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Abstract

Despite significant advances, deep networks remain highly susceptible to adversarial attack. One
fundamental challenge is that small input perturbations can often produce large movements in the
network’s final-layer feature space. In this paper, we define an attack model that abstracts this
challenge, to help understand its intrinsic properties. In our model, the adversary may move data an
arbitrary distance in feature space but only in random low-dimensional subspaces. We prove such
adversaries can be quite powerful: defeating any algorithm that must classify any input it is given.
However, by allowing the algorithm to abstain on unusual inputs, we show such adversaries can be
overcome when classes are reasonably well-separated in feature space. We further provide strong
theoretical guarantees for setting algorithm parameters to optimize over accuracy-abstention trade-
offs using data-driven methods. Our results provide new robustness guarantees for nearest-neighbor
style algorithms, and also have application to contrastive learning, where we empirically demonstrate
the ability of such algorithms to obtain high robust accuracy with low abstention rates. Our model is
also motivated by strategic classification, where entities being classified aim to manipulate their
observable features to produce a preferred classification, and we provide new insights into that area
as well.

Keywords: adversarial machine learning, abstention, nearest-neighbor algorithms, data-driven
algorithm design, strategic classification

1. Introduction

A substantial body of work has shown that deep networks can be highly susceptible to adversarial
attacks, in which minor changes to the input lead to incorrect, even bizarre classifications (Szegedy
et al., 2014; Moosavi-Dezfooli et al., 2016; Madry et al., 2018; Su et al., 2019; Brendel et al., 2018).
Much of this work has considered bounded `p-norm attacks, though many other forms of attack are
considered as well (Brown et al., 2018; Engstrom et al., 2017; Gilmer et al., 2018; Xiao et al., 2018;
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Alaifari et al., 2019). What these results have in common is that changes that either are imperceptible
or should be irrelevant to the classification task can lead to drastically different network behaviors.

One key reason1 for this vulnerability to attacks is the non-Lipschitzness of typical neural
networks: small but adversarial movements in the input space can produce large perturbations in
the feature space (Yang et al., 2020b; Szegedy et al., 2014; Goodfellow et al., 2014). This ability of
an adversary to produce large movements in feature space appears to be at the heart of many of the
successful attacks to date. If we assume that non-Lipschitzness is important for good performance on
natural data, then it is crucial to understand to what extent this property makes a network intrinsically
susceptible to attacks.

In this work, we propose and analyze an abstract attack model designed to focus on this question
of the intrinsic vulnerability of non-Lipschitz networks, and what might help to make such networks
robust. In particular, suppose an adversary, by making an imperceptible change to an input x, can
cause its representation F (x) in feature space (the final layer of the network) to move by an arbitrary
amount: will such an adversary always win? Clearly if the adversary can modify F (x) by an arbitrary
amount in an arbitrary direction, then yes, because it can then move F (x) into the classification
region of any other class it wishes. But what if the adversary can modify F (x) by an arbitrary amount
but only in a random direction or within a random low-dimensional subspace (which it cannot
control)? In this case, we show an interesting dichotomy: if the classifier must output a classification
on any input it is given, then indeed the adversary will still win, no matter how well-separated the
natural data points from different classes are in feature space and no matter what decision surface
the classifier uses. Specifically, for any data distribution and any decision surface, there must exist
at least one class such that the adversary wins with significant probability on random examples of
that class. However, if we provide the classifier the ability to abstain, then we show it can defeat
such an adversary (while maintaining a low abstention rate on natural data) with a nearest-neighbor
style approach under fairly reasonable conditions on the distribution of natural data in feature space.
Moreover, we show these conditions can often be achieved using contrastive learning. Our results also
hold for generalizations of these models, such as directions that are not completely random. More
broadly, our results provide a theoretical explanation for the importance of allowing abstaining, or
selective classification, in the presence of adversarial attacks that exploit network non-Lipschitzness.
Our results also provide new understanding of the robustness of nearest-neighbor algorithms.

A second motivation of our work comes from the area of strategic classification, where the
concern is that entities being classified may try to manipulate their observable features to achieve a
preferred outcome. Consider, for example, a public rating system used to classify companies into
those that are good to work for and those that are not. Naturally, companies want to be viewed as
being good to work for. So, they may try to modify any easy-to-manipulate features used by the
system in order to achieve a positive classification, even if this does not change their true status.
For example, perhaps the system uses the ratio of managers to associates, which the company can
manipulate arbitrarily (from 0 to infinity) by changing employee titles, without actually changing pay
or responsibilities. Suppose we assume agents (the companies) have a small number of parameters
they can manipulate arbitrarily, and that there is an unknown linear function that maps changes in
these parameters to movement in feature space. In this case, our results can provide some guidance.
Our negative results imply that for any non-abstaining classifier, there must be at least one class such
that for most examples from that class, manipulation in a random direction has a significant chance

1. Additional explanations include the presence of brittle features that are human incomprehensible (Ilyas et al., 2019),
and the location of the classification boundary relative to the submanifold of sampled data (Tanay and Griffin, 2016).
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of being successful; whereas our positive results imply that by using the ability to abstain, we can be
secure against manipulation in most low-dimensional subspaces. Note that this is very similar to the
model used by Kleinberg and Raghavan (2019) (see also Alon et al. 2020; Shavit et al. 2020) who
assume that the “effort conversion matrix” mapping changes in manipulable parameters to changes
in observable features is known (or at least can be learned through experimentation, Shavit et al.,
2020); our results provide insight into what can be done when it is unknown, and the classifier must
be fielded before any manipulations are observed.

In addition to providing a formal separation between algorithms that can abstain and those that
cannot, our work also yields an interesting trade-off between robustness and accuracy (Tsipras et al.,
2019; Zhang et al., 2019; Raghunathan et al., 2020) for nearest-neighbor algorithms. By controlling a
distance threshold determining the rate at which the nearest-neighbor algorithm abstains, we are able
to trade off (robust) precision against recall, and we provide results for how to provably optimize
for such a trade-off using a data-driven approach. We also perform experimental evaluation in the
context of contrastive learning (He et al., 2020; Chen et al., 2020a; Khosla et al., 2020).

We acknowledge that our model is only an abstraction. Additionally, one can also consider
relaxations of the Lipschitzness condition. We discuss some work along these lines in Section 1.2.

1.1 Our Contributions

Our main contributions are the following. Conceptually, we introduce a new random feature subspace
threat model to abstract the effect of non-Lipschitzness in deep networks. Technically, we show the
power of abstention and data-driven algorithm design in this setting, proving that classifiers with
the ability to abstain are provably more powerful than those that cannot in this model, and giving
provable guarantees for nearest-neighbor style algorithms and data-driven hyperparameter learning.
Experimentally, we show that our algorithms perform well in this model on representations learned
by supervised and self-supervised contrastive learning. More specifically,

• We introduce the random feature subspace threat model, an abstraction designed to focus on the
impact of non-Lipschitzness on vulnerability to adversaries.
• We show for this threat model that all classifiers that partition the feature space into two or more

classes—without an ability to abstain—are provably vulnerable to adversarial attacks. In particular,
no matter how nice the data distribution is in feature space, for at least one class the adversary
succeeds with significant probability.
• We show that in contrast, a classifier with the ability to abstain can overcome this vulnerability.

We present a thresholded nearest-neighbor algorithm that is provably robust in this model when
classes are sufficiently well separated, and characterize the conditions under which the algorithm
does not abstain too often. This result can be viewed as providing new robustness guarantees for
nearest-neighbor style algorithms as well as for proof-carrying predictions, where predictions are
accompanied by certificates of confidence.
• We leverage and extend dispersion techniques from data-driven algorithm design, and present a

novel data-driven method for learning data-specific hyperparameters in our defense algorithms to si-
multaneously obtain high robust accuracy and low abstention rates. Unlike typical hyperparameter
tuning, our approach provably converges to a global optimum.
• Experimentally, we show that our proposed algorithm achieves certified adversarial robustness

on representations learned by supervised and self-supervised contrastive learning. Our method
significantly outperforms algorithms without the ability to abstain.
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Our framework can be thought of as a kind of smoothed analysis (Spielman and Teng, 2004) in its
combination of random and adversarial components. This is especially so for Section 4.3 where we
broaden our guarantees to apply to arbitrary κ-bounded distributions. However, a key distinction
is that in smoothed analysis, the adversary moves first, and randomness is added to its decision
afterwards. In our model, in contrast, first a random restriction is applied to the space of perturbations
the adversary may choose from, and then the adversary may move arbitrarily in that random subspace.
Thus, the adversary in our setting has more power, because it can make its decision after the
randomness has been applied.

1.2 Related Work

Large-magnitude adversarial perturbations. While most work on adversarial robustness considers
small perturbations (for example, Szegedy et al. 2014; Madry et al. 2018; Zhang et al. 2019), there
has also been significant work on other kinds of attacks such as adversarial rotations, translations,
and deformations (Brown et al., 2018; Engstrom et al., 2017; Gilmer et al., 2018; Xiao et al., 2018;
Alaifari et al., 2019). Perhaps most closely related to our negative results in Section 3 is work of
Shamir et al. (2019). Shamir et al. (2019) consider an adversary that can make small `0 perturbations
in the input space: that is, perturb a small number of input coordinates, but change them by an
arbitrary amount. They present algorithms for the adversary giving targeted attacks against any
learner that partitions space with a hyperplane partition using a limited number of hyperplanes in
general position. Our negative results for non-abstaining classifiers are inspired by their work, though
they are formally incomparable (our results are stronger in that they hold even if an adversary can
just change one random linear combination and for an arbitrary partition of space, but weaker in that
we consider an untargeted adversary, and different in that we assume randomness in the direction of
adversarial power rather than in the space partition). Shamir et al. (2019) do not consider the use
of abstention to combat this adversarial power. We discuss further connections to coordinate-wise
perturbations in Section 3.1. Shafahi et al. (2019) look at the effect of dimensionality on robustness
limits for `p-norm bounded attacks, but their negative results do not hold for abstentive classifiers.

Network Lipschitzness and relaxed notions. We model non-Lipschitzness of the network mapping in
the context of robustness via large adversarial feature space movements corresponding to small input
space perturbations. Several relaxations of the Lipschitz condition have been studied in the literature
including Hölder smoothness (An and Gao, 2021), local Lipschitzness (Hein and Andriushchenko,
2017; Yang et al., 2020b) and probabilistic Lipschitzness (Urner and Ben-David, 2013). Typically
satisfying these relaxed conditions leads to better performance than bounding the global Lipschitzness
of the networks (Cisse et al., 2017).

Adversarial robustness with abstention options. Classification with abstention options (a.k.a. selective
classification (Geifman and El-Yaniv, 2017)) is a relatively less explored direction in the adversarial
machine learning literature. Hosseini et al. (2017) augmented the output class set with a NULL
label and trained the classifier to reject the adversarial examples by classifying them as NULL;
Stutz et al. (2020) and Laidlaw and Feizi (2019) obtained robustness by rejecting low-confidence
adversarial examples according to confidence thresholding or predictions on the perturbations of
adversarial examples. Another related line of research to our method is the detection of adversarial
examples (Grosse et al., 2017; Li and Li, 2017; Carlini and Wagner, 2017; Meng and Chen, 2017;
Metzen et al., 2017; Bhagoji et al., 2018; Xu et al., 2017; Hu et al., 2019; Liu et al., 2018; Deng et al.,
2021). This direction also often involves thresholding a heuristic confidence score. For example,
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Ma et al. (2018) use a confidence metric based on k-nearest neighbors in the training sample, and
Lee et al. (2018) fit class-wise Gaussian distributions and flag test points away from all distributions.
These approaches have been studied empirically but typically lack formal guarantees. Goldwasser
et al. (2020), on the other hand, gave provable guarantees for selective classification in a transductive
setting in which performance was measured according to an adversarial test distribution from which
unlabeled examples are provided to the learning algorithm in advance.

Data-driven algorithm design. Data-driven algorithm design refers to using machine learning for
algorithm design, including choosing a good algorithm from a parameterized family of algorithms for
given data. It is known as “hyperparameter tuning” to machine learning practitioners and typically
involves a “grid search”, “random search” (Bergstra and Bengio, 2012) or gradient-based search,
with no guarantees of convergence to a global optimum.

Data-driven algorithm design was formally introduced to the theory of computing community
by Gupta and Roughgarden (2017) as a learning paradigm, and was further extended in Balcan
et al. (2017). The key idea is to model the problem of identifying a good algorithm from data as
a statistical learning problem. The technique has found useful application in providing provably
better algorithms for several problems of fundamental significance in machine learning including
clustering (Balcan et al., 2020a, 2018c, 2021), semi-supervised learning (Balcan and Sharma, 2021),
simulated annealing (Blum et al., 2021), regularized regression (Balcan et al., 2022b), mixed integer
programming (Balcan et al., 2018a, 2022c), low rank approximation (Bartlett et al., 2022) and even
beyond, providing guarantees like differential privacy and adaptive online learning (Balcan et al.,
2018b, 2020c). See Balcan (2020) for further discussion on this rapidly growing body of research.
For learning in an adversarial setting, we provide the first demonstration of the effectiveness of
data-driven algorithm design in a defense method to optimize over the accuracy-abstention trade-off
with strong theoretical guarantees.

