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ABSTRACT.

An epidemic disease caused by coronavirus has spread all over the world with a strong contagion rate. We
present simulations of epidemic models constructed using real data to give a clear perspective and confirmation
on the effect of quarantine on the evolution of the infection and the number of infected, recovered, and dead
because of this epidemic in South Carolina in a time window (December 1, 2020, to June 1, 2021) when the
epidemic was relatively strong. We use CDC data for infected and dead populations covering the period December
1,2020, to June 1, 2021 in South Carolina to develop models and do simulations. There were no data available for
recovered populations in this period. Part of our goal is to estimate the number of recovered for the entire period.
The models and results are consistent with the data. The infection and recovery increasing in South Carolina do
not show improvement in this period. The number of dead people in this period tended to increase although by
small amount. Optimal control methodologies are considered where transmission, recovery, relapse of immunity
and death rates are considered as decision variables in minimizing the difference between the real and computed
COVID-19 infection and dead data. Effect of quarantine as intervention strategy is also considered as it is critical
issue. What we want to show is what could have been the outcome if quarantine had been implemented from the
very beginning. The progress of an infection in general is related not only to the present states, but also to its
historical states. To account for the effect of past evolution we add fractional differential equations models.

AMS (MOS) Subject Classification. 34H05, 34D20, 68T07, 92B20 Key Words

and Phrases. Optimal control, Reproduction number.

1. INTRODUCTION

The rapid spread of a disease in regions (epidemic) or the global outbreak of a disease
(pandemic), can have a detrimental effect on health systems and economical activities locally
and globally. Measures to reduce the pandemic spread include curtailing close interactions
between people using social distancing and face masks and vaccinations. Social distancing has
negative economic effects. It is useful to understand the significance of these interventions,
([41, [39], [53], [59D).

Mathematical models have been used in epidemiology for many years, going back to the
eighteenth century. Most of the models are compartmental models, with the population
divided into classes and with assumptions being made about the rate of transfer from one class
to another. Here we start by considering a Susceptible-Infectious-Recovered (SIR) model to
describe the spread of the virus and compute the number of infected and dead individuals.
There are models that include exposed and migration. The goal is to compute the number of
infected, recovered, and dead individuals on the basis of the number of contacts, probability
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of disease transmission, incubation period, recovery rate, and fatality rate. The epidemic
disease models help predict a peak of infected and dead individuals as a function of time when
dealing with a very short period of time. The population members decrease due to the disease
as dictated by the fatality rate of the disease. Generally the differential equations are solved
with a forward Euler scheme, ([29]).

In this paper we want to include memory effect. There are different mathematical ways of
dealing with memory issue. Modeling of memory effect in epidemic modeling has been done
in various areas of epidemiology. To give perspective one of the important applications is in
the modeling of HIV. There has been a continued effort in the mathematical modeling of the
dynamics and control of human immunodeficiency virus (HIV) by various authors ([11], [14],
[16], [19], [20], [33], [34], [47], [52], [56], [62], [67])- One of the earliest models dealing with
HIV is due to Perelson, Kirschner and De Boer ([47]). They consider the interaction of HIV with
CD4+ T-cells where the CD4+ T-cells consist of four population groups: uninfected T-cells,
latently infected T cells, actively infected T cells, and free virus. Much effort has been put
toward the study of the global dynamics of the HIV differential equation models. There has also
been a number of studies where optimal control techniques are employed( [9], [20], [27], [33],
[63]). Memory is an important feature in immune response ( [19], [55]). To include memory in
the model fractional differential equations(FDE) have been used([19], [20],

[27]).

Besides applications in HIV modeling fractional differential equations(FDE) have proved to
be valuable tools in the modeling of many phenomena in engineering, physics, and economics
([24], [25], [26], [40], [42], [48], [61]). Fractional differential equations have also been useful
in biology, fluid mechanics, modeling of viscoelasticity. The most fundamental characteristics
in these models is their nonlocal characteristics. That is, the future aspect of the model relates
not only to the present states, but also to its historical states.

