
Closing the Gap: Improving the Accuracy of

gem5’s GPU Models
Vishnu Ramadas, Daniel Kouchekinia, Ndubuisi Osuji, Matthew D. Sinclair

University of Wisconsin-Madison

{vramadas, kouchekinia, osuji}@wisc.edu sinclair@cs.wisc.edu

I. MOTIVATION

In recent years, we have been enhancing and updating

gem5’s GPU support [1], including enhanced gem5’s GPU

support to enable running ML workloads [2]. Moreover, we

created, validated, and released a Docker image with the

proper software and libraries needed to run AMD’s GCN3 and

Vega GPU models in gem5. With this container, users can run

the gem5 GPU model, as well as build the ROCm applications

that they want to run in the GPU model, out of the box without

needing to properly install the appropriate ROCm software and

libraries [2], [3]. Additionally, we updated gem5 to make it

easier to reproduce results, including releasing support for a

number of GPU workloads in gem5-resources [4] and enabling

continuous integration testing for a variety of GPU workloads.

Current gem5 support focuses on Carrizo- and Vega-class

GPUs. Unfortunately, these models do not always provide

high accuracy relative to the equivalent ”real” GPUs. This

leads to a mismatch in expectations: when prototyping new

optimizations in gem5 users may draw the wrong conclusions

about the efficacy of proposed optimizations if gem5’s GPU

models do not provide high fidelity. Accordingly, to help

bridge this divide, we design a series of micro-benchmarks

designed expose the latencies, bandwidths, and sizes of a

variety of GPU components on real GPUs. By iteratively

applying fixes and improvements to gem’s GPU model, we

significantly improve its fidelity relative to real AMD GPUs.

II. METHODOLOGY

To properly identify performance inaccuracies in gem5’s

GPU simulations, we used an AMD Vega 20 (Radeon VII)

as the baseline GPU. After configuring gem5 to use a similar

configuration to the Vega 20, we ran the same binaries on

gem5 and the physical GPU. Next, we measure how accurate

these configurations relative to real GPUs by comparing the

simulator’s performance counters to those from real GPUs.

We used the ROCm profiler [5] on the physical chip and

gem5’s performance counters to collect data about the GPU for

relevant metrics. Although currently we have only tested this

on a Vega 20, GAP and gem5’s GPU model are both flexible

enough that other GPUs could also be used for testing. Finally,

given these results we iteratively refined the simulation models

as appropriate to more closely model the Vega 20’s behavior.

To measure the accuracy of gem5’s GPU models, we

initially used existing benchmarks in gem5-resources [3]. For

example, running square with GAP shows that the VALUU-

tilization is within 1% on the real GPU and gem5, but the

Metric Old Accuracy New Accuracy

L1 Latency 2.18% 0.4%

L1 Bandwidth 41.75% 9.83%

L1 Scalar Latency 41.39% 0.98%

L2 Latency 0.08% 0.07%

L2 Bandwidth 52.15% 7.81%

Atomics Latency 51.79% 0.13%

Atomics Bandwidth 47.77% 7.7%

TABLE I: gem5 GPU components accuracy before and after

our updates, relative to Vega 20 GPU.

L2 cache misses differ by 821%, likely indicating that further

tuning of the memory sub-system is required to improve model

quality. However, it is difficult to isolate the behavior of spe-

cific GPU components in larger benchmarks. Thus, we ported

a variety of GPU micro-benchmarks [6]–[9] to HIP. These

micro-benchmarks help isolate gem5’s inaccuracies such as ac-

cess latencies and bandwidths of L1, L2 caches, LDS, atomic

operations, and global memory. To reduce these inaccuracies,

we updated gem5’s models by tuning gem5 configuration

parameters and implementing previously not modeled features.