Strategic classification. Strategic classification considers the case that entities being classified have a
stake in the outcome, and will aim to manipulate their observable features to receive the classification
they desire. Typically it is assumed these entities have some limited power to manipulate, and that
this power is known to the classifier. Chen et al. (2020b); Ahmadi et al. (2021) consider entities
that can manipulate inside a ball of some limited radius, whereas Kleinberg and Raghavan (2019);
Alon et al. (2020); Shavit et al. (2020) consider agents that have “activities” they can engage in at
some cost, which get converted into movement in feature space via an “effort conversion matrix”.
This latter work assumes the effort conversion matrices are known, or at least can be learned from
experimentation. In contrast, our setting can be viewed as a case where the matrices are unknown and
the classifier must be fielded before any manipulations are observed (and agents have an unlimited
activity budget). Note, the work of Kleinberg and Raghavan (2019); Alon et al. (2020); Shavit
et al. (2020) also considers the case that only certain activities correspond to “gaming” and others
correspond to true self-improvement; we do not consider the self-improvement aspect here.

Adversarial defenses by non-parametric methods. Adversarial defenses by k-nearest neighbor
classifier have received significant attention in recent years. In the setting of norm-bounded threat
model without the ability to abstain, Wang et al. (2018) showed that the robustness properties of
k-nearest neighbors depend critically on the value of k—the classifier may be inherently non-robust
for small k, but its robustness approaches that of the Bayes Optimal classifier for fast-growing k.
Yang et al. (2020a); Bhattacharjee and Chaudhuri (2020) provided and analyzed a general defense
method, adversarial pruning, that works by preprocessing the data set to become well-separated
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and then running k-nearest neighbors. Theoretically, they derived an optimally robust classifier,
which is analogous to the Bayes Optimal, and showed that adversarial pruning can be viewed as a
finite sample approximation to this optimal classifier. In this work, we study the power of 1-nearest
neighbors for adversarial robustness with the ability to abstain, under a random-subspace adversarial
threat model.

Feature-space attacks. Different from most existing attacks that directly perturb input pixels, there are
a few prior works that focus on perturbing abstract features as ours. More specifically, the subspaces
of features typically characterize styles, which include interpretable styles such as vivid colors and
sharp outlines, and uninterpretable ones (Xu et al., 2020). Ganeshan and Babu (2019) proposed a
feature disruptive attack that generates an image perturbation that disrupts features at each layer of
the network and causes deep-features to be highly corrupt. They showed that the attacks generate
strong adversaries for image classification, even in the presence of various defense measures. Despite
a large amount of empirical works on adversarial feature-space attack, many fundamental questions
remain open, such as developing a provable defense against feature-space attacks.

Learning with noise. Classic work on learning with noise is a related line of work with theoretical
guarantees (Kearns and Li, 1988; Bshouty et al., 2002; Awasthi et al., 2014). These models typically
involve perturbations of input-space features of training points. Our nearest-neighbor based tech-
niques for test-time feature-space attacks are different from the localization and disagreement-based
approaches that are known to work for poisoning attacks (Awasthi et al., 2014, 2016; Balcan et al.,
2022a). An interesting direction for future work is to determine how to adapt our techniques to
handle noise in data.

2. Preliminaries and Threat Model

Notation. We will use bold lower-case letters such as x and y to represent vectors, lower-case
letters such as x and y to represent scalars, and calligraphic capital letters such as X , Y and D to
represent distributions. Specifically, we denote by x ∈ X a sample instance, and by y ∈ Y a label,
where X ⊆ Rn1 and Y indicate the image and label spaces, respectively. Let F : X → Rn2 be
our given feature embedding (which we assume has already been learned) that maps an instance
to a high-dimensional vector in the latent space F (X ). It can be parameterized, for example, by
deep neural networks. We will frequently use v ∈ Rn2 to represent an adversarial perturbation in
the feature space. Denote by dist(z, z′) the Euclidean distance between any two vectors z, z′ in
the image or feature space, and let B(z, τ) = {z′ : dist(z, z′) ≤ τ} be the ball of radius τ about z.
We will use DX to denote the distribution of instances in the input space, DX|y the distribution of
instances in the input space conditioned on the class y, DF (X ) the distribution of instances in feature
space, and DF (X )|y the distribution of instances in feature space conditioned on the class y. Finally,
we will typically use (x1, y1), ..., (xm, ym) to denote a given set of m labeled training examples.

2.1 The Random Feature Subspace Threat Model

We now formally present the random feature subspace threat model, in which the adversary, by
making small changes in the input space, is assumed to be able to create arbitrarily large movements
in feature space, though only in random low-dimensional subspaces. Note that because this large
modification in feature space is assumed to come from a small perturbation in input space, we always
assume that the true correct label y is the same for the modified point and the original point.
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Specifically, let x be an n1-dimensional test input for classification. The input is embedded into
an n2-dimensional feature space using an abstract mapping F . Our threat model is that the adversary
may corrupt F (x) such that the modified feature vector is any point in a random n3-dimensional
affine subspace denoted by S + {F (x)}. For example, if n3 = 1 then S + {F (x)} is a random line
through F (x), and the adversary may select an arbitrary point on that line; if n3 = 2 then S+{F (x)}
is a random 2-dimensional plane through F (x), and the adversary may select an arbitrary point in
that plane. Conceptually, we are viewing F as “squashing” the adversarial ball about x in input
space into a random infinitely thin and infinitely wide n3-dimensional pancake in feature space. The
adversary is given access to everything including the algorithm’s classification function, F , x, S and
the true label of x. Throughout the paper, we will use adversary and adversarial example to refer to
this threat model.

2.2 Discussion and Examples

As noted above, we are viewing the network as conceptually squashing the ball about x in input
space into a random infinitely wide n3-dimensional pancake in feature space. Of course, in a real
network there would be some limit on the magnitude of a perturbation in feature space, and the
available directions wouldn’t exactly form a subspace. However, we believe this is a clean theoretical
model worthy of understanding for insight. Also, it is interesting to note that our negative results for
non-abstaining classifiers, such as Theorem 1, apply even if n3 = 1, whereas our positive results for
classifiers that can abstain, such as Theorem 2, apply even if n3 ≥ n1 so long as n3 � n2.

An example of a non-Lipschitz mapping. While our threat model is intended to be an abstraction, here
is an example of a concrete non-Lipschitz mapping captured by our model. Let us say the support
of the natural data distribution D only includes points with integer coefficients (data is in Rd, but
all natural points have integer coordinates). Assume the adversary can move points in the input
space within an `2 ball of radius 1/4. Now, for a point x, let us define frac(x) to be its fractional
part and int(x) to be its integral part. So if d = 2 and x = (1.1, 2.3) then frac(x) = (0.1, 0.3) and
int(x) = (1, 2). If x = (0.9, 0.8) then frac(x) = (−0.1,−0.2) and int(x) = (1, 1). Now, let us say
the network maps a point x to F (x) = x+ 〈w, frac(x)〉w, where w is a large random vector (chosen
independently at random for each lattice point int(x)). Then, all natural data will stay where they
are (this is the identity mapping on natural data), but points in the adversarial ball can move very
far in the direction of their w. So, if the true decision boundary is, say x1 ≥ 1/2, the adversary will
not change the true label of any data point but (in the limit as |w| → ∞) will be able to defeat any
non-abstaining classifier in the feature space by Theorem 1.

Additional remarks. We wish to be clear that our intent is not to create a threat model against which
one would design a new network architecture or training procedure. Instead, we are thinking of a
network that has already been trained (say, using adversarial training or any of the other available
methods that try to improve robustness). But, the designers are finding that the adversarial loss is
unacceptably high, because for many test points, the adversary can still move those points a large
distance in feature space and cross over their decision boundary (even if the natural data of different
classes are well-separated in feature space). Our framework is aimed to consider this setting, and
our results provide a practical suggestion: modify the final level to allow it to abstain if a test point
is “too different” from the training data. The justification is that if the adversary can move large
distances but not in every possible direction (if it can do that, then no defense will work) and indeed
only do so in random lower-dimensional subspaces, then we can provide theoretical guarantees for
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this approach. Moreover, our lower bounds show that abstention is necessary no matter how nicely
distributed the data may be. In fact, it is necessary even if the adversary can move points arbitrarily
large distances in feature space even in just a single random direction.

3. Negative Results without an Ability to Abstain

We now present a hardness result showing that no matter how nicely data is distributed in feature
space (for example, even if the network perfectly clusters data by label in feature space), any classifier
that is not allowed to abstain will fail against our threat model even for an adversary that can perturb
points in a single random direction (n3 = 1).

Theorem 1 For any classifier that partitions Rn2 into two or more classes, any data distribution D,
any δ > 0 and any feature embedding F , there must exist at least one class y∗, such that for at least
a 1− δ probability mass of examples x from class y∗ (that is, x is drawn from DX|y∗), for a random
unit-length vector v, with probability at least 1/2− δ for some ∆0 > 0, F (x) + ∆0v is not labeled
y∗ by the classifier. In other words, there must be at least one class y∗ such that for at least 1− δ
probability mass of points x of class y∗, the adversary wins with probability at least 1/2− δ.

Proof Define rδ to be a radius such that in the feature space, for every class y, at least a 1 − δ
probability mass of examples F (x) of class y lie within distance rδ of the origin. Define R such
that for a ball of radius R, if we move the ball by a distance rδ, at least a 1 − δ fraction of the
volume of the new ball is inside the intersection with the old ball. Now, let B be the ball of radius R
centered at the origin in feature space. Let vol(B) denote the volume of B and let voly(B) denote
the volume of the subset of B that is assigned label y by the classifier. Let y∗ be any label such
that voly∗(B)/vol(B) ≤ 1/2. Now by the definition of y∗, a point z picked uniformly at random
from B has probability at least 1/2 of being classified differently from y∗. This implies that, by the
definition of R, if F (x) is within distance rδ of the origin, then a point zx that is picked uniformly
at random in the ball Bx of radius R centered at F (x) has probability at least 1/2 − δ of being
classified differently from y∗. This immediately implies that if we choose a random unit-length vector
v, then with probability at least 1/2 − δ, there exists ∆0 > 0 such that F (x) + ∆0v is classified
differently from y∗, since we can think of choosing v by first sampling zx from Bx and then defining
v = (zx − F (x))/‖zx − F (x)‖2. Moreover, since the classifier has no abstention region, being
classified differently from y∗ implies a win by the adversary. So, the theorem follows from the fact
that, by the definition of rδ, at least 1 − δ probability mass of examples F (x) from class y∗ are
within distance rδ of the origin in feature space.

We remark that our lower bound applies to any classifier and exploits the fact that a classifier without
abstention must label the entire feature space. For a simple linear decision boundary, a perturbation in
any direction (except parallel to the boundary) can cross the boundary with an appropriate magnitude
(Figure 1, mid). The left and right figures show that if we try to ‘bend’ the decision boundary
to ‘protect’ one of the classes, the other class is still vulnerable. Our argument formalizes and
generalizes this intuition, and shows that there must be at least one vulnerable class irrespective of
how you may try to shape the class boundaries, where the adversary succeeds in a large fraction of
directions.
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Figure 1: A simple example to illustrate Theorem 1. Bending the decision boundary to avoid
adversarial examples for one class makes it harder to defend the other class.

3.1 Comparison to Coordinate-wise Perturbations

It is interesting to compare our model to one in which the adversary can make only coordinate-wise
perturbations in the feature space. An adversary that can only make coordinate-wise changes would,
in contrast, not be powerful enough to defeat any non-abstaining classifier. For example, consider
data in R3 where all the positive examples are at location (1, 1, 1) and all the negative examples are
at location (−1,−1,−1) in feature space. Then so long as the classifier partitions the space such
that the lines (1, 1, ·), (1, ·, 1), and (·, 1, 1) are positive and (−1,−1, ·), (−1, ·,−1), and (·,−1,−1)
are negative, the adversary will not be able to defeat it with a single coordinate-wise change. (We
need to use R3 here rather than R2, because in R2 these lines would cross and so the classifier would
not be well-defined). In contrast, by Theorem 1, an adversary that can perturb in a uniformly-random
direction will defeat any non-abstaining classifier.

4. Positive Results with an Ability to Abstain

Theorem 1 gives a hardness result for robust classification without abstention. In this section, we
give positive results for a nearest-neighbor style classifier that has the power to abstain.

