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Abstract
Anytime neural networks (AnytimeNNs) are a
promising solution to adaptively adjust the model
complexity at runtime under various hardware
resource constraints. However, the manually-
designed AnytimeNNs are biased by designers’
prior experience and thus provide sub-optimal
solutions. To address the limitations of existing
hand-crafted approaches, we first model the train-
ing process of AnytimeNNs as a discrete-time
Markov chain (DTMC) and use it to identify the
paths that contribute the most to the training of
AnytimeNNs. Based on this new DTMC-based
analysis, we further propose TIPS, a framework
to automatically design AnytimeNNs under var-
ious hardware constraints. Our experimental re-
sults show that TIPS can improve the convergence
rate and test accuracy of AnytimeNNs. Com-
pared to the existing AnytimeNNs approaches,
TIPS improves the accuracy by 2%-6.6% on multi-
ple datasets and achieves SOTA accuracy-FLOPs
tradeoffs.

1. Introduction
In recent years, deep neural networks (DNNs) have been suc-
cessful in many areas, such as computer vision or natural lan-
guage processing (Vaswani et al., 2017; Dosovitskiy et al.,
2021). However, the intensive computational requirements
of existing large models limit their deployment on resource-
constrained devices for Internet-of-Things (IoT) and edge
applications. To improve the hardware efficiency of DNNs,
multiple techniques have been proposed, such as quantiza-
tion (Qin et al., 2020; Han et al., 2016), pruning (Luo et al.,
2017; Han et al., 2015), knowledge distillation (Hinton et al.,
2015), and neural architecture search (NAS) (Zoph & Le,
2017; Liu et al., 2019; Stamoulis et al., 2019; Li et al., 2020;

1Department of ECE, The University of Texas at Austin, Austin,
TX 2Qualcomm AI Research, San Deigo, CA; work done while
Kartikeya Bhardwaj was at Arm, Inc. Correspondence to: Radu
Marculescu <radum@utexas.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

2023). We note that all these techniques focus on generating
static neural architectures that can achieve high accuracy
under specific hardware constraints.

Recently, anytime neural networks (AnytimeNNs) have
been proposed as an orthogonal direction to static neural
networks (Huang et al., 2018; Yu & Huang, 2019a; Bengio
et al., 2015; Wang et al., 2021; Yang et al., 2021). Anyti-
meNNs adjust the model size at runtime by selecting sub-
networks from a static supernet (Chen et al., 2019; Li et al.,
2019; Yu & Huang, 2019a;b; Yu et al., 2019). Compared to
the static techniques, AnytimeNNs can automatically adapt
(at runtime) the model complexity based on the available
hardware resources. However, the existing AnytimeNNs
are manually designed by selecting a few candidate subnet-
works. Hence, such hand-crafted AnytimeNNs are likely
to miss the subnetworks that can offer better performance.
These limitations of existing manual design approaches mo-
tivate us to analyze the properties of AnytimeNNs and then
provide a new algorithmic solution. Specifically, in this
work, we address two key questions:

1. How can we quantify the importance of various oper-
ations (e.g., convolutions, residual additions, etc.) to
the convergence rate and accuracy of AnytimeNNs?

2. Are there topological (i.e., related to network structure)
properties that can help us design better AnytimeNNs?

To answer these questions, we analyze the AnytimeNNs
from a graph theory perspective. This idea is motivated
by the observation that the topological features of DNNs
can accurately indicate their gradient propagation prop-
erties and test performance (Bhardwaj et al., 2021; Li
et al., 2021b). Inspired by the network structure analysis,
given an AnytimeNN, we propose a Discrete-Time Markov
Chain (DTMC)-based framework to explore the relation-
ships among different subnetworks. We then propose two
new topological metrics, namely Topological Accumulated
Score (TAS) and Topological Path Score (TPS) to analyze
the gradient properties of AnytimeNNs. Based on these two
metrics, we finally propose a new training method, i.e., Topo-
logically Important Path Sampling (TIPS), to improve the
convergence rate and test performance of AnytimeNNs. The
experimental results show that our proposed approach out-
performs SOTA approaches by a significant margin across
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Figure 1. Test Accuracy vs. FLOPs on ImageNet. TIPS achieves
higher accuracy (given the same or even fewer FLOPs) than SOTA
AnytimeNNs: Joslim (Chin et al., 2021) and US-Nets (Yu &
Huang, 2019b).

many models and datasets (see Fig. 1). Overall, we make
the following key contributions:

• We propose a new importance analysis framework by
modeling the AnytimeNNs as DTMCs; this enables
us to capture the relationships among different subnet-
works of AnytimeNNs.

• Based on the DTMC-based framework, we propose
two new topological metrics, Topological Accumulated
Score (TAS) and Topological Path Score (TPS), which
can characterize the operations that contribute the most
to the training of AnytimeNNs.

• We propose a new theoretically-grounded training strat-
egy for AnytimeNNs, namely, Topologically Important
Path Sampling (TIPS), based on our importance anal-
ysis framework. We show that TIPS achieves a faster
convergence rate compared to SOTA training methods.

• We demonstrate that TIPS enables the automatic design
of better AnytimeNNs under various hardware con-
straints. Compared to existing AnytimeNN methods,
TIPS improves the accuracy by 2%-6.6% and achieves
SOTA accuracy-FLOPs tradeoffs on multiple datasets,
under various hardware constraints (see Fig. 1).

The rest of the paper is organized as follows. In Section 2,
we discuss related work. In Section 3, we formulate the prob-
lem and introduce our proposed solution (TIPS). Section 4
presents our experimental results and outline directions for
future work. Finally, Section 5 concludes the paper.

2. Related Work
There are three major directions related to our work:

2.1. Anytime Inference
Anytime neural networks (AnytimeNNs) can adapt the
model complexity at runtime to various hardware con-
straints; this is achieved by selecting the optimal subnet-

works of a given (static) architecture (supernet), while main-
taining the test accuracy. The runtime adaptation of Any-
timeNNs is primarily driven by the available hardware re-
sources (Yuan et al., 2020). For instance, early-exit net-
works can stop the computation at some intermediate layers
of the supernet and then use individual output layers to get
the final results (Wang et al., 2018; Veit & Belongie, 2018;
Bolukbasi et al., 2017). Similarly, skippable networks can
bypass several layers at runtime (Wang et al., 2020; Larsson
et al., 2017; Wu et al., 2018). Alternatively, approaches for
slimmable networks remove several channels of some layers
at runtime (Lee & Shin, 2018; Bejnordi et al., 2020; Yang
et al., 2018; Hua et al., 2019; Li et al., 2021a; Chin et al.,
2021; Gao et al., 2019; Tang et al., 2021). Finally, multi-
branch networks select the suitable branches of networks to
reduce the computation workload to fit the current hardware
constraints (Cai et al., 2021; Ruiz & Verbeek, 2021; Huang
et al., 2018; Liu et al., 2020).

