the pullback f* (u = g:4(v,a)) by f is defined in N for all sufficiently small a.
Since the stable manifold of 7, ( f *1(g)) is mapped into the stable manifold of 7,(z) by f,
then f* (u — g+ (v,a)) vanishes on the graph Jp-1(0)1: Vo xDa = Up x Vo x Dy of g5y
This is true even if a = 0 because of continuity.

Now the image of foo g;i (), lieson C (p) since fo maps all of C? to C(p). If the image
of Jj-12)+ does not lie in a fiber of fy then it follows that fy o Jj- contains an open

z)+°

(2)+
subset of C'(p) in its image. Therefore u — g4 (v, 0) would have to vanish on C'(p). But this is

impossible since C(p) is given by v = 0 in the (u,v) coordinates and restricting v — g4 (v, 0)
to v = 0 one obtains the false statement u — ¢, (0,0) = 0. This contradiction shows that
Jp-1(2)+ lies in a fiber of fy, that is, in a vertical line. O]

Observation 3.10. Recalling that for each z = (-++ , 29,21, 20) € j(p) the neighborhood
B,, was equal to U,, x Dg using (u,v) coordinates, where U,, was an open neighborhood of
29 € J(p) C C then we see that the local stable manifold of 7,(z) given in Lemma 3.9 by
a holomorphic function g,: Vo — Uy is just a holomorphic map from Ds to U,,. What is
more, this stable manifold was precisely the stable manifold of the sequence B.;, — By, —
Bye2(zy) — - -+ and was therefore dependent only on 29 and not on any other point in the
history z. Thus the map g, depends only on z.

Convention 3.11. In accordance with the above observation we will reduce our notation of
J:+ t0 g.4 as g,+ only depends on the final term z of z.

Convention 3.12. We will continue to use §.. to denote the graph in V' C C? of g.4.
When we are thinking of g.+ as a function of a as well, we will similarly use §.+ to denote
the graph in V' x D4 C C3.

Lemma 3.13. Given z € j(p) then there is a unique holomorphic map g_: Uy x Dy — Vj
such that the local unstable manifold through the point w,(z) € J, is the graph of g_(-,a’): Uy —
Vo. For a =0 it is simply the portion of the graph x = p(y) about my(2).

Proof. Since for all a # 0 these are just the images of of some (arbitrary) U_,, x {vo} under
fopo---0of1in Uy x V; then by the hypothesis on a sequence of crossed mappings the result
is a graph g_: Uy — V4. These graphs again all fit together to form a single holomorphic
“sheet” as when put together they are simply the image of U_,, x {vo} x Dy iterated n times
by f. (which depends holomorphically on a). For each a the limit of these graphs will be
a graph. Thus the limit is a graph, which is, by [HOV95], the local unstable manifold of
Ta(2) € J, for each |a| < A. In the case a = 0 it is simply a portion of the graph = = p(y)
about the point my(z) (and is therefore the appropriate version of the unstable manifold for
this case). O
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We recall Theorem 5.9 of [BS91a].

Theorem 3.14. Given that a # 0, if f, is hyperbolic and |a| < 1, then W*(J,) = J. If
S1y..., Sk are the sinks of f, then W*(J,) = J,; \ {s1,..., Sk}

Definition 3.15. Given z € J(p) let A, , be the image ¢, (Ds,a) C C? which is precisely
the local stable manifold in B, corresponding to the sequence of crossed mappings B, —
Bpz) = Bpez(zy = ---. Given r < 1 we let A, ,(r) be the image of D,s under g.,, and we let
¥, 4(r) be the image of the circle S,s under g... Hence both A, ,(r) and X, ,(r) lie in A, ,.

We will show that given zq, 20 € J(p), if A,, , and A,, , operlap then z; = 2. First we
recall the standard telescope lemma.

Lemma 3.16. If z; and z, are points in J(p) and if Upen(zyy N Upon(zy) 7 O for every n >0
then z1 = z».

Proof. This the standard telescope result. O
We now show our desired result about disjointness of the sets A, ,.
Lemma 3.17. Assume that for zi,zs € J(p) one has A, o N Ay 0 # 0. Then zy = 2.

Proof. Assume that A, ., NA,, ., # 0. Let w be a point in the intersection. Then f™(w) C
Bponzy and fo"(w) C Bpen(s, for all n > 0. Recalling that B, = U, x Ds (in the (u,v)
coordinates defined on V’) then one has u(f;’”(w)) € Upon(z) N Upon(z,) for all n > 0 and so
21 = 2zo by Lemma 3.16. O

Lemma 3.18. The maps ¢.,+: Ds x Dy — U,, vary continuously (in the sense of locally
uniform convergence of maps) with zy € J(p).

Proof. From Lemma 3.17 the functions g¢,,+: Ds x D4 — U’ have disjoint graphs from which
the result follows. O

Lemma 3.19. The maps 7, : j(p) — C? wary continuously with a in the sense of uniform
convergence of maps for a € D 4.

Proof. This is clear for nonzero a. Because m,(z) varies holomorphically with a it follows
easy that one also has continuity at a = 0. ]

Lemma 3.20. If (z,y,0) € € then either (x,y) € €, or x € J(p) or (x,y) € C(p).

Proof. If z € € but z € €, then since € is a closed analytic variety on its domain of
definition then z € (K(p) x C) U C(p). Now if z lies in the interior of K (p) x C then z is
attracted to the cycle of an attracting periodic point « of p. It follows that z lies in the
interior of K for all sufficiently small a, which is a contradiction. Therefore z € J(p) x C
or z € C(p). O
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It is easy to see what the critical locus 6 looks like if J(p) is connected. Since ¢y, (z,y) =
by(z), the Bottcher coordinate of x, then the leaves of Fj are simply vertical. Since

eo, (z,y) = (p(y) — :z:)%, then the leaves of F, are translates in the x direction of the
graph C(p). Thus F;J and F; will be tangent exactly along the horizontal lines y = ¢
where ¢ is a critical point of p. Thus %, is a union of horizontal lines (restricted to
Uot NUp- = C?\ (C(p) U (K (p) x C))), one at the level of each critical point of p. This fact
will be quite important in what follows.

Lemma 3.21. If the Julia set of p is connected then €y is the union of the sets {(x,c)|x ¢
K(p)} over the critical points ¢ of p.

When we perturb a away from zero, we will need to be able to control the motion of the
critcal locus. The main difficulty is that we must control what happens at the boundary of
Uy, and Uy_. We will do this by choosing a tube about each of horizontal lines in %, which
contains the perturbed component of %, as a moves away from zero. Of course, that the
different components of %, remain distinct components when «a is perturbed will have to be
shown e.g. consider the equations y(y — 1)x + a = 0. When a = 0 this is a curve which has
three components, but as a is perturbed to a nonzero value this becomes a smooth curve
with only one component. Since % is not defined outside of Uy, U Uy_ it is conceivable that
such a thing could happen to %, as a is varied from zero, i.e. we could have a large portion
of €, which is “hidden” in the boundary of definition when a = 0. We have to demonstrate
that such oddities do not occur.

We will make use of the following version of the “Inclination Lemma” about the degen-
erate map fo. Compare to [KH95] and [Rue89].

Lemma 3.22 (An inclination lemma near the degenerate case.). Given a sequence a; — 0
and a sequence of points wy € G,, converging to some point wo, € Jy then the the leaves
Egk(wk) converge locally and without ramification to a vertical line through wy (i.e. to the
leaf of Ji through wy, ).

Sketch of Proof. We construct a neighborhood A of Jy in C? such that each point w of N
lies in a box Bj(,) and such that if w and f,(w) both lie in A then f,: Bju) — Ba (fow) is

a crossed mapping.

We then apply iterates of f, to each member of our sequence to move all the points of
the sequence a definate distance away from K*. Then the leaves of F* through the new
sequence must converge to the leaves of F;, and must therefore become vertical lines in the
limit.

We then pull back the leaves by iteration so that they pass through the members of the
original sequence. By using the boxed mapping construction, we can guarantee that these
leaves are still graphs in their respective boxes B.(y,). It is then easy to show that the leaves
become vertical in the limit.

Once this is established, one can apply this argument to f,, (wy) and obtain a sequence
of plaques which become vertical in the limit. Taking the preimages of these plaque under f

4This lemma is also sometimes called the A-lemma, but we avoid this term because the term \-lemma, is
typically used in complex dynamics to refer to a result about holomorphic motions. See [MnSS83], [Lyu83].
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to obtain a sequence of plaques through the points wy, it is easy to show that the resulting
plaques become vertical over arbitrarily large sets. O]
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Figure 1: The tube 7.° and its environment.

