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Abstract

We develop a versatile new methodology for multidimensional mechanism design that in-
corporates side information about agent types with the bicriteria goal of generating high social
welfare and high revenue simultaneously. Side information can come from a variety of sources—
examples include advice from a domain expert, predictions from a machine-learning model
trained on historical agent data, or even the mechanism designer’s own gut instinct—and in
practice such sources are abundant. In this paper we adopt a prior-free perspective that makes
no assumptions on the correctness, accuracy, or source of the side information. First, we design
a meta-mechanism that integrates input side information with an improvement of the classical
VCG mechanism. The welfare, revenue, and incentive properties of our meta-mechanism are
characterized by a number of novel constructions we introduce based on the notion of a weakest
competitor, which is an agent that has the smallest impact on welfare. We then show that
our meta-mechanism—when carefully instantiated—simultaneously achieves strong welfare and
revenue guarantees that are parameterized by errors in the side information. When the side
information is highly informative and accurate, our mechanism achieves welfare and revenue
competitive with the total social surplus, and its performance decays continuously and gradu-
ally as the quality of the side information decreases. Finally, we apply our meta-mechanism to a
setting where each agent’s type is determined by a constant number of parameters. Specifically,
agent types lie on constant-dimensional subspaces (of the potentially high-dimensional ambient
type space) that are known to the mechanism designer. We use our meta-mechanism to obtain
the first known welfare and revenue guarantees in this setting.

1 Introduction

Mechanism design is a high-impact branch of economics and computer science that studies the
implementation of socially desirable outcomes among strategic self-interested agents. Major real-
world use cases include combinatorial auctions (e.g., strategic sourcing, radio spectrum auctions),
matching markets (e.g., housing allocation, ridesharing), project fundraisers, and many more. The
two most commonly studied objectives in mechanism design are welfare maximization and revenue
maximization. In many settings, welfare maximization, or efficiency, is achieved by the classic
Vickrey-Clarke-Groves (VCG) mechanism [18, 27, 49]. Revenue maximization is a much more
elusive problem that is only understood in very special cases. The seminal work of Myerson [41]
characterized the revenue-optimal mechanism for the sale of a single item in the Bayesian setting,
but it is not even known how to optimally sell two items to multiple buyers. It is known that
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welfare and revenue are generally competing objectives and optimizing one can come at the great
expense of the other [1, 4, 7, 22, 32].

In this paper we study how side information (or predictions) about the agents can help with
bicriteria optimization of both welfare and revenue. Side information can come from a variety of
sources that are abundantly available in practice such as predictions from a machine-learning model
trained on historical agent data, advice from domain experts, or even the mechanism designer’s
own gut instinct. Mechanism design approaches that exploit the proliferation of agent data have in
particular witnessed a great deal of success both in theory [8, 10, 37, 40] and in practice [23, 24, 45,
51]. In contrast to the typical Bayesian approach to mechanism design that views side information
through the lens of a prior distribution over agents, we adopt a prior-free perspective that makes no
assumptions on the correctness, accuracy, or source of the side information. A nascent line of work
(that is part of a larger agenda on augmenting algorithms with machine-learned predictions [39]) has
begun to examine the challenge of exploiting predictions (of a priori unknown quality) when agents
are self-interested, but only for fairly specific problem settings [3, 13–15, 25, 52]. We contribute to
this line of work with a general side-information-dependent meta-mechanism for a wide swath of
multidimensional mechanism design problems that aim for high social welfare and high revenue.

Here we provide a few examples of the forms of side information we consider in various multidi-
mensional mechanism design scenarios. A formal description of the model is in Section 2. (1) The
owner of a new coffee shop sets prices based on the observation that most customers are willing to
pay $9 for a coffee and a croissant, and are willing to pay $5 for either item individually. (2) A real-
estate agent believes that a particular buyer values a high-rise condominium with a city view three
times more than one on the first floor. Alternately, the seller might know for a fact that the buyer
values the first property three times more than the second based on set factors such as value per
square foot. (3) A homeowner association is raising funds for the construction of a new swimming
pool within a townhome complex. Based on the fact that a particular resident has a family with
children, the association estimates that this resident is likely willing to contribute at least $300 if
the pool is opened within a block of the resident’s house but only $100 if outside a two-block radius.
These are all examples of side information available to the mechanism designer that may or may
not be useful or accurate. Our methodology allows us to derive welfare and revenue guarantees
under different assumptions on the veracity of the side information. We study two slightly different
settings: one in which the side information can be completely bogus (Section 4), and another in
which the side information is constrained to be valid (Section 5).

1.1 Our contributions

Our main contribution is a versatile meta-mechanism that integrates side information about agent
types with the bicriteria goal of simultaneously optimizing welfare and revenue.

In Section 2 we formally define the components of multidimensional mechanism design with
side information. The abstraction of multidimensional mechanism design is a rich language that
allows our theory to apply to many real-world settings including combinatorial auctions, matching
markets, project fundraisers, and more—we expand on this list of examples further in Section 2.
We also present the weakest-competitor VCG mechanism introduced by Krishna and Perry [33] and
prove that it is revenue-optimal among all efficient mechanisms in the prior-free setting (extending
their work which was in the Bayesian setting for a fixed known prior).

In Section 3 we present our meta-mechanism for mechanism design with side information. It gen-
eralizes the mechanism of Krishna and Perry [33]. We introduce the notion of a weakest-competitor
set and a weakest-competitor hull, which are constructions that are crucial to understanding the
payments and incentive properties of our meta-mechanism.
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In Section 4 we prove that our meta-mechanism—when carefully instantiated—achieves strong
welfare and revenue guarantees that are parameterized by errors in the side information. Our
mechanism works by independently expanding the input predictions, where the expansion radius for
each prediction is drawn randomly from a logarithmic discretization of the diameter of the ambient
type space. Our mechanism achieves the efficient welfare OPT and revenue at least Ω(OPT/ logH)
when the side information is highly informative and accurate, where H is an upper bound on any
agent’s value for any outcome. Its revenue approaches OPT if its initialization parameters are chosen
wisely. Its performance decays gradually as the quality of the side information decreases (whereas
näıve approaches suffer from huge discontinuous drops in performance). Prior-free efficient welfare
OPT, or total social surplus, is the strongest possible benchmark for both welfare and revenue.
Finally, we extend our methods to more general, more expressive side information languages.

In Section 5 we use our meta-mechanism to derive new results in a setting where each agent’s
type is determined by a constant number of parameters. Specifically, agent types lie on constant-
dimensional subspaces (of the potentially high-dimensional ambient type space) that are known
to the mechanism designer. For example, in the condominium example from the introduction, an
agent’s value per square foot might completely determine her value for each property. When each
agent’s true type is known to lie in a particular k-dimensional subspace of the ambient type space,
we show how to use our meta-mechanism to guarantee revenue at least Ω(OPT/k(logH)k) while
simultaneously guaranteeing welfare at least OPT/ logH.

Traditionally it is known that welfare and revenue are at odds and maximizing one objective
comes at the expense of the other. Our results show that side information can help mitigate this
difficulty.

1.2 Related work

Side information in mechanism design. Various mechanism design settings have been studied under
the assumption that some form of public side information is available. Medina and Vassilvitskii
[37] study single-item (unlimited supply) single-bidder posted-price auctions with approximate bid
predictions. Devanur et al. [21] study the sample complexity of (single-parameter) auctions when
the mechanism designer receives a distinguishing signal for each bidder. More generally, the field
of algorithms with predictions aims to improve the quality of classical algorithms when (potentially
machine-learned) predictions about the solution are available. This is an extremely active area of
research (Mitzenmacher and Vassilvitskii [39] provide a survey of work in this area). There have
been recent explicit connections of the algorithms-with-predictions paradigm to mechanism design
in specific settings such as strategic scheduling, facility location, online Nash social welfare maxi-
mization, and single-leg revenue management [3, 13–15, 25]. Most related to our work, Xu and Lu
[52] study the design of high-revenue auctions to sell a (single copy of a) single item to multiple
bidders when the mechanism designer has access to point predictions on the bidders’ values for
the items. Unlike our approach which heavily exploits randomization, they focus on deterministic
prediction-augmented modifications of a second-price auction. An important drawback of deter-
minism is that revenue guarantees do not decay continuously as prediction quality degrades. For
agents with value capped at H there is an error threshold after which, in the worst case, only a
1/H-fraction of revenue can be guaranteed (this is not even competitive with a vanilla second-price
auction). Xu and Lu [52] prove that such a drop in revenue is unavoidable by deterministic mecha-
nisms. Finally, our setting is distinct from, but similar to in spirit, work that uses public attributes
to perform market segmentation to improve revenue [8, 11].

Welfare-revenue tradeoffs in auctions. The relationship between welfare and revenue in Bayesian
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auctions has been widely studied since the seminal work of Bulow and Klemperer [16]. Daskalakis
and Pierrakos [20], Hartline and Roughgarden [30] quantify welfare-revenue tradeoffs for second-
price auctions with reserve prices in the single item setting. Diakonikolas et al. [22] study the
Pareto frontier between efficiency and revenue in the single-item setting. They show that under-
standing the Pareto frontier is in general intractable, but derive polynomial-time approximation
schemes to approximate the Pareto curve when there are two bidders. Anshelevich et al. [4] study
welfare-revenue tradeoffs in large markets, Aggarwal et al. [2] study the efficiency of revenue-optimal
mechanisms, and Abhishek and Hajek [1] study the efficiency loss of revenue-optimal mechanisms.

Constant-parameter mechanism design. Revenue-optimal mechanism design for settings where each
agent’s type space is of a constant dimension has been studied previously in certain specific settings.
Single-parameter mechanism design is a well-studied topic dating back to the seminal work of My-
erson [41], who (1) characterized the set of all truthful allocation rules and (2) derived the Bayesian
optimal auction based on virtual values (a quantity that is highly dependent on knowledge of the
agents’ value distributions). Archer and Tardos [5] also characterize the set of allocation rules that
can be implemented truthfully in the single-parameter setting, and use this to derive polynomial-
time mechanisms with strong revenue approximation guarantees in various settings. Kleinberg and
Yuan [32] prove revenue guarantees for a variety of single-parameter settings that depend on dis-
tributional parameters. Constrained buyers with values determined by two parameters have also
been studied [35, 42].