Given a test instance x ∼ DX , recall that the adversary is allowed to corrupt F (x) with an
arbitrarily large perturbation in a uniformly-distributed subspace S of dimension n3. Consider the
prediction rule that classifies the unseen example F (x) ∈ Rn2 with the class of its nearest training
example provided that the distance between them is at most τ ; otherwise the algorithm outputs “don’t
know” (see Algorithm 1 when σ = 0). The threshold parameter τ trades off robustness against
abstention rate; when τ →∞, our algorithm is equivalent to the nearest-neighbor algorithm. Note
that Algorithm 1 also contains a parameter σ to remove training points that are too close to other
training points of a different class—we will consider non-zero values of this parameter later.
Denote by Exadv(f) := ES∼S1{∃e ∈ S + F (x) s.t. f(e) 6= y and f(e) does not abstain} the robust
error of a given classifier f for classifying instance x. Our analysis leads to the following positive
results on this algorithm. This theorem states that so long as the threshold τ is sufficiently small
compared to the distance r between the test point x and the nearest training point xi of a different
class (see Figure 2), and the dimension n2 of the ambient feature space is sufficiently large compared
to the dimension n3 of the adversarial subspace S, the algorithm will have low robust error on x.
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Algorithm 1 ROBUSTCLASSIFIER(τ, σ)

1: Input: A test example F (x) (potentially an adversarial example), a set of training examples
F (xi) and their labels yi, i ∈ [m], a threshold parameter τ , a separation parameter σ.

2: Preprocessing: Delete training examples F (xi) if minj∈[m],yi 6=yj dist(F (xi), F (xj)) < σ.
3: Output: A predicted label of F (x), or “don’t know”.
4: if mini∈[m] dist(F (x), F (xi)) < τ then
5: return yargmini∈[m] dist(F (x),F (xi));
6: else
7: return “don’t know”.

	
	
	
	
	
	 	

x x0

✏� r

Figure 1: Adversarial misclassification for nearest-neighbor predictor

Some comments/further questions:

2.1 How do the bounds depend on n1, n2?

2.1.1 We claim the above ✏2

r2 bound can be generalized to
�
✏
r

�n2�n1
upper bound on probability of error

in the general case.

2.1.2 This bound should be tight i.e. show ⌦
⇣�

✏
r

�n2�n1
⌘
lower bound.

TODO: Add a concrete theorem here.

2.2 This indicates that a ‘nice’ F could cluster together points from same class into small geometric regions,
to give an even better bound. Well separation already boosts the above bound as it improves with
increasing r. Can we extend sample complexity and prediction confidence bounds for F to robust
bounds for our setting?

– Concretely, if we have that F +h have a sample complexity of m(✏, �), then in the above adversary
model the failure probability is only increased by the above upper bound. We should therefore
get a slightly weaker sample complexity bound for our model. Also look at what we can say about
accuracy assuming adversary did not perturb the input.

2.3 The bound using n seems conservative, examples with the same label as x would not lead to misclas-
sification for example. Also ‘directions’ where you may get adversarially close to examples of a fixed
class probably overlap/correlate.

– Can we extend the above argument about individual training points to regions/clusters corre-
sponding to individual classes and get something tighter? We’ll probably also need to consider
probability mass of input points to overcome low mass examples that violate our assumptions.
Ideally we want our results to improve with more training examples.

2.4 Probabilistic Lipschitzness [2] is an assumption on ‘data niceness’ which can give sample complexity
guarantees for NN algorithm which scale with this ‘niceness’ of data distribution.

– It looks like Probabilistic Lipschitzness does not directly apply to our model (captures standard
threat model better), but we might want to introduce a similar definition for our setting.

2.5 Reducing ✏ improves the above bound but at the cost of more “don’t knows”. We might want to
quantify this trade-o↵ of accuracy of output vs dismissibility of input.

3 Robust PCA

F (x) is low-rank by design, and therefore L0 perturbations to it can be detected/resolved using the Robust
PCA method. Notice that this approach can be thought of as more than just a data assumption, even if x
is full rank, embedding into F (x) results in n1 dimensional manifolds in n2 > n1 dimensional space.

We currently treat this as a separate direction to be looked at after Sections 2 and 4. Unlike Section 2,
here we potentially expect unsupervised results.
TODO(Dravy, Hongyang): Add more details and further questions.

2

	

!(#)	 !(#′)	

!	
!(#) !(#%)

! # + '

Figure 2: Adversarial misclassification for nearest-neighbor predictor. Here F (x) is the test point
and F (xi) is a training point from a different class. For n3 = 1, the adversary succeeds
for the directions inside the depicted cone around F (xi).

Theorem 2 Let x ∼ DX be a test instance, m be the number of training examples and r be the
shortest distance between F (x) and F (xi) where xi is a training point from a different class.
Suppose τ = o

(
r
√

1− n3
n2

)
. The robust error of Algorithm 1, Exadv(ROBUSTCLASSIFIER(τ, 0)), is

at most

m

(
cτ

r
√

1− n3
n2

)n2−n3

+mcn2−n3
0 ,

where c > 0 and 0 < c0 < 1 are absolute constants. For the case n3 = 1, the robust error is at most

m
(τ
r

)n2−1
.

Proof We begin our analysis with the case of n3 = 1. Suppose we have a training example x′

of another class, and suppose F (x) and F (x′) are at distance D in the feature space. That is,
dist(F (x), F (x′)) = D. Because τ = o (D), the probability that the adversary can move F (x) to
within distance τ of F (x′) is at most the ratio of the surface area of a sphere of radius τ to the surface
area of a sphere of radius D, which is at most

( τ
D

)n2−1
≤
(τ
r

)n2−1

if the feature space is n2-dimensional. See Figure 2.
The analysis for the case of general values of n3 follows from a peeling argument. For this, we

need the following Random Projection Theorem (Dasgupta and Gupta, 2003; Vempala, 2005).
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Lemma 3 (Random Projection Theorem) Let z be a fixed unit length vector in d-dimensional
space and z̃ be the projection of z onto a random k-dimensional subspace. For 0 < δ < 1,

Pr

[∣∣∣∣‖z̃‖22 −
k

d

∣∣∣∣ ≥ δ
k

d

]
≤ e−

k(δ2−δ3)
4 .

Without loss of generality, we assume F (x) = 0 in Rn2 . Next, note that the random subspace
in which the adversary vector is restricted to lie can be constructed by the following sampling
scheme: we first sample a vector v1 uniformly at random from a unit sphere in the ambient space
Rn2 centered at 0; fixing v1, we then sample a vector v2 uniformly at random from a unit sphere
in the nullspace of span{v1}; we repeat this procedure n3 times and let span{v1,v2, ...,vn3} be
the desired subspace. Note that the sampling scheme satisfies the random adversary model. For
the fixed nullspace null(span{v1, ...,vi}) of dimension n2 − i, according to the analysis of the case
n3 = 1, if we condition on the distance Di between F (x) and F (x′) when they are projected to
null(span{v1, ...,vi}), the probability over the draw of vi+1 of failure with respect to x′ is at most
(O(τ/Di))

n2−i−1. We also note that null(span{v1, ...,vi}) is a random subspace of dimension

n2 − i. Thus by Lemma 3 (with constant δ), we have Di ≥ Cr
√

n2−i
n2

with probability at least

1−e−c′(n2−i), where C, c′ > 0 are absolute constants. Therefore, by the union bound over the choice

of n3 nullspaces and the failure probability of the event Di ≥ Cr
√

n2−i
n2

, the failure probability of
the algorithm over x′ is at most

n3∑

i=1

e−c
′(n2−i) +

n3∑

i=1


O


 τ

Cr
√

n2−i
n2





n2−i

≤ cn2−n3
0 +


 cτ

r
√

n2−n3
n2



n2−n3

.

By the union bound over all m training data points x′ completes the proof.

Theorem 2 states that the robust error of Algorithm 1 on a test point x will be small so long as its
distance r to its nearest training point xi from a different class is sufficiently larger than τ , and so
long as the number of labeled examples m is sub-exponential in n2 − n3. If m is so large that a
sphere of radius r about point x can be covered by m balls of radius τ , then the adversary could
indeed win, because any ray extending from x will pierce one of these balls. One simple way to
address this would be that if size of the labeled sample really is exponential in n2 − n3, then to just
use a sub-exponentially large random subsample of it.2 We also prove the following asymptotic
improvement over Theorem 2 for fixed n3 and large n2 via a tighter bound on the probability mass
of the region of adversarial success.

Theorem 4 If τ = o(r), the robust error Exadv(f) of ROBUSTCLASSIFIER(τ, 0) in Algorithm 1 for

classifying x is at most O
(

m
n2−n3

(
τ
r

)n2−n3 1
B(n3/2,(n2−n3)/2)

)
, where B(·, ·) is the Beta function.

The Beta function is given by B(r1, r2) =
∫ 1

0 t
r1−1(1 − t)r2−1dt, for r1, r2 ∈ R+, and is closely

related to binomial coefficients.

2. This observation shows that nearest-neighbor is not an optimal algorithm when the number of examples is exponential
in the dimension. In the case of very large m, one could instead use an algorithm that estimated densities in each part
of space.

11



BALCAN, BLUM, SHARMA, AND ZHANG

x x′

in kernel space
in range space

y

Proj[x′]

Figure 3: Rotational symmetry of adversarial subspaces. Let y be a random direction from test point
x, and Proj[x′] be the projection of training point x′ on to xy. For any adversarial space
with Proj[x′] as the projection of x′ on the space, we must have xy in the range space and
x′Proj[x′] in the nullspace.

Proof We drop F (·) from the notation for simplicity. Let x be the origin. Let x′ be a training point
of another class, and R be a random n3-dimensional linear subspace. Scale all distances by a factor
of 1

dist(x,x′) . By rotational symmetry, we assume WLOG that R is given by xn3+1 = xn3+2 = · · · =
xn2 = 0, and x′ is the uniformly random unit vector (z1, . . . , zn2). Indeed, for a fixed direction from
x, the set of subspaces for which the projection of x′ lies along that direction is constrained by one
vector each in the range space and kernel space, and is therefore in bijection to the set of subspaces
associated with another fixed direction (Figure 3).

The adversary can win only if the distance between x′ with the closest vector Proj[x′] in R, that
is with (z1, . . . , zn3 , 0, . . . , 0), is at most τ

dist(x,x′) ≤
τ
r . We can now apply Lemma 21 (Appendix A),

which gives a bound on the fraction of the surface of the sphere at some fixed small distance from
the orthogonal space, to get that the adversary succeeds by perturbing x to a point within B(x′, τ)
with probability at most

2(τ/r)n2−n3

n2 − n3
· A(n2 − n3 − 1)A(n3 − 1)

A(n2 − 1)
,

where A(n) is the surface-area of the unit n-sphere embedded in Rn+1. We have closed a form

A(n) = 2π
n+1
2

Γ(n+1
2 )

, where Γ(z) =
∫∞
t=0 t

z−1e−tdt is the gamma function.

Noting that B(z1, z2) = Γ(z1)Γ(z2)
Γ(z1+z2) , together with a union bound over all training points from a

different class, gives the result.

4.1 Outlier Removal and Improved Upper Bound

The guarantees above are good when the test points are far from training points from other classes in
the feature space. This empirically holds true for good data and perfect embeddings—a so-called
neural collapse phenomenon that the trained network converges to representations such that all points
of class k get embedded close to a single point µk in the feature space (Papyan et al., 2020). But
for noisy data and good-but-not-perfect embeddings, the condition may not hold. In Theorem 24
(in Appendix B) we show that we obtain almost the same upper bound on failure probability as

12
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above by exploiting the outlier removal threshold σ. Intuitively, outlier removal artificially induces
well-separateness in the feature space, by deleting training examples that are close to other examples
with a different label.

4.2 Upper Bound on Abstention Rate on Natural Data

Of course, the statement that robust error is low just means the adversary has a low probability of
being able to create an error. This is only half the picture: the other half is that we also want our
algorithm to have a low probability of abstaining on natural data. This is what we address in the
next two sections, and it will require assumptions on how natural data is distributed. In particular,
we give two different sufficient conditions for having a low abstention rate on natural data: (1) that
natural data is well-clustered in feature space (Section 4.2.1), and alternatively (2) that the natural
data has low doubling dimension (Section 4.2.2). For these results, we assume our m training points
x1, . . . ,xm are i.i.d. draws from distribution DF (X ); if we also have additional training points used
in the construction of F (which, therefore, cannot be treated as i.i.d. draws), this can only help.

4.2.1 LOW ABSTENTION RATE FOR WELL-CLUSTERED DATA

We show here that if natural data has the property that for every label class, one can cover most of
the probability mass of the class with not too many (potentially overlapping) balls of at least some
minimal probability mass, then our algorithm will have a low abstention rate.

Definition 5 A distribution D is (δ, β,N)-coverable if at least a 1− δ fraction of probability mass
of the marginal distribution DF (X ) over Rn2 can be covered by N balls B1, B2, ... BN of radius τ/2
and of mass PrDF (X )

[Bk] ≥ β.

