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Abstract. Generating multi-contrasts/modal MRI of the same anatomy
enriches diagnostic information but is limited in practice due to excessive
data acquisition time. In this paper, we propose a novel deep-learning
model for joint reconstruction and synthesis of multi-modal MRI using
incomplete k-space data of several source modalities as inputs. The output
of our model includes reconstructed images of the source modalities and
high-quality image synthesized in the target modality. Our proposed model
is formulated as a variational problem that leverages several learnable
modality-specific feature extractors and a multimodal synthesis module.
We propose a learnable optimization algorithm to solve this model, which
induces a multi-phase network whose parameters can be trained using
multi-modal MRI data. Moreover, a bilevel-optimization framework is
employed for robust parameter training. We demonstrate the effectiveness
of our approach using extensive numerical experiments.

Keywords: MRI Reconstruction · Multimodal MRI Synthesis · Deep
Neural Network · Bilevel-Optimization.

1 Introduction

Magnetic resonance imaging (MRI) is a prominent leading-edge medical imag-
ing technology which provides diverse image contrasts under the same anatomy.
Multiple different contrast images are generated by varying the acquisition param-
eters, e.g. T1-weighted (T1), T2-weighted (T2) and Fluid Attenuated Inverseion
Recovery (FLAIR). They have similar anatomical structure but highlight different
soft tissue which enriches the diagnostic information for clinical applications and
research studies comparing to single modality [12]. A major limitation of MRI is
its relatively long data acquisition time during MRI scans. It does not only cause
patient discomfort, but also makes MR images prone to motion artifacts which
degrade the diagnostic accessibility. A mainstream routine to reduce the MRI
acquisition time is to reconstruct partially undersampled k-space acquisitions,
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another approach is to synthesize target modality MR image from fully-sampled
acquisitions of source modality images [28,8].

Compressed sensing MRI (CS-MRI) reconstruction is a predominant approach
for accelerating MR acquisitions, which solves an inverse problem formulated as a
variational model. In recent decades, deep learning based models have leveraged
large datasets and further explored the potential improvement of reconstruction
performance. Most of the deep learning based reconstruction methods employ
end-to-end deep networks [27,22,14]. To overcome the weakness of the end-to-
end black-box networks, several learnable optimization algorithms (LOAs) have
been developed attracted much attention, which possess of a more interpretable
network architecture. LOA-based reconstruction methods unfold the iterative
optimization algorithm into a multi-phase network in which the regularization and
image transformation are learned to improve the network performance [18,3,5,2,1],
e.g. ADMM-Net [23], ISTA-Net+ [29] and PD-Net [6].

Multimodal MR image synthesis in recent years has emerged using various
deep learning frameworks, where a main stream is to start with source modalities
from the image domain and synthesize the images of the target modalities [7,21,26].
For instance, GAN-based methods are mostly end-to-end from images to images
with encoder-decoder architectures in their generator networks. MM-GAN [20]
channel-wisely concatenates all the available modalities with a zero image for
missing modality and imputes the missing input incorporating curriculum learning
for GAN. Multimodal MR (MM) [15], MMGradAdv [4] and Hi-Net [30] exploit
the correlations between multimodal data and apply robust feature fusion method
to form a unified latent representation. A rarely explored approach [8] starts from
undersampled k-space data of the source modalities to generate target modality
images. This paper further explored this approach and the major differences
from [8] to ours are: (i) In [8] it requires that the target modality is heavily
undersampled and the source modality is lightly undersampled, while our method
does not require any of the k-space information of target modality nor the source
modality to be lightly undersampled which is much less limitations in real-world
applications; (ii) Instead of learning the mapping from image to image, we learn
the mapping from the features of source images to the target image since features
provide more direct information to synthesize images of a new modality and (iii)
We formulate the joint reconstruction and synthesis problem in a variational
model and propose a convergent algorithm as the architecture of the deep neural
network so that the network is interpretable and convergent.