4 Components of the Critical Locus.

4.1 Trapping and Mapping Components.

Standing Assumption. Throughout the rest of this paper we will make the additional
assumption that the orbits of each of the critical points remain bounded, that is, that J(p)
is connected. We also assume that all of the critical points of p are simple.

Definition 4.1. Given a critical point ¢ of p(z) we let H., be the component of %, which
is asymptotic to y = ¢ as |x| — oo. We call H,, the primary horizontal component of the
critical locus corresponding to the critical point ¢ of p(z).

We will show that if a is sufficiently small then given distinct critical points c;, co then
H. ., and H., are distinct and disjoint components of 4,. Note that we know from
Lemma 3.21 that Hyy = {(z,¢)| z & K(p)}.

For each critical point ¢ of p(z) we select an open disk A. C C about ¢. We assume
these disks are chosen small enough to have disjoint closures. We let 2. be an open disk
about p(c), sufficiently small that Q. lies in the basin of an attracting periodic point. We let
Q.=C\ Q..

If necessary, we shrink A, so that Q.x A, is a positive distance from C(p). For each critical
point ¢ we let B, be a second disk about ¢ of half the radius of A.. We let 7.2 = Q.x (A.\ B.).

We think of 7.2 as a thin hollow tube about {y = c} as pictured in Figure 1. We will
show that for small values of a the component H., of €, remains inside this tube. We let
7. = Q. x B. be the core of the tube 7.° and we let 7.* = Q. x A. be the filled tube.

Lemma 4.2. There exists some ér > 0 and some ep > 0 such that if |a| < er then:

1. The filled tube T2 is distance at least 0 from the set K, for each critical point ¢ of
p(2).

2. One has Q. x A. C K} for each critical point c.

3. For each critical point c, H., C T." and this is the only component of €, which intersects

Te.
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4. The foliations F} and F,; have contact of order two at any point of H., for any critical

point c. In particular, H., 1s smooth, has multiplicity one, and is everywhere transverse
to both F} and F,.

a

Proof. 1. This is a trivial consequence of the construction of 7.* and Lemma 1.21.

2. This follows from the fact that 2. x A. is relatively compact in a basin of attraction
Of fo.

3. We prove first that if |a| is sufficiently small then for each critical point ¢, any
component X of 4, which intersects 72® lies in 7.". Hence, for the sake of contradiction,
assume that there exists a sequence a; — 0 and a sequence z; such that z; € €,, N T72. It
follows from Lemma 2.12 that the sequence z; is bounded. Letting z,, be any accumulation
point of z; then either zo, € Uj or zo € JJ. One concludes from Lemma 1.12 combined with
either Lemma 1.19 in the former case or with Lemma 3.22 in the latter case that 2. € |J Heo.
However this is a contradiction since 72 is disjoint from each H. Thus %, T2 = () for |al
sufficiently small.

Now assume X is a component of %, intersecting f Since X is disjoint from . x A,
by part 2 and from 72 then it follows easily from the definitions of these sets that X C
(C\ Q) x B. C T.. We will show that X must be H,,.

Choose some sequence of points z, € X such that

lim G} (z;) = sup G/ (2).
A straightforward argument by contradiction shows that z; — oo. By Lemma 2.12, z,

converges to the point of the extension of %, to P! x P! x Dg with (u,y,a) coordinates
(0,¢,a). From Theorem 2.13, X = H,,.

4. If there is no er such as the lemma claims to exist then one can choose a critical point
c of p(x) and sequences ar — 0 and 2, € H.q, such that £ (2) and £ (2;) have order
of contact at least three at z; for each . We can assume without loss of generality that
|z| — oo or that z; converges to some point z,, € 7.".

If |zx] — oo then we will need to use the extension of € to x = oo, hence we change
coordinates letting u = 1/xz. Since 2z, € %, by assumption and the leaves of 7} and F,

have contact of order at least three at z; then Lemma 2.7 shows that F; and %, have

intersection multiplicity at least two at zj. Since 6, is defined by w(u,y, ai) for a; and u
sufficiently small and y bounded then the directional derivative of w(u,y,a) along the leaf
of F; through z; is zero by Lemma 2.5. But %(O,C, 0) = 0 since this is the directional
derivative along the leaf of Fj by Corollary 2.9. But this contradicts the expression for w
about (0, ¢,0) given in Lemma 2.12.

Having obtained a contradiction if |z| — 0o, assume 2, — 200 = (Too, Yoo)- By part 1 we
know 2., € Ky, 50 (Too, Yoo, 0) € Vo, . By Lemma 1.22 we know 2., € C2\ K. Hence ¢
is well defined at (Zoo, Yoo, 0) for some integer j. Then by either Lemma 3.22 or Lemma 1.19,
depending on whether z,, € Jj or not, one concludes that one can parameterize plaques
of the leaves L] (2;) such that they converge to a parameterization of a plaque of the leaf
of Jy or Fy through z, (which is a vertical line in either case). Since F/ and F_ have

contact of order at least three at z; for each k then by Lemma 2.5 the directional derivative
of gpgjw along the leaf £ | (2;) is zero. But by continuity of ¥ it follows that the directional
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derivative of 4,031 in the y direction is zero. This contradicts the expression for gogi given in
Lemma 1.12. Hence we conclude that there is no such sequence a; and z; and so F, and
F.F have contact of order two at every point of H,., whenever |a| is sufficiently small.

The rest of the Lemma is an immediate consequence of Corollary 2.8. O]

Lemma 4.3. If |a| < er then the map G} : H., — (ﬁlog la|, 00) is proper.

‘ Hca
Proof. This is easy to prove using parts 1 and 3 of Lemma 4.2. m

The following is a standard fact:
Lemma 4.4. If M is a Riemann surface and if g is harmonic on M then

e The zeros of Vg are discrete

e The zeros of Vg correspond to critical points of a holomorphic h such that g = Reh
and the index of the zero is equal the negative of the order of the critical point.

Theorem 4.5. If |a| < er then H., is a punctured disk and the map Pq, extends holomor-
phically from from H., NV, to a biholomorphism ¢, : Hey — C\ D.

Proof. Using Lemma 4.4 and part 4 of Lemma 4.2 we can conclude that G has no critical
points on H.,. Moreover, by Lemma 4.3, G is proper. By Theorem 2.13, Corollary 1.16 and
the definition of G it follows that that the fibers of G ‘ e, about the point (oo, c) € H,
are topological circles and, by Morse theory, H,, is a topological annulus. Since H,, contains
a punctured disk about (oo, ¢) then H,, is either D* or C*.

The function ¢, , o f*: H,, — C\ D induces the map j — d*-j on 71(H,,) — m (C\ D)
by Corollary 1.16, Theorem 2.13 and the recursion relation for ¢, .. It follows that ¢, , o fo*
has a holomorphic d"" root which is equal to ¢, on H., N V.. It then follows that ¢, ,
has a holomorphic extension to all of H.,. What is more, ¢, , is proper since G is. By
considering ¢, about (0o, ¢) it follows easily that ¢, , | . Hea = C \ D has degree one
and is therefore a biholomorphism. m

Given a,b with |a| < er and |b| < er we define a biholomorphism 7,,: He.e — He by
-1
Tab = <80b,+ ‘ ch) o Spa7+- Then Spa7+ O Tap — SDb7+,

Proposition 4.6. The maps 7u: Heq — Hey vary holomorphically in a and b.

Proof. The precise meaning of this is that if one defines S, C € to be {(x,y,a)|(x,y) €
Heoya € D} then from Lemma 2.12 and part 3 of Lemma 4.2 it is clear that . is a
component of € N (C* x D,,.) and this proposition states that the map 7: /. x D, —
given by 7(z,y,a,b) = 7,5(x, y) is holomorphic.

The proof is elementary since from our original construction the function ¢, , (z,y): Vi x
D — C is holomorphic in z, y and a. It was shown in the proof of Theorem 4.5 that ¢, , o
for He has a d*" root which agrees with ¢, , when |a| < er and this root gives the extension
of pa to f7*(Vy) N H,. It follows that ¢, , o fX(x,y): 2.0 {(z,y,a)|f*(z,y) € Vi,a €
D, } — C has a d*" root which agrees with @, (z,y) on S N (Vy x D). Consequently
the extension ¢, , (z,y): . — C\ D is holomorphic in z, y and a. It is easy to see that the
map Qo = (@a,; (2, y),a): # — (C\ D) x D, is a biholomorphism. It follows that 7, is
holomorphic in a and b from the easily verified relationship s © Tup = Pa - m
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4.2 Classification of the Critical Components.