2.2. Layerwise Dynamical Isometry (LDI)
LDI is meant to quantify the gradient flow properties of
DNNs (Saxe et al., 2014; Xiao et al., 2018; Burkholz &
Dubatovka, 2019). For a deep neural network, let xi be the
output of layer i; the Jacobian matrix of layer i is defined
as: Ji,i−1 = ∂xi

∂xi−1
. Authors of (Lee et al., 2020) show

that if the singular values of Ji,i−1 for all i at initialization
are close to 1, then the network satisfies the LDI, and the
magnitude of the gradient does not vanish or explode, thus
benefiting the training process.

2.3. Network Topology

Previous works show that the topological properties can sig-
nificantly impact the convergence rate and test performance
of deep networks. For example, by modeling deep networks
as graphs, authors in (Bhardwaj et al., 2021) prove that the
average node degrees of deep networks are highly corre-
lated with their convergence speeds. Lately, (Chen et al.,
2022) developed a similar understanding of neural networks’
connectivity patterns on its trainability. Moreover, several
works also show that some specific topological properties
of deep networks can indicate their test accuracy (Li et al.,
2021b; Javaheripi et al., 2021). We note that these exist-
ing approaches primarily focus on networks with a static
structure. The relationship between topological properties
and the convergence/accuracy of networks with varying ar-
chitectures (e.g., AnytimeNNs) remains an open question.
This motivates us to investigate the topological properties
of AnytimeNNs.

3. Approach
In this work, for a given deep network (i.e., supernet), our
goal is to automatically find its AnytimeNN version under
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Figure 2. Overview of our proposed DTMC-based analysis (a) We model the operations (e.g., 1×1-Conv) as edges; we model the outputs
of such operations (i.e., featuremaps) as nodes (e.g., r, v2); here r and d are the input and output nodes of the supernet G, respectively.
By removing some edges from supernet G, we generate multiple subnetworks {Gk, k = 1, ..., T}. (b) We then build the adjacency
matrices {Ak, k = 1, ..., T} for each subnetwork. We combine these adjacency matrices and the inter-subnetwork coupling matrices
{Z̃i,j , i ̸= j} to form the hyper-adjacency matrix Ĥ(λ). (c) By solving Eq. (6)(7)(8), we get the TAS value of each node. After finding
the path with the highest TPS value by Eq. 9 (Path2), we characterize the important operations (i.e., edges) of the AnytimeNN. We provide
more examples in Appendix C.

various hardware constraints. To this end, our approach
consists of three major steps: (i) Characterize the impor-
tance of each operation (convolution, residual addition, etc.).
As such, we model the training process of AnytimeNNs
as a DTMC and use it to analyze their topological prop-
erties (Fig. 2). (ii) Based on this importance analysis, we
then propose a new training strategy (TIPS) to improve the
accuracy of AnytimeNNs. (iii) Finally, we search for the
AnytimeNNs under various hardware constraints. Next, we
discuss these steps in detail.

3.1. Modeling AnytimeNNs as Markov Chains

3.1.1. MODELING ANYTIMENNS AS GRAPHS

As shown in Fig. 2(a), we model various DNN operations
(convolutions, residual additions, etc.) as edges, and model
the outputs of such operations (i.e., featuremaps) as nodes
in a graph. This way, a given architecture (supernet) is rep-
resented by a static undirected graph G = (V,E), where
V is the set of nodes (with |V | = N ) and E is the set of
edges between nodes (with |E| = M ). For a given DNN
architecture, its corresponding AnytimeNNs select suitable
subnetworks under the current hardware constraints. Specifi-
cally, these subnetworks Gk are obtained by sampling edges
from the initial supernet G:

Gk = (V,Ek), Ek ⊆ E (1)

where, the node set V is the same for all subnetworks, but
different subnetworks Gk have different edge sets Ek (see
Fig. 2(a)). To ensure that the sampled subnetwork is valid,
we always sample the input, output, and down-sample layers
(e.g., layers with pooling or stride=2). To ensure the validity
of a subnetwork, we first randomly decide whether or not
each layer remains in the subnetwork. For the remaining
layers, we also ensure that #channels in consecutive layers
match. As shown in Fig. 2(a), based on the topology of Gk,
we can construct the adjacency matrix Ak ∈ RN×N for a
subnetwork as follows:

Ak(s, t) = 0, if (s, t) /∈ Ek

Ak(s, t) = 1, if (s, t) ∈ Ek

Ak(s, t) = 1, if s = t = 1 or s = t = N

(2)

where each edge (s, t) corresponds to an operation in the
given network. The intuition behind the values of Ak(1, 1)
and Ak(N,N) is that the computation always starts from
the input/output layer in the forward/backward path. We
note that our objective is to analyze the layer-wise gradient
properties of AnytimeNNs. Since the singular values of each
layer’s Jacobian are designed to be around 1 by commonly
used initialization schemes (e.g., by maintaining uniform
gradient variance at all layers), it is reasonable to assign
‘1’ as the weight of each edge (i.e., operation) in Eq. 2 if it
appears in Ak. More details are given in Appendix C.
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At each training step, we sample T subnetworks as shown in
Fig. 2(a). Let L denote the loss function (e.g., cross-entropy).
Then, the loss for AnytimeNNs at each training step is
calculated by passing the same batch of images through
these T subnetworks (Huang et al., 2018; Hu et al., 2019):

Loss =
T∑

k=1

L(y,Gk(x)) (3)

where x, y, Gk(x) are the input, ground truth, and output
of subnetwork Gk, respectively. Eq. 3 shows that all these
subnetworks in Fig. 2(a) share the same input data and
use the accumulated loss from all of them to calculate the
gradient during the backward propagation. Hence, all these
subnetworks are highly coupled with each other. Inspired
by the idea in (Taylor et al., 2019), as shown in Fig. 2(b), we
integrate multiple subnetworks into a new hyper-graph to
capture the coupling impacts among different subnetworks.
Specifically, given a sequence of T subnetworks and each
subnetwork with N nodes, we construct a hyper-adjacency
matrix Ĥ(λ) ∈ RNT×NT :

Ĥ(λ) =


A1 Z̃1,2 ... Z̃1,T

Z̃2,1 A2 ... Z̃2,T

... ... ... ...

Z̃T,1 ... ... AT

 (4)

where Z̃i,j ∈ RN×N is the inter-subnetwork coupling ma-
trix between different subnetworks Gi and Gj as follows:

Z̃i,j = λI, i ̸= j , 0 < λ ≤ 1 (5)

where I is the identity matrix.

Remark: On the one hand, Ak in Ĥ(λ) capture the con-
nectivity pattern of each individual subnetwork. On the
other hand, as shown in Fig. 2(a)(b), Z̃i,j in Ĥ(λ) captures
the inter-subnetwork coupling effects between every pair of
subnetworks by connecting same nodes across different sub-
networks1. Hence, our methodology does capture both intra-
and inter-subnetwork topological properties. This is crucial
since AnytimeNNs have a variable network architecture.
(see more discussion in Section 4.5 and Appendix B.4).