Revenue of combinatorial auctions for limited supply. Our mechanism when agent types lie on
known linear subspaces of low degree can be seen as a generalization of the well-known logarithmic
revenue approximation that is achieved by a second-price auction with a random reserve price in the
single-item setting [26]. Similar revenue approximations have been derived in multi-item settings
for various classes of bidder valuation functions such as unit-demand [29], additive [34, 47], and
subadditive [9, 17]. To the best of our knowledge, no previous techniques handle agent types on
low-dimensional subspaces. Furthermore, our results are not restricted to combinatorial auctions
unlike most previous research.

2 Problem formulation, example applications, and the weakest-
competitor VCG mechanism

We consider a general multidimensional mechanism design setting with a finite allocation space Γ
and n agents. Θi is the type space of agent i. Agent i’s true private type θi ∈ Θi determines her
value v(θi, α) for allocation α ∈ Γ. We will interpret Θi as a subset of RΓ, so θi[α] = v(θi, α). We
use θ ∈×n

i=1Θi to denote a profile of types and θ−i ∈ Θ−i :=×j ̸=iΘi to denote a profile of types
excluding agent i. We now introduce our model of side information. For each agent, the mechanism
designer receives a subset of the type space predicting that the subset contains the agent’s true
yet-to-be-revealed type. Formally, the mechanism designer receives additional information about
each agent in the form of a refinement of each agent’s type space, given by Θ̃1 ⊆ Θ1, . . . , Θ̃n ⊆ Θn.
These refinements postulate that the true type of bidder i is actually contained in Θ̃i (though the
mechanism designer does not necessarily know whether or not these predictions are valid). We
refer to the Θ̃i as side-information sets or simply predictions. To simplify exposition, we assume
that prior to receiving side information the mechanism designer has no differentiating information
about the agents’ types, that is, Θ1 = · · · = Θn. Let Θ denote this common ambient type space.
We assume 0 ∈ Θ. This assumption is without loss of generality—all definitions and theorems in
this paper hold relative to whatever the ambient type space of agent i is.
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A mechanism with side information is specified by an allocation rule α(θ; Θ̃1, . . . , Θ̃n) ∈ Γ
and a payment rule pi(θ; Θ̃1, . . . , Θ̃n) ∈ R for each agent i. We assume agents have quasilin-
ear utilities. A mechanism is incentive compatible if θi ∈ argmaxθ′i∈Θi

θi[α(θ
′
i,θ−i; Θ̃1, . . . , Θ̃n)] −

pi(θ
′
i,θ−i; Θ̃1, . . . , Θ̃n) holds for all i, θi ∈ Θi,θ−i ∈ Θ−i, Θ̃1 ⊆ Θi, . . . , Θ̃n ⊆ Θn, that is, agents

are incentivized to report their true type regardless of what other agents report and regard-
less of the side information used by the mechanism (this definition is equivalent to the usual
notion of dominant-strategy incentive compatibility and simply stipulates that side information
ought to be used in an incentive compatible manner). A mechanism is individually rational if
θi[α(θi,θ−i; Θ̃1, . . . , Θ̃n)] − pi(θi,θ−i; Θ̃1, . . . , Θ̃n) ≥ 0 holds for all i, θi,θ−i, Θ̃1, . . . , Θ̃n. We will
analyze a variety of randomized mechanisms that randomize over incentive compatible and in-
dividually rational mechanisms. Such randomized mechanisms are thus incentive compatible and
individually rational in the strongest possible sense (as supposed to weaker in-expectation incentive
compatibility/individual rationality). An important note: no assumptions are made on the veracity
of Θ̃i; agent i’s misreporting space is the full ambient type space Θi.

Example applications

Our model of side information within the rich language of multidimensional mechanism design
allows us to capture a variety of different problem scenarios where both welfare and revenue are
desired objectives. We list a few examples of different multidimensional mechanism settings along
with examples of different varieties of side information sets.

• Combinatorial auctions: There are m indivisible items to be allocated among n agents (or
to no one). The allocation space Γ is the set of (n + 1)m allocations of the items and θi[α]
is agent i’s value for the bundle of items she is allocated by α. Let X and Y denote two of
the items for sale. The set Θ̃i = {θi : θi[{X, Y}] ≥ 9, θi[{X}] + θi[{Y}] ≥ 10} represents the
prediction that agent i’s values for X and Y individually sum up to at least $10, and her value
for the bundle is at least $9. Here, Θ̃i is the intersection of linear constraints.

• Matching markets: There arem items (e.g., houses) to be matched to n buyers. The allocation
space Γ is the set of matchings on the bipartite graph Km,n and θi[α] is buyer i’s value for
the item α assigns her. Let α1, α2, α3 denote three matchings that match house 1, house 2,
and house 3 to agent i, respectively. The set Θ̃i = {θi : θi[α1] = 2 · θi[α2] = 0.75 · θi[α3]}
represents the information that agent i values house 1 twice as much as house 2, and 3/4 as
much as house 3. Here, Θ̃i is the linear space given by span(⟨1, 1/2, 4/3⟩).

• Fundraising for a common amenity: A multi-story office building that houses several compa-
nies is opening a new cafeteria on a to-be-determined floor and is raising construction funds.
The allocation space Γ is the set of floors of the building and θi[α] is the (inverse of the) cost
incurred by building-occupant i for traveling to floor α. The set Θ̃i = {θi : ∥θi − θ∗i ∥p ≤ k}
postulates that i’s true type is no more than k away from θ∗i in ℓp-distance, which might be
derived from an estimate of the range of floors agent i works on based on the company agent
i represents. Here, Θ̃i is given by a (potentially nonlinear) distance constraint.

• Bidding for a shared outcome: A package delivery service that offers multiple delivery rates
(priced proportionally) needs to decide on a delivery route to serve n customers. The alloca-
tion space Γ is the set of feasible routes and θi[α] is agent i’s value for receiving her packages
after the driving delay specified by α. For t = 0, 1, . . . let αt denote an allocation that im-
poses a driving delay of t time units on agent i. The set Θ̃i = {θi : θi[α0] ≥ 500, θi[αt+1] ≥
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ft(θi[αt]) ∀t} is the prediction that agent i is willing to pay $500 to receive her packages
as soon as possible, and is at worst a time discounter determined by (potentially nonlinear)
discount functions ft. Here, the complexity of Θ̃i is determined by the ft.

In our results we will assume that Θ = [0, H]Γ and thereby impose an upper bound H on any
agent’s value for any allocation. This cap H is the only problem-specific parameter in our results.
In the above four bulleted examples H represents the maximum value any agent has for the grand
bundle of items, any available house, the cafeteria opening on her floor, and receiving her packages
with no delay, respectively.

The weakest-competitor VCG mechanism

The VCG mechanism can generally be highly suboptimal when it comes to revenue [7, 38, 48]
(and conversely mechanisms that shoot for high revenue can be highly welfare suboptimal). How-
ever, if efficiency is enforced as a constraint of the mechanism design, then the weakest-competitor
VCG mechanism introduced by Krishna and Perry [33] is in fact revenue optimal (they call it
the generalized VCG mechanism). While VCG payments are based on participation externalities,
the payments of the weakest-competitor VCG mechanism are based on agents being replaced by
weakest competitors who have the smallest impact on welfare. This approach yields a strict rev-
enue improvement over the vanilla VCG mechanism. Krishna and Perry [33] proved that the
Bayesian version of the weakest-competitor VCG mechanism is revenue optimal among all efficient,
incentive compatible, and individually rational mechanisms. The (prior-free) weakest-competitor
VCG mechanism works as follows. Given reported types θ1, . . . , θn, it uses the efficient allocation
α∗ = argmaxα∈Γ

∑n
i=1 θi[α]. The payments are given by

pi(θ1, . . . , θn) = min
θ̃i∈Θi

(
max
α∈Γ

∑
j ̸=i

θj [α] + θ̃i[α]

)
−
∑
j ̸=i

θj [α
∗].

If 0 ∈ Θi, pi is simply the vanilla VCG payment. Krishna and Perry [33] prove the following result
in the Bayesian setting, which we reproduce in a stronger prior-free form for completeness.

Theorem 2.1. The weakest-competitor VCG auction is incentive compatible and individually ratio-
nal. Furthermore, it is the revenue maximizing mechanism among all mechanisms that are efficient,
incentive compatible, and individually rational.

Proof. Weakest-competitor VCG is incentive compatible for the same reason that VCG is incen-
tive compatible: the minimization in the payment formula (the pivot term) is independent of
bidder i’s reported type. Concretely, if α′ is the welfare-maximizing allocation when bidder i re-
ports θ′i, bidder i’s utility from reporting θ′i is

∑n
j=1 θj [α

′] − min
θ̃i∈Θi

(maxα
∑

j ̸=i θj [α] + θ̃i[α]),

which is maximized at α′ = α∗ (which proves incentive compatibility). Furthermore, for each
i,
∑n

j=1 θj [α
∗] − min

θ̃i∈Θi
(maxα

∑
j ̸=i θj [α] + θ̃i[α]) ≥

∑n
j=1 θj [α

∗] − maxα
∑n

j=1 θj [α] = 0, which
proves individual rationality. The proof that weakest-competitor VCG is revenue optimal follows
from the revenue equivalence theorem; the necessary ingredients may be found in the monograph
by Vohra [50]. Let pi(θ) be the weakest-competitor VCG payment rule, and let p′i(θ) be any other
payment rule that also implements the efficient allocation rule. By revenue equivalence, for each i,
there exists hi(θ−i) such that p′i(θi,θ−i) = pi(θi,θ−i)+hi(θ−i). Suppose θ is a profile of types such
that p′i generates strictly greater revenue than pi, that is,

∑n
i=1 p

′
i(θ) >

∑n
i=1 pi(θ). Equivalently∑n

i=1 pi(θ, θ−i) + hi(θ−i) >
∑n

i=1 pi(θi,θ−i). Thus, there exists i∗ such that hi∗(θ−i∗) > 0. Now,

let θ̃i∗ = argminθ′
i∗∈Θi∗

maxα∈Γ
∑

j ̸=i θj [α] + θ′i∗ [α] be the weakest competitor with respect to θ−i∗ .
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If weakest-competitor VCG is run on the type profile (θ̃i∗ ,θ−i∗), the agent with type θ̃i∗ pays their
value for the efficient allocation. In other words, the individual rationality constraint is binding for
θ̃i∗ . Since hi∗(θ−i∗) > 0, p′i violates individual rationality, which completes the proof.