Since our strategy has been to consider the degenerate map f; and then to consider %, as
a deformation of %, we need to ensure that we have accounted for every component of %,.
It is plausible that %, has a component that “escapes to infinity” as a — 0, and thus this
component would be invisible to us in 6,. We will start by showing that any component of
6., meets either J, or JF. We will be able to use this to show that any component of ¢, is
an iterate of a component of the form H,.,, and thus we have accounted for every component
of €, by accounting for the components H,., and their iterates.

Lemma 4.7. If W, is some component of €, then OW, contains a point in either J: or J; .

Proof. Consider the positive plurisubharmonic function g(z,y,a) = G/ (z,y) + G, (z,y) —

. ! 1 logla| on Ut NU~. It is easy to show that if 2, is a sequence of points of W, such
that lim,, o g(z,) = inf,cw, g(2) then z, has an accumulation point in J} U J; . O

We will need specific local stable manifolds about the points of J,. We know that if |a] is
sufficiently small then given z = (- -+ 29,21, 29) € J (p) there is an associated neighborhood
B., = Vo x U,, of m,(z) and the local stable manifold in B, is the graph of a holomorphic
function from Vjy — U,,.

We recall that in Lemma 3.8 it was shown that (u, v) coordinates are defined on an open
set V' which contains each of the sets B, and that (u,v) coordinates provide a biholomorphic
isomorphism of V' onto U’ x Ds. Also, since v(z,y) = p(y) — = then v is defined on all of
C2, not just on V.

Definition 4.8. We now fix some positive r < 1 such that each of the filled tubes 7.* is a
finite distance from the set {(z,y) € C?*| |v(z,y)| < ré}.

Proof that such an r ezists. Fach of the filled tubes lies a finite distance from C(p) by con-
struction. We let s be half the minimal distance between C(p) and the nearest tube. Since
(z —v(z,y),y) € C(p) for all (z,y) € C? then the set {(z,y) | |v(z,y)| < s} is comprised of
points no further than s from C(p). Thus r = s/§ will do. O

Lemma 4.9. Given € > 0 there exists §,(€) > 0 such that if |a| < 6,.(¢) and if (z,y) € V' C
C? then

1
o |v(z,y)| < rd implies that G, (x,y) < alog 8] + €

1
o |v(z,y)| > rd implies that 7 log |ré| — e < G, (x,y)
Proof. This is an easy consequence of Theorem 1.24. O

Lemma 4.10. There exists ¢s > 0 such that if |a| < es and z € J(p) then the gradient of
the restriction of G, to the local stable manifold g, (Ds,a) is defined and nonzero on the
curve gz+(5r57 a) :
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Proof. First we recall that G, —

71 log |a| is pluriharmonic, and is therefore smooth,
away from its zero set. From Lemma 4.9 we conclude that as long as |a| < d,(¢) and

la| < ((ré)l/de*)dfl then if (z,y) € §.+(S,s,a) then (z,y) € B, € V' and |v(z,y)| = rd so

gt;(x7y> -

dillog|a| > élog|r5| —€— di 1log|a| > 0.
Thus G, is smooth at such points.

Assume that no such eg existed. Then there exists a sequence a; — 0 and a sequence
of points z; € J(p) and a sequence of points w; € U,, x S, C B,, such that for each
i the restriction of G, to the stable manifold g.,,(Ds,a) C B., has gradient zero at the
point g, (w;, a;). Then by compactness we can replace our sequence with a subsequence if
necessary such that both z; converges to some point z,, € J(p) and w; converges to some
point wy, € V.

Then by Lemma 3.9 and Lemma 3.18 we see that ¢, (w;, a;) = §o.t (Weo, 0) and wy, €
U... % Srs C V' and the gradient of the restriction of G; to the stable manifold in B,__ is
zero at the point §. 4 (W, 0) on the curve g.. ., (S,5,0). Since the sequence G, (gszr(-, ak))
converges locally uniformly to G; (gzw(-,o)) by Lemma 3.18, so derivatives of §,,4(-, ax)
converge locally uniformly to the derivatives of g, (-,0), then because G, is smooth on a
neighborhood of the image of g.._(Sys,0) then the gradient of G, projected to the tangent
space of A, .. at G, +(wg,ar) converges to the gradient of G; projected to the tangent
space of A, 4, at G, +(Wso, 0). This is a contradiction since the gradient of the restriction of

G, = 7 log |v| to a vertical line does not vanish on the curve |v| = r4d. O

Lemma 4.11. The index of the gradient of the restriction of G, to §,.(Ds) around the curve
G2+ (Srs) is one for all |a| < eg.

Proof. The lemma is easily seen to be true for a = 0 since then §.(S,s) is a loop around
a single singularity of % log|p(y) — z|. By Lemma 4.10, the index can not change for |a| <
€g. ]

Lemma 4.12. If a is sufficiently small then for any z € J(p) and for any w € p~'(z) one
has fa(Awﬂ(T)) € A, (r). Also fa(Awha(r)) N fa(Awl’a(r)) = 0 for wy and wy distinct
points of p~1(z).

Proof. Using Lemma 4.9 it follows that if (z,y) € Ay, .(r) and f,(2,y) € Ay o \ Ay o(r) then
(ré)l—l/d

cd+1

la| > . The second statement is an immediate consequence of Lemma 3.17. O

Lemma 4.13. There exists M > 0 such that given € > 0 then for |a| < ¢/M one has
lv(fa(z,y))| < € for each (z,y) € T* and for each critical point ¢ of p(x).

Proof. One has |v(fo(z,y))| = |v(p(z) — ay,z)| = |ay|. Choosing M > 0 such for each

critical point ¢ of p(x) one has 7.* C (Dy x C) one concludes that taking |a| < % is

sufficient. =
We will let V! = {(z,y) € V'| [v(z,y)| < 1}
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Corollary 4.14. If a is sufficiently small then for any z € J(p) the set A, a( )\Uwep_1 ) fa(
contains no points of J,.

Proof. If a is sufficiently small then J, C V! and 7, is defined. Since J, C V. then given any
2= (-, 2_9,72.1,7) € J(p) then my(2) € Aza( ). From Lemma 3.17 we know that a point
in J, can lie in A, , iff the corresponding history in J (p) ends with the point z. Then the
result is easy since the set removed from A, ,(r) contains all points in J, corresponding to
histories in J(p) which could end with z. O

Corollary 4.15. There exists € > 0 such that if |a| < € then the index of the vector field

V(G, | 5. ) around the boundary of A (r) \ Uwep-1(2) fa (Aua(r)) is1—d.

Proof. We note from Corollary 4.14 that G; > 0 on A, ,(r) \ Uwep 1(z) Ja (Aua(r)) and so it

will be pluriharmonic on a neighborhood of A, ,(r) PN\Uwep-102) Ja(Awa(r)). Thus V(Gg |, )

will have only finitely many zeros in A, () "IN\Uwep-100) fa(Aua(r)). By Lemma 4.10 we know
none of these zeros lie on the boundary.

The result then follows as long as € is sufficiently small as a consequence of Lemma 4.11
and Lemma 4.12. O

We recall [BS99] Proposition 2.7, noting that the hypothesis is satisfied for all a under
consideration since f, is hyperbolic when the crossed mapping construction of [HOV95]
applies, and there is a continuous surjection from J (p) to J,, and hence J, is connected.
Since J, is connected and |a] < 1 then by Theorem 0.2 of [BS98b] it follows that f, is
unstably connected.

Proposition 4.16. If f, is hyperbolic and unstably connected, then the union of F,” and the

stable lamination of f, ‘ ;. Jorm a lamination of the space U U J;.

Observation 4.17. For the maps we are studying, the union of F, and the unstable lamination
of fa‘ do not form a lamination of the space U, U J,. This is because critical points
on the local stable manifolds are tangencies between the stable foliation and F,. Taking
forward images of these tangencies gives accumulations of such tangencies near J,. But J,
is transverse to J; everywhere since the map is hyperbolic, so the unstable foliation and F

can’t be part of the same foliation.

We let K°(p) denote the interior of the filled Julia set of p(x).
Proposition 4.18. For all sufficiently small nonzero a, given any z € J(p) then the
only points of 6, which lie in f;* (Aw(r)) \Uwep—l(z) Ay o(r) are the points 104(2,¢) €
Toa(0H ) = OH.o where ¢ is a critical point of p(z).

Additionally, when a and b are sufficiently small the biholomorphism Ta,: He, — Hg

defined in Section 4.1 extends naturally to a homeomorphism between H., and Hg. Since
H.y can be naturally identified with C\ K°(p) then the same is true for He,.