3.1.2. BUILDING THE DTMC FOR ANYTIMENNS

In this work, we aim to identify the importance of each
operation in AnytimeNNs. Inspired by the PageRank algo-
rithm (Berkhin, 2005), we use the hyper-adjacency matrix
Ĥ(λ) to build the transition matrix P of our DTMC. Specif-
ically, we normalize the adjacency matrix Ĥ row by row:

Pm,: = Ĥm,:(λ)/(
∑

nĤm,n(λ)) (6)

1The parameter λ controls the strength of the interactions be-
tween different subnetworks; see details in Sec 4.5.

and obtain an irreducible, aperiodic, and homogeneous
DTMC, which has a unique stationary state distribution
(π) (Hajek, 2015)2. The stationary distribution π of such
DTMC has the following property:

πP = π (7)

Hence, we can solve Eq. 7 to obtain π for our DTMC. Next,
we use π to analyze the nodes in Ĥ(λ). We denote π(s) as
the stationary probability of a state s. Note that, as shown in
Fig. 2(a), a node r appears in all the T sampled subnetworks,
hence it appears T times in Ĥ(λ); each node r from the
supernet G corresponds to T nodes {rk, k = 1, ..., T} in
the DTMC within T subnetworks {Gk, k = 1, ..., T}. For
a given node rk in the DTMC, we denote its stationary
probability as π(srk).

3.2. Topological & Gradient Properties of AnytimeNNs

To analyze the importance of nodes and paths in Anyti-
meNNs, we propose the following definitions:

Definition 1. Topological Accumulated Score (TAS) A
topological accumulated score of a node r from the su-
pernet is its accumulated PageRank score across multiple
subnetworks. For a given node r in V , its TAS value µr is:

µr =
T∑

k=1

π(srk) (8)

TAS quantifies the accumulated probability that a node is
selected within an AnytimeNN. Next, we use TAS to analyze
the importance of various computation paths.

Definition 2. Topological Path Score (TPS) In an Anyti-
meNN, we define a computation path l from a node r to a
node d, as a sequence of edges {r → v1 → ... → vw → d}.
The topological path score TPSl of a computation path l is
the sum of the TAS values of all nodes traversed in the path:

TPSl =
∑

s∈{r,v1,...,vw,d}

µs (9)

The above definitions and the LDI discussion in Section 2
enable us to propose our main result:

Proposition 3.1. Consider an AnytimeNN initialized by a
zero-mean i.i.d. distribution with variance q. Given two
computation paths lS and lL in this AnytimeNN with same
width wr and number of nodes D, we define wS

e (wL
e ) as

the average degree of lS (lL). Assuming q ≤ ϵ, wS
e ≫ wr,

and wL
e ≫ wr, then the mean singular values E[σS ] and

E[σL] of the Jacobian matrix for lS and lL satisfy:

if TPSlS ≤ TPSlL , then E[σS ] ≤ E[σL] ≤ 1 (10)

2More details are given in Appendix B.1
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Figure 3. A 2-layer MLP has three neurons per layer; the right
version includes skip connections (purple) across layers, while
the left does not. Both MLPs have a real width wr of 3. The
average degree we is calculated as the total links (weights and skip
connections) divided by total neurons (excluding input neurons).
The upper MLP in (a) has a we of 18/6 = 3, and the lower in (b)
has a we of 21/6 = 3.5 due to skip connections.

where, ϵ = 1

max(wS
e ,wL

e )+wr+2
√

max(wS
e ,wL

e )wr

. That is, the

mean singular value of the Jacobian for the computation
path with higher TPS values is higher and closer to 1.

Proof. Authors in (Bhardwaj et al., 2021) prove that for a
given neural network initialized by a zero-mean i.i.d. dis-
tribution with variance q, the mean singular value E[σ] of
the Jacobian matrix from the network is bounded by the
following inequality:

√
qwe −

√
qwr ≤ E[σ] ≤ √

qwe +
√
qwr (11)

where the we is the average node degree or effective width
and wr is the real width of the neural network. In Fig. 3,
we give an example of how we and wr are calculated in a
neural network.

We now use the above bounds to prove our main result.
Let us first prove the right side of the inequality in Propo-
sition 3.1. According to Eq. 11, for two computational
paths lS and lL, the mean singular values E[σS ] and E[σL]
of their Jacobian matrices are bounded by the following
inequalities:√

qwS
e −√

qwr ≤ E[σS ] ≤
√

qwS
e +

√
qwr√

qwL
e −√

qwr ≤ E[σL] ≤
√
qwL

e +
√
qwr

(12)

Based on Eq. 12, we note that if initialization variance q
satisfies

q ≤ 1

max(wL
e , w

S
e ) + wr + 2

√
max(wL

e , w
S
e )wr

(13)

then, the mean singular value is always bounded by 1 for
both lS and lL; that is:

E[σS ] ≤ 1 E[σL] ≤ 1 (14)

Inequality 14 proves the right side of inequality in Proposi-
tion 3.1. Next, we prove the left side.

Using Eq. 12, if wS
e ≫ wr and wL

e ≫ wr, then the mean
singular values of lL and lS are mainly determined by wL

e

and wS
e ; that is:

E[σL] =
√
qwL

e E[σS ] =
√

qwS
e (15)

From Definition 1, we know that TAS of a given node is
the sum of its PageRank across the T subnetworks. As
discussed in (Fortunato et al., 2006), under the mean-field
approximation, the PageRank of a given node is linearly
correlated to its node degree. That is, for the ith node i on
the computation path:

µi =
ki
C

(16)

where ki is the node degree for node i, and C is a constant
determined by the topology of supernet3. Because both lS
and lL are sampled from the same supernet, then they share
the same value of C. Combining Eq. 16 with Definition 2,
the TPS satisfies the following relation:

TPS =
D∑
i=1

µi =

∑D
i=1 ki
C

(17)

Given the definition of average degree we, we rewrite Eq. 17
as follows:

TPS =
D × we

C
=⇒ we =

C × TPS

D
(18)

where D is the number of nodes for a given path. By combin-
ing Eq. 15 and Eq. 18, the mean singular value is determined
by q, C, D, and TPS:

we =
C × TPS

D
=⇒ E[σ] =

√
q × C × TPS

D
(19)

Note that q, C, D have the same values for both fS and
fL. Hence, if TPSS ≤ TPSL, then E[σS ] ≤ E[σL]. This
proves the left side of inequality in Proposition 3.1.

Therefore, the inequality in Proposition 3.1 holds true for
both the left and right sides. That is, the mean singular value
of the Jacobian for a computation path with a higher TPS
is higher and closer to 1. Moreover, the closeness of E[σ]
to 1 is determined by the initialization variance q, constant
C, the values of TPSS and TPSL, and #nodes D. This
completes our proof of Proposition 3.1.

