


Range Stride Easy Moderate Hard #Bboxes mean IoU5
avg

MonoCon [30] 26.33 19.01 15.98 n -

± 2 0.1 76.98 ↑50.65 64.93 ↑45.92 56.91 ↑40.93 1600·n 0.931

± 1.5 0.1 76.45 ↑50.12 62.27 ↑43.26 54.34 ↑38.36 900·n 0.931

± 1.5 0.2 74.00 ↑47.67 61.78 ↑42.77 53.64 ↑37.66 225·n 0.868

± 1.5 0.3 64.80 ↑38.47 56.20 ↑37.19 50.66 ↑34.68 121·n 0.812

± 1.5 0.5 54.00 ↑27.67 45.93 ↑26.92 40.99 ↑25.01 49·n 0.714

± 1.5 0.75 41.58 ↑15.25 34.44 ↑15.43 30.12 ↑14.14 25·n 0.612

Table 1: A strong empirical upper-bound analysis. Our

MonoXiver is motivated by the observation that bottom-

up monocular 3D object detectors can be significantly im-

proved by leveraging a simple 3D-space local-grid search

scheme in an ideal case. This highlights the potential of

exploring the 3D proposal space. However, this improve-

ment comes at a cost: 1) the proposal verification stage ex-

periences significant increases in number of bounding box

proposals, and 2) a more powerful refinement module is re-

quired to handle highly overlapped boxes.

in Table 1, despite the evaluation result of initial bottom-up

proposals is relatively low in 3D average precision (AP3D)

(e.g., 19.01 in Moderate settings), most of predicted 3D cen-

ters are already in the close proximity of the GT ones. An

empirical upper-bound of 34.4 AP3D can be achieved

even with a coarse sampling scheme (e.g., the last row),

which is significantly higher than SOTA methods. We

also obtained similar observations from other backbone

3D object detectors such as the MonoDLE [39] and the

SMOKE [33]. These strong empirical observations demon-

strate the potential of integrating the bottom-up initial pro-

posals with top-down sampling and verification.

The challenge in the 3D-to-2D proposal verification.

The 3D-to-2D proposal verification phase can be treated as

a 3D bounding box denoising process, as we want to search

for the “best” bounding boxes from the top-down proposal

set. This process is extremely challenging, as the proposals

generated from the same bottom-up anchor are highly over-

lapped in both 3D and 2D (after projection), which leads to

the long-standing problem of handling the “crowd” in detec-

tion. To quantitatively analyze the overlap extent after pro-

jection for top-down proposals, we consider one proposal

and its top-k overlapping neighbors in terms of Intersection-

over-Union (IoU), which is denoted by IoUk
avg as the aver-

age IoU over the top-k neighbors. The last column in Ta-

ble 1 shows the statistics.

The statistics clearly demonstrates the difficulty of de-

noising densely generated top-down proposal set (e.g.,

stride=0.1, IoU5
avg=0.931). Even for a relative sparse

generated top-down proposal set (e.g., stride=0.75,

IoU5
avg=0.612), the challenge still exists because propos-

als sampled in front and behind of the same anchor will

almost collapse to the same 2D bounding box, especially

when they are far away from the camera. So, how can we

encode the 3D bounding box proposal for verification under

the monocular setting? From this perspective, we note that

many methods that work well in multi-view 3D object de-

tection are often not applicable for monocular 3D objection

because they mainly rely on features that are obtained by

fusing projection features from multi-view feature maps.

Based on the intuition that even though highly over-

lapped proposals have similar appearance features, their in-

herent 3D-to-2D geometric features (e.g. 3D location, pro-

jected geometry, etc.) are extremely different, we propose

to fuse these 3D-to-2D geometric feature with their corre-

spondent appearance features to learn discriminative fea-

tures for bounding box denoising. We present a method

of using the Perceiver I/O model [20] to effectively fuse

these contexts, as Perceiver has shown strong capabilities to

fuse multi-modal inputs. With the encoded latent represen-

tation of a proposal, the verification head is implemented by

a self-attention module (see the top in Fig. 1). The proposed

method is named as MonoXiver, indicating its general ap-

plicability to any backbone monocular 3D detectors and the

integration of the Perceiver model.

