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Abstract—Softwarization, programmable network control and
the use of all-encompassing controllers acting at different
timescales are heralded as the key drivers for the evolution
to next-generation cellular networks. These technologies have
fostered newly designed intelligent data-driven solutions for
managing large sets of diverse cellular functionalities, basically
impossible to implement in traditionally closed cellular archi-
tectures. Despite the evident interest of industry on Artificial
Intelligence (AI) and Machine Learning (ML) solutions for
closed-loop control of the Radio Access Network (RAN), and
several research works in the field, their design is far from main-
stream, and it is still a sophisticated—and often overlooked—
operation. In this paper, we discuss how to design AI/ML
solutions for the intelligent closed-loop control of the Open RAN,
providing guidelines and insights based on exemplary solutions
with high-performance record. We then show how to embed
these solutions into xApps instantiated on the O-RAN near-
real-time RAN Intelligent Controller (RIC) through OpenRAN
Gym, the first publicly available toolbox for data-driven O-
RAN experimentation at scale. We showcase a use case of an
xApp developed with OpenRAN Gym and tested on a cellular
network with 7 base stations and 42 users deployed on the
Colosseum wireless network emulator. Our demonstration shows
the high degree of flexibility of the OpenRAN Gym-based xApp
development environment, which is independent of deployment
scenarios and traffic demand.

Index Terms—O-RAN, 5G/6G, Open RAN, AI, xApp.

I. INTRODUCTION

Recent years have witnessed the softwarization of cellu-
lar networks and of Radio Access Network (RAN) deploy-
ments [1]. Standardization bodies and other telecom orga-
nizations have been proposing all-encompassing solutions to
manage the very many different functions of next generation
cellular networks. O-RAN is arguably the most notewor-
thy of these solutions. Network operation and control are
uniformly overseen via RAN Intelligent Controllers (RICs)
acting at the different timescales typical of network operations:
non-real-time (or non-RT) and near-real-time (or near-RT)
timescales [2]. Intelligent RAN closed-loop control is enabled
in O-RAN by data-driven applications, called xApps on the
near-RT RIC and rApps on the non-RT RIC, which optimize
network performance based on live data received from the
RAN through standardized and open interfaces [3]. Here, the
rise of Artificial Intelligence (AI) and Machine Learning (ML)
applications for cellular networking brings forward the need
for large-scale experimental facilities where to safely design
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and test data-driven solutions at scale without compromising
the operations of commercial deployments.

Solutions for data-driven control of the new RAN have
flourished in recent years. Some works concern the design and
implementation of xApps in small-size setups [4–6]. Others
focus on specific use cases [7], are structured to describe
specific O-RAN functionalities and capabilities [2, 8], evaluate
multivendor interoperability [9, 10], or focus on the general
organization of networks managed by O-RAN [11]. All these
works illustrate the strategic relevance of the paradigm her-
alded by O-RAN as the future of cellular networking, while
however addressing the challenges of its usage, e.g., the design
of xApps, in piecemeal fashion and limited setups, showing
results that are often difficult to replicate.

Motivated by the need of providing a ready-made envi-
ronment for testing at scale, Bonati et al. introduced Open-
RAN Gym, the first publicly-available research framework
for data-driven O-RAN experimentation with hardware-in-
the-loop [12]. OpenRAN Gym enables uniform design of
AI/ML-based solutions and to implement them as xApps
for an O-RAN-compliant near-RT RIC. It also provides a
framework to safely test them at scale in the RIC controlling a
softwarized RAN. Moreover, OpenRAN Gym provides users
with the capability of performing data collection campaigns
in heterogeneous environments, which is key to train data-
driven solutions that can generalize to different deployment
scenarios [13].

Even though OpenRAN Gym provides a streamlined open-
source environment to prototype solutions at scale, the proper
design, testing and validation of xApps for the Open RAN
is however not trivial. Besides the need for exhaustive data
collection, for generalizable solutions and for testing in con-
trolled environments, interfacing and adapting the final xApps
to the dynamics of a commercial grade production infras-
tructure requires additional careful steps. These include the
implementation of O-RAN-compliant interfaces, procedures,
and messages—used by the xApps to communicate with the
RAN—and, potentially, additional online training to fine-tune
the designed agent to the production infrastructure.