Intuitively, if a set of balls cover (most of) the distribution and we sample enough points from the
distribution, we should get at least one sample from each ball and our algorithm will not abstain on
the covered points. Formally, we show the following guarantee on the abstention rate on distributions
that are (δ, β,N)-coverable w.r.t. threshold τ .

Theorem 6 Suppose that F (x1), ..., F (xm) are m training instances i.i.d. sampled from marginal
distribution DF (X ). If the distribution D is (δ, β,N)-coverable, for sufficiently large m ≥ 1

β ln N
γ ,

with probability at least 1− γ over the sampling, we have Pr[∪mi=1B(F (xi), τ)] ≥ 1− δ.

Proof Fix ball Bi in the cover from Definition 5. Let Bi denote the event that no point is drawn
from ball Bi over the m samples. Since successive draws are independent, and by Definition 5
PrDF (X )

[Bi] ≥ β, we have that Pr[Bi] ≤ (1− β)m ≤ exp(−βm). Further, by a union bound over
N balls Pr[∪iBi] ≤ N exp(−βm) ≤ γ, for m ≥ 1

β ln N
γ .

Therefore, with probability at least 1 − γ for all k ∈ [N ] there is at least a sample F (xik) ∈
{F (x1), F (x2), ..., F (xm)} such that F (xik) ∈ Bk. This implies ∪mi=1B(F (xi), τ) ⊇ ∪Nk=1Bk,
since Bk is a ball of radius τ/2. So with probability at least 1 − γ over the sampling, we have
Pr[∪mi=1B(F (xi), τ)] ≥ Pr[∪Nk=1Bk] ≥ 1− δ.

Note that in the special case that the N balls are disjoint and each has probability mass β = 1/N ,
then m = Ω(N logN) samples are also necessary to get a point inside each ball, by a standard
coupon-collector analysis.
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Theorem 6 implies that if we have a covering with N balls, each with probability mass at least
β and large enough sample size m, with probability at least 1 − γ over the sampling, we have
Pr[∪mi=1B(F (xi), τ)] ≥ 1 − δ. Therefore, with high probability, the algorithm will output “don’t
know” only for a δ fraction of natural data. Below we give an example of a distribution where our
algorithm will simultaneously achieve low robust error and low natural abstention rates.

Example distribution where Algorithm 1 is robust with low abstention rate. Our example will
consist of well-separated data in the feature space. Suppose DF (X )|y for each label class y consists
of the uniform distribution over Ny n2-balls of radius τ/2 centered at axis-aligned unit vectors
{ej | j ∈ Sy}, where Sy ⊂ [n2] is the set of axes with balls labeled by y, with τ < 1/3 and
Sy ∩ Sy′ = ∅ for y 6= y′. Further let m = n2 log n2

γ for some absolute constant γ ∈ (0, 1), so this
distribution is (δ, β,N)-coverable with δ = 0, β = 1/N and N = n2. If n3 = 1, by Theorem 2,
the robust error of Algorithm 1 is bounded by O(n2 log n2τ

n2−1) = o(1). Thus, in this setting, our
algorithm enjoys low robust error without abstaining too much (for sufficiently large n2).

4.2.2 CONTROLLING ABSTENTION RATE VIA DOUBLING DIMENSION

Here, we give an alternative bound on the abstention rate on natural data based on the doubling
dimension of the data distribution. Doubling dimension can be used to obtain sample complexity
of generalization for learning problems (Bshouty et al., 2009). Bounded doubling dimension has
also been used to give bounds on cluster quality for nearest-neighbor based extensions of clustering
algorithms in the distributed learning setting (Dick et al., 2017).

Definition 7 (Doubling dimension) A measure DF (X ) with support F (X ) is said to have a dou-
bling dimension d, if for all points F (x) ∈ F (X ) and all radii τ > 0, DF (X )(B(F (x), 2τ)) ≤
2dDF (X )(B(F (x), τ)).

Given a sample S and point x, let NNS(F (x)) denote x’s nearest neighbor in S in feature space.
We now have the following theorem, which implies low abstention under the assumption of bounded
doubling dimension, which we show implies that D satisfies Definition 5 (for β,N that depend on
the doubling dimension).

Theorem 8 Suppose that the measure DF (X ) in the feature space has a doubling dimension d. Let
D be the diameter of F (X ). For any τ > 0 and any δ > 0, if we draw an i.i.d. sample S of size
m ≥

(
2D
τ

)d (
d log 4D

τ + log 1
δ

)
, then with probability at least 1 − δ over the draw of S, we have

supx∈X d(F (x), NNS(F (x))) ≤ τ .

Proof Lemma 10 (below) implies that there exists a covering of F (X ) of size (4D/τ)d which
consists of balls of radius τ/2 around points F (x) ∈ F (X ). Further Lemma 9 implies that for a
ball B of radius τ/2 around point F (x) ∈ F (X ) we have DF (X )(B) ≥

(
τ

2D

)d. Thus Definition 5 is

satisfied with N = (4D/τ)d and β =
(
τ

2D

)d. Theorem 6 now implies the result.

Our proof of Theorem 8 relies on the following properties of a doubling measure. We first give
a lower bound on the probability mass of a small ball in terms of the doubling dimension of the
distribution.
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Lemma 9 Suppose that the measure DF (X ) has a doubling dimension d. Let D be the diameter of
F (X ). Then for any point F (x) ∈ F (X ) and any radius of the form τ = D/2T for T ∈ N, we have
DF (X )(B(F (x), τ)) ≥ (τ/D)d.

Proof Since D is the diameter of F (X ), we have DF (X )(B(F (x), D)) = 1. Therefore, we have

DF (X )(B(F (x), τ)) = DF (X )(B(F (x), D/2T ))

≥ 2−d · DF (X )(B(F (x), D/2T−1))

≥ · · ·
≥ 2−Td · DF (X )(B(F (x), D))

= 2−Td

= (τ/D)d.

This further lets us bound the covering number in terms of the doubling dimension as follows.

Lemma 10 (Relating doubling dimension to covering number) Given any radius τ of the form
τ = D/2T for T ∈ N, there is a covering of F (X ) using balls of radius τ around points F (x) ∈
F (X ) of size no more than (2D/τ)d.

Proof We construct the covering balls of F (X ) as follows: when there is a point F (x) ∈ F (X )
which is not contained in any current covering ball of radius τ , we add the ball B(F (x), τ) to the
cover. We follow this procedure until every point in F (X ) is covered by some covering balls. Denote
by C the set of centers for the balls in the cover.

We now show that this procedure stops after adding at most (2D/τ)d balls to the cover. We note
that by our construction, the centers of the covering are at least distance τ from each other, implying
that the collection of B(F (x), τ/2) for F (x) ∈ C are disjoint. This yields

1 ≥ DF (X )

(
∪F (x)∈CB(F (x), τ/2)

)

=
∑

F (x)∈C
DF (X )(B(F (x), τ/2)) (since B(F (x), τ/2) are disjoint)

≥
∑

F (x)∈C

( τ

2D

)d
(by Lemma 9)

= |C|
( τ

2D

)d
.

So we have |C| ≤ (2D/τ)d.

4.3 A More General Adversary with Bounded Density

We extend our results in Theorem 2 to a more general class of adversaries, which have a bounded
density over the space of linear subspaces of a fixed dimension n3 and the adversary can perturb
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a test feature vector arbitrarily in the sampled adversarial subspace. Specifically, a distribution is
said to be κ-bounded if the corresponding probability density f(x) satisfies, supx f(x) ≤ κ. For
example, the standard normal distribution N (µ, σ) is 1√

2πσ
-bounded.

Theorem 11 Consider the setting of Theorem 2, with an adversary having a κ-bounded distribution
over the space of linear subspaces of a fixed dimension n3 for perturbing the test point. If E(τ, r)
denotes the bound on error rate in Theorem 2 for ROBUSTCLASSIFIER(τ, 0) in Algorithm 1, then
the error bound of the same algorithm against the κ-bounded adversary is O(κE(τ, r)).

Proof To argue upper bounds on failure probability, we consider the set of adversarial subspaces
which can allow the adversary to perturb the test point x close to a training point x′. Let S(x′, τ)
denote the subset of linear subspaces of dimension n3 such that for any S ∈ S(x′, τ) there exists
v ∈ S with x + v ∈ B(x′, τ). Note that we can upper bound the fraction of the total proba-
bility space occupied by S(x′, τ) by 1

mE(τ, r), where constants in n2, n3 have been suppressed.
If we show that S(x′, τ) is a measurable set, we can use the κ-boundedness of the adversary
distribution to claim that the failure probability for misclassifying as x′ is upper bounded by
κvol(S) 1

mE(τ, r) = O
(
κ
mE(τ, r)

)
, since the volume of the complete adversarial space S is a

constant in n2, n3. In Lemma 22 (Appendix A), we make the stronger claim that S(x′, τ) is convex.
We can then use a union bound on the training points to get a bound on the total failure probability as
O (κE(τ, r)).

5. Learning Data-Specific Optimal Thresholds

Given an embedding function F and a classifier fτ which outputs either a predicted class if the
nearest neighbor is within distance τ of a test point or abstains from predicting if not (see Algorithm
1), we want to evaluate the performance of fτ on a test set T against an adversary which can perturb
a test feature vector in a random n3-dimensional subspace S ∼ S . To this end, we define

Definition 12 (Robust error.) Let Eadv(τ, S) := 1
|T |
∑

(x,y)∈T 1{∃e ∈ S+F (x) ⊆ Rn2 such that
fτ (e) 6= y and fτ (e) does not abstain} denote the robust error on the test set T , for n3-dimensional
perturbation subspace S and threshold setting τ in Algorithm 1. Also define average robust error as
Eadv(τ) := ES∼S [Eadv(τ, S)] for distribution S over n3-dimensional subspaces (assumed to be the
uniform distribution unless stated otherwise) and estimated robust error over a set Ŝ of subspaces
as Êadv(τ, Ŝ) := 1

|Ŝ|
∑

S∈Ŝ Eadv(τ, S). Let Ŝ consist of multiple samples drawn from S, and for

conciseness, we will often denote Êadv(τ, Ŝ) by Êadv(τ) and Ŝ will be implicit from context.

Êadv(τ) gives an easier-to-compute surrogate to Eadv(τ), by drawing subspaces in Ŝ according to
S (Algorithm 3 gives the procedure to compute the attack perturbation given subspace S). For an
abstentive classifier, the robust error can be trivially minimized by abstaining everywhere. We will
therefore also need to control the abstention rate on unperturbed data.

Definition 13 (Natural abstention rate.) Define Dnat(τ) := 1
|T |
∑

(x,y)∈T 1{fτ (F (x)) abstains}
as the abstention rate on the unperturbed test set T .

Eadv(τ) and Dnat(τ) are both monotonic in τ ; while the former is non-decreasing, the latter is
non-increasing (Lemma 14).
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Lemma 14 Robust error Eadv(τ, S) is monotonically non-decreasing in τ for any S. Further, natural
abstention rate Dnat(τ) is monotonically non-increasing in τ .

Proof Let 0 ≤ τ1 ≤ τ2 ≤ ∞. For any (x,y) ∈ T , if there exists e ∈ S + F (x) for which the
adversary succeeds for threshold τ1, we have fτ1(e) 6= y and fτ1(e) does not abstain. Since fτ2
does not abstain whenever fτ1 does not abstain, we have in particular that fτ2(e) does not abstain.
Moreover, conditioned on not abstaining, we have fτ2(e) = fτ1(e) 6= y. Thus Eadv(τ2, S) incurs
error for each test point (x,y) for which Eadv(τ2, S) incurs an error, implying monotonicity in τ .
A similar argument for counting the abstention on any fixed test point for any pair of values of the
threshold implies Dnat(τ) is monotonically non-increasing.

Lemma 14 further implies that Eadv(τ) and Êadv(τ) are also monotonic non-decreasing in τ . The
robust error Eadv(τ) is optimal at τ = 0, but this implies that we abstain from prediction all the time
(that is, Dnat(0) = 1). Conversely, we can minimize the abstention rate by not abstaining, that is,
Dnat(∞) = 0 corresponding to vanilla nearest-neighbor, but this maximizes the robust error. This
motivates us to consider the following objective function which combines robust error and natural
abstention rate.

Definition 15 (Robust Chow’s objective.) Define l(τ) := Eadv(τ)+cDnat(τ) as the robust Chow’s
objective, where c is a positive constant and denotes the cost of abstention. Further define l̂(τ) :=
Êadv(τ) + cDnat(τ) as the estimated robust Chow’s objective.