Our meta-mechanism (Section 3) is a generalization of the weakest-competitor VCG mecha-
nism that uses side information sets rather than the ambient type space to determine payments.
(Misreporting is not limited to side information sets.) Our meta-mechanism relaxes efficiency in
order to use the side information to boost revenue. The notion of a weakest competitor highlighted
by the weakest-competitor VCG mechanism is a key ingredient in our study of side information.

3 Weakest-competitor sets and our meta-mechanism

In this section we present our meta-mechanism for multidimensional mechanism design with side
information. Our meta-mechanism generalizes the weakest-competitor VCG mechanism. We begin
by introducing some new constructions based on the concept of a weakest competitor. These
constructions are the key ingredients in understanding the role of side information in our meta-
mechanism. Let θ ⪯ θ′ if θ[α] ≤ θ′[α] for all α ∈ Γ. Let θ ≼ θ′ if θ[α] ≤ θ′[α] for all α ∈ Γ
and there exists α′ ∈ Γ with θ[α′] < θ′[α′]. Let θ ≺ θ′ if θ[α] < θ′[α] for all α ∈ Γ. We assume
Θi = Θ = [0, H ]Γ for all i, that is, all agents share a common ambient type space with no up-front
differentiating information.

Definition 3.1. The extended weakest-competitor set of a closed set Θ̃i, denoted by WC(Θ̃i), is the
subset of all weakest competitors in Θ̃i over all possible type profiles of the other agents. Formally,

WC(Θ̃i) :=

{
argmin
θ̃i∈Θ̃i

(
max
α∈Γ

∑
j ̸=i

θj [α] + θ̃i[α]

)
: θ−i ∈ Θ−i

}
⊆ bd(Θ̃i).

The weakest-competitor set of Θ̃i, denoted by WC(Θ̃i), is the subset of WC(Θ̃i) where ties in the
argmin are broken by discarding any θ′ in the argmin such that there exists θ also in the argmin
with θ ≼ θ′. We call members of both WC(Θ̃i) and WC(Θ̃i) weakest competitors and say θ̂i is a
weakest competitor relative to θ−i if θ̂i ∈ argmin

θ̃i∈Θ̃i
maxα∈Γ

∑
j ̸=i θj [α] + θ̃i[α].

The weakest-competitor set is a natural notion of a “lower bound” set of types corresponding to
a given predicted type set. From the perspective of the weakest-competitor VCG mechanism, the
payment of an agent with true type in Θ̃i only depends on WC(Θ̃i) and not on Θ̃i. Motivated by this
observation, we define the weakest-competitor hull, which can be viewed as a “weakest-competitor
relaxation” of a given set Θ̃i.

Definition 3.2. The weakest-competitor hull of Θ̃i, denoted by WCH(Θ̃i), is the maximal set S
such that WC(S) = WC(Θ̃i) (no T ⊃ S satisfies WC(T ) = WC(Θ̃i)). Equivalently,

WCH(Θ̃i) =
⋃

Θ̂i:WC(Θ̂i)=WC(Θ̃i)

Θ̂i.

We now give simpler characterizations of weakest-competitor sets and weakest-competitor hulls
without explicit reference to the mechanics of the weakest-competitor VCG mechanism.

Theorem 3.3. Let Θ = [0, H ]Γ and let Θ̃ ⊆ Θ be closed and connected. Then

WC(Θ̃) =
{
θ ∈ Θ̃ :

{
θ′ ∈ Θ̃ : θ′ ≺ θ

}
= ∅
}
,WC(Θ̃) =

{
θ ∈ Θ̃ :

{
θ′ ∈ Θ̃ : θ′ ≼ θ

}
= ∅
}
,
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and
WCH(Θ̃) =

{
θ ∈ Θ : ∃θ′ ∈ Θ̃ s.t. θ ⪰ θ′

}
is the upwards closure of Θ̃.

Proof. Let i denote the index of the agent under consideration with type space Θ̃. Let θ ∈ Θ̃ be a
point such that there exists θ′ ∈ Θ̃ with θ′ ≺ θ. Then,

max
α∈Γ

∑
j ̸=i

θj [α] + θ′[α] < max
α∈Γ

∑
j ̸=i

θj [α] + θ[α]

for all θ−i ∈ Θ−i. So θ /∈ WC(Θ̃), which shows that WC(Θ̃) ⊆ {θ ∈ Θ̃ : {θ′ ∈ Θ̃ : θ′ ≺ θ} = ∅}.
To show the reverse containment, let θ ∈ Θ̃ be such that {θ′ ∈ Θ̃ : θ′ ≺ θ} = ∅. Consider any
θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn) such that∑

j ̸=i

θj [α1] + θ[α1] =
∑
j ̸=i

θj [α2] + θ[α2] = · · · =
∑
j ̸=i

θj [α|Γ|] + θ[α|Γ|].

The existence of such a θ−i can be shown explicitly as follows. Let j ̸= i be arbitrary. For all
k /∈ {i, j} set θk = (0, . . . , 0). Without loss of generality relabel the allocations in Γ such that
θ[α1] ≥ θ[α2] ≥ · · · ≥ θ[α|Γ|]. Then, set

θj =
(
0, θ[α1]− θ[α2], . . . , θ[α1]− θ[α|Γ|]

)
∈ [0, H]Γ.

Then, θ minimizes

max

∑
j ̸=i

θj [α1] + θ[α1],
∑
j ̸=i

θj [α2] + θ[α2], . . . ,
∑
j ̸=i

θj [α|Γ|] + θ[α|Γ|]


since any θ′ that attains a strictly smaller value must satisfy θ′ ≺ θ (and no such θ′ exists, by
assumption). So θ ∈ WC(Θ̃), which proves the reverse containment. The characterizations of WC
and WCH follow immediately.

For example, in the single-dimensional case we have WC([θ, θ]) = WC([θ, θ]) = {θ}, and
WCH([θ, θ]) = [θ,H]. Figure 1 displays example weakest-competitor sets and weakest-competitor
hulls in a two-dimensional type space. We list a few additional properties of WC and WCH that
are all immediate consequences of Theorem 3.3.

Proposition 3.4. Let Θ̃ ⊆ Θ = [0, H]Γ be closed and connected. Then the following properties
hold:

1. WC(WCH(Θ̃)) = WC(Θ̃).

2. WCH(WC(Θ̃)) = WCH(Θ̃).

3. Idempotence: WC(WC(Θ̃)) = WC(Θ̃) and WCH(WCH(Θ̃)) = WCH(Θ̃).

We now present our meta-mechanism, which we denote by M. It uses the efficient allocation,
but that allocation is enjoyed only by the subset of agents able to compete with the weakest
competitors in the side information set. M then implements the weakest-competitor payments on

8



Figure 1: Example weakest-competitor hulls in a two-dimensional type space (|Γ| = 2). WC(Θ̃)
is depicted in solid and dashed blue, WC(Θ̃) is depicted in solid blue, and WCH(Θ̃) is the region
enclosed by WC(Θ̃).

those agents. The input subsets Θ̃1, . . . , Θ̃n represent the side information/predictions given to the
mechanism designer that postulate that θi ∈ Θ̃i.

Meta-mechanism M
Input: subsets Θ̃1, . . . , Θ̃n ⊆ Θ given to mechanism designer.

• Based on Θ̃1, . . . , Θ̃n, come up with Θ̂1, . . . , Θ̂n.

Agents asked to reveal types θ1, . . . , θn.

• Let

α∗ = argmax
α∈Γ

n∑
i=1

θi[α]

and for each i let

pi = min
θ̃i∈WC(Θ̂i)

(
max
α∈Γ

∑
j ̸=i

θj [α] + θ̃i[α]

)
−
∑
j ̸=i

θj [α
∗].

• Let
I = {i : θi[α∗]− pi ≥ 0} .

If agent i /∈ I , i does not participate and receives zero utility (zero value and zero
payment).a If agent i ∈ I , i enjoys allocation α∗ and pays pi.

aOne practical consideration is that this step might require a more nuanced implementation of an “outside
option” for agents to be indifferent between participating and being excluded versus not participating at all.
(We do not pursue this highly application-specific issue in this work.) In auction and matching settings this
step is standard and innocuous; the agent simply receives no items.

Meta-mechanism M generates welfare equal to
∑

i∈I θi[α
∗] and revenue equal to

∑
i∈I pi. M

does not specify how to set Θ̂1, . . . , Θ̂n based on Θ̃1, . . . , Θ̃n (hence the “meta” label). This challenge
is the subject of the later sections where we will describe, based on the setting, how to set the Θ̂i
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in order to generate high welfare and high revenue. We now establish the incentive properties of
M.

Theorem 3.5. M is incentive compatible and individually rational.

Proof. M is incentive compatible for the exact same reason weakest-competitor VCG is incentive
compatible (Theorem 2.1). Individual rationality is an immediate consequence of how M is defined;
all agents with potential individual-rationality violations (those not in I) do not participate and
receive zero utility.

Next we show that the weakest-competitor hull precisely captures the set of agent types that
never violate individual rationality. This consideration does not arise in the weakest-competitor
VCG mechanism since in that setting misreporting is limited to the set used in the weakest-
competitor minimization, and hence individual rationality is never violated. In our setting, we
make no assumptions on the veracity of the sets Θ̂i and must therefore reckon with the possibility
that an agent is unable to compete with the weakest competitors in WC(Θ̂i).

Theorem 3.6. Let θi denote the true type of agent i and θ−i the reported types of the other agents.
Let Θ̂1, . . . , Θ̂n denote the side information sets used by M. Then

i ∈ I for all θ−i ⇐⇒ θi ∈ WCH(Θ̂i).