In order to synthesize target modality by using partially scanned k-space data
from source modalities in stead of fully scanned data that used in the state-of-
the-art multimodal synthesis, in this paper, we propose to jointly reconstruct
undersampled multiple source modality MR images and synthesize the target
modality image. Our contributions are summarized as follows: (1) We propose a
novel LOA for joint multimodal MRI reconstruction and synthesis with theoretical
analysis guarantee; (2) The parameters and hyper-parameters of the network
induced by our LOA are learned using a bilevel optimization algorithm robust



Learnable Variational Model 3

parameter training; (3) Extensive experimental results demonstrate the efficiency
of the proposed method and high quality of the reconstructed/synthesized images.

We demonstrate that our proposed joint synthesis-reconstruction network can
further improve image reconstruction quality over existing sole reconstruction
networks using the same partial k-space measurements. This improvement is due
to the additional image feature information provided by the synthesis functionality
of our network, which is trained by comprehensive image data of all relevant
modalities together. Moreover, the synthesized images can serve as additional
references to radiologists when the corresponding k-space data cannot be acquired
in practice.

2 Proposed Method

2.1 Model

In this section, we provide the details of the proposed model for joint MRI
reconstruction and synthesis. Given the partial k-space data {f1, f2} of the source
modalities (e.g. T1 and T2), our goal is to reconstruct the corresponding images
{x1,x2} and synthesize the image x3 of the missing modality (e.g. FLAIR)
without its k-space data. To this end, we propose to learn three modality-specific
feature extraction operators {hwi

}3i=1, one for each of these three modalities.
Then, we design regularizers of these images by combining these learned operators
and a robust sparse feature selection operator (we use (2, 1)-norm in this work).
To synthesize the image x3 using x1 and x2, we employ another feature-fusion
operator gθ which learns the mapping from the features hw1(x1) and hw2(x2) to
the image x3. Our proposed model reads as

min
x1,x2,x3

ΨΘ,γ(x1,x2,x3) := 1
2

2∑
i=1

‖PiFxi − fi‖22 + 1
3

3∑
i=1

‖hwi
(xi)‖2,1

+ γ
2 ‖gθ([hw1

(x1), hw2
(x2)])− x3‖22,

(1)

where the first term in (1) is the data fidelity for the source modalities that ensures
consistency between the reconstructed images {x1,x2} and the sensed partial
k-space data {f1, f2}. Here, F stands for the discrete Fourier transform and Pi is
the binary matrix representing the k-space mask when acquiring data for xi. In
(1), hwi represents the modality-specific feature extraction operator which maps
the input xi ∈ Cn to a high-dimensional feature tensor hwi(xi) ∈ Cm×d, where
m is the spatial dimension and d is the channel number of the feature tensor. The
second term is the regularization of all modalities {x1,x2,x3} to enhance sparsity
of the their feature tensors, where ‖hwi

(xi)‖2,1 =
∑m
j=1 ‖hwi,j(xi)‖. Here each

hwi,j ∈ Rd can be viewed as a feature vector at spatial location j. The last term
in (1) is to synthesize x3 by learning a mapping gθ : Cm×2d → Cn that maps
the concatenated features of x1 and x2 (i.e. [hw1

(x1), hw2
(x2)]) to x3, and [·, ·]

represents the concatenation of the arguments. Here gθ maps features of x1 and
x2 to the target image so that more useful information can be used to generate
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the target image comparing to the mappings from source images to the target
image.

In our implementation, we parameterize the modality-specific feature extrac-
tion operator hwi and the synthesis mapping gθ as vanilla CNNs with l and l′

layers respectively, both of which use the smoothed rectified linear unit [5] as
activation. For notation simplicity, we let Θ in (1) denote the collection of all pa-
rameters in the convolution operators of the function Ψ , i.e. Θ = {w1, w2, w3, θ}.

The weight γ is a hyper-parameter which plays a critical role in balancing the
reconstruction part (first two terms in (1)) and the image synthesis part (last
term in (1)) of the model (1), and hence has significant impact to the final image
reconstruction and synthesis quality. To address this important issue, we propose
to use a bi-level hyper-parameter tuning framework to learn γ by minimizing
the reconstruction loss on both validation and training data sets. Details of this
hyper-parameter tuning will be provided in Section 2.3.