Intuitively, Proposition 3.1 says that the computation paths
with high TPS values satisfy the LDI property and the gra-
dient magnitude through such paths would not vanish or

3A supernet is the given neural architecture that needs to be
converted into its AnytimeNN version.
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explode, thus, having a higher impact on AnytimeNNs train-
ing. We provide empirical results to verify this in the exper-
iments section.

Algorithm 1 Pareto-optimal subnetwork search
Input: Supernet G, search steps m
Output: Pareto-optimal subnetworks set GP

Search:
Initialize GP = ϕ
for i = 1 to m do

Sample subnetwork Gi from G
Evaluate Gi and get its accuracy ΘGi

optimal = TRUE
Initialize false-Pareto Set GPout = ϕ
for Gj in GP do

if FLOPsGj ≤ FLOPsGi and ΘGj > ΘGi then
optimal = FALSE

else if FLOPsGj ≤ FLOPsGi and ΘGj < ΘGi then
Add Gj to GPout

end if
end for
if optimal then

Add Gi to GP

end if
Remove false Pareto-optimal GP = GP \GPout

end for

3.3. Topologically Important Path Sampling (TIPS)
Among the computation paths with the same number of
nodes of an AnytimeNN, we define the operations (i.e.,
edges) along the path with the highest TPS value as im-
portant operations; the rest of operations are deemed as
unimportant operations (see Path2 in Fig. 2(c)). Accord-
ing to Proposition 3.1, the path with higher TPS values has
higher singular values of the Jacobian matrix. Hence, these
important operations have a significant impact on the train-
ing process. Note that, previous works treat all operations
uniformly (Chin et al., 2021; Wang et al., 2018). Instead, in
our approach, we modify the sampling process during the
training process and use a higher sampling probability to
sample these important operations. We call this sampling
strategy Topologically Important Path Sampling (TIPS).
More details are given in the experiments section.

3.4. Pareto-Optimal Subnetwork Search
After the TIPS-based training, we use the Algorithm 1 to
search for the Pareto-optimal subnetworks under various
hardware constraints. To this end, we consider the number
of floating-point operations (FLOPs) as a proxy for hard-
ware resource constraints4. At runtime, one can select the
proper subnetworks to quickly adapt to various hardware
constraints; e.g., if the amount of currently available mem-
ory for a device drops below a threshold, we switch to a
smaller subnetwork to meet the new memory budget.

4In practice, this can be easily replaced by some other hardware
resource, such as memory or power consumption.

3.5. Summary of Our Approach

In brief, our method consists of the following steps:

• Step 1: TPS analysis (Fig. 2) We sample subnetworks
and exploit TPS (our DTMC-based metric for Anyti-
meNNs) to identify important operations.

• Step 2: AnytimeNN training We use TIPS by as-
signing a higher sampling probability to the important
operations (as given by TPS) to train AnytimeNNs.

• Step 3: Pareto-optimal search Before model deploy-
ment, we do an offline search under various hardware
constraints. We store the full supernet and #channel
configurations of the obtained subnetworks.

Remarks: Our framework involves two steps where we per-
form sampling. In Step 1, we conduct the TAS and TPS
analysis without knowing the importance of each operation.
Hence, to build the DTMC with the sampled subnetworks
(Section 3.1), we uniformly sample these operations and en-
sure each operation is selected at least once during this stage.
Once we compute the TAS and TPS values, we can identify
the important and unimportant operations in a given super-
net (Sections 3.2 and 3.3). During Step 2 (i.e., AnytimeNN
training), operations are not sampled uniformly. Instead,
important operations are sampled with a higher probabil-
ity compared to unimportant operations. We provide more
details in Section 4.3.

After Steps 1-3, at runtime, we use the best subnetwork con-
figurations under various budgets. We provide the storage
overhead and time efficiency analysis in Appendix B.8.

In terms of time cost: Step 1 takes only 39 seconds on a
Xeon CPU for MobileNet-v2. Step 2 takes 97 hours on an
8-GPU server for 150 epochs, and Step 3 takes 8 minutes on
an RTX3090 GPU. We note that Step 1 only has negligible
time costs compared to AnytimeNN training. Moreover,
Steps 1-3 are conducted offline and, hence, they result in
zero overhead for the online inference.

4. Experimental Results
4.1. Experimental Setup

In this section, we present the following experiments: (i)
Verification of Proposition 3.1, (ii) Validation of TIPS, and
(iii) Model complexity vs. accuracy results.

For the experiments (i) on Proposition 3.1, we build several
MLP-based supernets on MNIST dataset by stacking several
linear layers with 80 neurons (and adding residual connec-
tions between each two consecutive layers), then verify our
Proposition 3.1 on these supernets.

For the experiments (ii) on TIPS, we use TPS and TAS to
identify the importance of various operations in several net-
works (MobileNet-v2, ResNet, WideResNet, ResNext, and
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(b) ResNet18
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(c) MobileNet-v2

Figure 4. Pruning ratio of important and unimportant operations (as identified by TAS/TPS) vs. mean test accuracy on ImageNet (std. dev.
shown with shade) on EfficientNet-B0, ResNet18 and MobileNet-v2. More results are given in Fig. 8 in Appendix A.

EfficientNet) for the ImageNet dataset. We also present the
comparisons between the training convergence for our pro-
posed TIPS strategy and the previous SOTA methods (Chin
et al., 2021; Yu & Huang, 2019b) with the exact same setup
(i.e., same data augmentation, optimizer, and learning rate
schedule). More training details are given in Appendix B.2.

Finally, for experiments (iii), we take the MobileNet-v2 and
ResNet34 trained with TIPS as supernets, and then search
for Pareto-optimal subnetworks. We compare the accuracy-
FLOPs tradeoffs of the obtained subnetworks with various
training strategies.

4.2. Verification of Proposition 3.1

To empirically validate Proposition 3.1, we consider several
supernets with 80, 100, 120, and 140 layers (along with
residual connections). We then randomly sample 8 sub-
networks from these supernets and use Eq. 2, Eq. 4, and
Eq. 6 to build the DTMC. After solving Eq. 7, we calculate
the TAS for each node (i.e., output of various operations).
Next, we set the path length to 50 as an example, then ran-
domly sample multiple computation paths with 50 nodes
from these supernets and calculate the corresponding {TPS,
mean singular value} pairs. As shown in Fig. 5(a), for a
supernet with specific depth (e.g., 80 layers), higher TPS
values always lead to higher mean singular values (closer to
1). These results empirically validate our Proposition 3.1.