Proof. Let θi denote the true type of agent i and let θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn) denote the
reported types of the other agents. Suppose θi /∈ WCH(Θ̂i). Then, there exists θ̃i ∈ WC(Θ̂i) such
that θ̃i ≻ θi, and there exists θ−i such that θ̃i ∈ argmin

θ̂i∈Θ̂i
maxα∈Γ

∑
j ̸=i θj [α]+ θ̂i[α] is a weakest

competitor relative to θ−i (the existence of θ−i follows from the same reasoning as in the proof of
Theorem 3.3). As θ̃i ≻ θi, agent i’s overall utility will be negative. The utility is unchanged and
remains negative if θ̃i is replaced by θ∗i ∈ WC(Θ̂i) that is also a weakest competitor relative to θ−i.
So we have shown there exists θ−i such that i /∈ I .

Conversely suppose θi ∈ WCH(Θ̂i). Then, there exists θ
′
i ∈ WC(Θ̂i) such that θi ⪰ θ′i. Let θ−i be

arbitrary. Agent i’s utility is
∑n

j=1 θj [α
∗]−min

θ̃i∈WC(Θ̂i)
(maxα

∑
j ̸=i θj [α]+ θ̃i[α]) ≥

∑n
j=1 θj [α

∗]−
(maxα

∑
j ̸=i θj [α] + θ′i[α]) ≥

∑n
j=1 θj [α

∗]− (maxα
∑

j ̸=i θj [α] + θi[α]) = 0, so i ∈ I , as desired.

The key takeaway from Theorem 3.6 is that i is guaranteed to participate in M regardless of
the other agents’ types if and only if θi ∈ WCH(Θ̂i). We will capitalize on this observation when
we derive revenue guarantees for M, since if Θ̂i is derived from a high quality prediction/side
information set Θ̃i, one would expect that θi ∈ WCH(Θ̂i). In particular, the welfare of M is at
least

∑
i:θi∈WCH(Θ̂i)

θi[α
∗] and its revenue is at least

∑
i:θi∈WCH(Θ̂i)

pi.

3.1 Computational considerations

Before we proceed to our main analyses of the key properties and guarantees of M, we briefly
discuss its computational complexity. We consider the special case where the side-information sets
are polytopes. Let size(Θ̂i) denote the encoding size of the constraints defining Θ̂i.

Theorem 3.7. Let Θ̂i be a polytope. Agent i’s payment pi in the execution of M can be computed
in poly(|Γ|, size(Θ̂i), n) time. Furthermore, determining membership in WCH(Θ̂i) can be done in
poly(|Γ|, size(Θ̂i)) time.
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Proof. The weakest competitor in Θ̂i relative to θ−i is the solution θ̃i ∈ RΓ to the linear program

min

{
γ :

θ̃i[α] +
∑

j ̸=i θj [α] ≤ γ ∀α ∈ Γ,

θ̃i ∈ Θ̂i, γ ≥ 0

}

with |Γ|+1 variables and |Γ|+ size(Θ̂i) constraints. Generating the first set of constraints requires
computing

∑
j ̸=i θj [α] for each α ∈ Γ, which takes time ≤ n|Γ|.

Checking membership of θi in WCH(Θ̂i) is equivalent to checking feasibility of a polytope

θi ∈ WCH(Θ̂i) ⇐⇒
{
θ̃i : θ̃i ∈ Θ̂i, θi[α] ≥ θ̃i[α] ∀α ∈ Γ

}
̸= ∅

defined by size(Θ̂i) + |Γ| constraints.

More generally, the complexity of the above two mathematical programs is determined by the
complexity of constraints needed to define Θ̃i: for example, if Θ̃i is a convex set then they are
convex programs. Naturally, a major caveat of this brief discussion on computational complexity
is that |Γ| can be very large (for example, |Γ| is exponential in combinatorial auctions).

4 Main guarantees of the mechanism in terms of prediction qual-
ity

In this section we prove our main guarantees on our meta-mechanism M in terms of the quality
of the side information Θ̃1, . . . , Θ̃n. We will largely refer to the side information as predictions
in this section to emphasize that Θ̃i could be wildly incorrect/inaccurate. To state our results
we need the following notation which will be used throughout the remainder of the paper. Given
agent types θ1, . . . , θn, let αopt denote the efficient allocation among the n agents and let OPT =
maxα∈Γ

∑n
i=1 θi[α] =

∑n
i=1 θi[αopt] denote the welfare of the efficient allocation (also called the total

social surplus). For a subset S ⊆ {1, . . . , n} of agents, let OPTS =
∑

i∈S θi[αopt] be the welfare
generated by the efficient allocation restricted to agents in S. Let VCG(S) denote the revenue of
the vanilla VCG mechanism when run among the agents in S. Let VCG(β) = E[VCG(S)] where
S ⊆ {1, . . . , n} is sampled by including each agent in S independently with probability β. In
general, VCG is not revenue monotonic [43], that is S ⊆ T ≠⇒ VCG(S) ≤ VCG(T ), so VCG(β)
need not be increasing in β, but there are various sufficient conditions for revenue monotonicity.1

The following calculation shows the revenue ofM can be related to the efficient welfare restricted
to the subset of agents with valid predictions. We incur a loss term equal to the sum of ℓ∞-Hausdorff
distances from each type θi to WC(Θ̂i). The Hausdorff distance between θi and WC(Θ̂i) is defined
as dH(θi,WC(Θ̂i)) := max

θ̂i∈WC(Θ̂i)
∥θi − θ̂i∥∞.

Lemma 4.1. Run M with Θ̂1, . . . , Θ̂n. Let S = {i : θi ∈ WCH(Θ̂i)} where θi is the true and
revealed type of agent i (so S ⊆ I). Then, for i ∈ S, M satisfies

pi ≥ θi[αopt]− dH
(
θi,WC(Θ̂i)

)
,

and
revenue ≥ OPTS −

∑
i∈S

dH
(
θi,WC(Θ̂i)

)
.

1For example, if efficient welfare is a submodular set function over the agents, then VCG is revenue monotonic
due to a result of Ausubel and Milgrom [6], and in this case VCG(β) is increasing in β. In the combinatorial auction
setting, a sufficient condition for efficient welfare to be submodular is that bidders have gross-substitutes valuations
over items [28, 53].
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Proof. Let pi denote the payment collected from agent i ∈ S. Let θ∗i be the weakest competitor in

Θ̂i with respect to θ−i. The utility for agent i under M is

θi[αopt]− pi =

n∑
j=1

θj [αopt]− min
θ̂i∈Θ̂i

(
max
α∈Γ

∑
j ̸=i

θj [α] + θ̂i[α]

)

=
n∑

j=1

θj [αopt]−

(
max
α∈Γ

∑
j ̸=i

θj [α] + θ∗i [α]

)

≤
n∑

j=1

θj [αopt]−

(∑
j ̸=i

θj [αopt] + θ∗i [αopt]

)
= θi[αopt]− θ∗i [αopt]

≤ max
θ̂i∈WC(Θ̂i)

∥∥θi − θ̂i
∥∥
∞ = dH(θi,WC(Θ̂i)),

as required. The revenue guarantee follows by summing up the bound for pi over all i ∈ S.

Truncating the proof of Lemma 4.1 yields the following important bound, which is a more direct
lower bound on pi in terms of the weakest competitor’s value for the efficient allocation (versus the
bound in terms of Hausdorff distances of Lemma 4.1).

Lemma 4.2. Let i ∈ S (adopting the same notation and setup as Lemma 4.1). Then

pi ≥ θ̃i[αopt]

where θ̃i is the weakest competitor in Θ̂i with respect to θ−i.

Measuring the error of a prediction

Before instantiating M with specific rules to determine the Θ̂i from the Θ̃i, we define our main
notions of error in the side information/predictions, which are motivated by Lemma 4.1.

Definition 4.3. The invalidity of a prediction Θ̃i, denoted by γVi , is the distance from the true

type θi of agent i to WCH(Θ̃i):

γVi := d(θi,WCH(Θ̃i)) = min
θ̃i∈WCH(Θ̃i)

∥∥θi − θ̃i
∥∥
∞.

Definition 4.4. The inaccuracy of a prediction Θ̃i is the quantity

γAi := dH(θi,WC(Θ̃i)) = max
θ̃i∈WC(Θ̃i)

∥∥θi − θ̃i
∥∥
∞.

We say that a prediction Θ̃i is valid if γVi = 0, that is, θi ∈ WCH(Θ̃i). We say that a prediction

is perfect if γAi = 0 or, equivalently, WC(Θ̃i) = {θi}. If a prediction is perfect, then it is also
valid. Our main results will depend on these error measures. Figure 2 illustrates these notions of
prediction error for two different prediction sets.

Consistency and robustness. We say a mechanism is (a, b)-consistent and (c, d)-robust if when
predictions are perfect it satisfies E[welfare] ≥ a · OPT, E[revenue] ≥ b · OPT, and satisfies
E[welfare] ≥ c ·OPT,E[revenue] ≥ d · VCG independent of the prediction quality. High consistency
and robustness ratios are in fact trivial to achieve, and we will thus largely not be too concerned with
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Figure 2: The prediction Θ̃1 (depicted in gray) is valid (γV = 0), but is highly inaccurate. The
prediction Θ̃2 (depicted in light blue) is invalid (γV > 0), but is more accurate than Θ̃1. A small
expansion of Θ̃2 would yield a valid and highly accurate prediction.

these measures—our main goal is to design high-performance mechanisms that degrade gracefully as
the prediction errors increase. Indeed, the trivial mechanism that discards all side information with
probability β and trusts the side information completely with probability 1−β is (1, 1−β)-consistent
and (β, β)-robust, but suffers from huge discontinuous drops in performance even when predictions
are nearly perfect. That is, with probability β set (Θ̂1, . . . , Θ̂n) = (Θ, . . . ,Θ) and with probability
1−β set (Θ̂1, . . . , Θ̂n) = (WCH(Θ̃1), . . . ,WCH(Θ̃n)), and then run M. Let V = {i : θi ∈ WCH(Θ̃i)}
be the set of valid predictions. From Lemma 4.1, we have E[welfare] = β · OPT + (1 − β) · OPTV

and E[revenue] ≥ β ·VCG(1) + (1− β) ·
(
OPTV −

∑
i∈V γAi

)
, and thus obtain (1, 1− β)-consistency

and (β, β)-robustness. This approach suffers from a major issue: its revenue drops drastically the
moment predictions are invalid (γV

i > 0). In particular, if predictions are highly accurate but very
slightly invalid (such as the blue prediction in Figure 2), this approach completely misses out on any
payments from such agents and drops to the revenue of VCG (which can be drastically smaller than
OPT). But, a tiny expansion of these predictions would have sufficed to increase revenue signifi-
cantly and perform competitively with OPT. One simple approach is to set Θ̂i to be an expansion
of Θ̃i by a parameter ηi with some probability, and discard the prediction with complementary
probability. If γVi ≤ ηi for all i, then such a mechanism would perform well. The main issue with
such an approach is that the moment γVi > ηi, our expansion by ηi fails to capture the true type
θi and the performance drastically drops. Our approach in the next subsection essentially selects
the ηi randomly from a suitable discretization of the ambient type space to be able to capture θi
with reasonable probability.