In experiments, we evaluate our proposed MonoXiver on

the well-established KITTI benchmark [14] and the chal-

lenging large-scale Waymo [51] dataset with various back-

bone monocular 3D detectors. It achieves consistent and

significant performance improvement on both datasets with

limited computation overhead. Moreover, it achieves the 1st

place among monocular methods on the KITTI vehicle de-

tection benchmark, outperforming the previous works by a

large margin.

2. Related Works and Our Contributions

Monocular 3D Object Detection. The problem of monoc-

ular 3D object detection is considered ill-posed, prompting

recent research efforts to leverage additional information

sources, including LiDAR point clouds [4, 10, 19, 28, 45],

depth estimation [12, 36, 42, 48, 53, 54, 62], CAD mod-

els [25, 34], temporal frames [2], etc. These approaches

have shown improved detection performance when com-

pared to purely image-based methods [1, 33, 41, 57]. How-

ever, they often come with increased computation load and

inference time, making them less practical for real-time ap-

plications such as autonomous vehicles. In contrast, purely

image-based methods have seen significant performance

improvements in the literature by exploiting geometric con-

straints [26, 35, 41, 47, 59, 60], perspective projections [24,

38], auxiliary training [30], novel loss designs [8, 39, 49]

and second-stage processing techniques [23]. These works

focus on developing better bottom-up paradigms. Our pro-

posed method, MonoXiver, takes a top-down paradigm,

which explores 3D space differently than the aforemen-

tioned methods. It provides a generic and highly efficient

second-stage refinement module for any pretrained state-of-
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ule can be applied generically to any off-the-shelf monoc-

ular 3D object detectors.

• Extensive experiments demonstrate the effectiveness and

efficiency of our proposed method, MonoXiver, under a

separate two-stage training setting. It achieves consistent

improvement with limited overhead on both KITTI and

Waymo dataset. It achieves the 1st place among monoc-

ular methods on the KITTI vehicle detection benchmark,

outperforming the previous works by a large margin.

3. Approach

In this section, we first present the straightforward 2D-

to-3D proposal generation on top of a backbone monocular

3D object detector. Then, we present the details of the pro-

posed MonoXiver method (Fig. 1).

3.1. The 2D­to­3D Proposal Generation

Let I be an RGB input image defined on the domain Λ.

The goal of monocular 3D object detection is to detect 3D

bounding boxes, along with their class labels denoted by

ℓ for each object instance in I . The 3D bounding box is

parameterized by the 3D center position P = (X,Y, Z)
in meters, the shape dimensions D = (h,w, l) in meters,

and the observation angle ³ ∈ [−Ã, Ã], all measured in the

camera coordinate system.

For simplicity, consider the pure image-based settings,

a monocular 3D object detector often consists of two main

components in inference: the feature backbone (e.g., the

DLA34 network [58]), denoted by FI for computing deep

features from the raw image I , and the regression heads for

inferring the 3D bounding box parameters using the com-

puted feature map. We generate bottom-up proposals us-

ing one off-the-shelf backbone monocular 3D object detec-

tor which is first trained following its own training receipts.

Without loss of generality, we consider one of its detected

3D bounding boxes indexed by i in an image I ,

Bi = (ℓi,Pi,Di, ³i), (1)

As shown in Table 1, the top-down sampling with a

bottom-up anchor proposal is a straightforward process. We

start by generating a 2D local grid in the X-Z plane (i.e. in

the bird’s-eye-view, BEV), centered at the position (X,Z)
of the anchor box B. To accomplish this, we specify a

search range and a stride. Based on the trade-off between

the empirical upper bound and the computing overhead and

the mean IoU among the proposals, we adopt a conservative

strategy using the search range ±1.5 meters and the stride

0.75, which will generate 25 proposals per bottom-up an-

chor (inclusive). We then place the anchor box B at the 25

grid points, with only the position P updated. To simplify

the notation, we do not differentiate between the bottom-up

anchor and the top-down sampled proposal, and we gener-

ally index them using i, unless otherwise stated.

3.2. The 3D­to­2D Proposal Verification

The proposal verification will rely essentially on the in-

formation from the input 2D images in purely monocular

3D object detection. Due to the aforementioned unique

challenges in the 3D proposal space, we utilize Perceiver

I/O [20] to design an expressive proposal representation

learning scheme.