4.3. Validation of TIPS

In order to verify the effectiveness of our topological analy-
sis, we first explore the relationship between the important
operations and the test accuracy for various networks. To
this end, before training, we first use our DTMC based
framework to obtain the TAS for each node (Eq. 8). Next,
among all the computation paths from input to output in the
supernet, we find the path that has the highest TPS value
(Eq. 9); we mark all operations along this path as important
operations. Then, we prune the output channels of each op-
eration individually (with pruning ratios ranging from 1% to

99%), without pruning the channels of any other operation
in the network. Meanwhile, we measure the test accuracy
of the network after each pruning step. This way, we can
analyze the impact of each operation on the test accuracy
of a given network. Note that, we prune the last channels
first. For example, to prune a convolution layer with 64
(0-63) channels with a pruning ratio of 75%, we directly
set the output of the last 75% (16-63) channels to zero. As
shown in Fig. 4, for various pruning ratios, pruning the im-
portant operations has a much higher accuracy drop than the
unimportant ones. These experimental results show that the
important operations found by our framework have a signifi-
cant impact on the test accuracy of AnytimeNNs. Therefore,
the proposed TAS and TPS metrics clearly identify the im-
portant operations and computation paths in AnytimeNNs.

Next, we evaluate the impact of TIPS on training con-
vergence of the AnytimeNNs. For this experiment, we
train MobileNet-v2 with width-multiplier 1.4 on ImageNet
dataset with (i) SOTA training strategies: Joslim, US-Nets,
and DS-Net (Chin et al., 2021; Yu & Huang, 2019b; Li
et al., 2021a), and (ii) our proposed TIPS. As explained
in Section 3.2, a higher sampling probability for important
operations helps more with the training process. However,
if the sampling probability for important operations is too
high, it hurts the diversity of sampled subnetworks. In the
extreme case, we always end up sampling and training only
the important operations, while the unimportant ones never
get sampled and trained; this can hurt the test accuracy of
AnytimeNNs. Hence, for our proposed TIPS strategy, we
use a 50% higher sampling probability for important oper-
ations compared to unimportant operations. For example,
if 40% of the output channels of unimportant operations
are sampled, then 60% of the output channels of important
operations are sampled (since 40%×(1+0.5)=60%).

We note that previous methods (e.g., Joslim and US-Nets)
use a uniform sampling for every subnetwork, i.e., the same
sampling probability for all operations during the training
process. In contrast, TIPS focuses more on important op-
erations thus improving the LDI properties. As shown in
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Figure 5. (a) Mean singular values (E[σ]) vs. TPS for various supernets (MLPs with various #layers) on MNIST. Clearly, paths with
higher TPS values have higher E[σ] for a specific supernet (e.g., 80-layers). (b, c) Training loss of MobileNet-v2 (MBN-v2) based
supernet vs. #Epochs on ImageNet and Tiny-ImageNet. TIPS requires much fewer epochs to achieve a target training loss. For example,
on ImageNet, to make the training loss less than 1.25 on ImageNet, US-Nets takes 145 epochs while TIPS only needs 88 epochs.

Table 1. Comparison of Top-1 test accuracy vs. FLOPS (Million
[M]) with SOTA training methods on MobileNet-v2. The best re-
sults are shown with bold fonts. The results are averaged over three
runs. The std. dev. values are given in Table 4 in Appendix B.3.

CIFAR100
FLOPS 20M 30M 35M 40M 45M 50M
US-Nets 61.5 62.9 64.8 65.5 65.6 66.5
Joslim 62.0 62.7 63.1 63.7 64.1 65.0
DS-Net 61.8 63.8 64.8 65.3 65.5 66.7

TIPS (Ours) 66.4 66.9 67.0 67.6 67.7 68.2
Tiny-ImageNet

FLOPS 80M 120M 140M 160M 180M 200M
US-Nets 47.0 47.3 48.3 49.0 50.2 51.4
Joslim 47.4 47.9 48.7 49.5 50.3 50.7
DS-Net 46.9 47.4 48.1 48.7 50.3 50.8

TIPS (Ours) 53.5 53.8 54.0 54.4 54.9 55.1
ImageNet

FLOPS 260M 320M 400M 450M 500M 600M
US-Nets 70.6 71.6 71.8 72.1 72.3 72.9
Joslim 70.8 71.9 72.5 72.7 72.9 73.4
DS-Net 70.6 72.1 72.5 72.6 73.0 73.3

TIPS (Ours) 71.8 73.2 73.6 74.0 74.3 74.7

Fig. 5(b,c), by changing the sampling strategy, our TIPS
based-training achieves a much faster training convergence
for the supernet compared to Joslim and US-Nets. Hence,
this validates that TIPS results in better trainability of the
supernet.

4.4. Pareto-Optimal AnytimeNN Search

We use the Algorithm 1 to search for Pareto-optimal subnet-
works under various hardware constraints for MobileNet-v2
and ResNet34. After the search, we evaluate the obtained
Pareto-optimal subnetworks and get their real test accuracy.

Table 1 demonstrates that our proposed TIPS achieves sig-
nificantly higher accuracy than SOTA given similar FLOPs

Table 2. Comparison of Top-1 test accuracy vs. FLOPS (Mil-
lion/Giga [M/G]) with SOTA training methods on ResNet34. The
best results are shown with bold fonts. The results are averaged
over three runs. The std. dev. values are shown in Table 5 in
Appendix B.3.

CIFAR100
FLOPS 120M 180M 200M 220M 240M 260M
US-Nets 63.1 63.9 64.4 64.8 65.0 65.4
Joslim 65.8 66.2 66.7 67.0 67.3 67.4
DS-Net 64.4 65.9 66.2 66.4 66.5 66.6

TIPS (Ours) 67.3 67.4 67.8 67.9 68.1 68.2
Tiny-ImageNet

FLOPS 130M 190M 220M 250M 270M 300M
US-Nets 42.9 43.2 44.3 44.7 44.9 45.2
Joslim 44.9 45.0 45.3 45.4 45.5 45.8
DS-Net 41.8 43.0 43.8 43.9 44.1 44.2

TIPS (Ours) 44.1 44.6 45.4 45.8 45.9 46.0
ImageNet

FLOPS 1.5G 2.2G 2.8G 3.0G 3.2G 3.6G
US-Nets 67.8 69.2 69.7 70.1 70.2 70.5
Joslim 68.0 69.4 69.6 70.0 70.2 70.4
DS-Net 66.0 67.0 68.8 69.4 69.9 70.0

TIPS (Ours) 68.4 69.3 70.8 71.1 71.4 71.9

for ImageNet on MobileNet-v2. For example, assuming
the hardware constraint is 500M FLOPs, TIPS has a 1.4%-
2% higher accuracy on ImageNet than the SOTA; on Tiny-
ImageNet with an 80M FLOPs budget, TIPS has 6.1%-6.6%
higher accuracy than SOTA.

Moreover, as shown in Table 2, given the ResNet34 supernet
with a 3.6G FLOPs budget on ImageNet, TIPS achieves
1.4%, 1.5%, and 1.9% higher test accuracy than Joslim,
US-Nets and DS-Net, respectively (Chin et al., 2021; Yu &
Huang, 2019b; Li et al., 2021a). On CIFAR100 dataset with
a 120M FLOPs budget, TIPS has 1.5%, 2.9%, and 4.2%
higher accuracy Joslim, US-Nets and DS-Net, respectively.
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Table 3. Top-1 test accuracy vs. latency of MobileNet-v2 on Ima-
geNet for RaspberryPi-3B+. The results are averaged over three
runs.