2.2 Efficient Learnable Optimization Algorithm

In this section, we present a novel and efficient learnable optimization algorithm
(LOA) for solving the nonconvex nonsmooth minimization problem (1). (Com-
prehensive convergence analysis of this algorithm is provided in Supplementary
Material.) Then we design a DNN whose architecture exactly follows this algo-
rithm, and the parameters of the DNN can be learned from data. In this way,
the DNN inherits all the convergence properties of the LOA.

Since the second sum in the minimization problem (1) is nonsmooth due to
the l2,1-norm, we first approximate these nonsmooth terms using their smooth

surrogates ‖hwi(xi)‖ε2,1 =
∑m
j=1

(√
‖hwi,j(xi)‖2 + ε2 − ε

)
, where ε > 0 is the

parameter representing the smoothing level. Thus, for every fixed ε, we obtain a
smooth surrogate function ΨεΘ,γ of the nonsmooth objective ΨΘ,γ , and we can
apply a gradient descent step to update our approximation to the solution of
(1). In our algorithm, the smoothing level ε is automatically reduced and tends
to 0, such that the surrogate approaches the original nonsmooth regularizers in
(1). More precisely, let X = {x1,x2,x3} for notation simplicity, then we solve
the problem minX ΨΘ,γ(X) with initial X(0) using Algorithm 1 (the initial X(0)

is obtained from a pre-trained initial network, which is illustrated in detail in
Section 3.1). At Line 3 of Algorithm 1, we compute a gradient descent update
with step size obtained by line search while the smoothing parameter εt > 0 is
fixed. In Line 4, the algorithm updates εt based on a reduction criterion. The
reduction of εt ensures that the specified subsequence (the subsequence who met
the εt reduction criterion) must have an accumulation point that is a Clarke
stationary point [5] of the optimization problem (1), as given in Theorem 1, whose
proof is provided in Supplementary Materials. We create a multi-phase network
whose architecture exactly follows Algorithm 1 with a prescribed phase number
T̂ , where each phase of the network performs one iteration of the algorithm.

Theorem 1. Suppose that {X(t)} is the sequence generated by Algorithm 1 with
any initial X(0), εtol = 0 and T = ∞. Let {X(tl+1)} be the subsequence that
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Algorithm 1: Learnable Descent Algorithm

1: Input: X(0), 0 < η < 1, and ε0, a, σ > 0, t = 0. Max T , tolerance εtol > 0.
2: for t = 0, 1, 2, . . . , T − 1 do
3: X(t+1) = X(t) − αt∇ΨεtΘ,γ(X(t)), where the step size αt is obtained through

line search s.t. ΨεtΘ,γ(X(t+1))− ΨεtΘ,γ(X(t)) ≤ − 1
a
‖X(t+1) −X(t)‖2 holds.

4: if ‖∇ΨεtΘ,γ(X(t+1))‖ < σηεt, set εt+1 = ηεt; otherwise, set εt+1 = εt.
5: if σεt < εtol, terminate and go to Line 6,
6: end for and output X(t).

satisfies the reduction criterion in step 4 of Algorithm 1. Then {X(tl+1)} has
at least one accumulation point, and every accumulation point of {X(tl+1)} is a
Clarke stationary point of minX ΨΘ,γ(X).

2.3 Bilevel Optimization Algorithm for Network Training

Suppose that we randomly sample Mtr data pairs {Dtri }
Mtr
i=1 for training and

Mval data pairs {Dvali }
Mval
i=1 for validation, where each Dtri (or Dvali ) is composed

of data pair {(f i1, f i2),X∗i}, f i1, f
i
2 denote the given partial k-space data, and

X∗i = {x∗i1 ,x∗i2 ,x∗i3 } denotes the corresponding reference images.
To find the optimal value of the important hyper-parameter γ for the synthesis

term in (1), we employ a bilevel optimization framework which solves for Θ on
training set for any given γ in the lower-level problem and tunes the optimal
hyper-parameter γ on validation set in the upper-level problem. More precisely,
our bilevel optimization framework reads as:

min
γ

∑Mval

i=1 `(Θ(γ), γ;Dvali ) s.t. Θ(γ) = arg minΘ
∑Mtr

i=1 `(Θ, γ;Dtri ), (2)

where `(Θ, γ;Di) :=
µ

2
‖gθ([hw1(x∗i1 ), hw2(x∗i2 )])− x∗i3 ‖22

+
∑3
j=1

(
1
2‖x

(T̂ )
j (Θ, γ;Di)− x∗ij ‖22 + (1− SSIM(x

(T̂ )
j (Θ, γ;Di),x∗ij ))

)
,

(3)

and the x
(T̂ )
j (·) denotes the output of the T̂ -phase network for the jth modality.