4.1 Random expansion mechanism

Our main guarantee in this section will depend on H, which is an upper bound on any agent’s
value for any allocation. This is the only problem-domain-specific parameter in our results, and
is naturally interpreted based on the setting (as in the examples we gave in Section 2). We have
H = diam(Θ) := maxθ1,θ2∈Θ∥θ1 − θ2∥∞ is the ℓ∞-diameter of Θ. For a point θ, let B(θ, r) = {θ′ :
∥θ − θ′∥∞ ≤ r} be the closed ℓ∞-ball centered at θ with radius r. For a set Θ̃, let B(Θ̃, r) =
∪
θ̃∈Θ̃B(θ̃, r) = {θ′ : ∃θ̃ ∈ Θ̃ s.t.

∥∥θ′− θ̃
∥∥
∞ ≤ r} denote the ℓ∞-expansion of Θ̃ by r. For ζi ≥ 0, λi >

0, and Ki := ⌈log2((H − ζi)/λi)⌉, let Mζ,λ denote the mechanism that for each i independently
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sets

Θ̂i = B
(
Θ̃i, ζi + 2ki · λi

)
, where ki ∼unif. {0, 1, . . . ,Ki} .

Mζ,λ in essence performs a doubling search with initial hop ζi and λi controlling how fine-grained
the search proceeds. We now prove and discuss our main welfare and revenue guarantees on Mζ,λ.
Define log+ : R → R≥0 by log+(x) = 0 if x ≤ 0 and log+(x) = max{0, log(x)} if x > 0.

Theorem 4.5 (Welfare bound). The welfare of Mζ,λ satisfies

E[welfare] ≥ max

{
1−max

i

⌈log+2 ((γVi − ζi)/λi)⌉
1 + ⌈log2((H − ζi)/λi)⌉

,
1

1 + ⌈maxi log2((H − ζi)/λi)⌉

}
OPT.

Proof. For each agent i, let k∗i be the smallest k ∈ {0, . . . ,Ki} such that θi ∈ WCH(B(Θ̃i, ζi+2k ·λi)).
Equivalently, k∗i is the minimal k such that γVi ≤ ζi+2kλi. So k∗i = ⌈log+2 ((γVi −ζi)/λi)⌉. We have,

using the fact that θi ∈ Θ̂i =⇒ i ∈ I (Theorem 3.6),

E[welfare] = E
[ n∑

i=1

θi[αopt] · 1(i ∈ I)
]
≥ E

[ n∑
i=1

θi[αopt] · 1(θi ∈ Θ̂i)

]
=

n∑
i=1

θi[αopt] · Pr(θi ∈ Θ̂i)

and

Pr(θi ∈ Θ̂i) = Pr(ki ≥ k∗i ) = 1− Pr(ki < k∗i ) = 1− k∗i
1 +Ki

= 1− ⌈log+2 ((γVi − ζi)/λi)⌉
1 + ⌈log2((H − ζi)/λi)⌉

.

Therefore

E[welfare] ≥
(
1−max

i

⌈log+2 ((γVi − ζi)/λi)⌉
1 + ⌈log2((H − ζi)/λi)⌉

)
· OPT.

If all predictions are valid, we get E[welfare] = OPT. The other term of the bound follows from
Pr(θi ∈ Θ̂i) ≥ Pr(ki = k∗i ) =

1
1+Ki

.

Theorem 4.6 (Revenue bound 1). Let ρi = 2(γVi − ζi)1(ζi + λi < γVi ) + λi1(ζi + λi ≥ γVi ). The
revenue of Mζ,λ satisfies

E[revenue] ≥ 1

1 + ⌈maxi log2((H − ζi)/λi)⌉

(
OPT−

n∑
i=1

(γAi + ζi + ρi)

)
.

Proof. Let k∗i be defined as in the proof of Theorem 4.5. We compute expected revenue by comput-

ing E[pi] for each agent i. Let S = {i : θi ∈ Θ̂i} be the (random) set of agents with valid predictions
post expansion. We have

E[pi] ≥ E[pi | ki = k∗i ] · Pr(ki = k∗i ) =
1

1 +Ki
· E[pi | ki = k∗i ].

Now ki = k∗i =⇒ i ∈ S, so we may apply the payment bound of Lemma 4.1:

E[pi | ki = k∗i ] ≥ E
[
θi[αopt]− dH(θi,WC(B(Θ̃i, ζi + 2k

∗
i λi))) | ki = k∗i

]
= θi[αopt]− dH(θi,WC(B(Θ̃i, ζi + 2k

∗
i λi))).

Next, we bound dH(θi,WC(B(Θ̃i, ζi + 2k
∗
i λi))). Let θ̃i ∈ WC(B(Θ̃i, ζi + 2k

∗
i λi)) be arbitrary. By

Lemma A.1 (the statement and proof are in Appendix A), θ̃i ∈ WC(B(WC(Θ̃i), ζi+2k
∗
i λi)), so there
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exists θ′i ∈ WC(Θ̃i) such that ∥θ̃i − θ′i∥∞ ≤ ζi + 2k
∗
i λ. Moreover, ∥θi − θ′i∥∞ ≤ γAi by definition of

γAi . The triangle inequality therefore yields∥∥θi − θ̃i
∥∥
∞ ≤

∥∥θ̃i − θ′i
∥∥
∞ +

∥∥θi − θ′i
∥∥
∞ ≤ γAi + ζi + 2k

∗
i λi,

so, as θ̃i ∈ WC(B(Θ̃i, ζi + 2k
∗
i λi)) was arbitrary, dH(θi,WC(B(Θ̃i, r

∗
i ))) ≤ γAi + ζi + 2k

∗
i λi. Now,

we claim 2k
∗
i λi ≤ ρi. To show this, consider two cases. If ζi + λi ≥ γVi , that is, k∗i = 0, then

2k
∗
i λi = λi = ρi. If ζi + λi < γVi , then k∗i > 0 and we have ζi + 2k

∗
i −1λi < γVi ≤ ζ + 2k

∗
i λi, so

2k
∗
i λ < 2(γVi − ζi) = ρi. So

dH(θi,WC(B(Θ̃i, ζi + 2k
∗
i λi))) ≤ γAi + ζi + ρi.

Finally, we have

E[pi] ≥
1

1 +Ki

(
θi[αopt]− (γAi + ζi + ρi)

)
,

so

E[revenue] = E
[ n∑

i=1

pi

]
=

n∑
i=1

E[pi] ≥
n∑

i=1

1

1 +Ki

(
θi[αopt]− (γAi + ζi + ρi)

)
≥ 1

1 + ⌈maxi log2(
H−ζi
λi

)⌉

(
OPT−

n∑
i=1

(γAi + ζi + ρi)

)
,

as desired.

Theorem 4.7 (Revenue bound 2). The revenue of Mζ,λ satisfies

E[revenue] ≥
(
1−max

i

⌈log+2 ((γVi − ζi)/λi)⌉
1 + ⌈log2((H − ζi)/λi)⌉

)(
OPT−

n∑
i=1

(γAi + ζi)

)
−

n∑
i=1

4H

1 + ⌈log2((H − ζi)/λi)⌉
.

Proof. Let k∗i be defined as in Theorems 4.5 and 4.6. We bound E[pi] similarly to the approach in
the proof of Theorem 4.6, but account for all possible values of ki (rather than only conditioning
on ki = k∗i ). If ki < k∗i , then agent i does not participate and pays nothing. We have

E[pi] =
Ki∑

k=k∗i

E[pi|ki = k] · Pr(ki = k) ≥ 1

1 +Ki

Ki∑
k=k∗i

(
θi[αopt]− dH(θi,WC(B(Θ̃i, ζi + 2k · λi)))

)

≥ 1

1 +Ki

Ki∑
k=k∗i

(
θi[αopt]− (γAi + ζi + 2k · λi)

)

=

(
1− k∗i

1 +Ki

)(
θi[αopt]− γAi − ζi

)
− λi

1 +Ki

Ki∑
k=k∗i

2k

≥
(
1− k∗i

1 +Ki

)(
θi[αopt]− γAi − ζi

)
− λ2Ki+1

1 +Ki

where in the second inequality we have used the the bound dH(θi,WC(B(Θ̃i, ζi + 2kλi))) ≤ γAi +
ζi+2kλi, which was derived in the proof of Theorem 4.6. We have 2Ki+1 ≤ λi(4(H− ζi)/λi) ≤ 4H.
Substituting and summing over agents yields the desired revenue bound.

15



Figure 3: Left: An illustration of the sets B(Θ̃, ζi + 2kiλi) that the random expansion mechanism
Mζ,λ chooses from for a particular agent with true type θ and side-information set/prediction Θ̃.

The blue expansion is the set B(Θ̃, ζi + 2k
∗
i λi). Right: An illustration of the weakest competitors

θ̃(ℓ1, . . . , ℓk) the mechanism Mk randomizes over for a particular agent when k = 2 and H = 24.
The weakest competitors with (ℓ1, . . . , ℓk) ∈ W2 are displayed in blue. (In both figures we drop the
subscript of i indicating the agent index.)

First, consider constant ζ, λ. Our welfare guarantee degrades from OPT to Ω(OPT/ logH) as the
invalidity of the predictions increase. Revenue bound 1 degrades from Ω(OPT/ logH) as both the
invalidity and inaccuracy of the predictions increase. Revenue bound 2 illustrates that we can obtain
significantly better performance if the parameters ζ, λ are chosen appropriately. In particular, for
any ε, ζi = γVi and λi ≤ O((H − ζi)/2

H/ε) yields E[revenue] ≥ OPT−
∑n

i=1(γ
A
i + γVi + ε), a bound

that is only additively worse than the total social surplus (and recovers the total social surplus as
λi ↓ 0 if the predictions are perfect). This bound degrades gradually as ζi, λi deviate.