Definition 15 may be viewed as an adversarial version of Chow’s objective for abstentive classifiers
(Chow, 1970), which uses natural risk instead of adversarial risk. If, for example, we are willing to
take a one percent increase of the abstention rate for a two percent drop in the error rate, we could set
c to 1

2 . For a single test set T , the abstention rateDnat(τ) can change at (at most) |T | ‘critical’ values
of τ corresponding to nearest neighbor distances. Given oracle access to Eadv(τ), we can minimize
l(τ) over the given test sample with at most |T | evaluations. Suppose, however, the test data arrives
sequentially in batches of size b, potentially from related tasks with different data distributions, and
we need to figure out how to set the threshold τ for unseen tasks. As we will show, techniques
from data-driven algorithm design (Balcan et al., 2018b, 2021) can help approach this multi-task
robustness setting.

Formally, we define our online learning setting as follows. Consider a game consisting of T
rounds. In each round t = 1, . . . , T , the learner is presented with a new test batch Tt of size b. In
Theorem 17, we show no regret can be achieved for online learning of the threshold τ using test
batches of size b (consisting of unperturbed points) on which the learner chooses abstention threshold
τt, that is, predicting using classifier fτt . Let lt (resp. l̂t) be the (resp. estimated) robust Chow’s
objective on the test set Tt. The learner suffers loss lt(τt) and observes lt(τ). The goal of the learner
is to minimize total expected regret, defined as RT := E

[∑T
t=1 lt(τt)−minτ

∑T
t=1 lt(τ)

]
, where

the expectation is over the randomness of the loss functions as well as learner’s internal randomness.
Our main result is the following theorem (Theorem 17) in the above setting. Our proof strategy

is to show that the sequence of loss functions lt(τ) is (w, k)-dispersed in the sense of Balcan et al.
(2018b). We present a simplified definition of dispersion for real-valued functions.

Definition 16 (Dispersion, Balcan et al. (2018b)) Let u1, . . . , uT : R → [0, 1] be a collection of
functions where ui is piecewise Lipschitz over a partition Pi of R. We say that Pi splits a set A if A
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Algorithm 2 Exponential Forecaster Algorithm (Balcan et al., 2018b)
1: Input: step size parameter λ ∈ (0, 1].
2: Output: thresholds τt for times t = 1, 2, . . . , T .
3: Set w1(τ) = 1 for all τ ∈ [0, τmax].
4: for t = 1, 2, . . . , T do
5: Wt :=

∫
[0,τmax]wt(τ)dτ .

6: Sample τ with probability proportional to wt(τ), that is, with probability pt(τ) = wt(τ)
Wt

.
Output the sampled τ as τt.

7: Observe lt(·). Set ut(τ) := 1− lt(τ)
1+c .

8: For each τ ∈ [0, τmax], set wt+1(τ) = eλut(τ)wt(τ).

intersects with at least two sets in Pi. The collection of functions is (w, k)-dispersed if every interval
of length w is split by at most k of the partitions P1, . . . , PT .

Intuitively, if a sequence of functions is piecewise-Lipschitz except for a finite number of breakpoints
(or points of discontinuity), it is said to be dispersed if the discontinuities do not concentrate in
a small region of the domain space over time. Finally, we will employ known results about no-
regret learning of (w, k)-dispersed functions using Algorithm 2 a continuous version of Exponential
Weights algorithm for finite experts (Balcan et al., 2018b). Proofs of the technical lemmas needed
for proving Theorem 17 can be found in Appendix C.

Theorem 17 Consider the online learning setting described above. Assume τ ∈ [0, τmax] with
τmax = o (r), r > 1, and each test batch Tt is sampled from a data distribution D that has κ-
bounded density. If τt is set using a continuous version of the multiplicative updates algorithm,
Algorithm 2, for T rounds of the online game, then with probability at least 1− δ, the total expected

regret of the learner for the loss sequence lt(τ) is bounded by O
(√

n2T log
(
κmbτmaxT

δ

))
, where b

is the batch size, s is the number of sample subspaces used to estimate the robust Chow’s objective
l̂(·) and r is the smallest distance between points of different labels.

Proof We show the sequence of loss functions lt(τ) is (w, k)-dispersed (Definition 16) in two steps.
We first argue that the robust error part of the loss l(τ) is Lipschitz, and we further show that the
natural abstention rate is piecewise constant with dispersed discontinuities.

A key challenge is to analyze the adversary success probability and show that Eadv(τ) is Lipschitz
for sufficiently small τ . In Lemma 26 (see Appendix C for a proof), we show that Eadv(τ) is L-
Lipschitz, where L = O

(
mτn2−n3−1

max /rn2−n3
)
. Intuitively, for any test point the probability the

adversary succeeds by perturbing to within a distance τ and τ + ∆ of a fixed training point can be
upper bounded using arguments similar to our proof of bounds on robust error in Section 4. A union
bound over training points then gives the bound on L. Note that Dnat(τ) is piecewise constant. This
is because, for any set Tt of test points, we have at most |Tt| points corresponding to distances of the
test points to the nearest training point, where the function value decreases by 1

|Tt| . Together with
L-Lipschitzness of Eadv(τ), this implies l(τ) is piecewise L-Lipschitz.

In Lemma 29 we show that, for batch size b, Dnat(τ) has O(κbmwτn2−1
max ) discontinuities in

expectation (over the data distribution) in any interval of width w. Note that if a discontinuity occurs
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within the interval I = [τ, τ + w], then there must exist a test point x in the test set T for which
the nearest-neighbor training point is at distance τ ′ ∈ I . That is, the training point lies within
B(x, τ +w) \ B(x, τ). The proof involves bounding the fraction of points at distance d ∈ [τ, τ +w]
for any test point, using smoothness of the data distribution, and using a union bound over the b test
points. See Appendix C for a formal argument. Since Eadv(τ) is Lipschitz continuous, l(τ) has at
most O

(
κbmwτn2−1

max

)
discontinuities in expectation in any w-interval.

Using a standard argument based on the VC-dimension of 1D intervals (for example, Theorem 7
in Balcan et al. (2020b)), the maximum number of discontinuities in any interval of width w is k =

O
(
κbmwτn2−1

max T +
√
T log b

γ

)
with high probability 1−γ. In other words, l(τ) is (w, k)-Lipschitz

with high probability over the data distribution. This allows us to use a continuous version of standard
Exponential Weights update introduced by Balcan et al. (2018b) as our online algorithm (which

we include as Algorithm 2 for completeness), for which they show an O
(√

T log R
w + k + wLT

)

bound on the expected regret if the sequence of loss functions is (w, k)-dispersed with L-Lipschitz
pieces, where R is a bound on the diameter of the continuous domain (R = τmax in our setting).
Formally, we can apply Theorem 30 with w = 1

κbmτ
n2−1
max

√
T

to get the desired regret bound.

RT = O

(√
T log

R

w
+ k + wLT

)

≤ O

(√
T log

τmax

(κbmτn2−1
max

√
T )−1

+O

(
√
T +

√
T log

b

δ

)
+
O(mτn2−n3−1

max /rn2−n3)

κbmτn2−1
max

√
T

· T

)

≤ O

(√
T log

(
κmbτn2

maxT

δ

))
,

where the first inequality holds with probability at least 1− δ.

A similar no-regret learning guarantee can also be given for the estimated robust Chow’s objective
l̂(τ). In practice l(τ) can be hard to compute, but as discussed above the learner can more easily
estimate this loss by computing l̂(τ). The key difference in the proof is that the estimated robust
error Êadv(τ) is piecewise constant, while Eadv(τ) was shown to be Lipschitz for small τ . Roughly
speaking, we will use smoothness of the adversary distribution to argue that location of discontinuities
of Êadv(τ) cannot concentrate in a small interval. Formally, we show that

Theorem 18 Consider the online learning setting described above. Assume τ ∈ [0, τmax] with
τmax = o (r), r > 1 and each test batch Tt is sampled from a data distributionD that has κ-bounded
density. If τt is set using a continuous version of the multiplicative updates algorithm, Algorithm
2, for T rounds of the online game, then with probability at least 1− δ, the total expected regret of

the learner for the loss sequence l̂t(τ) is bounded by O
(√

n2T log
(
κmsbτmaxT

δ

))
, where b is the

batch size, s is the number of sample subspaces used to estimate the robust Chow’s objective l̂(·) and
r is the smallest distance between points of different labels.

Proof Lipschitzness of Eadv(τ) also implies that the breakpoints of Êadv(τ) are smoothly distributed,
in particular in any interval of width w, we have at most O

(
bmwτn2−n3−1

max /rn2−n3
)

discontinuities
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(Corollary 28), in expectation over the draw of the adversarial subspace. The rest of the argument is
very similar to part (i) above.

In this work we restrict our attention to the full information setting where entire function lt(τ) is
available to the learner after the prediction in round t. It is an interesting future question to model
the adversary with bandit feedback where only lt(τt) is revealed to the learner. The test sets Tt may
be adversarial as long as they are generated by smooth but possibly different data distributions (in
the sense of Theorem 17). Our experiments in Section 6 indicate Algorithm 1 can be made more
effective by tuning both parameters τ and σ together. Effective tuning of data-driven algorithms with
multiple parameters is an interesting research direction (Balcan et al., 2022d). Finally, we perform
the analysis for tuning our relatively simple thresholded nearest-neighbor approach, but data-driven
algorithm design may prove useful for selecting the best data-specific robust approach from candidate
algorithms more generally.

Remark 19 A simple goal for setting τ is to fix an upper limit d∗ on Dnat(τ), corresponding to a
maximum abstention rate allowed on the natural data. It is straightforward to search for an optimal
τ∗ such that Dnat(τ

∗) = maxτ,Dnat(τ)≤d∗ Dnat(τ)—simply use the nearest neighbor distances (to
training examples) for the test points to compute the abstention rate at any τ , and do a binary search
for d∗. For τ < τ∗ we have a higher abstention rate, and when τ > τ∗ we have a higher robust error
rate. For more sophisticated goals, for example minimizing objectives that depend on both Eadv(τ)
and Dnat(τ), we may not be able to perform a binary search, though a linear search would still
suffice. Here we have considered a setting where we have multiple test sets, conceptually coming from
different but related tasks in some domain, and rather than separately performing this parameter
tuning on each task, we want instead to learn a common value of τ that works well across all the
tasks.

5.1 A simple intuitive example with exact calculation demonstrating significance of
data-driven algorithm design

The significance of data-driven design in this setting is underlined by the following two observations.
Firstly, as noted above, optimization for τ across problem instances is difficult due to the non-
Lipschitz nature ofDnat(τ) and the intractability of characterizing the objective function l(τ) exactly
due to Eadv(τ). Secondly, the optimal value of τ can be a complex function of the data geometry
and sampling rate. We illustrate this by exact computation of optimal τ for a simple intuitive setting:
consider a binary classification problem where the features lie uniformly on two one-dimensional
manifolds embedded in two-dimensions (that is, n2 = 2, see Figure 4). Assume that the adversary
perturbs in a uniformly random direction (n3 = 1). Further assume that our training set consists of
2m examples, m from each class. In this toy setting, we show that the optimal threshold varies with
data-specific factors.
Formal setting: We set the feature and adversary dimensions as n2 = 2, n3 = 1. Examples of class
A are all located on the segment SA = [(0, 0), (D, 0)], similarly instances of class B are located on
SB = [(D+r, 0), (2D+r, 0)] (where [a,b] := {αa+(1−α)b | α ∈ [0, 1]}). The data distribution
returns an even number of samples, 2m, with m > 0 points each drawn uniformly from SA and SB .
For this setting, we show that the optimal value of the threshold is a function of both the geometry
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D

r

Class A Class B

D

Figure 4: A simple example where we compute the optimal value of the abstention threshold exactly.
Classes A and B are both distributed respectively on segments of length D, embedded
collinear and at distance r in R2.

(D, r) and the sampling rate (m). Proof of lemmas needed to prove the following result appear in
Appendix E.

Theorem 20 Let τ∗ := argminτ∈R+ l(τ). For the setting considered above, if we further assume
D = o(r) and m = ω

(
log
(

2πcr
D

))
, then there is a unique value of τ∗ in [0, D/2). Further,

τ∗ =

{
Θ
(
D log((πcrm)/D)

m

)
, if 1

m < πcr
D ;

0, if πcrD ≤
1
m .

Proof We compute the robust error Eadv(τ) and abstention rate Dnat(τ) as functions of τ . Even
with D = o(r), the exact computation of the robust error as a simple closed form is difficult without
further assuming τ = o(r) as well. Fortunately, by Lemma 32, we only need to consider τ ≤ D. For
this case, indeed τ = o(r). We compute the abstention and robust error rates in Lemmas 33 and 34,
respectively. This gives us, for τ ≤ D,

l(τ) =
τ

πr

(
1− m+ 3

m+ 1
·Θ
(
D

r

))
−Θ

((τ
r

)3
)

+
c

m+ 1

[
2
(

1− τ

D

)m+1
+ (m− 1)Iτ≤D/2

(
1− 2τ

D

)m+1
]
.

For τ ≤ D/2,

l′(τ) =
1

πr

(
1− m+ 3

m+ 1
·Θ
(
D

r

))
−Θ

(
1

r

(τ
r

)2
)

− 2c

D

[(
1− τ

D

)m
+ (m− 1)

(
1− 2τ

D

)m]
.