Proof. We choose € small enough that:

1. € < er, so Lemma 4.2 holds for |a|] < e,
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2. J, C V" when |a| < €, which we can do by Lemma 3.19,
3. e <rd/M for the value M in Lemma 4.13,
4. Lemma 4.12, Corollary 4.14 and Corollary 4.15 all hold for |a| < e.

We will show the result holds for |a| < e.

Given a critical point ¢ of p(z), we let H, = {(z,y,a)|(z,y) € He,a € D.}. Now
given an arbitrary point z € C\ K(p) we define the map h.,: D, — H. c C? x D, by
he,(a) = (TOQ(Z,C),CL) € ﬁc. It follows from Proposition 4.6 that h., is holomorphic. One
easily confirms that ¢, (he-(a)) = @0, (2, ¢) which is independent of a. It follows that

g* (hcz(a)) =Gg (z,c¢) for a € D.. (4.1)

We also note that by Corollary 1.15 there is some radius R’ such that for each critical
point ¢ of p(z), if || > R/, (z,y) € 7. and |a| < € then G} (x,y) > 1. Hence if (z,y) € H,
and G/ (z,y) < 1 then (z,y) € W, = (Tﬂ (Dgs x (C)) X D,. The set W, is clearly a bounded

set in C? since the set Dp x C has bounded x coordinates and the set 7.2 has bounded y
coordinates.

Welet Y ={z€ C\ K(p) | Gj(z,¢) < 1}. If z € Y then h.,(a) lands in the set W, since
G*(he.(a)) = Gg(z,¢) < 1 for all @ € D.. Since W, is bounded it follows that {h..|z € Y}
is a normal family of maps from D, into C3. The condition that Gj(z,c) < 1 is the same as
log |b,(2)] < 180 J(p) x {c} x {0} C Y.

To complete the proof of Proposition 4.18 we need two lemmas.

Lemma 4.19. Assume z, is a sequence of points of C\ K (p) converging to a point zo, € J(p).
Then, for each critical point c, the limit g of any convergent subsequence of he,, satisfies

g9(a) € fH (A a(r)) for all a € D..

Proof of Lemma 4.19. We will show that f,(g(a)) € A, 4(r) foralla € D.. By Lemma 4.13,
since |a| < € < r6/M, then |v(fo(T*))| < rd. Recall that V! = {(z,y) € V'| |v] < rd} =
U x Dys. Now A,_4(r) = {(z,y,0)|(z,y) € A, a(r),a € D} is defined in V/ x D, as the
graph of g, : D.s x D, — U’. Thus v — g,__+(u,a) is a holomorphic defining function for
A, .(r) € V! x D,. Since G (hez,(a)) > 0 for each k, then (v — g._(u,a)) o f o he, is
nonvanishing on D, for each k whenever it is defined, i.e. whenever h.,, € V! x D.. If g is
the limit of any convergent subsequence, then (U — Go+ (1, a)) o foog(0) = 0. Since g maps
D. into {(x,y)| |v(z,y)| < 8} it can be shown that the set on which (v —g.._+(u,a))o fog
vanishes is both open and closed in D, so it is all of D.. Thus g(a) € f, (A, 4(r)) for all
a € D.. ]

Lemma 4.20. Assume zj, is a sequence of points of C\ K (p) converging to a point zo, € J(p).
Then the limit g of any convergent subsequence of h.., is disjoint from A, q(r) for each
w € pH(200) for all a € D, and for each critical point c.

Proof of Lemma 4.20. Each g(a) € T2 lies a positive distance from |v| < rd by Defini-
tion 4.8. Since A, ,(r) C V! this completes the proof. O
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4.2 Classification of the Critical Components.

Now consider an arbitrary critical point ¢y of p(z). Consider also an arbitrary a € D,
and a sequence of points {w;} € H.,, which converge to a point ws € Hepq N (Joy U Jo_) .
Then let (z;, co) = Tao(w;) € Heyo and consider the sequence of maps A, : D, — C? for each
critical point c.

This is a normal family. Choose some subsequence hcz,%_ so that hczki converges for
each critical point ¢. For each critical point ¢ let g. be the limit of this subsequence. By
Lemma 4.19, g.(a) € f;*(A..4(r)). By Lemma 4.2, g.(a) € J;, so G, is smooth at g.(a).
Since g.(a) is a limit of points of H.,, then by Proposition 4.16, F, and J} are tangent at

gc(a) and so g.(a) is a point where V(G | )) has nonzero index.

fat (Breo.a(r)
Now if a # 0 then since there are d—1 criticz(ml points of p(z) then the set {g.(a)|c a critical point}
is a set of d — 1 points of nonzero index in f; (A (7)) \ Unep1 (o) Dusa-
Since the index of the gradient of the restriction of G is a vector field in A, ,(r) \
Uwep-1(2) fa (Aua(r)) by Corollary 4.14, and the index around the boundary of this set is
1 —d by Corollary 4.15, then the same is clearly true for f, (A, 4(r)) \Uuwep-1(s) Busa(r)-
Thus each of the d — 1 points g.(a) has index —1 and g.(a) is the unique point of nonzero
index in the intersection of f,(A.._4(r)) \ Uwep-1(20) Duwa(r) and the tube T7*. That the
same holds for a = 0 is easy to verify directly.
It follows that given any critical point ¢ of p(z) then any convergent subsequence of h,,,
must converge to g.. It follows that h.,, — g.. We denote g. by k. : D — C3. We have thus
shown that, given a critical point ¢, if z;, € C\ K(p) converges to zo, € J(p) then h., (a) =
(TOa(z, c), a) € H, converges to a holomorphic function g, such that g.(a) is the unique point
of nonzero index in the intersection of 7.* and f; ' (A._ .(r)) \ Unep—1(20) Buw,a(r)-

We now construct the extension 7,: Heq — Hg by defining 7, (wo) = he.. (b) whenever
Weo € H,q and 2. is the limit of {7a0(w)} where wy — wy. This is well defined because
if wp, = we and w), — W then wy, w), we,wh, ... converges to we and by the above,
the sequence of maps Aeryo(w;), Pergo(wt)s - - - converges to a single map he. for |a| < e
This is also continuous since if wy € H., and wy converges to wy, € H,, but Tap(Wg) #
Tab(Weo) then there exists € > 0 such that there are arbitrarily large values of k with
|Tab(Wk) — Tap(Weo)| > €1. Then replace each point wy with a point w) € H., such that
lw), — wy| < 1/2% and |74 (w},) — Tap(wy)| < €/2 (which we can do by the definition of 7, (wy,)
if wy, € Hye \ Hqe and we just take w) = wy otherwise). Then wj, is a sequence in H,.
and 7, (wy,) can not converge to 7, (ws) because there are arbitrarily large k for which
|Tab(W},) — Tap(Woo)| > |Tap(Wk) — Tap(Weo)| — |Tan(w},) — Tan(wi)| > €/2 but wj, — we since
|wj, —wg| < 1/ 2% But this is a contradiction since hcmo(w;) — Peryo(wos) By our previous work

Zoo

and herowy) (@) = wi and her o) () = Tap(w},) by definition. Therefore 7op: Hey — Hop
is continuous. Since 7, is clearly the inverse of 7,, then 7., is a homeomorphism. This
completes the proof of Proposition 4.16. O]

Theorem 4.21. For all sufficiently small a every component of the critical locus is an iterate
of one of the components H..

Proof. The components of H., are the only components of the critical locus if a = 0, so
assume a # 0. If W is a component of %, then by Lemma 4.7 we know that OW contains at
least one point w in either J; or J,. If w lies in J; \ J, then w lies in the stable manifold
of some point of J, so there is some n’ such that fo(w) € A, 4(r) for some 2/ € J(p).
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Take n to be the smallest such n’ (where n’ is allowed to be negative) and take z to be
the corresponding point of J(p). We know a smallest such n exists since w € JI \ J, so

G: (1) = ——logla] > 0 50 G; (f; () — = loglal = d" - (G (w) —
as k — oo but G, is bounded on compact sets (since Vj can certainly be assumed to be large
enough to contain V’).
It follows from our choice of n that f3"(w) € A;u(r) \ Uyep-100) fo (Aya(r)). But then
from Proposition 4.18 and Lemma 4.2 we conclude that f;"(1V) is an iterate of some H...
On the other hand if w € J, then choose a sequence of points w; € W such that w; — w.