In this paper, we illustrate and discuss the steps for design-
ing and testing data-driven xApps for closed-loop control and
inference of a softwarized RAN through OpenRAN Gym. We
first provide an overview of the OpenRAN Gym framework,
and of how it can be used to deploy and test Open RAN
solutions at scale. We then detail how to design AI/ML-based
xApps that implement closed-loop control of the configuration
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of the base stations based on live data from the RAN. Finally,
we showcase an example of xApp designed with OpenRAN
Gym for controlling a large-scale softwarized RAN with
7 base stations and 42 User Equipments (UEs) instantiated
on the Colosseum wireless network emulator [14]. Our work
demonstrates the adaptability of the xApp to different traffic
requirements and conditions, and the role of additional online
training for boosting the performance of the RAN.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of OpenRAN Gym. Section III
describes the design of xApps. Section IV provides an example
of xApp designed with OpenRAN Gym and tested on a large-
scale RAN. Section V discusses future directions and the
challenges of closed-loop control. Section VI concludes the
paper.

II. AN OVERVIEW OF OPENRAN GYM

The OpenRAN Gym framework is made up of a set of
architectural components, including softwarized RAN protocol
stacks like srsRAN [15] and OpenAirInterface [16], data col-
lection and control frameworks such as SCOPE [17], and O-
RAN control architectures such as ColO-RAN [13]. OpenRAN
Gym also provides hooks for usage in experimental wireless
platforms for testing at scale, including Colosseum [14] for
emulation-based experiments, Arena for indoor testing, and
the outdoor platforms of the PAWR program [18].

SCOPE is a framework for data-collection and for the run-
time control of a softwarized RAN. It builds on srsRAN, which
allows users to instantiate cellular protocol stacks on a generic
infrastructure, and to use Software-defined Radios (SDRs) as
radio front-ends. SCOPE extends srsRAN with functionalities
such as the ability to instantiate multiple network slices on the
same softwarized base station, to select the scheduling policy
used by each slice, and to perform automatic data collection of
RAN Key Performance Measurements (KPMs) (e.g., through-
put, transmitted packets). It also implements control Appli-
cation Programming Interfaces (APIs) to reconfigure RAN
parameters at run-time, including the amount of resources
for each slice, and their scheduling policy. Finally, SCOPE
includes a RAN-side E2 termination—adapted from the one
released by the O-RAN Software Community (OSC) [19]—
that is used to interact with the near-RT RIC.

ColO-RAN implements an O-RAN-compliant near-RT RIC,
which is a lightweight OSC RIC tailored to run in the
containerized environments typically used in experimental
platforms for wireless research [13]. It provides a Software
Development Kit (SDK) to design, train, and test xApps for
RAN inference and control, as well as a ready-to-use xApp
skeleton, where users can plug custom AI/ML models. ColO-
RAN also implements RIC messaging to handle communica-
tions with the xApps and the RAN. Examples include the RIC
Subscription Indication/Response messages—used by the base
stations to establish the initial connection with the RIC—E2
Indication messages—used by the base stations to transmit
periodic KPM reports to the xApps—and E2 Control mes-
sages—used by the xApp to control functionalities exposed

by the base stations (e.g., to reconfigure their scheduling and
slicing configuration).

The capabilities of OpenRAN Gym for facilitating data
collection campaigns at scale [13], for extending O-RAN
control loops to real-time procedures via dApps [20], and for
performing control and inference of large-scale softwarized
RANs [21], have been demonstrated on the Colosseum testbed.
The containerized solutions developed with OpenRAN Gym
can also be ported to other testbeds with minor adjustments,
e.g., on the Arena testbed, and on the PAWR platforms.