The first term of the loss function ` in (3) presses gθ to accurately synthesize
x3. The second term is to minimize the difference between the network output
and the ground truth in the least square sense. The third term is to promote
high structural similarity index [25] of the reconstructed/synthesized images. In
(2), the lower-level optimization learns the network parameters Θ with any fixed
coefficient γ on the training set, and the upper-level tunes the hyper-parameter
γ on the validation set, which mitigates the challenging overfitting issue.

The bi-level optimization problem (2) is very difficult to solve. In this work, we
employ the penalty method proposed in [16] to solve this problem. For notation
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simplicity, we denote L(Θ, γ;D) :=
∑M
i=1 `(Θ, γ;Di) then rewrite (2) as

min
γ
L(Θ(γ), γ;Dval) s.t. Θ(γ) = arg min

Θ
L(Θ, γ;Dtr). (4)

Following [16], we relax the lower-level optimization problem to its first-order
necessary condition:

min
γ
L(Θ(γ), γ;Dval) s.t. ∇ΘL(Θ(γ), γ;Dtr) = 0. (5)

Furthermore, we impose a quadratic penalty on the constraint and further relax
the above problem as

min
Θ,γ

{
L̃(Θ, γ;Dtr,Dval) := L(Θ, γ;Dval) +

λ

2
‖∇ΘL(Θ, γ;Dtr)‖2

}
. (6)

Due to the large volume of the datasets, it is not possible to solve (6) in full-batch.
Here we train the parameters using the mini-batch stochastic alternating direction
method summarized in Algorithm 2.

Algorithm 2: Mini-batch alternating direction penalty algorithm

1: Input Dtr, Dval, δtol > 0, Initialize Θ, γ, δ, λ > 0 and νδ ∈ (0, 1), νλ > 1.
2: while δ > δtol do
3: Sample training and validation batch Btr ⊂ Dtr,Bval ⊂ Dval.
4: while ‖∇ΘL̃(Θ, γ;Btr,Bval)‖2 + ‖∇γL̃(Θ, γ;Btr,Bval)‖2 > δ do
5: for k = 1, 2, . . . ,K (inner loop) do

6: Θ ← Θ − ρ(k)Θ ∇ΘL̃(Θ, γ;Btr,Bval)
7: end for
8: γ ← γ − ργ∇γL̃(Θ, γ;Btr,Bval)
9: end while and update δ ← νδδ, λ← νλλ.

10: end while and output: Θ, γ.

3 Experiments

3.1 Initialization Networks

The initials {x(0)
1 ,x

(0)
2 ,x

(0)
3 } are obtained through the Initialization Networks

(INIT-Nets) shown in Fig. 1, where the k-space interpolation block interpo-
lates the missing components of the undersampled k-space data then fed into
the initial reconstruction block in the image domain after inverse Fourier
transform. All blocks are designed in residual structure [10]. To train the INIT-
Nets, we minimize the difference between its outputs and the ground truth

with loss LI(x
(0)
j ,x∗j ) = ‖x(0)

j − x∗j‖1, j = 1, 2, 3. The INIT-Nets only produce
initial approximate images with limited accuracy, so we fed them into the Joint
Reconstruction and Synthesis Network (JRS-Net) illustrated in Section 2.2 to
obtain the final results. INIT-Nets are pre-trained whose parameters are fixed
during training the JRS-Net.
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Fig. 1: The overall architecture of the proposed network for joint multimodal MRI
reconstruction and synthesis: INIT-Nets (up and middle), JRS-Net (bottom).