To summarize, if the side information is of very high quality, the best parameters ζ, λ nearly
recover the total social surplus OPT as welfare and revenue, and revenue degrades gradually as
the chosen parameters ζ, λ worsen. If the side information is of questionable quality, the best
parameters ζ, λ still obtain OPT as welfare, with revenue suffering additively by the prediction
errors. As the parameter selection worsens, welfare and revenue degrade to Ω(OPT/ logH) with
revenue suffering the same additive loss. Effective parameters can be, for example, learned from
data [31].

Consistency and robustness. In this discussion we assume constant ζ, λ > 0. Assuming revenue
monotonicity, since θi ∈ Θ̂i with probability at least Ω(1/ logH), the revenue of our mechanism is
never worse than VCG(Ω(1/ logH)). Thus, Mζ,λ is (1,Ω(1/ logH))-consistent (but if ζ, λ are cho-
sen per the previous discussion, approaches the optimal (1, 1)-consistency) and, assuming revenue
monotonicity, (Ω(1/ logH),VCG(Ω(1/ logH)))/VCG(1))-robust. If VCG revenue is submodular,
the revenue robustness ratio is ≥ Ω(1/ logH) (but in general VCG revenue can shrink by more
than this ratio [12]). In contrast to the trivial approach that either trusted the side information
completely or discarded predictions completely, our random expansion approach does not suffer
from large discontinuous drops in welfare nor revenue.

4.2 More expressive forms of side information

In this subsection we establish two avenues for richer and more expressive side information lan-
guages. The first deals with uncertainty and the second with joint multi-agent predictions.
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Uncertainty. We now show that the techniques we have developed so far readily extend to an
even larger more expressive form of side information that allows one to express varying degrees
of uncertainty. A side information structure corresponding to agent i is given by a partition
(Ai

1, . . . , A
i
m) of the ambient type space Θi into disjoint sets, probabilities µ

i
1, . . . , µ

i
m ≥ 0;

∑
j µ

i
j = 1

corresponding to each partition element, and for each partition element an optional probability
density function f i

j ;
∫
Ai

j
f i
j = 1. The side information structure represents (1) a belief over what

partition element Ai
j the true type θi lies in and (2) if a density is specified, the precise nature

of uncertainty over the true type within Ai
j . Our model of side information sets Θ̃i considered

earlier in the paper corresponds to the partition (Θ̃i,Θi \ Θ̃i) with µ(Θ̃i) = 1 and no specified
densities. The richer model allows side information to convey finer-grained beliefs; for example one
can express quantiles of certainty, precise distributional beliefs, and arbitrary mixtures of these.

Our notions of prediction error (invalidity and inaccuracy) can be naturally generalized. We
define γVi =

∑
j µ

i
jγ

V
i (Ai

j ; f
i
j) and γAi =

∑
j µ

i
jγ

A
i (A

i
j ; f

i
j), where γVi (Ai

j ; f
i
j) = d(θi,WCH(Ai

j))

if f i
j = None and γVi (Ai

j ; f
i
j) = E

θ̃i∼f i
j
[d(θi,WCH({θ̃i})] if f i

j is a well-defined density. Similarly

γAi (A
i
j ; f

i
j) = dH(θi,WC(Ai

j)) if f
i
j = None and γAi (A

i
j ; f

i
j) = E

θ̃i∼f i
j
[d(θi, θ̃i)] otherwise.

Our generalized version of Mζ,λ first samples a partition element Ai
j according to (µi

1, . . . , µ
i
m),

and draws ki ∼unif. {0, . . . ,Ki} where Ki is defined as before. If f i
j = None, it sets Θ̂i = B(Ai

j , ζi +

2kiλi). Otherwise, it samples θ̃i ∼ f i
j and sets Θ̂i = B({θ̃i}, ζi + 2kiλi). Versions of Theorems 4.5,

4.6, and 4.7 carry forward with γVi and γAi as the error measures. In Appendix B we provide the
derivations, and also take the expressive power one step further by specifying a probability space
over Θi; its σ-algebra captures the granularity of knowledge being conveyed and its probability
measure captures the uncertainty.

Joint side information. So far, side information has been independent across agents. Specif-
ically, the mechanism designer receives sets Θ̃i ⊆ Θi for each agent i postulating that θ =
(θ1, . . . , θn) ∈ Θ̃1 × · · · × Θ̃n. We show that our techniques extend to a more expressive form
of side information that allows one to express predictions involving multiple agents. Let Θ =
Θ1 × · · · ×Θn. The mechanism designer receives as side information a set Θ̃ ⊆ Θ postulating that
θ = (θ1, . . . , θn) ∈ Θ̃. Given an agent i, a side information set Θ̃ ⊆ Θ, and Θ−i ⊆×j ̸=iΘj , let

proji(Θ̃;Θ−i) =
{
θ̃i ∈ Θi : ∃θ−i ∈ Θ−i s.t. (θ̃i,θ−i) ∈ Θ̃

}
be the ith projection of Θ̃ with respect to Θ−i. The projection is the set of types for agent i
consistent with Θ̃ given that the realizations of the other agents’ true types are contained in Θ−i.

First, if Θ̃ is known to be a valid prediction, that is, the true type profile θ is guaranteed
apriori to lie in Θ̃ (equivalently, the joint misreporting space is limited to Θ̃), we generalize the
weakest-competitor VCG mechanism as follows. First, agents are asked to reveal their true types
θ = (θ1, . . . , θn). The allocation used is

α∗ = argmax
α∈Γ

n∑
i=1

θi[α]

and agent i pays

pi = min
θ̃i∈proji(Θ̃;θ−i)

(
max
α∈Γ

∑
j ̸=i

θj [α] + θ̃i[α]

)
−
∑
j ̸=i

θj [α
∗].
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This generalized weakest-competitor VCG mechanism is IC, IR, and revenue optimal subject to
efficiency in the joint information setting for the same reason that weakest-competitor VCG is in
the independent information setting.

More generally, given side information set Θ̃, our random expansion mechanism can be gener-
alized as follows. Agents first reveal their true types θ1, . . . , θn. For each agent i, independently
set Θ̂i = B(proji(Θ̃,θ−i), ζi+2kiλi). The same guarantees we derived previously hold, with appro-
priately modified quality measures: invalidity is γVi = d(θi,WCH(proji(Θ̃,θ−i))) and inaccuracy

is γAi = dH(θi,WC(proji(Θ̃,θ−i))). An important idea highlighted by these mechanisms for joint
side information is that the true types of all agents other than i can be heavily utilized in deter-
mining pi. This model of side information affords us significantly more expressive power than the
agent-independent model that has a product structure considered previously in this paper. For
example, the mechanism designer might know that sum of the valuations of two customers for a
cup of coffee exceeds a particular threshold, but does not know who has the higher value. Joint
side information allows us to express such a belief precisely, and allows the mechanism designer to
refine his beliefs on one agent based on the realized true type of the other agent. This was not
possible in our previous framework.

We conclude this section with the observation that these mechanisms can loosely be interpreted
as prior-free quantitative analogues of the seminal total-surplus-extraction Bayesian mechanism
of Crémer and McLean [19] for correlated agents (generalized to infinite type spaces by McAfee
and Reny [36]). This is an interesting connection to explore further in future research.

5 Constant-parameter agents: types on low-dimensional subspaces

In this section we show how the theory we have developed so far can be used to derive new revenue
approximation results when the mechanism designer knows that each agent’s type belongs to some
low-dimensional subspace of RΓ (these subspaces can be different for each agent).

This is a slightly different setup from the previous sections. So far, we have assumed that
Θi = Θ for all i, that is, there is an ambient type space that is common to all the agents. Side
information sets Θ̃i are given as input to the mechanism designer, with no assumptions on qual-
ity/correctness (and our guarantees in Section 4 were parameterized by quality). Here, we assume
the side information that each agent’s type lies in a particular subspace is guaranteed to be valid.
Two equivalent ways of stating this setup are (1) that Θi is the corresponding subspace for agent
i and the mechanism designer receives no additional prediction set Θ̃i or (2) Θi = Θ for all i,
Θ̃i = Θ ∩ Ui where Ui is a subspace of RΓ, and the mechanism designer has the additional guar-
antee that θi ∈ Ui (so Θ̃i is a valid side-information set). We shall use the language of the second
interpretation.

In this setting, while the side information is valid, the inaccuracy errors γAi of the sets Θ̃i = Θ∩Ui

can be too large to meaningfully use our previous guarantees. Nevertheless, we show how to
fruitfully use the information provided by the subspaces U1, . . . , Un within the framework of our
meta-mechanism. We begin by analyzing the most informative case: when agent types lie on lines.
We then generalize our reasoning to any k-dimensional subspace that admits an orthonormal basis
in the non-negative orthant of RΓ. In this section we assume Θ = [1, H]Γ, thereby imposing a lower
bound of 1 on agent values (this choice of lower bound is not important, but the knowledge of some
lower bound is needed in our analysis).
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5.1 Agent types that lie on lines

Suppose for each i, the mechanism designer knows that θi lies in a line given by Ui = {λui : λ ∈ R},
for some ui ∈ RΓ

≥0. Let Li = Ui ∩ [0, H]Γ be the line segment that is the portion of this line that

lies in [0, H ]Γ. We assume that H = 2a for some positive integer a.
Let θ̃0i be the endpoint of Li with ∥θ̃0i ∥∞ = H (the other endpoint of Li is the origin). Let

θ̃1i = θ̃0i /2 be the midpoint of Li, and for ℓ = 2, . . . , log2H let θ̃ℓi = θ̃ℓ−1
i /2 be the midpoint of 0θ̃ℓ−1

i .

So ∥θ̃log2 Hi ∥∞ = 1. We terminate the halving of the line segment Li after log2H steps due to the
assumption that θi ∈ [1, H]Γ.

We can now specify our instantiation of M, which we denote by M1. For each i we indepen-
dently set

Θ̂i = θ̃ℓii θ̃
0
i where ℓi ∼unif. {1, . . . , log2H} .