III. HOW TO DESIGN AN XAPP

In this section, we illustrate the steps needed to design an
O-RAN-compliant data-driven xApp that can be used in Open-
RAN Gym and other RICs. In general, xApps interact with the
RAN nodes through a component of the E2 interface called
Service Model (SM).1 The O-RAN Alliance has defined, and is
still defining, multiple SMs, to carry out different tasks through
a standardized interaction between xApps and base stations.
The two main components of an OpenRAN Gym xApp are
shown in Figure 1 (adapted from [12]).

Fig. 1: Structure of an xApp [12].

As part of the OpenRAN Gym publicly available com-
ponents,2 we provide an xApp skeleton that implements the
first component, SM connector, and has a drop-in component
for the second, the data-driven logic unit, so that interested
researchers can plug their own solutions in. In the following
paragraphs, we describe how to use and, possibly, extend the
SM connector, and how to design general and effective AI and
ML solutions for the control of the RAN in the data-driven
logic unit.

A. Service Model Connector

The SM connector handles the communication between
the xApp (instantiated as a Docker container) and the near-
RT RIC [22]. It relays RAN KPMs and xApp control to
and from the data-driven logic unit. The connector includes
multiple components for the interaction with the rest of the
near-RT RIC infrastructure, including features for specific API

1The other component, the E2 Application Protocol (AP), provides foun-
dations and primitives for the different SMs and basic interactions between
the RIC and the RAN nodes, e.g., connection setup, teardown, etc.

2https://openrangym.com
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and messages parsing. For instance, the O-RAN shared data
layer APIs are used to query the Redis database Network
Information Base (NIB) (or R-NIB) deployed on the RIC, e.g.,
to get the list of the base stations to subscribe to.

ASN.1 Serialization. The ASN.1 encoding and decoding
module uses the standardized ASN.1 interface description
language to serialize/deserialize messages to/from the E2
manager component and to/from the E2 termination of the
RIC. Examples include:

• The RIC Subscription message, used by the xApp to
subscribe to the RAN base stations.

• The RIC Indication message, sent by the base stations
the xApp is subscribed to, to report about events or data
(e.g., KPM reporting).

• The RIC Control message, used by the xApp to send
control actions to the base stations (e.g., to change the
scheduling policy, the slicing configuration, etc.).

RAN side, these messages are processed through similar
operations by an E2 termination component implemented by
the protocol stack of the softwarized base stations. In the
case of KPM reporting sent to the xApp via RIC Indication
messages, after deserializing it, the SM connector forwards
the received KPMs to the data processing module of the
data-driven logic unit of the xApp. In case of control actions
produced by the AI/ML model of the data-driven logic unit,
instead, these are serialized into RIC Control messages and
sent to the base station via the E2 manager/termination of the
RIC. In both cases, communications internal to the xApp (i.e.,
between the SM connector and the data-driven logic unit) can
happen in very many different ways, e.g., through sockets, as
in the OpenRAN Gym stub xApp. Communications between
the xApp and the near-RT RIC, or among xApps, is handled by
the RIC routing manager and the RIC Message Router (RMR)
protocol [23].

OpenRAN Gym Service Models. OpenRAN Gym aims
at facilitating rapid prototyping of new ideas and use cases
for closed-loop RAN control. As such, the first release of
the OpenRAN Gym skeleton xApp provides a custom SM
that is tailored to the swift development of new payloads
for E2 indication and control messages, with no need to
fully define ASN.1 schemes.3 This custom SM serializes
information on strings, which simplifies the process of adding,
removing or customizing the information sent from the RAN
to the xApp, or the control messages. This also fits well
with the ASN.1 encoding of the underlying E2 message,
which simply embeds the string as a sequence of bytes.
This, however, requires support at RAN side. OpenRAN Gym
xApps have been designed to interface with the near-RT RIC
provided by ColO-RAN, and with base stations implemented
through SCOPE, a framework using software-defined stacks
where new control functionalities can be easily and quickly
prototyped. At RAN side, SCOPE presents an E2 termina-
tion that collects and organizes multiple metrics from the
base station, and converts them to the string that the SM

3The development of standard-compliant SMs is on our roadmap.

expects. It is also possible to enable the reporting of different
sets of metrics by extending the readMetricsInteractive
method of the csv reader.c file in the E2 termination
implementation [24]. In the opposite direction, it is possible to
ingest control messages (currently for slicing and scheduling)
by extending the write control policies method of the
srs connector.c file [25]. The corresponding interpretation
of the metrics and actions is provided by the custom data-
driven logic unit, as discussed next.