Method Metric Results

Joslim Latency (ms): 176 232 305 341 406
Accuracy (%) 70.8 71.9 72.5 72.9 73.4

TIPS (Ours) Latency (ms): 190 245 298 362 413
Accuracy (%) 71.8 73.2 73.6 74.3 74.7

Latency vs. Accuracy Trade-off Besides FLOPs vs. ac-
curacy, we also compare the latency vs. accuracy tradeoff
of subnetworks obtained by TIPS and Joslim. As shown in
Table 3, TIPS achieves higher accuracy than Joslim, given
a similar latency. For example, assuming the latency con-
straint is around 300ms, TIPS has a 1.1% higher accuracy
on ImageNet than the Joslim.
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Figure 6. Stability of TPS values vs. #subnetworks over 10 runs
(std. dev. shown with shade) for MobileNet-v2. The variation is
negligible when #subnetworks is larger than 4.

4.5. Ablation Studies

Stability of TPS analysis We vary the #sampled subnet-
works from 2 to 20 for MobileNet-v2. As shown in Fig. 6,
four subnetworks are typically enough to make the TPS
value converge. In practice, we sample 8 subnetworks and
the standard deviation of TPS values is less than 2.5% of
the mean values.

Effect of λ Finally, we fix the #sampled subnetworks to 8
and vary the λ value in the hyper-adjacency matrix (Eq. 4)
from 0.1 to 1 for MobileNet-v2. As shown in Fig. 7, the
ranking among different paths remains the same under vari-
ous λ values. Therefore, our approach is robust to λ values
variation. In our approach, we set the value of λ to ‘1’. We
discuss this in Appendix B.4.
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Figure 7. TPS values vs. λ values for MobileNet-v2. The ranking
among different paths remains the same for various λ values.

4.6. Limitations and Future Work

Our current framework (TIPS) has been primarily verified
on CNNs with variable width and depth. We plan to explore
it with other AnytimeNNs (e.g., multi-branch and early-exit
networks) and other types of networks (e.g., transformers
and graph neural networks). Also, in the current version, the
hardware constraints are considered after the supernet train-
ing; we intend to consider incorporating hardware awareness
into the training process as well.

5. Conclusion
In this work, we have proposed a new methodology to auto-
matically design the AnytimeNNs under various hardware
budgets. To this end, by modeling the training process of
AnytimeNNs as a DTMC, we have proposed two metrics –
TAS and TPS – to characterize the important operations in
AnytimeNNs. We have shown that these important opera-
tions and computation paths significantly impact the accu-
racy of AnytimeNNs. Based on this, we have proposed a
new training method called TIPS. Experimental results show
that TIPS has a faster training convergence speed than SOTA
training methods for anytime inference. Our experimental
results demonstrate that our framework can achieve SOTA
accuracy-FLOPs trade-offs, while achieving 2%-6.6% ac-
curacy improvements on CIFAR100, Tiny-ImageNet and
ImageNet datasets compared to existing approaches for any-
time inference.
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A. Supplementary Results for Importance Analysis
The plots below (Fig. 8) supplement the results in Fig. 4 in the main paper. As shown in Fig. 8, for various pruning ratios,
pruning the important operations has a much higher accuracy drop than the unimportant ones. These experimental results
show that the important operations found by our framework have a significant impact on the test accuracy of AnytimeNNs.
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Figure 8. Pruning ratio of important and unimportant operations vs. mean test accuracy on ImageNet (standard deviations are drawn with
shade). We prune the output of each operation with various pruning ratios and obtain the test accuracy. We calculate the mean accuracy
under various pruning ratios for important operations and unimportant operations. As shown, for all networks, given the same pruning
ratio, important operations have a much higher impact on accuracy than unimportant ones.

B. Details of the Training Methods
B.1. Construction of DTMC for AnytimeNNs

An irreducible, aperiodic, and homogeneous DTMC has a unique state stationary distribution (π) (Hajek, 2015). We analyze
the above three requirements (irreducibility, aperiodicity, and homogeneity) for our problem as follows:

Irreducibility To ensure the constructed DTMC is irreducible, and following a similar idea from PageRank (Berkhin, 2005),
we add a small transition probability κ between each pair of states to the original Ĥ(λ) (Eq. 4 in the main paper) as follows:

H̃(λ) = (1− κ)Ĥ(λ) + κU (20)

where U is a all-one matrix with all elements equal to ‘1’. Next, we use the slightly modified H̃(λ) to construct the DTMC.
Hence, the introduced transition probability κ guarantees that every two states in the DTMC are accessible to each other
with a probability at least κ. As such, we ensure that the DTMC constructed by H̃(λ) is always irreducible. In practice, we
set the value of κ very small (e.g., κ = 10−5) to minimize the impact of the introduced transition probability.

Aperiodicity According to (Hajek, 2015), for a given DTMC, if it is irreducible and there exist some self-loop transition
among its states, then the DTMC is a aperiodic DTMC. (i) The modified H̃(λ) in the above discussion already ensures the
DTMC is irreducible. (ii) Recall that in Eq. 2 (in the main paper), when we build the adjacency matrix Ak, we set values of
Ak(1, 1) and Ak(N,N) as ‘1’. Hence, there are self-loops for the first and last states (i.e., nodes) of each sub-networks.
These two conditions ensure the constructed DTMC is also aperiodic.

Homogeneity For a given DTMC, if the probabilities of state transitions are independent of time, then the DTMC is a
homogeneous DTMC. In our case, the probability of state transition is determined by the sampling strategy. Intuitively, if
the sampling strategy remains the same over time, then the probabilities of state transitions are the same for different time
moments. Hence, in this work, it is reasonable to assume that the constructed DTMC is homogeneous as well.

In summary, by ensuring the irreducibility, aperiodicity and the assumption of homogeneity of our constructed DTMC, we
can always find the stationary state distribution π and use it to conduct the TAS and TPS analysis.

B.2. Training Hyperparameters

We use the SGD with a momentum of 0.9 as the optimizer and set the initial learning rate as 0.04. We set the batch-size as
512 and train the MobileNet-v2 for 150 epochs with a cosine annealing learning rate schedule on ImageNet dataset. We
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train the ResNet-34 for 90 epochs with the same optimizer, batch-size, and learning rate schedule on ImageNet dataset.
When we train the MobileNet-v2 and ResNet-34 on CIFAR100 and Tiny-ImageNet datasets, we use the same optimizer;
we reduce the batch-size to 256 and train these networks for 200 epochs with the initial learning rate as 0.08 and a cosine
annealing learning rate schedule.