The weakest-competitor sets of the segments used in M1 are precisely the points in our logarithmic

discretizations of the segments Li, that is, WC(θ̃ℓi θ̃
0
i ) = {θ̃ℓi}. We could equivalently instantiate M1

by simply setting Θ̂i = {θ̃ℓi}. We show that in this special case of types belonging to known rays,
M1 satisfies effectively the same guarantees as the general mechanism in the previous section, but
without the loss associated with prediction error. The key observation is that by Lemma 4.2, we can
lower bound the payment pi of agent i by the value θ̃i[αopt] of the corresponding weakest competitor.
This is a more direct lower bound than the one we used previously in terms of inaccuracy γAi given
by Lemma 4.1.

Theorem 5.1. M1 satisfies

E[welfare] ≥ 1

log2H
· OPT

and

E[revenue] ≥ 1

2 log2H
· OPT.

Proof. We have E[welfare] ≥ E[
∑n

i=1 θi[αopt]·1(θi ∈ Θ̂i)] =
∑n

i=1 θi[αopt]·Pr(θi ∈ Θ̂i) ≥ 1
log2 H

·OPT.
We now prove the revenue guarantee. Let ℓ∗i = min{ℓ : θi ⪰ θ̃ℓi}. By how the θ̃ℓi are defined, we

have θ̃
ℓ∗i
i ⪰ 1

2θi. We have

E[pi] ≥ E[pi | ℓi = ℓ∗i ] · Pr(ℓi = ℓ∗i ) =
1

log2H
· E[pi | ℓi = ℓ∗i ].

Let S = {i : θi ∈ Θ̂i}. We have ℓi = ℓ∗i =⇒ i ∈ S. Therefore, conditioned on ℓi = ℓ∗i , Lemma 4.2

yields pi ≥ θ̃
ℓ∗i
i [αopt]. As θ̃

ℓ∗i
i ⪰ 1

2θi, we have

E[pi | ℓ∗i = ℓi] ≥ θ̃
ℓ∗i
i [αopt] ≥

1

2
θi[αopt].

Finally,

E[revenue] =
n∑

i=1

E[pi] ≥
1

2 log2H
·

n∑
i=1

θi[αopt] =
1

2 log2H
· OPT,

as desired.
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5.2 Generalization to agent types that lie in subspaces

Suppose for each i, the mechanism designer knows that θi lies in a k-dimensional subspace Ui =
span(ui,1, . . . , ui,k) of RΓ where each ui,j ∈ RΓ

≥0 lies in the non-negative orthant and {ui,1, . . . , ui,k}
is an orthonormal basis for Ui. As in the previous section, we assume H = 2a for some positive
integer a.

We generalize the single-dimensional analysis from the previous subsection in the design of our
mechanism here. Let Li,j = {λui,j : λ ≥ 0} ∩ [0, H]Γ be the line segment that is the portion of
the ray generated by ui,j that lies in [0, H]Γ. Let yi,j be the endpoint of Li,j with ∥yi,j∥∞ = H
(the other endpoint of Li,j is the origin). Let z1i,j = yi,j/2 be the midpoint of Li,j , and for

ℓ = 2, . . . , log2H let zℓi,j = zℓ−1
i,j /2 be the midpoint of 0zℓ−1

i,j . So ∥zlog2 Hi,j ∥∞ = 1. We terminate

the halving of Li,j after log2H steps due to the assumption that θi ∈ [1, H]Γ. For every k-tuple
(ℓ1, . . . , ℓk) ∈ {1, . . . , log2H}k, let

θ̃i(ℓ1, . . . , ℓk) =
k∑

j=1

z
ℓj
i,j .

Furthermore, let Wℓ = {(ℓ1, . . . , ℓk) ∈ {1, . . . , log2H}k : minj ℓj = ℓ}. The sets W1, . . . ,Wlog2 H

partition {1, . . . , log2H}k into levels, where Wℓ is the set of points with ℓ∞-distance H/2ℓ from
the origin. We can now specify our instantiation of M, which we denote by Mk. For each i, we
independently set

Θ̂i =
{
θ̃i(ℓi,1, . . . , ℓi,k)

}
where ℓi ∼unif. {1, . . . , log2H} and (ℓi,1, . . . , ℓi,k) ∼unif. Wℓi .

Figure 3 is an illustration of the mechanism in the case of k = 2.

Theorem 5.2. Mk satisfies

E[welfare] ≥ 1

log2H
· OPT

and

E[revenue] ≥ 1

2k(log2H)k
· OPT.

Proof. We have E[welfare] ≥
∑n

i=1 θi[αopt] · Pr(θi ∈ Θ̂i) ≥
∑n

i=1 θi[αopt] · Pr(ℓi = log2H) = 1
log2 H

·
OPT (since θi ⪰ θ̃i(log2H, . . . , log2H)). The proof of the revenue guarantee relies on the following
key claim: for each agent i, there exists ℓ∗i,1, . . . , ℓ

∗
i,k ∈ {1, . . . , log2H} such that θ̃(ℓ∗i,1, . . . , ℓ

∗
i,k) ⪰

1
2θi. To show this, let θji denote the projection of θi onto uj , so θi =

∑k
j=1 θ

j
i since {ui,1, . . . , ui,k}

is an orthonormal basis. Let ℓ∗i,j = min{ℓ : θji ⪰ zℓi,j}. Then, z
ℓ∗i,j
i,j ⪰ 1

2θ
j
i , so

θ̃(ℓ∗i,1, . . . , ℓ
∗
i,k) =

k∑
j=1

z
ℓ∗i,j
i,j ⪰

k∑
j=1

1

2
θji =

1

2
θi.

We now bound the expected payment of agent i as in the previous results. Let ℓ∗i = minj ℓ
∗
i,j . We

have

E[pi] ≥ E
[
pi | (ℓi,1, . . . , ℓi,k) = (ℓ∗i,1, . . . , ℓ

∗
i,k)
]
· Pr

(
(ℓi,1, . . . , ℓi,k) = (ℓ∗i,1, . . . , ℓ

∗
i,k)
)

=
1

|Wℓ∗i
| log2H

· E
[
pi | (ℓi,1, . . . , ℓi,k) = (ℓ∗i,1, . . . , ℓ

∗
i,k)
]
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≥ 1

log2H((log2H)k − (log2H − 1)k)
· E
[
pi | (ℓi,1, . . . , ℓi,k) = (ℓ∗i,1, . . . , ℓ

∗
i,k)
]

≥ 1

k(log2H)k
· E
[
pi | (ℓi,1, . . . , ℓi,k) = (ℓ∗i,1, . . . , ℓ

∗
i,k)
]

since the probability of obtaining the correct weakest competitor θ̃(ℓ∗i,1, . . . , ℓ
∗
i,k) can be written as

the probability of drawing the correct “level” ℓ∗i ∈ {1, . . . , log2H} times the probability of drawing
the correct weakest competitor within the correct level Wℓ∗i

. We bound the conditional expectation
as in the proof of Theorem 5.1. By Lemma 4.2,

E
[
pi | (ℓi,1, . . . , ℓi,k) = (ℓ∗i,1, . . . , ℓ

∗
i,k)
]
≥ θ̃i(ℓ

∗
i,1, . . . , ℓ

∗
i,k)[αopt] ≥

1

2
· θi[αopt].

Finally,

E[revenue] =
n∑

i=1

E[pi] ≥
1

2k(log2H)k
·

n∑
i=1

θi[αopt] =
1

2k(log2H)k
· OPT,

as desired.

As mentioned in Section 1, the mechanisms in this section can be viewed as a generaliza-
tion of the well-known logH revenue approximation in the single-item limited-supply setting
that is achieved by a second-price auction with a random reserve price chosen uniformly from
{H/2, H/4, H/8, . . . , 1} [26]. Our results apply not only to combinatorial auctions but to general
multidimensional mechanism design problems such as the examples presented in Section 2.

6 Conclusions and future research

We developed a versatile new methodology for multidimensional mechanism design that incorpo-
rates side information about agent types with the bicriteria goal of generating high social welfare
and high revenue simultaneously. We designed a side-information-dependent meta-mechanism.
This mechanism generalizes the weakest-competitor VCG mechanism of Krishna and Perry [33].
Careful instantiations of our meta-mechanism simultaneously achieved strong welfare and revenue
guarantees that were parameterized by errors in the side information, and additionally proved to
be fruitful in a setting where each agent’s type lies on a constant-dimensional subspace (of the
potentially high-dimensional ambient type space) that is known to the mechanism designer.

There are many new interesting research directions that stem from our work. First, how far
off are our mechanisms from the welfare-versus-revenue Pareto frontier? The weakest-competitor
VCG mechanism is one extreme point, but what does the rest of the frontier look like? One
possible approach here would be to extend our theory beyond VCG to the larger class of affine
maximizers (which are known to contain high-revenue mechanisms)—we provide some initial ideas
in Appendix C. Another important facet that we have largely ignored is computational complex-
ity. The computations in our mechanism involving weakest competitors scale with the description
complexity of Θ̃i (e.g., the number of constraints, the complexity of constraints, and so on). An
important question here is to understand the computational complexity of our mechanisms as a
function of the differing (potentially problem-specific) language structures used to describe the
side-information sets Θ̃i. In particular, the classes of side-information sets that are accurate, nat-
ural/interpretable, and easy to describe might depend on the specific mechanism design domain.
Expressive bidding languages for combinatorial auctions have been extensively studied with mas-
sive impact in practice [45, 46]. Can a similar methodology for side information be developed in

21



conjunction with the results of this paper? Another natural direction is to extend our techniques
to derive even stronger welfare and revenue guarantees when there is a known prior distribution
on the agent types. All of our results apply to the Bayesian setting, but knowledge of the prior
(or even sample access to the prior) could yield stronger guarantees. Another interesting direction
along this vein is to generalize our mechanisms to depend on a known prior over prediction errors.
Finally, the weakest-competitor variant of VCG of Krishna and Perry [33] is a strict improvement
over the vanilla VCG mechanism, yet it appears to not have been further studied nor applied since
its discovery. The weakest-competitor paradigm highlighted by that work and our results could
potentially have important applications in the field of economics and computation more broadly.
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[5] Aaron Archer and Éva Tardos. Truthful mechanisms for one-parameter agents. In IEEE
Symposium on Foundations of Computer Science (FOCS), 2001.