Then G/ (w;) — GFH(w) =g > 0, and G, (w;) — log la] — G, (w) —

log |a]) — oo

" logla = 0
7 loglal = 0.
log|a|] < d. By the

d—1
Then for every i > 1 choose n; such that 1 < G, (f, ™ (w;)) —

d—1
recursion relation for G, it follows that n; — oo as i — oo. Then G (f,™(w;)) — 0 as
i — oo so the sequence f, ™ (w;) is a bounded sequence of points in iterates of W C %,
converging to J7. By Proposition 4.18 and Lemma 4.2 the members of any convergent
subsequence of f; ™ (w;) must lie in an iterate of H. for all large i, so W must be an iterate
of H.. This completes the proof. O
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Part II1
Rigidity
5 Holonomy in the Critical Locus.

We will now consider a single map f = f,, a # 0 to which Theorem 4.21 applies and for
which |a| < er (so Lemma 4.2 and Theorem 4.5 apply). Since a is fixed we let ¢ = ¢, |
and ¥_ = n-@,_ o f~! where n?! = 1/a and n is fixed. This gives the simpler relations
Y_o f7t = ¢ and ¢y o f = %, The function ¢_ is well defined and holomorphic on
f(V_). We will show that ¢_ is a biholomorphism from a neighborhood of infinity in H,
to a neighborhood of infinity in C. Because a is fixed we will omit it from the notation
throughout the rest of this section.

Lemma 5.1. There is a neighborhood H_ of infinity in H. which lies in f(V_) and such that
WY_ is a biholomorphism from H? to C\ D, for some v > 1.

Proof. First we note that

FOV2) =A@, 9| Ip(y) — x| > |ay| and |p(y) — 2| > [a|a}.

Since the y coordinate of points (z,y) € H. remain bounded as |z| — oo, it follows that
(x,y) € H. implies (x,y) € f(V_) whenever |z| is sufficiently large. This implies the first
assertion.

To show the second result we consider H, to be lying in C? C P! x P!. We then know
that H. can be completed to become a disk by adding the point (oo, ¢) and that its tangent

space is given at (oo, c¢) by p”’(c)dy + Cdu = 0 where C' is some constant and u = —. From
x
Corollary 1.5 we obtain

B<‘S0 ‘<B

for (z,y) € V_. Now if (x,y) € f(V_) then f~!(x,y) = (y, W) € V_ and so we obtain

| ply) —x <o (f—l(x7y))| < B ]M . Since p_ o f~1 =1)_/n this becomes
a a

| <1t < B| 2272

for (z,y) € f(V_). From Corollary 1.15 we have B~!|z| < |, (z,y)| < Blz| for (z,y) € V..
Dividing one equality by the other gives

_ Yy)—x
31‘77 )
a

oyt < | e

IR Ul

M is bounded on H. as |z| — oo, by the Riemann extension theorem % is
T +\T, Y
holomorphic and nonzero on a neighborhood of co € H.. Hence by shrinking H? if necessary

Since
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HOLONOMY IN THE CRITICAL LOCUS.

we conclude that 1_(x,y) is a biholomorphism from the neighborhood H? of co onto C\ D,
for some large t. m

The following is shown in Proposition 6.2 of [HOV95].

Lemma 5.2. There exists R > 1 such that for any z € C with |z| > R the fiber of ¢, in V,
over z and the fiber of ¥_ in f(V_) over z are each analytic disks.

Definition 5.3. Noting that |¢,| and |¢)_| are well defined on all of U™ and U~ respectively,
we let
Vi ={z € Vy| |4 (2)] > R}

and we let
v_o={ze V| |Yv_(2)] > R}

We note that f(¥,) C %, and f~'(¥_) C ¥_ as follows from the recursion relations for
Yy and P_.

The following is a consequence of the definitions:

Lemma 5.4. Two points z, and z are on the same leaf of F* iff there exists n > 0 such
that fo"(z1), [ (22) € Y4 and Yy (f"(21)) = ¥y (f"(22)). Similarly, two points 2 and
zo are on the same leaf of F~ iff there exists n > 0 such that f~"(z1), f~"(22) € Y~ and

b-(f7(=1)) =¥ ([T(22)).

Let . = {w € C|lw? =1 for some n > 0} = Qq/Z. Given two points 21,20 € U*, it is

clear that the property ZJrEZl; € .7 is independent of the branches of ¢, used. Similarly
+\%2
for the property ¢-(z1) €S, n,20elU.
w—(?«’z)
Lemma 5.5. Two points z1, 2o € U are on the same leaf of F* zﬁ% € .. Similarly,
+(%2

Y-(21)
¢—(22)
Proof. If z; and 2z, lie in ¥, the first assertion follows from Lemmas 5.2 and 5.4 and the

recursion relationship for ¢,. Otherwise, choosing k such that f*(z), f°*(22) € ¥, gives
the first assertion. The second is analogous. O]

€.

two points z1,z9 € U™ are on the same leaf of F~ iff

We will want to consider the holonomy maps of H. determined by the foliations F* and
F~. By Theorem 4.5, H, can be identified with C \ D using .

Assume that z; and z, are points of H.. for some critical point ¢ of p(z) and that z; and z
lie on the same leaf £7(z;) of F*. Start with z = z; and then vary z € H.. By Lemma 4.2,
the leaves of F* all intersect H. transversely hence the intersection of £ (z) with H, which
is near zo will vary holomorphically with z. By this means we get a holomorphic map h from
a neighborhood N; C H. of z; to a neighborhood Ny C H, of z;. Since the inverse map is
given by starting with z = z9, varying z € H, and following the intersection of H, and L*(z)
near z; then the holomorphic map from N; to N is a biholomorphism for suitably chosen
N; and Ny. Let my: Ny — N, denote this biholomorphism.
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Lemma 5.6. In the coordinates on H. given by ¢, : H, — C\ D the map m, is given by
my (2) = wz for somew € .. If we continue m, by holonomy then m . extends to the global
automorphism of H, given by m,(z) = wz. The same result holds on HZ with coordinates
defined by ¢_, and using any two points z1,ze € HZ on the same leaf of F~, along with F~,
to construct a holonomy map m_.

Uy (m+ (2 ))
V4 (2)
of z which takes values in .. Hence it is constant. Thus the map m, (z), which was only
defined in a neighborhood of a point on H,, takes the form m, (z) = wz in the coordinates
defined by 1, , and thus such a holonomy map gives a global automorphism of H..
The result for H? is proven the same way. O

Proof. The function ¢, : H. — C is well defined and so is a continuous fuction

One can attempt to picture this holonomy map in terms of monodromy. Assume d = 2.
Because the Jacobian of f is very small, the set f(H.) looks approximately like the curve
C(p). Consequently, if z € C is sufficiently large then there will be exactly two points in
f(H.) which map to z under 1. The monodromy map m: z — —z, carried out on f(H.)
instead of on H., interchanges such pairs. One visualizes a monodromy of a given order 2"
by looking at f°"(H,.) NV, and considering the fibers of ¢, in V, as we move in a large loop
around K, along H..
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FIBER PRESERVING CONJUGACIES.

6 Fiber Preserving Conjugacies.

6.1 Statement of the Theorem

Buzzard and Verma [BVO01] proved a stability result by using the A-lemma along the leaves
of the foliation F*. We are interested in deforming the underlying manifold to obtain a new
holomorphic self map. Unfortunately, simply deforming the leaves of F* quasiconformally
does not yield a well defined complex manifold structure as it destroys the complex structure
transverse to the foliation. The first natural approach is to deform using both F* and F~.
However, we will show that typically Hénon maps can not be deformed in this way.

In what follows we consider Hénon maps f(z,y) = (p(m) —ay, x) satisfying the following:

Condition 6.1.

e p s hyperbolic with connected Julia set and simple critical points.

o The Jacobian a is so small that the hypothesis of Theorem 4.5, Theorem 4.21, and
Lemma 5.1 all hold.

Convention 6.2. We will be dealing with just two Hénon maps, f and g, in this section
instead of a whole family f,. Hence we will omit the subscript a, but will use a subscript of

f or g whenever necessary, e.q. .FJT and F; instead of F;, ort; and v, instead of t.

Assume that we are given two different Hénon maps f and ¢ arising from two such
polynomials p; and p, and that f and g satisfy Condition 6.1. We will show that there are
severe obstructions to the existence of a conjugacy between f and g on U U U~ which maps
leaves of F} and F; to the leaves of 7 and F respectively.

The folling result can be found as Lemma 2.1 of [Buz99]. We include a proof.

Lemma 6.3. A homeomorphism from Uf UU; to Uy UU; which maps the leaves of ]-"]T

and F; to the leaves of F; and F, respectively necessarily maps €y to €.