Loss function For each training step, we randomly sample three sub-networks Gk, k = 1, 2, 3. In practice, to further
increase the diversity of sub-networks, we conduct the sampling process at a finer level of granularity, i.e., at channel-
level. For example, in MobileNet-v2, we found that the layers within the block with stride=2 are important operations.
Consequently, for each sub-network, we sample each channel with a 50% higher probability for these important operations
compared to the channels that correspond to the unimportant operations.

Overall, we use the cross entropy loss together with the knowledge distillation function to train the AnytimeNNs for all
these baseline methods and TIPS. For the same batch of input images, we combine these three subnetworks Gk, k = 1, 2, 3
as well as the entire supernet G, as follows:

Loss =
∑

Net∈{G,G1,G2,G3}

LCE(y,Net(x)) +
∑

Net∈{G1,G2,G3}

LKD(Net(x), G(k)) (21)

where x, y, LCE and LKD are the input batch of images, labels, cross-entropy loss function and distillation function,
respectively. In our work, the distillation function LKD is the same as the one used in (Chin et al., 2021).

Table 4. Comparison of Top-1 test accuracy vs. FLOPS (in millions [M]) with SOTA training methods on MobileNet-v2. Best results are
shown with bold fonts. Results are averaged over three runs.

CIFAR100

FLOPS 20M 30M 35M 40M 45M 50M
US-Nets (Yu & Huang, 2019b) 61.5±0.4 62.9±0.6 64.8±0.3 65.5±0.3 65.6±0.1 66.5±0.1

Joslim (Chin et al., 2021) 62.0±0.4 62.7±0.4 63.1±0.3 63.7±0.2 64.1±0.3 65.0±0.2
DS-Net (Li et al., 2021a) 61.8±0.6 63.8±0.3 64.8±0.2 65.3±0.2 65.5±0.3 66.7±0.2

TIPS 66.4±0.5 66.9±0.1 67.0±0.1 67.6±0.3 67.7±0.1 68.2±0.3

Tiny-ImageNet

FLOPS 80M 120M 140M 160M 180M 200M
US-Nets (Yu & Huang, 2019b) 47.0±0.5 47.3±0.1 48.3±0.3 49.0±0.1 50.2±0.3 51.4±0.2

Joslim (Chin et al., 2021) 47.4±0.4 47.9±0.4 48.7±0.1 49.5±0.2 50.3±0.3 50.7±0.4
DS-Net (Li et al., 2021a) 46.9±0.3 47.4±0.3 48.1±0.2 48.7±0.1 50.3±0.2 50.8±0.2

TIPS 53.5±0.3 53.8±0.2 54.0±0.1 54.4±0.3 54.9±0.2 55.1±0.2

ImageNet

FLOPS 260M 320M 400M 450M 500M 600M
US-Nets (Yu & Huang, 2019b) 70.6±0.3 71.6±0.2 71.8±0.1 72.1±0.2 72.3±0.4 72.9±0.2

Joslim (Chin et al., 2021) 70.8±0.1 71.9±0.3 72.5±0.2 72.7±0.2 72.9±0.2 73.4±0.3
DS-Net (Li et al., 2021a) 70.6±0.2 72.1±0.1 72.5±0.3 72.6±0.1 73.0±0.2 73.3±0.2

TIPS 71.8±0.4 73.2±0.3 73.6±0.3 74±0.2 74.3±0.3 74.7±0.1

B.3. Additional Results for Table 1 and Table 2

We show the std. dev. values in Table 4 and Table 5 for MobileNet-v2 and ResNet34, respectively.

B.4. Details of TIPS

Given the supernet, we randomly sample 8 subnetworks and obtain the adjacency matrices Ak as described in Eq. 2. As
discussed in Section 4.5, the ranking among multiple paths remains the same with varying value of λ. For simplicity, we
set λ to ‘1’ for the inter-subnetwork coupling matrix Z̃i,j in Eq. 5 to build the hyper-adjacency matrix Ĥ(λ). Then we
construct the DTMC as described in Eq. 6 and solve Eq. 7 to obtain the stationary state distribution. Next, we exploit the
TAS and TPS analysis to characterize the important operations as discussed in Section 3.2 and Section 3.3.

B.5. Observations of DTMC-based Analysis

Based on our experiments on MLPs, MobileNet-v2, and ResNet34 (see Sec. 4), we can draw the following conclusions:
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Table 5. Comparison of Top-1 test accuracy vs. FLOPS (in millions/Giga [M/G]) with SOTA training methods on ResNet-34. Best results
are shown with bold fonts. Results are averaged over three runs.

CIFAR100

FLOPS 120M 180M 200M 220M 240M 260M
US-Nets (Yu & Huang, 2019b) 63.1±0.2 63.9±0.1 64.4±0.3 64.8±0.2 65.0±0.1 65.4±0.1

Joslim (Chin et al., 2021) 65.8±0.1 66.2±0.3 66.7±0.4 67.0±0.2 67.3±0.4 67.4±0.4
DS-Net (Li et al., 2021a) 64.4±0.3 65.9±0.1 66.2±0.3 66.4±0.1 66.5±0.3 66.6±0.1

TIPS 67.3±0.1 67.4±0.2 67.8±0.2 67.9±0.3 68.1±0.2 68.2±0.3

Tiny-ImageNet

FLOPS 130M 190M 220M 250M 270M 300M
US-Nets (Yu & Huang, 2019b) 42.9±0.1 43.2±0.2 44.3±0.3 44.7±0.3 44.9±0.2 45.2±0.3

Joslim (Chin et al., 2021) 44.9±0.2 45.0±0.4 45.3±0.4 45.4±0.3 45.5±0.3 45.8±0.2
DS-Net (Li et al., 2021a) 41.8±0.3 43.0±0.1 43.8±0.2 43.9±0.3 44.1±0.4 44.2±0.1

TIPS 44.1±0.4 44.6±0.1 45.4±0.2 45.8±0.1 45.9±0.1 46.0±0.2

ImageNet

FLOPS 1.5G 2.2G 2.8G 3.0G 3.2G 3.6G
US-Nets (Yu & Huang, 2019b) 67.8±0.4 69.2±0.1 69.7±0.2 70.1±0.1 70.2±0.3 70.5±0.2

Joslim (Chin et al., 2021) 68.0±0.2 69.4±0.4 69.6±0.4 70.0±0.1 70.2±0.1 70.4±0.1
DS-Net (Li et al., 2021a) 66.0±0.6 67.0±0.3 68.8±0.1 69.4±0.2 69.9±0.1 70.0±0.2

TIPS 68.4±0.5 69.3±0.2 70.8±0.2 71.1±0.1 71.4±0.2 71.9±0.2

• The TPS values and the important operations identified by our framework depend on the specific structure of a given
supernet. Hence, we need to conduct the DTMC-based analysis individually for different supernets in order to have a
meaningful understanding of operations importance.

• Empirically, we found that for inverted bottleneck-based MobileNet-v2 supernet and BasicBlock-based ResNet supernet,
the first convolution layer was more important and more channels were sampled at those layers.