3.2.1 Proposal Representation

As illustrated in Fig. 1, we utilize three types of features in

encoding a 3D bounding box proposal B,

• The 3D Shape Features represented by (P,D, ³). It is a

7-dim vector. It encodes where the proposal is in the 3D

space (the camera coordinate system), as well as its 3D

occupancy. The position P is empirically normalized by

the typical detection range (e.g., X , Y , Z are normalized

by 50, 2 and 80 meters respectively).

• The 2D Projection Points from the 8 corners and the cen-

ter of the 3D bounding box (with known camera intrinsic

matrix). It is an 18-dim vector in the image coordinate

system, and normalized by the image size. This 9-point

projection provides the finegrained placement of a pro-

posal in the 2D space, that is the geometric bond between

a proposal in the 3D space and its 2D placement.

• The 2D Bounding Box projected from the proposal and

truncated by the image boundary. We use the left-top and

right-bottom two points to encode a 2D bounding box. It

gives a 4-dim vector normalized by the image size. For a

proposal whose 2D projection is entirely inside the image

plane, the two points of the 2D bounding box will be just

redundant with respect to the 9 project points. Otherwise,

the truncation points on the image boundary will facilitate

the learning to be truncation aware.

• The Appearance Features of the 9 projection points. We

directly extract features from the final layer of the feature

backbone FI . If a projection point is out of the image

plane, we encode it using an all-zero vector.

• The RoI Appearance Features of the 2D bounding box.

We use the RoIAlign features [17] extracted from the final

layer of the feature backbone FI . Since the 2D IoU over-

lapping between proposals is high on average (e.g., 0.612

in Table 1), we use a finer grid, 14 × 14, in computing

the RoIAlign features, such that the extracted appearance

features contain “sufficient” details.

3.2.2 Proposal Embedding

Let N be the total number of proposals in an image I . With

the above representation scheme, denote by f
geo
N×29 the ge-

ometric parameter matrix from the first three items above,
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and by f
pt
N×9×C the projection point appearance feature ma-

trix (where C is the number of channels of the final layer of

the feature backbone, e.g., C = 64), and by froi
N×(14×14)×C

the RoI feature matrix. Before applying the Perceiver I/O

model, we embed the three to form “tokens” using multi-

layer perceptron (MLP).

For the geometric parameters f
geo
N×29, we have,

f
geo
N×29

MLP
−−→ zN×(g×d)

Rearrange
−−−−−→ f

geo
g×N×d, (2)

where d is the hidden dimension (e.g., d = 256). g is the

group number, similar in spirit to the multi-head setup in the

self-attention. We want to encode the geometric parameters

in different latent spaces to account for the large variations

in the proposal space (e.g., g = 4).

For the project point features f
pt
N×9×C , we have,

f
pt
N×9×C

MLP
−−→ zN×9×d

Rearrange
−−−−−→ f

pt
9×N×d, (3)

where we reuse z to denote the latent features for simplicity

and without confusion.

For the RoI features froi
N×(14×14)×C

, we have,

froi
N×(14×14)×C

MLP
−−→ zN×d

Rearrange
−−−−−→ froi1×N×d. (4)

3.2.3 Intra-Proposal Attention via Perceiver

With the above proposal embedding, before the proposal

verification, our goal is to compute a final latent feature rep-

resentation in the d-dim space for each proposal by fusing

information from the geometric encoding, projection-point-

based appearance encoding and RoI-based appearance en-

coding (i.e., the intra-proposal attention), such that we can

address the aforementioned unique challenges in the pro-

posal space. We leverage the Perceiver I/O model for this

intra-proposal attention.

The Perceiver first fuses the projection-point appearance

encoding f
pt
9×N×d and the geometric encoding f

geo
g×N×d. As

shown in Fig. 1, it consists of a cross-attention by treat-

ing the former as Query (consisting of 9 projection-point

tokens) and computing Key and Value from the latter (con-

sisting of g geometric tokens), followed by a self-attention

module. We have,

(fpt9×N×d, f
geo
g×N×d)

Cross-Attn
−−−−−→ ·

Self-Attn
−−−−−→ F

geo-pt
9×N×d, (5)

which results in geometry-aware projection-point encoding.