3.2 Experiment Setup

The datasets are from BRATS 2018 challenge [17] which were scanned from four
modalities T1, T2, Flair and T1-weighted contrast-enhanced (T1CE) and we
picked high-grade gliomas (HGG) set which consists 210 patients. We applied
Fourier transform to the images and undersampled the k-space using a radial
mask of sampling ratio 40% to obtain partial k-space data for training. We
randomly took the center 10 slices from 6 patients as test set with cropped size
160× 180 and split the rest of HGG dataset into training and validation sets with
1020 images separately. We compared with four state-of-the-art multimodal MR
synthesis methods: Multimodal MR (MM) [4], MM-GAN [20], MMGradAdv [15]
and Hi-Net [30]. The hyper-parameter selection for our algorithm is provided in
Supplementary Material. Three metrics are used for evaluation: peak signal-to-
noise ratio (PSNR) [11], structural similarity (SSIM) [25], and normalized mean
squared error (NMSE) [19].

3.3 Experimental Results and Evaluation

We take four synthesis directions T1 + T2 → FLAIR, T1 + FLAIR → T2, T2 +
FLAIR → T1 and T1 + T2 → T1CE. Table 1 reports the quantitative result,
which indicates that the proposed method outperforms MM and GAN-based
methods (MM-GAN, MMGradAdv, Hi-Net). The average PSNR of our method
improves 0.67 dB comparing to the baseline Hi-Net, SSIM improves about 0.01,
and NMSE reduces about 0.01. We also conduct the pure-synthesis experiment
(T1 + T2 → FLAIR) by inputting fully-scanned source data, where the model
(1) minimizes w.r.t. x3 only and excludes the data-fidelity terms. This result is
in Table 1 where the PSNR value is 1.16 dB higher than baseline method Hi-Net.
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Table 1: Quantitative comparison of the synthesis results.
Methods PSNR SSIM NMSE

T1 + T2 → FLAIR MM [4] 22.89±1.48 0.6671±0.0586 0.0693±0.0494
MM-GAN [20] 23.35±1.03 0.7084±0.0370 0.0620±0.0426
MMGradAdv [15] 24.03±1.40 0.7586±0.0326 0.0583±0.0380
Hi-Net [30] 25.03±1.38 0.8499±0.0300 0.0254±0.0097
Proposed 26.19±1.34 0.8677±0.0307 0.0205±0.0087

fT1 + fT2 → FLAIR Proposed 25.74±1.25 0.8597±0.0315 0.0215±0.0085
T1 + FLAIR → T2 MM [4] 23.89±1.61 0.6895 ±0.0511 0.0494±0.0185

MM-GAN [20] 24.15±0.90 0.7217±0.0432 0.0431±0.0114
MMGradAdv [15] 25.06±1.49 0.7597±0.0486 0.0406± 0.0165
Hi-Net [30] 25.95±1.50 0.8552±0.0410 0.0229±0.0070

fT1 + fFLAIR → T2 Proposed 26.52±1.57 0.8610±0.0438 0.0207±0.0072
T2 + FLAIR → T1 MM [4] 23.53±2.18 0.7825±0.0470 0.0301±0.0149

MM-GAN [20] 23.63±2.31 0.7908±0.0421 0.0293 ±0.0119
MMGradAdv [15] 24.73±2.23 0.8065±0.0423 0.0252±0.0118
Hi-Net [30] 25.64±1.59 0.8729±0.0349 0.0130±0.0097

fT2 + fFLAIR → T1 Proposed 26.31±1.80 0.9085±0.0311 0.0112±0.0113
T1 + T2 → T1CE MM [4] 23.37±1.56 0.7272±0.0574 0.0312± 0.0138

MM-GAN [20] 23.68±0.97 0.7577±0.0637 0.0302±0.0133
MMGradAdv [15] 24.23±1.90 0.7887±0.0519 0.0273±0.0136
Hi-Net [30] 25.21±1.20 0.8650±0.0328 0.0180±0.0134

fT1 + fT2 → T1CE Proposed 25.91±1.21 0.8726±0.0340 0.0167±0.0133

Table 2: Quantitative comparison of the reconstructed T1 and T2 images without
and with joint synthesis of FLAIR images.
Modality FLAIR involved? PSNR SSIM NMSE