Proof. This is because two leaves £; and £, which are transverse in C? intersect in a different
manner topologically than two leaves which are not. To see this, choose convenient (z,y)
coordinates so that the point of intersection is the origin, £; coincides with the x axis, and Lo
is transverse to the y axis. Then choose a biholomorphic parameterization ¢ (91 (1), gg(t))
of a neighborhood of the intersection in £ such that ¢ = 0 maps to the point of intersection.

Since the second leaf is transverse to the y axis then ¢j(0) # 0. Therefore g, is a local
biholomorphism. It follows that we can write go = 6g¢ for some nonvanishing holomorphic
function 6 defined in some neighborhood of zero, where d = 1 iff £; and L, intersect trans-
versely. Choosing ¢ a holomorphic function such that ¢¢=! = 6, then (g = ({g1)¢ so L is
parameterized by (C g1, (C gg)d). One can choose local coordinates so that that £, is parame-
terized by (¢,t%) and £, is the x axis. Then if U is any sufficiently small open neighborhood
of the origin we see that the inclusion £y \ {0} < U \ £; can induce a surjective map of
fundamental groups iff d = 1. m
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6.1 Statement of the Theorem

Remark 6.4. We will assume that h: U JT UU; — Uy UU, is a homeomorphism which maps
leaves of F} to leaves of F and maps leaves of F; to leaves of F. Then by Lemma 6.3
h maps the critical locus & of f to the critical locus € of g. We assume that there are
critical points ¢y and ¢, of f and g such that if we let H; and H, denote the components of
¢y and 6, asymptotic to y = ¢; and y = ¢, respectively as |z| — oo then h maps Hy to H,,.
There is no loss of generality in assuming that A maps Hy to H, since, by Theorem 4.21, we
can always choose integers k£ and ¢ such that this assumption holds if we change coordinates
by iterates of f and ¢ so that in the new coordinates h becomes the map ¢°* o h o f°.

There is one degenerate situation we wish to rule out. Since we are considering conjugacies
h: U}’ UU; — U UU; without requiring that h extends to C? then it is possible that
h: Hy — H, “inverts” Hy, meaning that it maps neighborhoods of the puncture in H; = D*
to open sets adjacent to the other boundary component of D*.

Condition 6.5. The map h maps small neighborhoods of the puncture of Hy at infinity to
neighborhoods of the puncture of H,, where Hy and H, are specified horizontal components
of €y and €, respectively.

Observation 6.6. Let ¢: C* — C? be the conjugation map ¢(x,y) = (7, %), and let g = co foc.
Then ¢, = s oc and ¢, = 1py_ oc. Thus as a conjugacy between f and g, ¢ maps the

leaves of .7:]? and F; to the leaves of F and F respectively.

Reduction 6.7. We can assume that h: Hy — H, is orientation preserving by replacing g
with ¢ o g o ¢ and h with ¢ o A if necessary.

Lemma 6.8. In the coordinates on Hy and H, given by ¢ and 1,4 one has h(wz) = wh(z)
for any w € S*. The same property also holds for all z € H3} using the coordinates on Hj
and HJ given by ¥y and v,

Proof. We will conduct the proof for Hy and H, with coordinates ¢py: Hy — C \ D and
g, Hy — C\ D given by Theorem 4.5. The proof for the other part of the lemma is the

wz)

takes values in . so it is constant. Thus, given w € % there exists 6, € % such that
h(wz) = 0,h(z) for all z € Hy. It follows that h is .#-equivariant. Hence it maps circles
(centered at the origin) to circles. Since h is a homeomorphism then the order of the points
z,wz,w?z,...,w? 2z = z on the circle must be preserved or reversed. Thus h(wz) = wh(z) or
h(wz) = wh(z) for w € .¥ and hence for all w € S*. The latter possiblity can be eliminated
since h is orientation preserving. [

same using the coordinates given in Lemma 5.1. Given w € .¥ the function only

We will write x 74, Xf—, Xg+ and x,— for the maps 1/¢py, 1/¢s—, 1/1p,r and 1/1p,_.
The point at infinity is a removable singularity for each of these maps, each of which sends

this point to the origin. Hence xyy: Hy — D, xg4: Hy — D, xp_: H]‘? — Dy, and
Xg—: Hy — Dy, are all biholomorphisms.

Definition 6.9. We define h: D — D by h = x4+ ohoxﬁ and we similarly define €: Dy, —
Dy, by € = Xxg- 0 hox;1(2). These maps satisfy h(wz) = w*'h(2) and E(wz) = w*'e(z),
where the + has the same sign in both relationships.
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6.2 Holomorphic circle actions

Definition 6.10. Let o, = ngOngi Xg+(H) — Dy, and let oy = Xf,oX]?}r: Xr+(Hp) =
Dy/¢,. The maps o, and oy are the biholomorphic transition maps between the coordinate
systems in which b and € represent the map h.

It is easy to confirm that
ggoh=tooy. (6.1)

Moreover, both £ o oy and o, o b are defined on Qy = x;, (H}) and map this homeomor-
phically onto Dy, .
We thus have the following commutative diagram:

Dl/Tf _£>]D1/tg (62)

Tw xg_]

oy ng_h>H; g

le-&- Xg+j

Q —— 9,

Proposition 6.11. One of the following must hold:

1. 04(2) = Bz and 04(z) = vz for constants 3,y € C*

or

2. there is a neighborhood of the origin about which h(z) = Bz and €(z) = vz for constants
B,v € C*.

In the next section we will derive Proposition 6.11 from general properties of holomorphic
circle actions.

6.2 Holomorphic circle actions

Let us consider the circle R/Z acting faithfully on a neighborhood U of 0 by biholomorphic
maps fixing 0, i.e., we have a monomomorphism ¢ — 7' from R/Z to the group of biholo-
morphic maps of U such that 7/(0) = 0. We call it briefly a holomorphic circle action. The
action 7! : z = e*™z will be called standard.

Remark 1 (straightening). Any holomorphic circle action is conformally conjugate to the
standard one (where the conjugacy can be orientation reversing). Indeed, take some orbit T’
of the action. It is a topological circle that bounds a topological disk V' > 0. Uniformize V' by
the round disk, 4 : V' — D. Then the maps 7' = ho~*oh~! are holomorphic automorphisms
of D fixing 0, so they are rotations. Thus, we obtain a monomomorphism R/Z — T, where
T is the group of rotations. There are only two such monomomorpisms, t — e*2™ and they
are conjugate by the reflection z +— z.

The orbits of any holomorphic circle action form an analytic foliation in the punctured

neighborhood U* of 0.
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6.2 Holomorphic circle actions

Remark 2 (tangencies) Given a pair (7', p*) of holomorphic circle actions, the associated
foliations either coincide (and in this case the actions either coincide or conjugate by a
conformal reflection®) or have finitely many tangencies on any given orbit. Indeed, if the
set of tangencies between the two foliations is not finite on some orbit, then they have a
common leaf (since they are analytic), and hence can be simultaneously straightened.

Given two circle actions 7' and 4%, a local homeomorphism h near 0 is called (v,%)-
equivariant if h(y'z) = 4'h(z) or h(y'z) =37 h(2).

Proposition 6.12. Let (7', p*) and (3, p°) be two non-trivial pairs of holomorphic circle
actions. If a local homeomorphism h is both (v,%)- and (p, p)-equivariant, then h is holo-
morphic.

Proof. Without loss of generality, we can assume that h conjugates 7' to 4* (otherwise,
compose h with an appropriate conformal reflection).

Let us take some orbit I' of the y-action. By the above Remark 2, we can pick a point
z € I' such that I" is transverse to the p-orbit at z, and the orbits of 7 and p° are transverse
at Z = h(z). Then the map (¢, s) — (p*(2),7"(p°z)) gives a smooth local chart near T". If h
conjugates p® to j°, let us consider the similar local chart near I' = h(I'). Otherwise, let us
consider the chart (¢,s) — (p~5(2),7(p2)). In either case, the map h becomes the identity
in these coordinates. Hence h is smooth near I', and thus, it is smooth in a punctured
neighborhood of 0.

Let us now show that the joint (v, p)-action is transitive on the punctured neighborhood
U* of 0, i.e., any two points in U* can be conneced by a concatenation of pieces of the ~-
and p-orbits. Indeed, the orbits of the joint action are open since the domain of any local
chart described above is contained in one orbit. Since U* is connected, it must be a single
orbit.

Let us now consider the conformal structure p = h*(\) in U, where A is the standard
conformal structure. The structure p is represented by a smooth family of infinitesimal
ellipses in U*. Moreover, since A is invariant under 7 and p and h is equivariant, p is
invaraint under the joint (v, d)-action.