[6] Lawrence Ausubel and Paul Milgrom. Ascending auctions with package bidding. The BE
Journal of Theoretical Economics, 2002.

[7] Lawrence Ausubel and Paul Milgrom. The lovely but lonely Vickrey auction. Combinatorial
auctions, 2006.

[8] Maria-Florina Balcan, Avrim Blum, Jason D Hartline, and Yishay Mansour. Mechanism design
via machine learning. In IEEE Symposium on Foundations of Computer Science (FOCS).
IEEE, 2005.

[9] Maria-Florina Balcan, Avrim Blum, and Yishay Mansour. Item pricing for revenue maximiza-
tion. In ACM Conference on Electronic Commerce (EC), 2008.

[10] Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. A general theory of sample
complexity for multi-item profit maximization. In ACM Conference on Economics and Com-
putation (EC), 2018.

22



[11] Maria-Florina Balcan, Siddharth Prasad, and Tuomas Sandholm. Efficient algorithms for
learning revenue-maximizing two-part tariffs. In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence (IJCAI), 2020.

[12] Maria-Florina Balcan, Siddharth Prasad, and Tuomas Sandholm. Maximizing revenue under
market shrinkage and market uncertainty. Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[13] Eric Balkanski, Vasilis Gkatzelis, and Xizhi Tan. Strategyproof scheduling with predictions.
In Innovations in Theoretical Computer Science (ITCS), 2023.

[14] Santiago Balseiro, Christian Kroer, and Rachitesh Kumar. Single-leg revenue management
with advice. arXiv preprint arXiv:2202.10939, 2022.

[15] Siddhartha Banerjee, Vasilis Gkatzelis, Artur Gorokh, and Billy Jin. Online nash social welfare
maximization with predictions. In Proceedings of the 2022 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). SIAM, 2022.

[16] Jeremy Bulow and Paul Klemperer. Auctions versus negotiations. The American Economic
Review, 1996.

[17] Tanmoy Chakraborty, Zhiyi Huang, and Sanjeev Khanna. Dynamic and nonuniform pricing
strategies for revenue maximization. SIAM Journal on Computing, 2013.

[18] Ed H. Clarke. Multipart pricing of public goods. Public Choice, 1971.
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A Omitted proof from Section 4

We prove the set-theoretic result concerning WC(·) and B(·, r) used in Theorem 4.6.

Lemma A.1. WC(B(Θ̃, r)) = WC(B(WC(Θ̃), r)).

Proof. We first prove the forwards containment. For the sake of contradiction suppose there exists
θ̃ ∈ WC(B(Θ̃, r)) such that θ̃ /∈ WC(B(WC(Θ̃), r)). Then, there exists θ′ ∈ B(WC(Θ̃), r) such that
θ′ ≼ θ̃. But

WC(Θ̃) ⊆ Θ̃ =⇒ B(WC(Θ̃), r) ⊆ B(Θ̃, r),

so θ′ ∈ B(Θ̃, r) and θ′ ≼ θ̃ which contradicts the assumption that θ̃ ∈ WC(B(Θ̃, r)).
We now prove the reverse containment. For the sake of contradiction suppose there exists

θ̃ ∈ WC(B(WC(Θ̃), r)) such that θ̃ /∈ WC(B(Θ̃, r)). Then, there exists θ′ ∈ B(Θ̃, r) such that
θ′ ≼ θ̃. Furthermore, if θ′ /∈ WC(B(Θ̃, r)), there exists θ′′ ∈ WC(B(Θ̃, r)) such that θ′′ ≼ θ′ ≼ θ′ (if
θ′ ∈ WC(B(Θ̃, r)), set θ′′ = θ′). From the forward inclusion, we have

WC(B(Θ̃, r)) ⊆ WC(B(WC(Θ̃), r)) ⊆ B(WC(Θ̃), r),

so θ′′ ∈ B(WC(Θ̃), r) and θ′′ ≼ θ̃ which contradicts the assumption that θ̃ ∈ WC(B(WC(Θ̃), r)).

B An expressive language for side information

A side information structure is a probability space (Θ,F , µ) where the ambient type space Θ is
the sample space, F is a σ-algebra on Θ, and µ is a probability measure. (We suppress the agent
index for brevity.)

F induces a partition of Θ into equivalence classes where θ ≡ θ′ if 1(θ ∈ A) = 1(θ′ ∈ A)
for all A ∈ F (so the side-information structure does not distinguish between θ and θ′). Let
Aθ = {θ′ : θ ≡ θ′} ∈ F be the equivalence class of θ. In this way the σ-algebra determines the
granularity of knowledge being conveyed by the side information structure, and the probability
measure µ : F → [0, 1] establishes uncertainty over this knowledge.

We define invalidity and inaccuracy of a side information structure in the natural way. Define
random variables XV

i , XA
i : Θ → R≥0 by

XV
i (θ) = γVi (Aθ) = d(θi,WCH(Aθ))

and
XA

i (θ) = γAi (Aθ) = dH(θi,WC(Aθ)).

XV
i and XA

i are F -measurable since they are (by definition) constant on all atoms of F (sets A ∈ F
such that no nonempty B ⊊ A is in F). The invalidity/inaccuracy distributions on R≥0 are given
by

Pr
(
a ≤ XV

i ≤ b
)
= µ

({
θ ∈ Θ : a ≤ γVi (Aθ) ≤ b

})
= µ

(⋃{
Aθ : a ≤ γVi (Aθ) ≤ b

})
.

The generalized version of Mζ,λ that receives as input a side information structure for each

agent i given by (Θi,Fi, µi) works as follows. It samples θ̃i ∼ Θi according to (Fi, µi) and draws
ki ∼unif. {0, . . . ,Ki} where Ki is defined as before. It then sets

Θ̂i = B
(
A

θ̃i
, ζi + 2kiλi

)
.
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Executing the same analysis in the proofs of Theorems 4.5, 4.6, and 4.7 for a fixed θ̃i, then taking
expectation over the draw of θ̃i yields similar guarantees with γVi and γAi replaced by E[XV

i ] and
E[XA

i ], respectively. To show this, we loosen the bounds in Theorems 4.5, 4.6, and 4.7 slightly to
make the multiplicative terms convex. As XV

i ≥ 0, we have⌈
log+2

(
XV

i − ζi
λi

)⌉
=

⌈
max

(
0, log2

(
XV

i − ζi
λi

))⌉
≤ 1 + log2

(
1 +

XV
i − ζi
λi

)
and therefore

E
[
1− ⌈log+2 ((XV

i − ζi)/λi)⌉
1 + ⌈log2((H − ζi)/λi)⌉

]
≥ E

[
1− 1 + log2(1 + (XV

i − ζi)/λi)

1 + ⌈log2((H − ζi)/λi)⌉

]
≥ 1− 1 + log2(1 + (E[XV

i ]− ζi)/λi)

1 + ⌈log2((H − ζi)/λi)⌉

by Jensen’s inequality. The corresponding versions of Theorems 4.5, 4.6, and 4.7 follow.

Theorem B.1. E[welfare] ≥ max{(1−maxi
1+log2(1+(E[XV

i ]−ζi)/λi)
1+⌈log2((H−ζi)/λi)⌉ ), 1

1+⌈maxi log2((H−ζi)/λi)⌉}OPT.

Theorem B.2 (Revenue bound 1). Let ρi = E[2(XV
i − ζi)1(ζi + λi < XV

i ) + λi1(ζi + λi ≥ XV
i )].

Then E[revenue] ≥ 1
1+⌈maxi log2((H−ζi)/λi)⌉(OPT−

∑n
i=1(E[XA

i ] + ζi + E[ρi])).

Theorem B.3 (Revenue bound 2). E[revenue] ≥ (1−maxi
1+log2(1+(E[XV

i ]−ζi)/λi)
1+⌈log2((H−ζi)/λi)⌉ )(OPT−

∑n
i=1(γ

A
i +

ζi))−
∑n

i=1
4H

1+⌈log2((H−ζi)/λi)⌉ .

C Beyond the VCG mechanism: affine maximizers

Given agent-specific multipliers ω = (ω1, . . . , ωn) ∈ R≥0 and an allocation-based boost function
λ : Γ → R≥0, we define the following meta-mechanism M(ω, λ) which is a generalization of our

meta-mechanism M. The mechanism designer receives as input Θ̃1, . . . , Θ̃n, and based on these
decides on prediction sets Θ̂1, . . . , Θ̂n. The agents are then asked to reveal their true types θ1, . . . , θn.
The allocation used is

αω,λ = argmax
α∈Γ

n∑
i=1

ωiθi[α] + λ(α).

Let

pi =
1

ωi

min
θ̃i∈Θ̂i

max
α∈Γ

∑
j ̸=i

ωjθj [α] + ωiθ̃i[α] + λ(α)

−

∑
j ̸=i

ωjθj [αω,λ] + λ(αω,λ)

 .

Let
I = {i : θi[αω,λ]− pi ≥ 0}.

Agents in i enjoy allocation αω,λ and pay pi. Agents not in i do not participate and receive zero
utility.

This mechanism is the natural generalization of the affine-maximizer mechanism [44] parame-
terized by ω, λ to our setting. The special case where agent misreporting is limited to Θ̂i is the
natural generalization of the weakest-competitor VCG mechanism of Krishna and Perry [33] to
affine-maximizer mechanisms. The following is a simple consequence of the proofs that M and
the affine-maximizer mechanism parameterized by ω, λ are incentive compatible and individually
rational.
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Theorem C.1. For any ω ∈ Rn
≥0 and λ : Γ → R≥0, M(ω, λ) is incentive compatible and individ-

ually rational.

Let OPT(ω, λ) =
∑n

i=1 θi[αω,λ] be the welfare of the (ω, λ)-efficient allocation. All of the
guarantees satisfied by M carry over to M(ω, λ), the only difference being the modified benchmark
of OPT(ω, λ). Of course, OPT(ω, λ) ≤ OPT is a weaker benchmark than the welfare of the efficient
allocation. However, the class of affine maximizer mechanisms is known to achieve much higher
revenue than the vanilla VCG mechanism. We leave it as a compelling open question to derive even
stronger guarantees on mechanisms of the form M(ω, λ) when the underlying affine maximizer is
known to achieve greater revenue than vanilla VCG.
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