T1 No 37.00±0.74 0.9605±0.0047 0.0008±0.0002
Yes 37.49±0.83 0.9628±0.0074 0.0007±0.0002

T2 No 37.24±1.22 0.9678±0.0028 0.0027±0.0010
Yes 37.67±1.34 0.9663±0.0043 0.0024±0.0009

Table 2 shows that the joint reconstruction and synthesis improves PSNR by 0.46
dB comparing to purely reconstructing T1 and T2 without synthesizing FLAIR.
We think this is because that the synthesis operator gθ also leverages data x3 to
assist shaping the feature maps of x1 and x2, which improves the reconstruction
quality of the latter images.

Fig. 2 displays the synthetic MRI results on different source and target
modality images. The proposed synthetic images preserve more details and
distinct edges of the tissue boundary (indicated by the magnified red windows
and green arrows) and the synthetic images are more alike the ground truth
images comparing to other referenced methods.
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Fig. 2: Qualitative comparison between the state-of-the-art multimodal synthesis
methods and proposed method. From first row to last row: T1 + T2 → FLAIR,
T1 + FLAIR → T2, T2 + FLAIR → T1 and T1 + T2 → T1CE.

4 Conclusion

We propose a novel deep model that simultaneously reconstructs the source
modality images from the partially scanned k-space MR data and synthesizes
the target modality image without any k-space information by iterating an LOA
with convergence guaranteed. The network is trained by a bilevel-optimization
training algorithm that uses training and validation sets to further improve the
performance. Extensive experiments on brain MR data with different modalities
validate the magnificent performance of the proposed model.
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5 Supplementary

6 Hyper-parameter Selection

All experiments are implemented on Windows workstation with Nvidia GTX-
1080Ti GPUs and the parameters are initialized with Xavier initialization [9] and
trained with ADAM optimizer [13] with initial learning rate 0.001. We put γ = 1
in model (1), µ = 0.1 in loss `. In our experiment, we use all complex convolution
operators [24] where we set l = 4 convolutions with kernel size 3 × 3 × 64 in
hwi and l′ = 6 convolutions with kernel size 3 × 3 × 128 in gθ. For Algorithm
1, considering both algorithm convergence and the computational efficiency, we
take the parameters as follows after trials: α0 = 0.01, η0 = 0.01, ε0 = 0.001, a =
105, σ = 103, ρ = 0.9. We also set the termination tolerance εtol = 1 × 10−3,
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together with the termination condition defined in Line 5, the algorithm stops at
11 phases once εtol satisfies the stopping criteria. Similarly, in Algorithm 2, we
select the parameters as follows: νδ = 0.95, δ = 1× 10−3, λ = 10−4, νλ = 1.001
and ργ = 0.9. We decide the batch size to be 2 considering the GPU memory and
data size. We set δtol = 4.35× 10−6 which makes the algorithm stop at around
1000 epochs.

6.1 Proof of Theorem 1

We assume that ΨΘ,γ is coercive and Ψ∗Θ,γ = minX ΨΘ,γ(X) > −∞, which
are easy to satisfy in practice. For any set S ⊂ Rn, we denote dist(y,S) :=
inf{‖y − x‖ | x ∈ S}. The definition of the Clark subdifferential and Clark
stationary point can be found in [4]. We need the following lemmas to prove
Theorem 1. Since Lemma 2 can be verified by direct calculation, and Lemma 3
and 4 are similar as those given in [5,3], we omit their proofs here.

Lemma 1. The gradient of ΨεΘ,γ(X) is Lipschitz continuous.

Proof. Notice that ΨεΘ,γ(X) is the smoothing surrogate of the ΨΘ,γ(X) in (1)
with ‖hwi

(xi)‖2,1 replaced by ‖hwi
(xi)‖ε2,1 in the second sum. As both hwi

and
gθ are compositions of Lipschitz continuous, we know the first and last terms
of ΨεΘ,γ(X) are Lipschitz continuous. The second sum is Lipschitz continuous
proved by the Lemma A2 in [3].