B. Data-driven Logic Unit

The other main component of the xApp is the data-driven
logic unit, shown in Figure 2 [26].

Fig. 2: The data-driven logic unit of the xApp.

The goal of this component is to use data received in near
real-time over the E2 interface for online inference via data-
driven algorithms, including AI and ML. The unit processes
the metric strings received by the SM connector and sends
back control commands. As shown in Figure 1, this component
consists of the following subunits, namely, the AI/ML Model
and the Data Processing Module. In the following, we review
a set of best practices for the design of AI/ML models for
RAN control.

AI/ML Model. This subunit hosts the models for prediction,
classification and control tasks. Feature and properties relevant
to our work are the following:

• Mandatory offline training. The O-RAN specifications
mandate that any AI/ML solution must be first trained of-
fline, and then validated and tested to avoid inefficiencies
and ensure that the trained models do not detrimentally
affect the performance and stability of the network [27].
In this context, the AI/ML models are trained by using
data lakes storing large amounts of information that
has been collected over the O1 interface. Once training
is complete, the models are validated and tested in a
controlled environment to verify that accuracy levels
are high (in the case of classification), predictions are
accurate (in the case of forecasting), and control strategies
do not result in inefficiencies, or, even worse, outages and
unfairness to the subscribers (in the case of control tasks).

• Online fine-tuning. Despite mandatory offline training,
pre-trained models can still be fine-tuned in an online
fashion using online data from the E2 interface. This is
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especially useful when operators want to tailor the xApp
to their specific deployment scenarios. Examples include
capturing only network and traffic conditions that affect
the deployment area controlled by the xApp. Alterna-
tively, there might be cases where the AI/ML models are
deployed and operate under traffic and network conditions
never seen during the training phase. In these scenarios,
updating the weights of a Deep Reinforcement Learning
(DRL) agent or of a neural network could improve the
performance of the trained model under current network
configurations (Section IV).

• Chaining AI/ML models. In many cases, controlling the
RAN involves a complex pipeline of several decision-
making steps. A practical example is that of two xApps,
the first forecasting the evolution over time of one or
more time series of KPMs, and the second taking as
input the forecast KPMs and making control decisions
on some network policy (e.g., on the scheduling policy).
In this case, the RMR protocol running at the RIC can
be used to support sequential data flows between xApps,
thus effectively enabling chains of xApps [23].

Data Processing Module. This submodule is designed
to process data received over the E2 interface to meet the
input format and representation requirements of the AI/ML
models hosted by the xApp. Among others, typical operations
performed by this module include:

• KPM extraction and reshaping. This operation allows the
xApp to feed the hosted AI/ML model with the correct
amount and type of information. Specifically, since the
KPM stream received from the RAN is continuous—
and potentially with a different structure than the one
required by the model—this operation makes it possible
to extract relevant KPMs of specific size from the E2
stream. The size should match the input size of the AI/ML
model. This module also performs data padding in case
of missing data (e.g., when only a few data points are
available).

• Scaling. A well-known issue of many AI/ML-based al-
gorithms is the susceptibility against the values of the
input data. While in many computer vision applications
the input data is composed of images, where each pixel
is typically represented by a 3D tuple with values in
the 0-255 range, in cellular networks the input data are
KPMs with different physical meaning. Indeed, KPMs
might have positive/negative values in very many dif-
ferent ranges. The majority of AI/ML-based algorithms
leverages gradient-based methods during the training
phase. Although this has been shown to be extremely
effective, it also requires proper solutions to avoid biased
weight updates, where KPMs with larger values impact
the resulting stochastic gradient updates much more than
smaller KPMs. A well-established data processing step to
avoid such bias consists in scaling the input data so that
all KPMs fed to the model assume values in a common
and well-defined interval.

