
Improving the Speed of gem5’s GPU Regression

Tests
James Braun and Matthew D. Sinclair

University of Wisconsin-Madison

jebraun3@wisc.edu sinclair@cs.wisc.edu

I. MOTIVATION

In recent years, we have been enhancing and updating

gem5’s GPU support [1]. First, we have enhanced gem5’s GPU

support for ML workloads such that gem5 can now run [2].

Moreover, as part of this support, we created, validated, and

released a Docker image that contains the proper software

and libraries needed to run GCN3 and Vega GPU models

in gem5. With this container, users can run the gem5 GPU

model, as well as build the ROCm applications that they

want to run in the GPU model, out of the box without

needing to properly install the appropriate ROCm software and

libraries [2], [3]. Additionally, we have updated gem5 to make

it easier to reproduce results, including releasing support for a

number of GPU workloads in gem5-resources [4] and enabling

continuous integration testing on future GPU commits.

However, in an effort to provide sufficient coverage, the cur-

rent testing support for GPU tests requires significant runtime

both for the nightly and weekly regression tests. Currently

most of these regression tests test the GPU SE mode support,

since GPU FS mode support is still nascent. Unfortunately,

much of this time is spent parsing input files to create

arrays and other data structures that the GPU subsequently

computes on. Although SE mode does not simulate the system

calls needed to read these input files, nevertheless this still

represents a significant overhead that increases runtime and

prevents other tests (potentially providing additional coverage)

from being run in that same timeframe. In an effort to address

this, in the work we have been working on utilizing SE mode’s

avoiding modeling system calls to speed up the runtime of

the GPU regression tests. Specifically, we redesign the input

reading phase of these GPU tests to create and use mmap’d

files for their input arrays (which SE mode completes all at

once) instead of reading in the files entry by entry. In doing

so, we see significant reductions in runtime of at least 29%.

II. IMPLEMENTATION & METHODOLOGY

Although both the mmap’d and non-mmap’d inputs for these

benchmarks both use SE mode, we take advantage of the fact

that mmap’d files can be completed in a single access because

SE mode will have the underlying real hardware perform the

mmap – and in the process read in the entire set of inputs at

once. The alternative – using system calls like fgets – also

uses the underlying hardware to read in the inputs, but requires

that we perform many fgets (usually 1 such system call per

line in the input file). However, since the applications gem5

supports (e.g., Pannotia [5]) often run on large grants with at

least thousands of lines of inputs, performing these operations

is still time consuming – sometimes even taking longer than

the portion of the benchmark that simulates the GPU kernels.

Thus, changing the benchmarks to use mmap’d inputs can

significantly improve runtime. Moreover, since these bench-

marks often run many different input files, hardcoding the

values we want to read is not realistic. Instead, our redesigned

benchmarks use input flags to create mmap’d files for a specific

input file on real hardware and then use those mmap’d files

with another flag when run in gem5. Thus, our solution is

configurable and flexible regardless of inputs used.

To determine the efficacy of our approach we examined

Pannotia’s Floyd-Warshall (FW) benchmark [5] from gem5-

resources [3] on gem5’s Vega 10 GPU model. Thus far, we

have only used the small 1k_128K.gr input graph from

the Pannotia repo. Then, we compared the runtime (using

Linux’s time) of gem5 using the baseline version of FW

that reads in the input file one line at a time and our modified

version that creates and then uses a mmap’d file instead for

the inputs. Overall, our results show that using mmap’d files

reduces FW’s runtime by 41%, demonstrating the value in

extending this approach to other benchmarks. Moreover, since

the proportion of the simulation time spent reading input files

is often proportional with input file size, we expect the gains

for other, larger graphs will be even bigger.

III. CONCLUSION

Architectural simulation tools are highly important to the

computer architecture community: both industry and academia

rely on these tools to substantiate their findings. Given their

widespread use, it is important that regressions be performed

frequently to ensure new features do not affect the correctness

of existing features. This introduces a new source of tension:

ensuring sufficient coverage while not bloating runtime to

unacceptable levels (e.g., too many tests to run overnight). By

adding flexible, configurable support for the GPU SE mode

tests to use faster mmap’d inputs instead of slowly reading

in input files, our approach helps alleviate this tension: either

more tests can be in the same amount of time (increasing

coverage without increasing runtime) or the regression tests

can be completed faster (reducing runtime for the current level

of coverage). Although so far we only have examined a single

GPU benchmark, we are currently adding similar support for

the other GPU workloads in gem5-resources and integrating

this support into both gem5-resources and the per-checkin,

nightly, and weekly regression tests.



ACKNOWLEDGMENTS

This work is supported in part by the National Science

Foundation grant ENS-1925485.

REFERENCES

[1] A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane, J. Kala-
matianos, O. Kayiran, M. Poremba, B. Potter, S. Puthoor, M. D. Sinclair,
M. Wyse, J. Yin, X. Zhang, A. Jain, and T. Rogers, “Lost in Abstraction:
Pitfalls of Analyzing GPUs at the Intermediate Language Level,” in
2018 IEEE International Symposium on High Performance Computer

Architecture, ser. HPCA, Feb 2018, pp. 608–619.
[2] K. Roarty and M. D. Sinclair, “Modeling Modern GPU Applications in

gem5,” in 3rd gem5 Users’ Workshop, June 2020.
[3] B. R. Bruce, A. Akram, H. Nguyen, K. Roarty, M. Samani, M. Fariborz,

T. Reddy, M. D. Sinclair, and J. Lowe-Power, “Enabling Reproducible
and Agile Full-System Simulation,” in IEEE International Symposium on

Performance Analysis of Systems and Software, ser. ISPASS, 2021.
[4] gem5, “gem5 Resources,” https://www.gem5.org/documentation/general

docs/gem5 resources/, 2020.
[5] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron, “Pannotia:

Understanding Irregular GPGPU Graph Applications,” in IEEE Interna-

tional Symposium on Workload Characterization, ser. IISWC, Sept 2013,
pp. 185–195.