Next, the Perceiver fuses the RoI appearance encoding

froi1×N×d as the 1-token Query with the 9-token geometry-

aware projection-point encoding using a cross attention

module,

(froi1×N×d,F
geo-pt
9×N×d)

Cross-Attn
−−−−−→ F

geo-pt-roi
1×N×d , (6)

which results in the d-dim latent features for each proposal,

which fuse the three types of information sources: geome-

try, point-level appearance and region-level appearance.

In the above, the cross-attention and self-attention mod-

ules are based on the standard formulation [52].

3.2.4 Inter-Proposal Attention

With all the above process, each proposal is still encoded

individually with the hope of fusing geometry, point-level

appearance and region-level appearance information in a

semantically meaningful way via the Perceiver I/O model.

With the compact latent vector computed for each proposal

in F
geo-pt-roi
1×N×d , their interactions need to be taken into ac-

count in order to resolve their “crowding” issue at the un-

derlying scene level.

To that end, we treat each proposal as a “token” and

apply a standard self-attention module to capture the inter-

proposal attention,

F
geo-pt-roi
1×N×d

Rearrange
−−−−−→ F

geo-pt-roi
N×d

Self-Attn
−−−−−→ FN×d. (7)

3.2.5 Proposal Verification

This verification is posed as a regression problem ,

FN×d
MLPs
−−−→ (yN×L,∆PN ,∆DN ), (8)

where L is the total number of categories (e.g., L = 3 in

the KITTI dataset), and yN×L is the classification scores

(logits). ∆PN and ∆DN are the position and dimension

residuals.

Consider a proposal Bi (Eqn. 1), it is verified via,

ℓ̂i = arg max
l=1,··· ,L

yi,l, (9)

P̂i = Pi +∆Pi, (10)

D̂i = Di +∆Di, (11)

where a proper unnormalization step will be done for P̂i

to counter the normalization step used in the proposal rep-

resentation (Sec. 3.2.1). Based on the score y
i,ℓ̂i

, we can

keep top-k proposals for each anchor position.

3.3. Details of Training and Testing

For simplicity, we evaluate the proposed MonoXiver in a

two-stage setting where the backbone monocular 3D object

detector is first trained and kept frozen. Then, the MonoX-

iver component is trained end-to-end. One of the reasons

for this choice is that off-the-shelf backbone monocular 3D

object detectors often involve multiple loss functions, and

joint training with MonoXiver would require sophisticated

tuning of the trade-off parameters for different loss terms.

We leave the joint end-to-end training or iterative training,
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as done in the early version of Faster RCNN [46] between

the region proposal network and the region classification

head network, for future work. Additionally, the separate

two-stage training may also have advantages in leveraging

the set of bottom-up anchor proposals merged from multi-

ple backbone monocular 3D detectors, which we also leave

for future work.

3.3.1 The Set Prediction Formulation in Training

Based on the separate two-stage setting, the proposed

MonoXiver is trained with a fixed set of 3D bounding

box proposals and a fixed set of ground-truth 3D bound-

ing boxes. The ground-truth assignment for proposals is

needed in training. Two straightforward methods are: us-

ing the maximum 3D IoU based assignment, or using the

maximum 2D IoU assignment (after projected to the image

plane). Due to the “crowding” issue in the proposal space,

we observe that both of them do not work during our de-

velopment of the MonoXiver since they will create difficult

“decision boundaries” for the MonoXiver to learn or fit.

Since we have the two fixed set as input, we resort to the

set prediction formulation used in the DETR framework [3].

Denote by ΩB = {Bi}
N
i=1 the set of generated proposals, by

ΩB∗ = {B∗
j}

M
j=1 ∪ {∅j}

N
j=M+1 the set of ground-truth 3D

bounding boxes padded with N − M dummy ∅ elements.

Given a permutation of N elements, denoted by Ã which

assigns the i-th element in the ground-truth set to the Ã(i)-
the element in the proposal set, the loss for the one-to-one

bipartite matching between B
∗
i and BÃ(i) is defined by,

Lmatch(B
∗
i ,BÃ(i)) = 1ℓ∗

i
̸=∅ · (−¼1 · p̂Ã(i)(ℓ

∗
i )+ (12)

¼2 · L
2D
bbox + ¼3 · L

2D
iou + ¼4 · L

3D
iou),

where p̂Ã(i)(ℓ
∗
i ) is computed using yÃ(i) (Eqn. 8) via Soft-

max. L2D
bbox represents the normalized L1 2D bounding box,

and L2D
iou and L3D

iou the IoU loss in 2D and 3D respectively.