We need to consider two cases.
Case 1. πcr

D ≤
1
m . In this case l′(0) = 1

πr −
2cm
D ≥ 0. Since l′′(τ) ≥ 0, so we must have the only

minimum at τ = 0.

Case 2. 1
m < πcr

D . l′(0) = 1
πr −

2cm
D < 0. Also l′(D/2) = 1

πr −
2c
D2m > 0 since m > log

(
2πcr
D

)
.

But l′′(τ) ≥ 0, so we must have a unique local minimum in (0, D/2), which is the global minimum.
Further, define y as τ = D

m log y. Now if y = 2o(m), we have τ
D = o(1), or

(
1− τ

D

)m
= exp

(
m log

(
1− τ

D

))
= y−1−o(1).
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If y > 1, for y = 2πcrm
D ,

l′(τ) =
1

πr
− 2c

D

[(
D

2πcrm

)1+o(1)

+ (m− 1)

(
D

2πcrm

)2+o(1)
]

>
1

πr
− 2c

D

[(
D

2πcrm

)1

+ (m− 1)

(
D

2πcrm

)1
]

=
1

πr
− 2c

D

[
D

2πcr

]
= 0,

and for y =
(

2πcr(m−1)
D

)1/4
,

l′(τ) =
1

πr
− 2c

D

[(
D

2πcr(m− 1)

) 1
4

+o(1)

+ (m− 1)

(
D

2πcrm

) 1
2

+o(1)
]

<
1

πr
− 2c

D

[(
D

2πcr(m− 1)

)1

+ (m− 1)

(
D

2πcr(m− 1)

)1
]

=
−1

πr(m− 1)
< 0.

Together, we get that τ∗ = Θ
(
D log((πcrm)/D)

m

)
in this case.

6. Experiments on Contrastive Learning

Contrastive learning has received significant attention due to the recent popularity of self-supervised
learning: many recent studies (Wu et al., 2018; Oord et al., 2018; Hjelm et al., 2018; Zhuang et al.,
2019; Hénaff et al., 2020; Tian et al., 2019; Bachman et al., 2019) present promising results of
unsupervised representation learning against their supervised counterparts. Representative self-
supervised contrastive learning includes MoCo(v2) (He et al., 2020) and SimCLR (Chen et al.,
2020a). In ImageNet classification task, both methods almost match the accuracy of their supervised
counterparts; in 7 detection/segmentation tasks on PASCAL VOC, COCO, and other data sets,
MoCo (He et al., 2020) can outperform its supervised pre-training counterpart sometimes by large
margins. A more recent work of Khosla et al. (2020) proposed supervised contrastive learning.

Theorem 2 sheds light on how to design algorithms for robust learning of feature embedding
F . In order to preserve robustness against adversarial examples regarding a given test point x, in
the feature space the theorem suggests minimizing τ—the closest distance between F (x) and any
training example F (xi) with the same label, and maximizing r—the closest distance between F (x)
and any training example F (xi) with a different label. This is conceptually consistent with the spirit
of the nearest-neighbor algorithm. Indeed, contrastive loss can be seen as nearest-neighbor loss (in
the feature space) with the max operator replaced by a softmax operator for differentiable training:

min
F
− 1

m

∑

i∈[m]

log



∑

j∈[m],j 6=i,yi=yj e
− ‖F (xi)−F (xj)‖

2

T

∑
k∈[m],k 6=i e

− ‖F (xi)−F (xk)‖2
T


 , (1)
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Figure 5: Two-dimensional t-SNE visualization of 512-dimensional embedding by contrastive learn-
ing on the CIFAR10 test data set. Left Figure: Self-supervised contrastive learning. Right
Figure: Supervised contrastive learning.

where T > 0 is the temperature parameter. Loss (1) is also known as the soft-nearest-neighbor
loss in the context of supervised learning (Frosst et al., 2019), or the InfoNCE loss in the setting of
self-supervised learning (He et al., 2020).

We will now describe an implementation of the attack and empirically measure the performance
of our algorithm in the context of supervised and self-supervised contrastive learning3.

6.1 Visualization of Representations of Contrastive Learning

Figure 5 shows the two-dimensional t-SNE visualization of 10,000 features by minimizing loss
(1) on the CIFAR10 test data set. It shows that τx � rx for most of data, where we define
τx := mini:y=yi dist(F (x), F (xi)), rx := mini:y 6=yi dist(F (x), F (xi)), and {xi}mi=1 is a set of
training example with labels yi.

To have a closer look at τx vs. rx, we plot the frequency of τx/rx in Figure 6. For self-supervised
contrastive learning, there is 84.5% data which has τx/rx smaller than 1.0, while for supervised
setting, there is 94.3% data which has τx/rx smaller than 1.0.

6.2 Certified Adversarial Robustness against Exact Computation of Attacks

We verify the robustness of Algorithm 1 when the representations are learned by contrastive learning.
Given a embedding function F and a classifier f which outputs either a predicted class or abstains
from predicting, recall that we define the natural and robust errors, respectively, as Enat(f) :=
E(x,y)∼D1{f(F (x)) 6= y and f(F (x)) does not abstain}, and Eadv(f) := E(x,y)∼D,S∼S1{∃e ∈
S + F (x) ⊆ Rn2 s.t. f(e) 6= y and f(e) does not abstain}, where S ∼ S is a random adversarial
subspace of Rn2 with dimension n3. Dnat(f) := E(x,y)∼D1{f(F (x)) abstains} is the abstention
rate on the natural examples. Note that the robust error is always at least as large as the natural error.

Self-supervised contrastive learning setup. Our experimental setup follows that of SimCLR (Chen
et al., 2020a). We use the ResNet-18 architecture (He et al., 2016) for representation learning with a

3. Code used in the experiments may be found at the following github link: https://github.com/
dravyanshsharma/adversarial-contrastive
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84.5%
94.3%

Figure 6: Frequency of τx/rx by contrastive learning on the CIFAR10 data set, where τx represents
the closest distance between the test embedding and any training embedding of the same
label, and rx stands for the closest distance between the test embedding and any training
embedding of different labels. Left Figure: Self-supervised contrastive learning. Right
Figure: Supervised contrastive learning.

Table 1: Natural error Enat and robust error Eadv on the CIFAR-10 data set (Szegedy et al., 2015)
when n3 = 1 and the 512-dimensional representations are learned by contrastive learning,
whereDnat represents the fraction of each algorithm’s output of “don’t know” on the natural
data. We report values for σ ≈ τ as they tend to give a good abstention-error trade-off w.r.t.
σ. Bold values correspond to parameter settings that minimize Eadv +Dnat over the grid.

Contrastive Linear Protocol Ours (τ = 3.0) Ours (τ = 2.0)
Enat Eadv Enat Eadv Dnat Enat Eadv Dnat

(σ = 0)
Self-supervised 8.9% 100.0% 15.4% 40.7% 2.2% 14.3% 26.2% 28.7%

Supervised 5.6% 100.0% 5.7% 60.5% 0.0% 5.7% 33.4% 0.0%

(σ = 0.9τ)
Self-supervised 8.9% 100.0% 7.2% 9.4% 12.9% 10.0% 17.7% 29.9%

Supervised 5.6% 100.0% 6.2% 18.9% 0.0% 5.6% 22.0% 0.1%

(σ = τ)
Self-supervised 8.9% 100.0% 1.1% 1.2% 33.4% 2.1% 3.1% 49.9%

Supervised 5.6% 100.0% 1.9% 2.8% 10.6% 4.1% 4.8% 3.3%

two-layer projection head of width 128. The dimension of the representations is 512. We set batch
size 512, temperature T = 0.5, and initial learning rate 0.5 which is followed by cosine learning rate
decay. We sequentially apply four simple augmentations: random cropping followed by resizing
back to the original size, random flipping, random color distortions, and randomly converting image
to grayscale with a probability of 0.2. In the linear evaluation protocol, we set batch size 512 and
learning rate 1.0 to learn a linear classifier in the feature space by empirical risk minimization. All
experiments are run on two GeForce RTX 2080 GPUs.

Supervised contrastive learning setup. Our experimental setup follows that of Khosla et al. (2020).
We use the ResNet-18 architecture for representation learning with a two-layer projection head of
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width 128. The dimension of the representations is 512. We set batch size 512, temperature T = 0.1,
and initial learning rate 0.5 which is followed by cosine learning rate decay. We sequentially apply
four simple augmentations: random cropping followed by resize back to the original size, random
flipping, random color distortions, and randomly converting image to grayscale with a probability of
0.2. In the linear evaluation protocol, we set batch size 512 and learning rate 5.0 to learn a linear
classifier in the feature space by empirical risk minimization.

Algorithm for exact implementation of the attack. In both self-supervised and supervised setups, we
compare the robustness of the linear protocol with that of our defense protocol in Algorithm 1 under
exact computation of adversarial examples using a convex optimization program in n3 dimensions
and m constraints. Algorithm 3 provides an efficient implementation of the attack.

Algorithm 3 Exact computation of attacks under threat model 2.1 against Algorithm 1
1: Input: A randomly-sampled adversarial subspace S of dimension n3, a test example F (x) and

its label y, a set of training examples F (xi) and their labels yi, i ∈ [m], a threshold parameter τ .

2: Output: A misclassified adversarial feature F (x) + v, v ∈ S if it exists; otherwise, output “no
adversarial example”.

3: Fcenter(xi)← F (xi)− F (x) for i ∈ [m].
4: for i = 1, ...,m do
5: if yi 6= y then
6: ui = argminu∈S d(u, Fcenter(xi)); (candidate adversarial perturbation)
7: C ← {xj | yj = y};
8: if ∃w ∈ C | dist(ui, Fcenter(w)) < dist(ui, Fcenter(xi)) then
9: Hj ← {z | dist(Fcenter(xi), z) ≤ dist(wj , z),wj ∈ C};

10: H ← ∩iHi;
11: A← H ∩ S;
12: if A = {} then
13: continue;
14: zi = argminz∈A dist(z, Fcenter(xi)); (candidate adversarial perturbation)
15: else
16: zi ← ui;
17: if dist(zi, Fcenter(xi)) < τ then
18: return F (x) + zi.
19: return “no adversarial example”.

Overview of Algorithm 3. If the point ui closest to the training point xi of different label than
test point x in the adversarial subspace S (slight abuse of notation to refer to x + S as S) is closer
to xi than any training point wj with the same label as x and within the threshold τ of xi, it will
be misclassified as xi (or potentially another point of an incorrect label). If however ui is closer to
some wj , we look at the points closer to xi than all wj in the subspace S, and consider the closest
point zi to xi (if it is within threshold τ ) which should be misclassified. This can be computed using
a convex optimization program (Line 14 of Algorithm 3) in n3 dimensions. We claim it is sufficient
to look at these two points for each training example xi.

Proof of correctness. To argue correctness of Algorithm 3, suppose an adversary wins by
perturbing to some point v. Then v must be closer to some point xi than all wj ∈ C (the set of
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Figure 7: Adversarial accuracy (that is, rate of adversary failure) vs. abstention rate as threshold τ
varies for n3 = 1 and different outlier removal thresholds σ. Each colored line corresponds
to a fixed σ, as τ is varied from 0 (always abstain) to infinity (vanilla nearest-neighbor).

training points with same label as x) and within τ of xi. If ui is closer to xi than all wj ∈ C then, it
must be at least as close as v (since v is in the adversarial subspace S) and therefore within τ of xi.

Otherwise there is some wj closer to ui than xi. Let H be the convex polytope of points closer
to xi than wj’s in C. Consider the intersection A of H with S. All points in A are misclassified
by our algorithm, if within the threshold τ . v must lie within A since it is closer to xi. ui must lie
outside of A in this case. If v is within τ of xi, so is ui and therefore also the line joining the two. If
this line intersects A at point v, then v is a valid adversarial point and so is point closest to xi in A.
This proves completeness of the algorithm, soundness is more straightforward to verify.

Experimental results. We summarize our results in Table 1. Comparing with a linear protocol, our
algorithms have much lower robust error. Note that even if abstention is added based on distance from
the linear boundary, sufficiently large perturbations will ensure the adversary can always succeed.
For an approximate adversary which can be efficiently implemented for large n3, see Appendix F.1.