• Data transformation. In cases where large amounts of
data need to be processed, the data processing module can
also implement more complex and advanced processing
tools. Among others, autoencoders are worth mentioning.
These ML tools are commonly used to generate latent
representations, and to perform dimensionality reduction,
of the input data [13]. These autoencoders typically have
an hourglass architecture and consist of two elements,
an encoder and a decoder. The former transforms the
input data into its latent representation, which usually
has substantially smaller dimension than that of the
input. The latter, instead, is trained to reconstruct the
input data from its latent representation. Ultimately, the
goal of autoencoders is to reduce the size of the input
while maintaining all of its relevant information. This
is extremely useful in facilitating training procedures of
DRL agents by reducing the size of the exploration space
(i.e., by reducing the number of states that must be
explored by the agent) [13].

IV. XAPP USE CASE

We now provide an example of data-driven closed-loop
control through an xApp designed through OpenRAN Gym to
jointly control the scheduling and slicing functionalities of the
base stations. A schematic representation of our experimental
setup is shown in Figure 3.

Fig. 3: The OpenRAN Gym experimental setup.

The xApp gets the RAN KPMs periodically through RIC
Indication messages. It then feeds them to its data-driven
logic unit (Section III-B), and makes control decisions on the
scheduling and slicing policies of the base stations. Scheduling
control concerns choosing the scheduling policy to run at each
slice (among round-robin, waterfilling, and proportionally fair
policies). The slicing policy concerns selecting the amount of
Physical Resource Blocks (PRBs) allocated to each slice. Both
control actions are sent to the base stations via the xApp SM
connector by means of RIC Control messages (Section III-A).

We demonstrate this xApp on a softwarized network with 7
base stations and 42 UEs (6 UEs per base station) instantiated
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on the Colosseum wireless network emulator [14] through
SCOPE. As each base station implements three network
slices with diverse service requirements—namely, Enhanced
Mobile Broadband (eMBB), Machine-type Communications
(MTC), and Ultra Reliable and Low Latency Communications
(URLLC) slices—the xApp has been designed to prioritize
different metrics for different types of service. Specifically, the
data-driven logic unit of the xApp has the goal of maximizing
the throughput of the eMBB slice, and the amount of trans-
mitted packets for the MTC slice. Instead, it aims at keeping
the occupancy of the transmission buffer queues—used as
proxy for latency—at low levels for the URLLC slice. This
data-driven logic unit has been trained offline on a dataset of
almost 8 GB developed on Colosseum [28]. After the training
phase, we instantiated 7 instances of this xApp—one per base
station—on the near-RT RIC provided by ColO-RAN, and
used them to control the RAN.

After the design phase, we tested the xApp on different
classes of traffic: (i) slice-based traffic—seen during the
training—in which UEs belonging to different slices request
different amounts of data (4 Mbps/UE for the eMBB slice,
44.6 kbps/UE for MTC, and 89.3 kbps/UE for URLLC), and
(ii) uniform traffic—unseen during the training—in which UEs
request data at an average rate of 1.5 Mbps. We consider the
use-case in which the xApp is used as-is—in which the agent
of the data-driven logic unit is used as trained offline, i.e.,
offline-trained agent—and that in which the xApp agent is
fine-tuned online, namely, online-refined agent case.

Figure 4 shows the correlation between the throughput of
the UEs of each slice, and the occupancy of their transmission
buffers at the base stations in the above-mentioned traffic cases
and with/without online training.

The offline-trained agent cases are shown in Figures 4a
and 4b, while the online-refined agent cases in Figures 4c
and 4d. Furthermore, the cases with uniform traffic are shown
in Figures 4a and 4c, while the slice-based traffic in Figures 4b
and 4d. By comparing the cases with agents trained offline, we
notice that the xApp is able to provide the requested resources
to the slice UEs—even in cases unseen in the training—by
dynamically changing the configuration of the base stations.