For example, the existing AMD GPU support assumed that

all atomics were system-scope [10], [11], even when cheaper

scopes (e.g., device scope) was specified by the program. Thus,

to improve the accuracy of gem5’s GPU models for atomics

we added support for performing device scope atomics at the

L2 cache.
III. CONCLUSION

Architectural simulation tools are highly important to the

computer architecture community: both industry and academia

rely on these tools to substantiate their findings. However,

findings are only accurate insofar as the tools are accurate. By

collecting the results of both the profiler and the simulation we

can examine how closely gem5 mirrors reality. Accordingly,

we improved the accuracy of various components in the GPU

by debugging the performance numbers and the improvements

are captured in Table I. Although we currently focus on the

GPU model, the underlying idea can also be applied to other

simulation tools. Moving forward we plan to provide ”known

good” configurations for a variety of modern AMD GPUs.

Moreover, we will integrate our tests into the regressions, to

help parties contributing to gem5’s source code to ensure their

additions do not hurt the accuracy of gem5’s GPU simulations.

ACKNOWLEDGMENTS

This work is supported in part by the National Science

Foundation grant ENS-1925485.



REFERENCES

[1] A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane,
J. Kalamatianos, O. Kayiran, M. Poremba, B. Potter, S. Puthoor, M. D.
Sinclair, M. Wyse, J. Yin, X. Zhang, A. Jain, and T. Rogers, “Lost in
Abstraction: Pitfalls of Analyzing GPUs at the Intermediate Language
Level,” in 2018 IEEE International Symposium on High Performance

Computer Architecture, ser. HPCA, Feb 2018, pp. 608–619.
[2] K. Roarty and M. D. Sinclair, “Modeling Modern GPU Applications in

gem5,” in 3rd gem5 Users’ Workshop, June 2020.
[3] B. R. Bruce, A. Akram, H. Nguyen, K. Roarty, M. Samani, M. Fariborz,

T. Reddy, M. D. Sinclair, and J. Lowe-Power, “Enabling Reproducible
and Agile Full-System Simulation,” in IEEE International Symposium

on Performance Analysis of Systems and Software, ser. ISPASS, 2021.
[4] gem5, “gem5 Resources,” https://www.gem5.org/documentation/

general docs/gem5 resources/, 2020.
[5] AMD, “AMD ROCm Profiler,” https://rocmdocs.amd.com/en/latest/

ROCm Tools/ROCm-Tools.html, 2021.
[6] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith, “GPU-

STREAM v2.0: Benchmarking the Achievable Memory Bandwidth of
Many-Core Processors Across Diverse Parallel Programming Models,”
in High Performance Computing, M. Taufer, B. Mohr, and J. M. Kunkel,
Eds. Cham: Springer International Publishing, 2016, pp. 489–507.

[7] M. Khairy, A. Jain, T. M. Aamodt, and T. G. Rogers, “Exploring
Modern GPU Memory System Design Challenges through Accurate
Modeling,” CoRR, vol. abs/1810.07269, 2018. [Online]. Available:
http://arxiv.org/abs/1810.07269

[8] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-Sim:
An Extensible Simulation Framework for Validated GPU Modeling,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer

Architecture, ser. ISCA, 2020, pp. 473–486.
[9] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and

A. Moshovos, “Demystifying GPU Microarchitecture Through
Microbenchmarking,” in IEEE International Symposium on Performance

Analysis of Systems Software, ser. ISPASS, 2010, pp. 235–246.
[10] D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R. Gaster, M. D.

Hill, S. K. Reinhardt, and D. A. Wood, “Heterogeneous-race-free
Memory Models,” in Proceedings of the 19th International Conference

on Architectural Support for Programming Languages and Operating

Systems, ser. ASPLOS. New York, NY, USA: ACM, 2014, pp. 427–440.
[Online]. Available: http://doi.acm.org/10.1145/2541940.2541981

[11] B. R. Gaster, D. Hower, and L. Howes, “HRF-Relaxed: Adapting HRF
to the Complexities of Industrial Heterogeneous Memory Models,”
ACM Trans. Archit. Code Optim., vol. 12, no. 1, pp. 7:1–7:26, Apr.
2015. [Online]. Available: http://doi.acm.org/10.1145/2701618