6.3 Robustness-abstention Trade-off

The threshold parameter τ captures the trade-off between the robust accuracy Aadv := 1 − Eadv

and the abstention rate Dnat on the natural data. We report both metrics for different values of τ for
supervised and self-supervised contrastive learning. The supervised setting enjoys higher adversarial
accuracy and a smaller abstention rate for fixed τ ’s due to the use of extra label information. We
plot Aadv against Dnat for Algorithm 1 as hyperparameters vary. For small τ , both accuracy and
abstention rate approach 1.0. As the threshold increases, the abstention rate decreases rapidly and
our algorithm enjoys good accuracy even with small abstention rates. For τ →∞ (that is the nearest
neighbor search), the abstention rate on the natural data Dnat is 0% but the robust accuracy is also
roughly 0%. Increasing σ (for small σ) gives us higher robust accuracy for the same abstention rate.
Too large σ may also lead to degraded performance (Figure 7).
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7. Discussion and Conclusion

We propose a model to study robustness of non-Lipschitz networks, against an adversary whose
perturbations modify the features in a random low-dimensional subspace. Our first result is that in
our model if the learner does not use any abstention, then the adversary will succeed for any data
distribution. To complement our lower bound, we present a threshold-equipped nearest-neighbor
classifier that simultaneously achieves low robust error as well as low abstention rate on natural
data. Our robust error guarantee is independent of the distribution, and is small as long as the label
classes are well-separated in the feature space. Our bounds for abstention rate scale with the covering
number of the distribution, and hold for sufficiently large training set size m. Our positive results
indicate a trade-off between the robust error and abstention rate. We further show how one may
tune the threshold to minimize a combination of robust error and abstention rate using techniques
from data-driven algorithm design. We also validate our positive results empirically for contrastive
learning based deep networks.

Adversarial robustness is an important challenge for the practical deployment of deep networks.
We believe we should analyze different types of adversaries beyond classic ones (`∞, `2, `1 bounded-
norm perturbations) which have largely been the focus in our community. We view our contribution
as defining and analyzing a new and interesting type of adversary designed to help in studying the
robustness of non-Lipschitz networks. It is an interesting open question to provide new families of
adversaries as well as defenses for them, since bounded-norm models are limited in their ability to
capture all possible realistic attacks.
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Appendix A. Technical Lemmas Needed for Results in Section 4

The following lemma gives a bound on the fraction of the surface of the sphere at some fixed small
distance from the subspace in Theorem 4. The bound involves a geometric calculation of a surface
element of a sphere in Rn.

Lemma 21 The fraction of the surface of the unit (n−1)-sphere at a distance at most small ε = o(1)

from a fixed (n− k)-hyperplane through its center is at most 2εk

k ·
A(k−1)A(n−k−1)

A(n−1) , where A(m) is
the surface-area of the unit m-sphere embedded in m+ 1 dimensions.

Proof Let the fixed hyperplane be x1 = x2 = · · · = xk = 0. We change the coordinates to a product
of spherical coordinates (ρ is the distance from the hyperplane, r is the orthogonal component of the
radius vector).

xj =





ρSj−1 cosφj , if j < k;

ρSj−1, if j = k;

rTj−k−1 cosαj−k, if k < j < n;

rTj−k−1, if j = n.

where Sl =
∏l
i=1 sinφi and Tl =

∏l
i=1 sinαi. The desired surface area is easier to compute in the

new coordinate system.
The new coordinates are (y1, . . . , yn) = (ρ, φ1, φ2, . . . , φk−1, r, α1, . . . , αn−k−1). Let z =√
r2 + ρ2 =

√∑n
i=1 x

2
i denote the usual radial spherical coordinate. Volume element in this new

coordinate system is given by

dV = | det(J)| dρ dφ1 . . . dφk−1dr dα1 . . . dαn−k−1,

where J is the Jacobian matrix, Jij = ∂xi
∂yj

. We can write

J =

[
A 0
0 B

]
,

where Aij = ∂xi
∂yj

for 1 ≤ i, j ≤ k and Bij =
∂xi+k
∂yj+k

for 1 ≤ i, j ≤ n− k.
By Leibniz formula for determinants, it is easy to see

det(J) = det(A) · det(B)

= ρk−1

(
k−2∏

i=1

sink−i−1 φi

)
· rn−k−1

(
n−k−2∏

i=1

sinn−k−i−1 αi

)

= ρk−1rn−k−1

(
k−2∏

i=1

sink−i−1 φi

)(
n−k−2∏

i=1

sinn−k−i−1 αi

)
.

Now the surface element is given by

dS =
1

zn−1

dV

dz
=

1

zn−1

(
dV

dr

∂r

∂z
+
dV

dρ

∂ρ

∂z

)
=

1

rzn−2

dV

dr
+

1

ρzn−2

dV

dρ
.
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Plugging in our computation for dV ,

dS =

(
ρk−1rn−k−2

zn−2
dρ+

ρk−2rn−k−1

zn−2
dr

)(k−2∏

i=1

sink−i−1 φidφi

)(
n−k−2∏

i=1

sinn−k−i−1 αidα1

)
.

We care about z = 1 and ρ ≤ ε (or r ≥
√

1− ε2). Notice
∫ 1

√
1−ε2

ρk−2rn−k−1

zn−2
dr =

∫ 0

ε
ρk−2rn−k−1−ρdρ

r
=

∫ ε

0
ρk−1rn−k−2dρ.

Thus, using the surface element in the new coordinates and integrating, we get

Area of ε-close points = A(k−1)A(n−k−1) ·2
∫ ε

0
ρk−1rn−k−2dρ ≤ A(k−1)A(n−k−1) · 2ε

k

k

which gives the desired fraction.

The following lemma establishes a useful convexity property for the adversarial linear subspaces.

Lemma 22 Let x,x′ ∈ Rn2 , τ ∈ R+ and S(x′, τ) denote the subset of linear subspaces of dimension
n3 such that for any S ∈ S(x′, τ) there exists v ∈ S with x + v ∈ B(x′, τ). The set S(x′, τ) is
convex.

Proof Let S, S′ ∈ S(x′, τ). Then we have v ∈ S, v′ ∈ S′ such that x + v, x + v′ ∈ B(x′, τ). Let
S∗ = αS + (1− α)S′, α ∈ [0, 1]. Pick v∗ = αv + (1− α)v′ ∈ S∗. x+ v∗ must lie in B(x′, τ) by
convexity of B(x′, τ).

Appendix B. Error Upper Bound with Outlier Removal

Our results will be good for distributions for which the induced distributionDσ after the preprocessing
step of Algorithm 1 satisfies the following property with small N =

∑
y |By|.

Definition 23 A distribution D is σ-separably {By}-coverable if all points in the support of the
marginal distribution DF (X )|y over Rn2 can be covered by balls in the set By = {By1, . . . , ByNy}, of
radius τ/2 such that

min
F (x)∈Byi ,F (x′)∈By

′
j ,

y 6=y′

dist(F (x), F (x′)) ≥ σ.

In addition, we will assume that a test point (x, y) from the natural distribution D has the property
that x is covered by some ball in By with high probability.

Theorem 24 Suppose the distribution Dσ induced by the preprocessing step of Algorithm 1 is σ-
separably {By}-coverable with finite N =

∑
y |By|. Let Prx,y∼D[x ∈ ∪Bi∈ByBi] ≥ 1 − γ. If

τ = o(σ), the robust error of Algorithm 1 on any test point x ∼ DF (X ) is at most

O


N

(
cτ

(σ + τ/2)
√

1− n3
n2

)n2−n3

+Ncn2−n3
0 + γ


 ,

where c > 0 and 0 < c0 < 1 are absolute constants.
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Proof Let x, y ∼ D. We will bound the probability the adversary succeeds for a test point x
covered by ∪yBy, that is Pr[adversary succeeds on x | x ∈ ∪Bi∈ByBi]. Let xi be a training point
that survives the preprocessing step of Algorithm 1, and belongs to a different class than x. By the
covering assumption, xi ∈ By

′

j for some y′ 6= y and By
′

j ∈ By
′
. Let c denote the center of By

′

j . By
the σ-separable property, we have dist(x, c) ≥ σ+ τ/2. Moreover, to succeed by perturbing close to
any training point in By

′

j , the adversary must perturb to a point at distance at most τ + τ/2 = 3τ/2
from c (by triangle inequality).

Using the same argument as in Theorem 2, the adversary succeeds in causing misclassification
by perturbing x close to a point in By

′

j with probability at most

(
cτ

(σ + τ/2)
√

1− n3
n2

)n2−n3

+ cn2−n3
0

over the randomness of the adversarial subspace, for absolute constants c > 0 and 0 < c0 < 1. By a
union bound, the adversary’s success probability is at most N times the above quantity, conditioned
on x ∈ ∪Bi∈ByBi. Finally by assumption Prx,y∼D[x /∈ ∪Bi∈ByBi] ≤ γ, and using the law of total
probability we get the desired upper bound.

Appendix C. New Lemmas and Results from Prior Work needed to prove Theorem
17

We begin with an observation, which allows us to focus on small τ . In particular we note that the
nearest-neighbor distance for most points is O(m−1/n2), and therefore searching for threshold in the
range [0, τmax] with τmax = O(m−1/n2) is sufficient for almost no abstention. This can provide a
useful guide in setting τmax in Theorem 17. To simplify our results, we will treat n2, n3 as constants
in the following.

Lemma 25 Let Φ be a distribution defined on a compact convex subset C of Rn whose density
function φ is continuous and strictly positive on C (that is φ(x) > 0 for x ∈ C), and has bounded
partial derivatives throughout C. If m samples B = {β1, . . . , βm} are drawn from Φ, for any βi the
probability that the distance di to its nearest neighbor in B is not O(m−1/n) is o(1).

Proof We use the asymptotic moments of nearest neighbor distance distribution due to Evans et al.
(2002) together with a concentration inequality to complete the proof. Indeed, the asymptotic mean
nearest neighbor distance is shown to be O(m−1/n), and the variance is O(m−2/n). By Chebyshev’s
inequality, the probability that di is outside ω(1) standard deviations is o(1).

We will need the following lemma about Lipschitzness of Eadv(τ). The argument can also be adapted
to bounded density adversary (Corollary 27), and to show a bound on the breakpoints in Êadv(τ)
(Corollary 28).

Lemma 26 If τ ≤ τmax = o (r), Eadv(τ) is O
(
mτn2−n3−1

max /rn2−n3
)
-Lipschitz.
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Proof Consider the probability that the adversary is able to succeed in misclassifying a test point x
as a fixed training point x′ (of different label) only when the threshold increases from τ to τ + dτ .
Scale all distances by a factor of 1

dist(x,x′) =: 1
r′ . WLOG, let x be the origin and the adversarial

subspace S be given by xn3+1 = xn3+2 = · · · = xn2 = 0, and x′ is the uniformly random unit vector
(z1, . . . , zn2). The adversary can win only if the distance ∆ of x′ from S is at most τ

r′ . Therefore
a threshold change of τ to τ + dτ corresponds to ∆ ∈

(
τ
r′ ,

τ+dτ
r′

)
. We observe from the proof of

Lemma 21 that

Pr

[
∆ ∈

(
τ

r′
,
τ + dτ

r′

)]
= C(n2, n3) ·

∫ (τ+dτ)/r′

τ/r′
ρn2−n3−1

(√
1− ρ2

)n3−2
dρ

≤ C(n2, n3) · τ
n2−n3−1dτ

r′n2−n3
,

where C(n2, n3) = 2A(n3− 1)A(n2−n3− 1) is a constant for fixed dimensions n2, n3. This holds
for any test point x ∈ T , and in particular, in average over the test points. Using a union bound over
training points we conclude,

Eadv(τ + dτ)− Eadv(τ) ≤ mC(n2, n3)
τn2−n3−1dτ

r′n2−n3
.

The slope bound increases with τ , substituting τ ≤ τmax and r′ ≥ r gives the desired bound on
Lipschitzness.

Corollary 27 For a κ̃-bounded adversary distribution S in Lemma 26, we have that Eadv(τ) is
O
(
κ̃mτn2−n3−1

max /rn2−n3
)
-Lipshcitz.

Proof The proof follows using the same arguments in the proof of Theorem 11 applied to Lemma 26
(instead of our upper bounds on the robust error).

Corollary 28 For S drawn from a κ̃-bounded adversary distribution S, the expected number of
discontinuities of Eadv(τ, S) in any τ -interval of length w is at most O

(
κ̃bmwτn2−n3−1

max /rn2−n3
)
.

Proof Consider the interval [τ, τ + w]. We are interested in bounding the probability that for a given
test point x, the smallest threshold τ ′ for which the adversary succeeds when perturbing along S
(over the draw S ∼ S) lies in the interval [τ, τ + w].

For a fixed training point xi, the probability of adversarial success on any x ∈ T by perturbing to
a point at distance τ ′ ∈ [τ, τ +w] from xi is bounded by O

(
κ̃wτn2−n3−1

max /rn2−n3
)

as argued above
(Lemma 26). Taking a union bound over training points xi implies the adversary succeeds with prob-
ability at most O

(
κ̃mwτn2−n3−1

max /rn2−n3
)

by perturbing to within [τ, τ +w] of some training point.
Thus, for b test points the expected number of breakpoints is at most O

(
κ̃bmwτn2−n3−1

max /rn2−n3
)
.