¼1 to ¼4 are the trade-off parameters.

3.3.2 Loss Functions for Proposal Verification

For the three outputs in Eqn. 8, we have three loss terms as

follows,

L = Lcls + Lsize + ¼ · Lloc (13)

where Lcls is the Focal Loss [29] with the ³ value of 0.5 to

balance the number of positive and negative samples. The

Focal loss is used due to the imbalance introduced by the

explicit top-down proposal generation. Lsize are Lloc are

the loss functions for the 3D size and the 3D center respec-

tively. ¼ is an trade-off hyper-parameter. We use ℓ1 loss for

Lsize and Lloc. We set ¼ = 5 to induce the model to focus

more on the 3D localization refinement task.

3.3.3 Training

MonoXiver is trained using a total of 8 GPUs, with a batch

size of 64 for 24 epochs on KITTI (12 epochs on Waymo)

using the AdamW optimizer. The optimizer is set with

(´1, ´2) = (0.95, 0.99) and weight decay of 0.0001, ex-

cluding feature normalization layers and bias parameters.

The initial learning rate is set to 2.25e− 5, and it is reduced

by a factor of 10 at the 16th and 22nd epoch. Notably, the

entire second-stage training process takes merely 1.5 hours

on KITTI [14] using a single Nvidia RTX5000 GPU, in-

dicating the low computational overhead of our proposed

MonoXiver method. The training time on Waymo [51]

varies depending on the training data and training recipes of

off-the-shelf monocular 3D detectors. Overall, the second-

stage training on Waymo is much faster compared to train-

ing the backbone monocular 3D object detector, leading to

about a 3/4 reduction in training time.

3.3.4 Testing

During testing, we keep at most top-3 predictions per initial

anchor proposal with a score threshold of 0.03 (the score is

predicted from the proposed MonoXiver module). The final

prediction score is the product of the classification probabil-

ity predicted from the backbone monocular 3D object detec-

tor and the score computed by the MonoXiver module.

4. Experiments

We evaluate our MonoXiver on the well-established

KITTI [14] dataset and the large-scale Waymo [51] dataset.

We first show that our improved baseline detector outper-

forms previous SOTA methods on the KITTI benchmark

by a large margin. Then we show that we consistently im-

proved pretrained monocular 3D object detectors with lim-

ited computation overhead on both datasets. We further an-

alyze the contribution of each part of our MonoXiver in the

ablation studies.

4.1. Setup

Dataset. The KITTI dataset [14] consists of 7,481

training images and 7,518 testing images. In KITTI’s ex-

periments, we split the training data into a training subset

with 3,712 images and a validation subset with 3,769 im-

ages following [5–7]. We conduct ablation studies on the

defined split and report the test set results evaluated by the

official KITTI benchmark. The Waymo dataset [51] con-

tains 52,386 training and 39,848 validation images from the

front camera. In Waymo experiments, we use a subset of its

training set by sampling every third frame from the training

sequences following [22, 45].

Evaluation Metrics. The KITTI vehicle benchmark

evaluates detection results by the 40-point interpolated av-
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Methods Venues Extra Info.
APBEV |R40 ↑ AP3D|R40 ↑