If the structure p is standard then h is holomorphic. Otherwise, there is a non-circular
ellipse p(z). Since p is invariant under the transitive (7, p)-action, all the ellipses are non-
circular on U*. Hence the big axes I(z) C T,U* of the ellipses are well defined on U* and
form a (7, p)-invariant line field over U*.

Let us take some p-orbit Ay and consider the outermost v-orbit I'y crossing A. Then
[y and Ay have tangency of even order at some point 2. Rotating the line field by an
appropriate angle, we can make [(zp) tangent at zy to both I'y and Ay. By invariance, [(z)
is then tangent to Ay at any point z € A.

Let us now consider a nearby ~-orbit I' which is closer to the origin than I'y. Then I'
intersects A transversally at two points z, and z_ near z,. Moreover, the angles ay €
(—m/2,7/2) of these intersections have opposite signs. This contradicts to the invariance of
the line field under the v-action.

O

®We will refer to such a pair as trivial.
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Corollary 6.13. Under the circumstances of the above Proposition, if the v- and y-actions
are standard, then h is linear, z — Az.

Proof. In this case, h preserves the foliation by round circles centered at 0. But a biholomor-
phic map that fixes 0 and maps a circle centered at 0 to another such a circle is linear. [

Proof of Proposition 6.11. We know that the maps h and € are equivariant with respect to
the standard circle action 4'. Let p® = 0;1 ov*ooy and p° = O'g_l ovy*oa, By (6.1), b is
(p, p)-equivariant. If the maps oy and o, are not linear, then the pairs of actions, (7, p) and
(v, p), are non-trivial. Then b is linear by the last Corollary.

The same argument applies to £. O

6.3 Rigidity Results

Here we translate the statement of Proposition 6.11 back into statements about the two
given maps f and g which have a conjugacy h between them which maps leaves of .7-"f+ to
leaves of F and maps leaves of F; to leaves of F .

Theorem 6.14. Assume we are given two different Hénon maps [ and g satisfying Con-
dition 6.1. Assume h: Uf+ UU; = U, WU, is a conjugacy between f and g such that h
maps the leaves of ]—"Jf and F; to the leaves of FJ and F,; respectively. Choose coordinates
for the map g: C* — C? so that h maps Hy to H, for a pair of primary horizontal critical
components Hy and Hy of f and g. Finally assume that h: Hy — Hy is orientation preserv-

ing and satisfies Condition 6.5. Then h: UJT NU; — Uy NU, is a biholomorphism. Also,

1 1
Ygroh = BwH and 1, oh = =1;_ on a neighborhood about infinity of H; where f4~ and
8
41 must lie in ..
Corollary 6.15. Assume we are giwven two different Hénon maps f and g satisfying Con-
dition 6.1. Assume h: UJT UU; = U, WU, is a conjugacy between f and g such that h
maps the leaves of ]-"Jf and F; to the leaves of F; and F; respectively. Choose coordinates
for the map g: C* — C? so that h maps H; to H, for a pair of primary horizontal critical
components Hy and H, of f and g. Finally assume that h: Hy — H, is orientation reversing

and satisfies Condition 6.5. Then coh: Uf NU; — «(Uy NU,) is a biholomorphism. Also,

— 1 — 1

g+ 0 h = Bwar and 1, o h = =v;_ on a neighborhood about infinity of Hy where 3%~ and
v

41 must lie in 7.

Proof. Replace g with co go ¢ and h with co h. O

Proof of Theorem. Applying Lemma 6.3 we see the critical locus of f maps by h to the
critical locus of g. As in Remark 6.4 we can change coordinates using iterates of f and g
so there are primary horizontal components H; and H, such that h maps H; to H,. Then
Proposition 6.11 gives the following cases:
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Case 1. oy(z) = Bz and o04(2) = vz. If we write these two equations out using Defini-
1
tion 6.10 we obtain ¢y = Bwf+ and Y, = —1p,. Now while 9z : UJT — C* is not well
g
defined, the map to the quotient group ¥,y: U f+ — C*/.7 is well defined. Similarly for
¢f_1 Uf_ —)C*/y
Now there exists some M > 0 such that if z € Hy and G;(z) > M then ¢;_(z) =
1
B¢f+(z)-
Now if 2 € U; and G;(z) > M then there is some leaf ¢ € F; containing both z and
1 1
some point w € Hy. Thus G} > M so Yy_(z) ~ p_(w) = B@Z)H(w) ~ B¢f+(z)
But then if z € U and G > M then

L4 (2) ~y_(2) ~ B 0 f(2) ~ g (2). (6.3)

B pe ﬁd
Hence f%1 ~ wﬁfl(z). However since w?i’ (z) has a locally continuous branch about
z one concludes that this branch would have to be constant, and hence s, (z) must be

¢f+ f(z) =

constant. This is a contradiction. Thus no Henon map f exists for which ¢;_ = Ewﬁ for

a neighborhood of infinity in H;.

Case 2. h(z) =z and ¥(z) = vz. If we write these two equations out using Definition 6.9
then 1,4 o h = %TPH and ¢,_oh = %wf_. These hold in a neighborhood of infinity in H.
Now, as in Case 1, there exists some M > 0 such that if 2 € Uy and G;(z) > M then
gy 0 h(z) ~ %war(z) in C*/.#. Then

1¢f+of(z)~wg+ohof(z):

1
w?+(2) = E

]

g+ 0 g0 h(z) ~ g, oh(z) ~ ¢f+() (6.4)

3d
from which it follows that ¢! € ..

We will show that h: U]T NU;, — U NU, is a biholomorphism. To do this is suffices
to show that h: U ]T NU; — Uy NU, is holomorphic. To accomplish this is will suffice to
show that if z € Uf NU; then h is holomorphic on £}(2) and on £;(z). From this it will
immediately follow from Osgood’s theorem that A is holomorphic on (U NU;) \ €. Since
h: Uf NU; — U, NU, is continuous then by the Riemann extension theorem it will further
follow that A: U; NU; = Uy NU, is holomorphic. In order to prove this we will need the
following.

Lemma 6.16. Given z € (Uf NU;)\ €y, assume that L} (20) meets Hy at a point wy. Then
there is a neighborhood U of zo in L} (z0) such that there is a holomorphic holonomy map
Ctreowy: U — Hy which maps z € U to the intersection of L}(z) and Hy near wy. Since Fy
1s transverse to £JZ (20) and Hy at 2o and wy respectively then (g .o, can be assumed to be a
biholomorphism from U onto its image.
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Figure 2: Holonomy using F7.

Proof. This is geometrically self evident. O

Now assume z9 € (U NU;) \ €5 and Gf(20) > M and G;(h(z0)) > M. Choose wy €
L{(z0) N Hy. Then if U is a sufficiently small open neighborhood of zy in £;(2) then one
can see that

h[ g = Conteoymtawn) © 1 © S (6.5)

because h maps Hy to Hy, maps L;(2) to L, (h(20)) and maps leaves of F to leaves of F.
But because h in the right hand side of equation (6.5) is applied on H near infinity as long
as U is sufficiently small, then it is holomorphic. Thus equation (6.5) represents h | ; as a
composition of three holomorphic functions. Hence h ‘ p 1s holomorphic.

Now in general, if 2o is any point in (U NU;) \ €'f then choosing n sufficiently large
that G7 (f*"(20)) > M and G} (h(f"(20))) > M and writing h = g~" o ho f°" one concludes
that h is holomorphic on £} (z) near z.

The proof that h is holomorphic on leaves of F, on UJT N U, is identical. This completes
the proof. n

Eliminating h from the conclusion of Theorem 6.14 we obtain

Vg 0yt (2) = by 0y (B2) (6.6)

for some nonzero constants 3 and ~.