Lemma 2. For any ε > 0, ‖hwi
(xi)‖ε2,1 ≤ ‖hwi

(xi)‖2,1 ≤ ‖hwi
(xi)‖ε2,1 +mε.

Lemma 3. Suppose the sequence {X(t)} is generated by executing Lines 3 of
Algorithm 1 with fixed εt = ε then

1. ‖∇ΨεΘ,γ(X(t))‖ → 0 as t→∞.
2. The condition in Step 4 of Algorithm 1 for reducing ε can be met in finite

iterations.

Lemma 4. Suppose the sequence {X(t)} is generated by Algorithm 1 with initial
X(0), then we have Ψ

εt+1

Θ,γ (X(t+1)) +mεt+1 ≤ ΨεtΘ,γ(X(t)) +mεt for any t ≥ 0.

The proof of Theorem 1 is outlined below.

Proof (Theorem 1). From Lemma 2, we have ΨΘ,γ(X) ≤ ΨεΘ,γ(X) +mε for any

ε > 0. Together with Lemma 4, we get ΨΘ,γ(X(t)) ≤ ΨεtΘ,γ(X(t)) +mεt ≤ · · · ≤
Ψε0Θ,γ(X(0)) + mε0 < ∞. As ΨΘ,γ is coercive, we know that {X(t)} is bounded.

Let X(tl+1) denote the l-th X(t) that satisfies the reduction criterion in step 4
of Algorithm 1. Then we can partition the whole sequence {X(t)} into segments
correspondingly such that the associated εt = εtl+1 = ε0η

l for t = tl + 1, . . . , tl+1

in the l-th segment, and the length of each segment is bounded according to
Lemma 3. As X(tl+1) satisfies the reduction criterion in step 4 of Algorithm 1,
we have ‖∇ΨεtlΘ,γ(X(tl+1))‖ ≤ σεtlη = σε0η

l+1 → 0 as l→∞. Then, there exists
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at least one convergent subsequence of X(tl+1), dubbed {X(k+1)}, and a point X̂

that satisfies X(k+1) → X̂, εk → 0, and ∇ΨεkΘ,γ(X(k+1))→ 0 as k →∞, where εk

is the corresponding εtl associated with X(k+1). Denote X = {x1,x2,x3}. The
Clark subdifferential of each xi is identical to [3] expect for an additional smooth
term in (1), so the analysis for each individual xi is the same as [3]. It has been

proved in [3] that dist(∇ΨεkΘ,γ(x
(k+1)
i ), ∂CΨΘ,γ(x̂i)) → 0, as k → ∞, where ∂C

denotes the Clark subdifferential. As this holds for each xi, then we can get it
also holds for X that dist(∇ΨεkΘ,γ(X(k+1)), ∂CΨΘ,γ(X̂)) → 0, as k → ∞. Since

∇ΨεkΘ,γ(X(k+1))→ 0 and ∂CΨΘ,γ(X̂) is closed, we conclude that 0 ∈ ∂CΨΘ,γ(X̂).

Table 3: The hyper-parameter selection. The parameters for Algorithm 1 are
determined after trials by considering both algorithm convergence and the com-
putational efficiency. The batch size is determined due to the consideration of
the GPU (Nvidia GTX-1080Ti) memory and the data volume. For Algorithm 2,
the selection of δtol makes the algorithm stop at around 1000 epochs.

Initializer Xavier [9] l 4 η 0.5 εtol 1× 10−3

Optimizer ADAM [13] kernel of hwi 3× 3× 64 ε0 0.001 νδ 0.95

Learning Rate 0.001 l′ 6 a 105 δ 1× 10−3

batch size 2 kernel of gθ 3× 3× 128 σ 103 λ 1× 10−4

µ 0.1 α0 0.01 T 11 νλ 1.001

γ 1 ρ
(0)
Θ 0.9 δtol 4.35× 10−6 ργ 0.9
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Fig. 3: Pointwise error maps between synthetic image and the its corresponding
ground truth. From first row to last row: T1 + T2 → FLAIR, T1 + FLAIR →
T2, T2 + FLAIR → T1 and T1 + T2 → T1CE.
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