Easy Mod. Hard Easy Mod. Hard

Kinematic3D [2] ECCV20 Temporal 26.69 17.52 13.10 19.07 12.72 9.17

AutoShape [34] ICCV21 CAD 30.66 20.08 15.95 22.47 14.17 11.36

DCD [25] ECCV22 CAD 32.55 21.50 18.25 23.81 15.90 13.21

MonoDistill [10] ICLR22 LiDAR 31.87 22.59 19.72 22.97 16.03 13.60

DID-M3D [43] ECCV22 LiDAR 32.95 22.76 19.83 24.40 16.29 13.75

DD3D [42] ICCV21 Depth 30.98 22.56 20.03 23.22 16.34 14.20

DFM [55] ECCV22 Temporal + LiDAR 31.71 22.89 19.97 22.94 16.82 14.65

Pseudo-Stereo [9] CVPR22 Depth + LiDAR 32.84 23.67 20.64 23.74 17.74 15.14

MonoFlex [59] CVPR21

None

28.23 19.75 16.89 19.94 13.89 12.07

GUPNet [35] ICCV21 30.29 21.19 18.20 20.11 14.20 11.77

DEVIANT [22] ECCV22 29.65 20.44 17.43 21.88 14.46 11.89

Homography [15] CVPR22 29.60 20.68 17.81 21.75 14.94 13.07

DimEmbedding [61] CVPR22 32.82 21.98 18.70 23.62 16.10 13.41

MonoCon [30] AAAI22
None

31.12 22.10 19.00 22.50 16.46 13.95

Our MonoXiver + MonoCon - 34.14 25.37 22.20 25.24 19.04 16.39

Table 2: Comparisons with state-of-the-art methods on the Car category on the KITTI test set. According to the KITTI

protocol, methods are ranked based on their performance under the moderate difficulty setting. We highlight the best results

in bold and the second-best results in underline.

Methods
AP3D|R40

↑ Relative

Easy Moderate Hard Improvement

SMOKE [33] 10.43 7.09 5.57

11%-33%SMOKE + Ours 11.58 9.40 7.75

Improvement +1.15 +2.31 +2.18

MonoDLE [39] 17.94 13.72 12.10

18%-22%MonoDLE + Ours 21.15 16.19 14.75

Improvement +3.21 +2.47 +2.65

MonoCon [30] 26.33 19.01 15.98

16%-20%MonoCon + Ours 30.48 22.40 19.13

Improvement +4.15 +3.39 +3.15

Table 3: The effectiveness of MonoXiver based on differ-

ent methods on the KITTI validation dataset. In order to

demonstrate the ability of the proposed MonoXiver to gen-

eralize across different detectors, we utilized three distinct

base detectors with varying levels of detection accuracy. We

observe that MonoXiver consistently yields significant im-

provements across all three base detectors.

erage precision (APR40) of 3D bounding boxes in 3D space

(AP3D|R40) and bird eye’s view (APBEV |R40) at IoU3D ≥
0.7. The prediction results are evaluated based on three dif-

ficulty settings, easy, moderate and hard, according

to the 2D box height, occlusion and truncation levels of ob-

jects. The vehicle detection results on Waymo are eval-

uated on two levels of difficulty including Level 1 and

Level 2 at IoU3D ≥ 0.5. The level is assgined based on

the number of LiDAR points included in each 3D box. Be-

sides the AP3D metric, Waymo uses the APH3D metric to

incorporate heading information in AP3D.

Methods
Level 1 Level 2

AP3D↑ APH3D↑ AP3D↑ APH3D↑

PatchNet [36] 2.92 2.74 2.42 2.28

PCT [54] 4.20 4.15 4.03 4.15

GUPNet [35] 10.02 9.94 9.39 9.31

GUPNet + ours 11.47 11.35 10.67 10.56

Improvement +1.45 +1.41 +1.28 +1.25

DEVIANT [22] 10.98 10.89 10.29 10.20

DEVIANT + ours 11.88 11.75 11.06 10.93

Improvement +0.90 +0.86 +0.77 +0.73

Table 4: The effectiveness of MonoXiver based on dif-

ferent methods on Waymo validation dataset. In order

to showcase the generalization capabilities of the proposed

MonoXiver on large-scale datasets, we conducted testing

on the challenging Waymo [51] validation set, utilizing two

SOTA methods. We observed consistent improvements in

performance.

Methods FLOPs Latency (ms) FPS

SMOKE [33]/ + ours 42.82/48.19 23/31 43/32

MonoDLE [39]/ + ours 77.44/82.80 22/31 45/32

MonoCon [30]/ + ours 56.22/61.50 18/25 55/40

Table 5: Computation overhead analysis. The GFLOPs is com-

puted based on an input size of (384, 1248), while the latency and

FPS are evaluated on a NVIDIA RTX5000 GPU.
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4.2. Experimental Results

Comparison with SOTA methods on the KITTI dataset.

We present the results of our proposed MonoXiver method

on the challenging KITTI vehicle benchmark in Table 2.

Notably, our method achieves the best performance across

different evaluation metrics while only using image-level

information, surpassing previous state-of-the-art methods

by a large margin. Specifically, we observe a significant and

consistent improvement from 2.44 AP (hard settings) to

2.74 AP (easy settings) absolute increase in AP3D for the

boosted MonoCon approach compared to the vanilla Mono-

Con approach. These consistent improvements demonstrate

the effectiveness of our method. More qualitative and quan-

titative results are provided in the Supplementary Materials.