We now assume that f has degree two, so f and g are Hénon maps of the form f(z,y) =
(22 + ¢y — a1y, x) and g(z,y) = (22 + ¢ — asy, ). Rewriting equation (6.6) in terms of
Xf+> Xf—s Xg+ and x,— we obtain

Xg- © X4 (82) =7 - x7- 0 X1 (2). (6.7)

Our first goal will be to find all possible (nondegenerate) choices of f(x,y) = (2?+c;—ayy, x),
g(z,y) = (22 + c2 — azy, ) and B and 7 nonzero constants so that equation (6.7) holds.
The first three nonzero terms of the Taylor series expansion of

Xg— © Xgt (B2) =7 Xy— 0 X71(2) (6.8)
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are

(vai — Ba3)z + (yaie; — Ba3es) ="+

1
’YCL c+ 53@202 - —53%02)23 (6.9)

1
—7@%61 5

(rae? - Blaics + |

Since we can assume that each of ay, as, 8,7y are nonzero, it easily follows from the first

two terms that

2
5

v= ?B, c1 = cof3. (6.10)

1

Lemma 6.17. If x,_ o Xg_i(z) = Xf_o© th}r(z) for nonsingular

fl@y)=(2"+ea—ay,z) and g(z,y) = (2" + 2 — azy, 7)

then f =g.
Proof. From (6.10) it follows that a; = %as and ¢; = ¢5. To eliminate the remaining case
assume a; = —ap. Now (6.8) must vanish, but the coefficients of 2%, 2% and 27 in (6.8)
generate the ideal (a?), so a; would have to be zero. O
From the third term of (6.8) one obtains that either as = 1, as = —1, ¢ = 0, or
a? —1
f=——o0.
az — 1
2 _
Each of the cases ao = 1, as = —1, and 8 = a; can be reduced to the case ¢; = 0

by taking more terms of the Taylor series of (6.8) a2nd the calculating Groebner basis of the
resulting coefficients. In the case ¢; = 0 it can be shown that co = 0 and that a; = ay (so f
and ¢ are the same Hénon map), and that 5 = -, both of which must be the same primative
root of unity.

The following table gives the necessary details to verify these calulations using ®Maple.
Here n is the degree to which we need to calculate the Taylor series for each calculation.

Case n | Ordering Relevant Ba- | Conclusion
sis Elements

aj —1
B== 7 | tdeg(ar, c1,a2) | —a3er(af — 1) | e =0

21 (@3~ 1)°(a ~
CLQ)
as =1 8 | plex(f,c1,a1) | Ber(ar — 1), c; =0
Bei(B—1)
as = —1 8 | plex(f,ci,a1) | Bei(ag + 1), c; =0
Ba(B—-1)
c;=0 13 | tdeg(B, az,a1) | Barai(ar—as), | B2+ B+1=
Bajai(s®—1) |0
=25
a; = ag
cp=co=0
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We conclude that:

Lemma 6.18. If equation (6.6) holds with 3 and v nonzero and f(z,y) = (2*> 4+ ¢; — a1y, )
and g(z,y) = (2% + co — ayy, z) nondegenerate then the maps f and g must be the same
Henon map and either (1) f =~ =1 (the trivial solution), or else (2) a1 = az, ¢; = c3 =0,
B =~ and B is a primitive cubic root of unity.

Theorem 6.19. Assume h is a conjugacy between quadratic Hénon maps f(x,y) = (z*+c;—
a1y, x) and g(x,y) = (2*+co — axy, x) satisfying Condition 6.1. Assume further that h maps
the leaves of ]:]T and F; to the leaves of Ff and F, respectively. Choose coordinates for the
map g: C* — C? so that h maps H; to H, for the primary horizontal critical components H
and H, of f and g. Finally assume that h: Hy — H, is orientation preserving and satisfies
Condition 6.5. Then f = g and h°*(x,y) is the identity map on Uinu;.

Proof. This is easy now, as from Theorem 6.14 g € .. By Lemma 6.18 the maps f and
g must be the same Henon map, and additionally 5 = v = 1 since primitive cubic roots of
unity do not belong to ..

To see that conclusion about h°? one notes that since 3 = v = 1 then h | H, is the

identity map. If we define §(x,y) = (Yr4(x,y), ¥+ (x,y)) then about any sufficiently large
point 2y € Hy and the Jacobian of 6 is a defining function for Hy about z;. Since H; has
multiplicity one then 6 is locally a two to one map about H;. Now 0(h(z)) = 6(z) since
B =~ = 1. One concludes that about such a point zy (which is fixed by h) h must either
exchange points in the fibers of § or must leave them fixed. Either way, h°? must fix all
points in a neighborhood of 2. Since h°? is the identity map on an open set, it must be the
identity map everywhere. O]

Corollary 6.20. Assume h is a conjugacy between quadratic Hénon maps f(z,y) = (x*+c;—
a1y, x) and g(x,y) = (x*+co — asy, x) satisfying Condition 6.1. Assume further that h maps
the leaves of F; and F; to the leaves of F and F, respectively. Choose coordinales for the
map g: C* — C? so that h maps Hy to H, for the primary horizontal critical components H
and Hy of f and g. Finally assume that h: Hy — H, is orientation reversing and satisfies

Condition 6.5. Then f =cogoc and cohocoh is the identity map on U}T nU;.
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List of Notations

We provide a list of notations here as a reference.

Notatation

Section

Meaning

fa

The Hénon map under consideration.

The Jacobian of f,.

A monic polynomial used to define f,.

1.4

The homogeneous version of p(x).

The degree of p(x).

1.1

The polynomial p(x) with its leading term
removed.

1.1

The degree of ¢(z).

1.1

A large radius used to define V; and V_.

1.1

Regions which describe the large scale be-
haviour of Hénon maps.

Kq, Ky

The set of points whose orbit under for-
ward (respectively backward) iteration
under f, remain bounded.

JrJy

a’va

The boundaries of K] and K, respec-
tively.

The intersection of J; and J, .

Ud Uy

1.4

The set of points whose orbit under for-
ward (respectively backward) iteration
under f, remain bounded.

1.4

These are subsets of C2xDp whose restric-
tion to C?x {a} is U; and U, respectively.

The curve x = p(y) in C2. This equal to
Jy -

The disk of radius r in C.

1.2,1.3

The regions V. and V_ extended to P! x
P

()0(1,4'7 Soa,—

1.1

Holomorphic functions defined on V. and
V_ respectively measuring that rate of es-
cape to infinity under forward and back-
ward iteration respectively.

YaYa

14

Plurisubharmonic functions on C? mea-
suring the rate of escape to infinity un-
der forward and backward iteration re-
spectively.

- ot
S Sy,

1.2,1.3

Auxilliary functions used to construct and
study g and ¢, .

‘,1777/7 yn

1.1

These are given by (zn,yn) = f"(x,y),
n € 7Z.

2.3

This is the critical locus of f,. It tangency
locus of the foliations F, and F .

1.2

This set is the forward image of V_ x Dg
under the map (z,y,a) — (fa(a:,y),a).
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Notatation | Section | Meaning
U 39 A neighborhood of J(p) used to construct
telescopes.
U’ 3.2 U =p Y(U).
5 3.9 A small value used to define a neighbor-
' hood of C(p).
v(z,y) 32 |y =ply) —=
. V' =pr; ' (U) N~ (Ds) and
R @y e V] oyl <o)
. 3.9 The radius of telescoping neighborhoods
in the Kobayashi metric on U
The disk of Euclidean radius 8 about any
I6; 3.6 point u € U’ is mapped biholomorphically
by p.
u(z, y) 39 A function on V', The functions u,v give
useful coordinates on V.
A value choose small enough that the con-
A 3.3 structions in [HOV95] hold when 0 <
la| < A.
U. 39 The ball of radius r about z € J(p), mea-
sured in the Kobashi metric on U.
J(p) 33 The natural extension of p: J(p) — J(p).
A homeomorphism from the natural ex-
Ta 3.3 tension J(p) to J, for a sufficiently small.
Holomorphic functions, the graph of
924502+ 3.3,3.3 | which gives specific local stable/unstable
manifolds of the point in question.
A, , is the local stable manifold in B, for
A, Ay (r) 3.3 fa- A q(r) is a smaller disk within A, ,
(not necessarily about a point of .J,).
The component of the critical locus of f,
H., 4.1 .
asymptotic to y = c.
bt 5 Same as @q ;, Pa,— but with ¢, _ rescaled
A to give the simplest iteration formula.
.y 5 Subsets of V and V_ for which the fibers
e of 14 and v_ are disks.
f 3.3 flz,y,a) = (fa(a:,y),a).
5 The set of all roots of unity w satisfying

w? =1 for some k € N.
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Notatation | Section | Meaning

m-+, m_ 5

The monodromy map of the critical lo-
cus determined by either F* or F~, along
with a pair of points on the critical locus
on the same leaf of F* or F~.

H, ¢ 5 which is mapped biholomorphically to C\

H? is a neighborhood of infinity in H,

D

e
¢ 6.6 The map ¢(z,y) = (7,7).

There are the restriction of a conjugacy h
between two Henon maps to a component

h,t 6.1 of the critical locus. h and ¢ are the same

conjugacy written in different coordinate
Systems.

o 6.1

Change of complex coordinate functions.
In each case the origin is a fixed point.

IS The circle of radius r about the origin in
.
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