B.6. Societal Impact of TIPS

Our method does accelerate the convergence speed of the training process and thus reduces the total training costs. Indeed,
as shown in Fig. 5(b,c) in the main paper, to achieve the same training loss, our method requires far fewer training epochs
compared to previous SOTA methods (Joslim (Chin et al., 2021) and US-Nets (Yu & Huang, 2019b)). Hence, our method is
clearly more environment-friendly than SOTA and implicitly addresses an important societal concern.

B.7. Comparison with One-shot NAS

We remark that our method focuses on the training methods for anytime inference in order to improve the test accuracy
of anytime inference for neural networks instead of improving the accuracy of single networks; this is the key difference
between anytime inference and neural architecture search (NAS). To demonstrate the benefits of our proposed training
method, we compare our proposed TIPS with the training method of the one-shot NAS method Once-For-All (OFA) (Cai
et al., 2020).

Table 6. Comparison of Top-1 test accuracy vs. FLOPS (in millions/Giga [M/G]) with representative one-shot NAS method OFA on
MobileNet-v2 under the same training setup. The best results are shown with bold fonts. Results are averaged over three runs.

#FLOPs 260M 320M 400M 450M 500M 600M
OFA 70.4 71.4 72.3 72.8 73.4 74
TIPS 71.8 73.2 73.6 74 74.3 74.7

To make an apples-to-apples comparison with OFA, we took the official training code for OFA and then trained our
MobileNet-v2-based supernet on ImageNet under the same setup as ours (150 epochs, batchsize=512). As shown in Table 6,
our proposed TIPS achieves far better than OFA #FLOPs-accuracy tradeoffs consistently; e.g., when the FLOPs budget is
320M, TIPS has a 1.8% higher accuracy than OFA, which is a significant improvement on ImageNet.
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B.8. Overhead of Network Switch at Runtime

In our method, we store only the supernet and the configuration of each subnetwork (i.e., only the #channels values for
the layers in the supernet). This way, we do not need to store and load the pretrained weights of different subnetworks
separately. We provide the pseudo-code in Algorithm 2 to better illustrate how we conduct the inference of AnytimeNNs.

Algorithm 2 Pseudo code: Inference of AnytimeNNs
1: Input: Supernet checkpoint G, Pareto-optimal subnetworks’ width configurations Θ
2: Run:
3: Load the supernet checkpoint G
4: Load subnetworks’ width configurations Θ
5: while Running inference do
6: Index the suitable subnetwork configurations θ from Θ
7: for each layer i in G do
8: Load CINi and COUTi from θ
9: Set #input channels to CINi

10: Set #output channels to COUTi

11: end for
12: while hardware resources budget doesn’t change do
13: Run inference
14: end while
15: end while

To quantitatively demonstrate the hardware efficiency of our method, we use MobileNet-v2 as the supernet then select
twelve Pareto-optimal subnetworks under different FLOP budgets. We calculate the storage costs of these subnetworks.
Specifically, storing these twelve subnetworks separately requires 117.8MB in total. In contrast, in our method, the storage
cost of all these subnetwork configuration is quite negligible, i.e., requiring only 1.9 KB in total (6176× smaller) since it
only requires storing layerwise width information for each subnetwork. Hence, our method is very hardware-efficient as it
has much less overhead than storing all these subnetworks individually.

We also verify the hardware efficiency of our method as follows: As shown in Algorithm 2, we only need to load the
checkpoint for the supernet G once and the Pareto-optimal subnetwork configurations. To switch the subnetwork, we just
select the suitable subnetwork configuration and reconfigure the width value of each layer (see line 6-11 in Algorithm 2). For
the same twelve Pareto-optimal subnetworks from MobileNet-v2, on a NVIDIA RTX3090 GPU with PyTorch Framework,
we repeat the switching process 1000 times. We measure that reloading a new subnetwork checkpoint consumes 287ms, on
average. In contrast, in our method, it takes only a negligible 0.037ms, on average, to switch the subnetwork (7756× faster
than reloading the subnetworks checkpoint).

C. Illustration of Our Modeling Method and Sampling Process
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Figure 9. Illustration of how we model neural networks as graphs. (a) Inverted Residual block from MobileNet-v2 (Sandler et al., 2018).
(b) BasicBlock from ResNet-18/34 (Veit et al., 2016). As we mention in Section 3.1, we model each operation (linear layers, convolutional
layers, residual additions, pooling layers, etc.) as edges in a graph; we model the input featuremaps and output featuremaps of these
operations as nodes in a graph.

C.1. Modeling Neural Networks as Graphs

As shown in Fig, 9, we illustrate how we model two commonly used blocks as graphs: Inverted Residual block from
MobileNet-v2 (Sandler et al., 2018) and BasicBlock from ResNet-18/34 (He et al., 2016).
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(a) Supernet (b) Subnetwork-1 (c) Subnetwork-2
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Figure 10. An illustration of sampling subnetworks and then converting subnetworks to graphs. We use a network with three BasicBlocks
from ResNet18/34 (Veit et al., 2016), for simplicity.

(b) Sampling one subnetwork(a) Supernet Resulting 
subnetwork

𝐶𝑂𝑈𝑇 = 2
𝐶𝐼𝑁 = 2

𝐶𝑂𝑈𝑇 = 3
𝐶𝐼𝑁 = 2

𝐶𝑂𝑈𝑇 = 3
𝐶𝐼𝑁 = 3

𝐶𝑂𝑈𝑇 = 2
𝐶𝐼𝑁 = 3

𝐶𝑂𝑈𝑇 = 2
𝐶𝐼𝑁 =2

Figure 11. Sampling a subnetwork from the supernet. We show a supernet with 4 convolution layers and one depthwise convolution layer,
for simplicity. We sample these layers based on input to output order in the supernet. The number of input channels of a given layer
(CIN ) is always set to the same value as the number of output channels (COUT ) of the previous layer; see the blue arrows in the figure. In
particular, for a depthwise convolution layer, COUT is always set to the values its CIN ; see the green circle in the figure.

C.2. Sampling Subnetworks from the Supernet

As shown in Fig. 10, to further demonstrate how we model subnetworks as graphs, we use a network with three BasicBlocks
as the supernet. Clearly, the same operation from the supernet can be skipped or kept in different subnetworks (this is
temporally dependent). Our method captures these temporal relationships among multiple subnetworks; this is why we
combine the adjacency matrices of multiple subnetworks into a hyper-adjacency matrix, as shown in Eq. 4.

C.3. Illustration of Validity of Subnetworks

As shown in Fig. 11, given the supernet, to ensure the validity of the sampled networks, we sample #channels of each layer
from input to output as follows:

1. The number of input channels of a given layer is always set to the same value as the number of output channels of the
previous layer (see the blue arrows in Fig. 11).

2. For a depthwise convolution layer, we always set the number of output channels to the same value as its input channels
(see the green circle in Fig. 11).
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