Generalization abilities across backbone monocular 3D

object detectors and datasets. We evaluate our method

with various state-of-the-art backbone monocular 3D ob-

ject detection methods on the KITTI and the Waymo val-

idation set, reported in Table 3 and Tabel 4 respectively.

Monoxiver consistently demonstrates significant improve-

ments across different methods and different difficult lev-

els. Specifically, on the well-established KITTI dataset,

our MonoXiver is able to enhance various backbone de-

tectors with varying levels of detection accuracy by up to

33% relative improvement. On the challenging large-scale

Waymo dataset, our MonoXiver consistently improves the

performance of strong baseline methods GUPNet and DE-

VIANT by up to 1.45 AP3D on Level 1 and 1.28 AP3D

on Level 2. These results validate the effectiveness and

robustness of our approach.

Computation overhead. As shown in Table 5, although

our MonoXiver causes about an average of 8 ms overhead

compared with baseline detectors, it still achieves real-time

detection. We note that its inference speed could be im-

proved by optimizing the detailed implementation (e.g., we

still have for-loops in our current code, which can be easily

paralleled for better efficiency).

Qualitative Comparison. We show the visualization com-

parisons with MonoCon in Fig. 2. It shows that MonoXiver

achieves better 3D box center localization.

4.3. Ablation Studies

In this section, we report ablation studies of MonoXiver

structure and different bounding box branches on the KITTI

validation set. More ablation studies are provided in the

Supplementary Materials.

Effectiveness of MonoXiver structures. In this study, we

explore the importance of RoI feature (Table 6 a.), the con-

text information provided by geometric embeddings (Ta-

ble 6 b.), and our complete MonoXiver model (Table 6 c.).

In experiments a. and b., we replace the Perciver with a

MLP layer to fuse the appearance feature and geometry fea-

ture to keep similar parameter size.

Appearance Geometry Perciver Easy/Mod./Hard

MonoCon [30] - - - 26.33/19.01/15.98

a. ✓ - - 29.30/21.04/18.22

b. ✓ ✓ - 29.33/21.67/18.46

c. ✓ ✓ ✓ 30.48/22.40/19.13

Table 6: Ablation studies of MonoXiver structure on KITTI

validation set.

Rescore ResLoc ResDim Easy Mod. Hard

MonoCon [30] - - - 26.33 19.01 15.98

a. ✓ - - 29.66 21.41 18.38

b. ✓ ✓ - 30.32 22.30 19.04

c. ✓ ✓ ✓ 30.48 22.40 19.13

Table 7: Ablation studies of the effect of different branches

on KITTI validation set

Results show that the appearance feature plays the most

important role in performance improvement. When using

the appearance feature only, the Moderate AP is improved

by 2.39. The performance is further improved by 0.6 AP

and 0.7 AP after fusing with geometric embeddings and

Perciver. It shows that Perceiver effectively fuses informa-

tion between appearance and geometric embeddings.

Effectiveness of Different Head Branches. In Table 7, we

present the impact of different branches on the detection

performance of our MonoXiver. Since our method gener-

ates 25 proposals per each initial proposal, the rescoring

head branch plays a crucial role in filtering out false detec-

tions, leading to significant improvements by up to 3.3 AP.

The localization residual branch and the dimension residual

branch further enhance the performance by about 1 AP, and

we employ all branches to achieve a new state-of-the-art re-

sult.

5. Conclusion

This paper explores the task of monocular 3D object de-

tection. It begins with the strong observation that significant

improvements in detection performance can be achieved by

a local grid search based on initially detected 3D bound-

ing boxes. This leads to a novel denoising-based approach

called MonoXiver. The approach utilizes the Perceiver I/O

model to produce a unified feature embedding, leverages the

self-attention mechanism for proposal verification, and ul-

timately delivers high-quality 3D box predictions. MonoX-

iver can serve as a lightweight second-stage processing

module to significantly improve the accuracy of detection

results while only requiring 1.5 hours of training on a single

GPU card for the KITTI dataset. Comprehensive evalua-

tion experiments on the well-established KITTI benchmark

and the large-scale challenging Waymo dataset demonstrate

the effectiveness of our design, with a new state-of-the-art
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