By comparing offline and online cases with the same
traffic configuration—i.e., Figures 4a and 4c, and Figures 4b
and 4d—we notice that the online training phase is key in
providing a superior service to the UEs, whose performance
significantly exceed those of the offline-trained xApp. This is
because the additional online training phase allows the xApp
to adapt to specific deployments, tailoring the agent to the
run-time RAN.

V. CLOSED-LOOP CONTROL: FUTURE DIRECTIONS

The Open RAN provides key building blocks for end-to-
end, closed-loop, and automated control of the RAN. Through
its embodiment by the O-RAN Alliance, it also represents a
practical mechanism for embedding intelligence and AI/ML
in the control of the RAN. These intelligent software-based
solutions do no need to be statically baked in the network
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Fig. 4: Correlation between UE throughput and buffer occupancy across
multiple slices with offline-trained and online-refined xApps for different
classes of traffic: (a, c) uniform traffic (1.5 Mbps/UE), and (b, d) slice-based
traffic (4 Mbps/UE for eMBB, 44.6 kbps/UE for MTC, 89.3 kbps/UE for
URLLC).

appliances, but operate as plug-ins on standardized, open
platforms such as the RICs. Nonetheless, there are still several
challenges that must be overcome before getting to efficient,
reliable and fully autonomous RAN control and optimization.

The first concerns the state and maturity of the O-RAN spec-
ifications on closed-loop RAN control. The Working Group
(WG) 3 of the O-RAN Alliance has defined an initial set of
service models that operate over the E2 interface. However,
further development and additional SMs are required to make
RIC and xApps more effective, with control spanning a larger
scope than what is currently available. This is no easy feat,
as the standardization process crosses multiple domains, most
notably, O-RAN and 3GPP. The O-RAN Alliance can only
influence the definition of the E2 interface, while the protocol
stack is under the 3GPP domain. The current approach of
the O-RAN Alliance is that of providing methods to measure,
tune, or adapt the values of 3GPP-defined parameters. How-
ever, while current SMs enable streaming of a comprehensive
set of KPMs from the RAN defined in 3GPP documents [29],
the control could be further enhanced. For example, at the time
of writing, slicing support is limited in the standard, despite
slicing being a key area for closed-loop optimization [4].
Overcoming this challenge would need tighter interaction and
collaboration between 3GPP and O-RAN.

The second challenge concerns adoption and easy access to
O-RAN implementations. The availability of RAN equipment
that supports E2 integration for closed-loop control is still
limited, and the situation is further complicated by an ongoing
standardization process which does not provide a stable set of
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features to be implemented. The telecom industry (vendors
and operators) should consider adopting more flexible and
agile software-driven practices for automated and fast-rolling
updates without service disruption. This would allow networks
to leverage softwarization and virtualization and to reduce the
time-to-market, following the cloud-native paradigms that have
transformed the software industry in the last decade.

When it comes to intelligent RAN control, the most com-
pelling challenge concerns access to data and datasets repre-
sentative of networks with diverse, heterogeneous, and realistic
conditions. Data availability is key to training the models to
be deployed in the network (Section III). The definition of
reference datasets, however, is a much more daunting task
in the wireless/RAN domain than, for example, in the field
of computer vision, where standardized datasets are the norm
for training and comparing different algorithms. OpenRAN
Gym, Colosseum, and the PAWR platforms represent a first
step toward medium-to-large-scale data collection. However,
their datasets capabilities are still a far cry from the scale and
diversity that only production environments can offer.

VI. CONCLUSIONS

In this paper, we illustrate steps to the design of intelligent
solutions for closed-loop control of the cellular Open RAN.
We provide details and insights on how to design AI/ML-
based solutions, and show how to use the OpenRAN Gym
framework to deploy such solutions as xApp and and to test
and train them on an O-RAN-compliant near-RT RIC. Our
work also showcase sample xApps developed with OpenRAN
Gym that can be used to control a softwarized cellular network
with 7 base stations and 42 UEs instantiated on the Colosseum
testbed. We emphasize their adaptiveness to different RAN
deployments and traffic demands. Finally, we discuss future
directions and challenges for closed-loop control of the Open
RAN.
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