The following lemma gives a bound on the expected number of breakpoints in Dnat(τ), a piecewise
constant function in τ , in a small interval of width w.
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Algorithm 4 Robust classifier in the feature space with point-specific threshold τAi of “don’t know”
1: Input: A test example F (x) (potentially an adversarial example), a set A of training examples
F (xAi ) and their labels yAi , i ∈ [mA], a set B of training examples F (xBi ) and their labels yBi ,
i ∈ [mB].

2: Output: A predicted label of F (x), or “don’t know”.
3: τAi ← minj: yAi 6=yBj dist(F (xAi ), F (xBj )) for all i ∈ [mA].

4: imin ← argmini∈[m] dist(F (x), F (xAi )).
5: if dist(F (x), F (xAimin

)) < τAimin
then

6: return yAimin
;

7: else
8: return “don’t know”.

Lemma 29 Suppose that the data distribution satisfies the assumptions in Lemma 25, and further
is κ-bounded. The expected number of discontinuties in Dnat(τ) in any interval of width w for
τ ≤ τmax is O(κbmwτn2−1

max ).

Proof Note that the discontinuities of Dnat(τ) in an interval (τ, τ + w) corresponds to points
(x,y) ∈ T such that nearest neighbor distance of x is in that interval.

E[number of discontinuities in (τ, τ + w)] = bPr[nearest neighbor of a test point ∈ (τ, τ + w)]

≤ bPr[some neighbor of a test point ∈ (τ, τ + w)]

≤ κbmvol(spherical shell of radius τ and width w)

= κbmO(τn2−1
max w)

= O(κbmwτn2−1
max ).

For the full proof of Theorem 17, we will need a low-regret bound for dispersed functions due to
Balcan et al. (2018b). If the sequence of functions is dispersed (Definition 16), we can bound the
regret of a simple exponential forecaster algorithm (Algorithm 2) by the following theorem.

Theorem 30 (Balcan et al. (2018b)) Let u1, . . . , uT : C → [0, 1] be any sequence of piecewise
L-Lipschitz functions that are (w, k)-dispersed. Suppose C ⊂ Rd is contained in a ball of radius
R and B(ρ∗, w) ⊂ C, where ρ∗ = argmaxρ∈C

∑T
i=1 ui(ρ). The exponentially weighted forecaster

with λ =
√
d ln(R/w)/T has expected regret bounded by O

(√
Td log(R/w) + k + TLw

)
.

Appendix D. Estimating Point-Specific Threshold of “Don’t Know”

Algorithm 4 gives an alternative to our algorithm where instead of using a fixed threshold for each
point, we use a variable point-specific threshold learned from the data. For this algorithm, we have
the following guarantee.

Theorem 31 Suppose that the sets A and B are two independent samples from F (X ) of size mA
and mB, respectively. Let mB = mA

εδ . Then with probability at least 1− δ over the draw of A, for a
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new sample F (x), the probability that “there exists F (xA) ∈ A such that F (x) is closer to F (xA)
than any point in B of different labels than F (xA), and F (x) has a different label than F (xA)” is
at most ε, where the probability is taken over the draw of F (x) and the draw of B.

Proof Fixing the draw of setA, we can think of picking a random set S of size mB+ 1 and randomly
choosing one of the points in it to be F (x) and the rest to be B. Let F (xA) be an arbitrary point in
A. Assuming S has at least one point in it of a different label than F (xA), then there is exactly a

1
mB+1 probability that we choose F (x) to be the closest point in S to F (xA) of a different label than
F (xA); if S has all points of the same label as xA, then the probability is 0. Now we can apply the
union bound over all F (xA) in A to get a total probability of failure at most mA

mB+1 < εδ.
The above analysis gives an expected failure probability over the draw of set A. Applying the

Markov inequality gives a high-probability bound.

Appendix E. Technical Lemmas for Proof of Theorem 20

Lemma 32 In the setting of Theorem 20, l(τ) is monotonically non-decreasing for τ > D.

Proof Note that Dnat(τ) = 0 for τ > D as long as m > 0, since any test point of a class must be
within D of every training point of that class. Hence, it suffices to note that Eadv(τ) is monotonically
non-decreasing in τ (increasing the threshold can only increase the ability of the adversary to suc-
cessfully perturb to the opposite class).

Lemma 33 In the setting of Theorem 20, the abstention rate is given by

Dnat(τ) =
1

m+ 1

[
2Iτ≤D

(
1− τ

D

)m+1
+ (m− 1)Iτ≤D/2

(
1− 2τ

D

)m+1
]
.

Proof Note that for τ ≥ D, if m > 0, we never abstain on any test point. So we will assume τ ≤ D
in the following. Consider a test point x = (x, 0) sampled from class A (class B is symmetric, so
the overall abstention rate is the same is that of points drawn from class A). Let nbdx(τ) denote the
intersection of a ball of radius τ around x with SA. For x to be classified as ‘don’t know’, we must
have no training point sampled from nbdx(τ). This happens with probability

(
1− |nbdx(τ)|

D

)m
,

where |nbdx(τ)| is the size of nbdx(τ) and is given by

|nbdx(τ)| =





min{x+ τ,D}, x < τ ;

min{2τ,D}, τ ≤ x ≤ D − τ ;

min{D − x+ τ,D}, x > D − τ.

Averaging over the distribution of test points x, we get

Dnat(τ) =
1

D

∫ D

0

(
1− |nbdx(τ)|

D

)m
dx

=
1

m+ 1

[
2
(

1− τ

D

)m+1
+ (m− 1)Iτ≤D/2

(
1− 2τ

D

)m+1
]
.
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r

Class A Class B

x

y y′

adversarial direction
τ balls

Figure 8: It suffices to consider the nearest point of the opposite class for adversarial perturbation.

Lemma 34 In the setting of Theorem 20, the robust accuracy rate for τ ≤ D is given by

Aadv(τ) = 1− τ

πr

(
1− m+ 3

m+ 1
·Θ
(
D

r

))
−Θ

((τ
r

)3
)
.

Proof Consider a test point x = (x, 0) from SA. Let y = (y, 0) denote the nearest point in SB . In
the given geometry, it is easy to see that if x can be perturbed into the τ neighborhood of some
point y′ ∈ SB when moved along a fixed direction, then it must be possible to perturb it into the τ
neighborhood of y (Figure 8). Therefore it suffices to consider directions where perturbation to the
τ -ball around y is possible.

Therefore the probability of adversary’s success for x, given y is the nearest point of the opposite
class, is

errx|y(τ) =
1

π
arcsin

(
τ

y − x

)
=

1

π
arcsin

(
τ

r + d

)
,

where d = y − x− r ∈ [0, 2D]. Now since τ ≤ D = o(r), we have

errx|y(τ) =
τ

π(r + d)
+ Θ

((τ
r

)3
)

=
τ

πr

(
1−Θ

(
d

r

))
+ Θ

((τ
r

)3
)
.

We can now compute the average error using the probability distributions for x and y, x is a uniform
distribution over SA, while y is a nearest-neighbor distribution.

p(x) =
1

D
, p(y) =

m

D

(
1− y − r −D

D

)m−1

.

The average value of d is

d̄ =

∫ D

0

∫ D

0
(y′ + x′)

m

D

(
1− y′

D

)m−1

dy′
dx′

D
=
D(m+ 3)

2(m+ 1)
.

Using this to compute the average of errx|y(τ) gives the result.

Appendix F. Additional Experiments
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Algorithm 5 Approximate computation of attacks under threat model 2.1 against Algorithm 1
1: Input: A randomly-sampled adversarial subspace S of dimension n3, a test example F (x) and

its label y, a set of training examples F (xi) and their labels yi, i ∈ [m], a threshold parameter τ .

2: Output: A misclassified adversarial example F (x) + v, v ∈ S if it exists; otherwise, output
“no adversarial example found”.

3: Fcenter(xi)← F (xi)− F (x) for i ∈ [m].
(The Fproj(xi)’s in the next step are candidate adversarial examples.)

4: Project Fcenter(xi), i ∈ [m] onto S and obtain Fproj(xi) for i ∈ [m].
5: for i = 1, ...,m do
6: Run the nearest-neighbor algorithm to predict the label of Fproj(xi) with the training set

{(Fcenter(xj), yj) : j = 1, ...,m}.
7: if the output of the nearest-neighbor algorithm is NOT y and the closest distance is smaller

than τ then
8: return F (x) + Fproj(xi).
9: return “no adversarial example found”.

F.1 Approximating Robust Accuracy for Large n3

The experiments in Section 6 consider an adversary which is difficult to compute in practice for large
adversarial space, that is large n3. In this section we present a ‘greedy’ adversary (Algorithm 5)
which provides a good approximation to the exact adversary for small τ , which can be easily run
even for large n3: we can generate the adversarial examples of F (x) by projecting each training
example onto the affine subspace F (x) + S and pick the one with the closest distance to F (x). We
denote the accuracy against this algorithm as Âadv. The averaged results of multiple runs are in Table
2: we report the natural accuracy (Anat = 1− Enat), the adversarial accuracy, and the abstention
rate, where the abstention rate represents the fraction of algorithm’s output of “don’t know” among
the misclassified data by the nearest-neighbor classifier.

We observe that as the dimension of adversarial subspaces n3 increases, the adversarial accuracy
Âadv decreases while the abstention rate tends to increase, which verifies an intrinsic trade-off

Figure 9: Sensitivity of model success rate (estimated by Âadv) and abstention rate on the parameter
τ , where abstain represents the fraction of algorithm’s output of “don’t know” among the
misclassified data by ours (τ →∞, a.k.a. the nearest-neighbor classifier). Left Figure:
n3 = 1. Middle Figure: n3 = 25. Right Figure: n3 = 50.
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Table 2: Natural accuracy Anat and adversarial accuracy Âadv on the CIFAR-10 data set when
the 512-dimensional representations are learned by contrastive learning, where abstain
represents the fraction of each algorithm’s output of “don’t know” among the misclassified
data by ours (τ →∞, a.k.a. the nearest-neighbor classifier).

Contrastive
Linear Protocol Ours (τ →∞) Ours (τ = 1.0) Ours (τ = 0.8)
Anat Âadv Anat Âadv Anat/abstain Âadv/abstain Anat/abstain Âadv/abstain

n3 = 1
Self-supervised 91.1% 0.0% 84.5% 81.5% 99.3%/95.5% 99.2%/95.7% 100.0%/100.0% 100.0%/100.0%

Supervised 94.4% 0.0% 94.3% 93.5% 95.0%/12.3% 94.5%/15.4% 97.7%/59.6% 97.7%/64.6%

n3 = 25
Self-supervised 91.1% 0.0% 84.5% 65.1% 99.3%/95.5% 98.8%/96.6% 100.0%/100.0% 100.0%/100.0%

Supervised 94.4% 0.0% 94.3% 84.5% 95.0%/12.3% 91.6%/45.8% 97.7%/59.6% 96.8%/79.4%

n3 = 50
Self-supervised 91.1% 0.0% 84.5% 56.3% 99.3%/95.5% 98.3%/96.1% 100.0%/100.0% 100.0%/100.0%

Supervised 94.4% 0.0% 94.3% 71.7% 95.0%/12.3% 89.7%/63.6% 97.7%/59.6% 95.5%/84.1%

n3 = 100
Self-supervised 91.1% 0.0% 84.5% 31.1% 99.3%/95.5% 96.7%/95.2% 100.0%/100.0% 99.7%/99.6%

Supervised 94.4% 0.0% 94.3% 35.0% 95.0%/12.3% 86.3%/78.9% 97.7%/59.6% 93.0%/89.2%

n3 = 200
Self-supervised 91.1% 0.0% 84.5% 1.2% 99.3%/95.5% 91.1%/91.0% 100.0%/100.0% 98.6%/98.6%

Supervised 94.4% 0.0% 94.3% 0.7% 95.0%/12.3% 74.7%/74.5% 97.7%/59.6% 85.8%/85.7%

between robustness and abstention rate. Recall that our algorithm abstains if and only if the closest
distance in feature space between the given test example and any training example is larger than a
threshold τ . As the threshold parameter τ decreases, the adversarial accuracy Âadv increases while
the algorithm abstains from predicting the class of more data.

F.1.1 SENSITIVITY OF THRESHOLD PARAMETER τ

The threshold parameter τ is an important hyperparameter in our proposed method. It captures the
trade-off between the accuracy and the abstention rate. We show how the threshold parameter affects
the performance of our robust classifiers by numerical experiments on the CIFAR-10 data set. We
first train a embedding function F by following the setups in Section 6.2. We then fix F and run our
evaluation protocol by varying τ from 0.0 to 5.0 with step size 0.001. We summarize our results in
Figure 9 which plots the adversarial accuracy Âadv and the abstention rate for three representative
dimension of adversarial subspace. Compared with self-supervised contrastive learning (the solid
line), supervised contrastive learning (the dashed line) enjoys higher adversarial accuracy (the blue
curve) and smaller abstention rate (the red curve) for fixed τ ’s due to the use of extra label information.
For both setups, the adversarial accuracy is not very sensitive to the choice of τ .
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