A decision maker, leader must carry out various responsibilities such as controlling
epidemic while adhering to economics, budget, employment, industry requirements. The goals
that a decision maker has to accomplish are generally complex and involve conflicting
objectives, budget, scheduling. To deal with these types of situations, in addition to fractional
differential equation models, one could also consider impulsive control problems,
optimization, neural networks, multiobjective programming ([6], [7], [12], [14], [22], [23],
[32], [43], [44], [45], [49], [50], [60]).

We proceed by starting with a standard mathematical model using data mentioned above
and then introduce quarantine, quarantine and memory effects using FDE. The data we have
does not have all that we need. Our models need to be consistent with the available data while
giving us reliable information on unavailable data and significance of an intervention,
quarantine in this case. Quarantine was not very popular as was face mask in the period
considered.
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2. MATHEMATICAL MODELS

Mathematical and statistical methods provide essential input for governmental decision
making that aims at controlling an epidemic outbreak. Statistical methods frequently aim at
early detection of disease outbreaks ([53]). Another approach is to develop models that
indicate the outbreak dynamics using compartmental models ([53]). In compartmental models
we consider a fraction of the population to be susceptible, a fraction to be infected, a fraction
that has recovered. In some models exposed group is part of the model. Compartmental models
have been used to model HIV epidemic, malaria, and corona virus outbreak, ([28], [31], [41],
[53], [56],[60]). In this paper we start by considering SIR model. SIR model can be modified in
several ways, for example, by including demographics, deceased populations, hidden
population, i.e., exposed populations (SEIR). In an accelerating epidemic outbreak contact
tracing, the SEIR model needs to be modified to account for it. In the current paper our
objectives are to consider SIR and SIR-plus-quarantine models based on real data and control
methods and show the effectiveness of quarantine intervention to control the epidemic. We
first consider a model with no quarantine and then one with quarantine. Optimal control,
optimization/neural network approaches for the estimation of the parameters of the SIR
models using real time series data are important tools. We start with an SIR model with no
quarantine. The SIR model is formulated in terms of three populations of individuals. The
susceptible population, z1, consists of all individuals susceptible to the infection of concern.
The infected population population, z2, comprises the infected individuals. These persons have
the disease and can transmit it to the susceptible individuals. The recovered population, z3,
represents the immune individuals, who cannot become infected and cannot transmit the
disease to others.

We use CDC data covering the period December 1, 2020, to June 1, 2021. In this period
vaccination has been available although not taken advantage of by a lot of people. In addition,
social distancing and face making were not widely accepted interventions. We have data for
infected population and dead population. The recovered population for Dec. 1, 2020, is known
to be 115152. Constrained optimization and neural network(deep/reinforcement learning in
lieu of curse of dimensionality) methodologies are relevant in dealing with discrete models
([10],[54], [58], [63]). Neural network methodology can be used to come up with recovery,
contact, and reproduction rates. Number of recovered for the period was not available from
the CDC data.

We first present discrete model followed by basic SIR epidemic disease model where there
is no quarantine in either case. The total (initial) population, N, is categorized into four classes,
namely, susceptible, z1(t), infected-infectious, z2(t), and recovered, z3(t), where t is the time
variable.

The initial value problem

dz . .
- d—fl = Asc 21— (use)z —u- z:122(1/N), consider is

dz |

d—; = u- leZ(I/N) - (-U -+ f{[,')ZQ — (l"“SC)ZQ + - 2223(1/}\")

2z |

((I’_f‘ = V-Z9y — (#50)23 — U - ;52’33(1#\;)’

(2.1)



220 N. BEGASHAW*, G. COMERT*, AND N. G. MEDHIN**

where Asc = birth rate, usc = natural death rate, u=transmission rate, v=recovery rate,
w= death rate of infected, N=5149000, susceptible population in SC.
We solve the above system of differential equations by using MATLAB Euler-scheme.
Simulations of the results are shown below. To determine the necessary parameters, we used
data obtained from CDC and optimal control methodology.

3. DISCRETE MODEL

We use data covering the period December 1, 2020, to June 1, 2021. In this period
vaccination has been available although not taken advantage of by a lot of people. In addition,
social distancing and face masking have not been widely accepted. The discrete model is useful
to determine transmission, recovery, relapse, immunity, death rates from the infection for the
period considered day by day. We will refer to these parameters as the dynamic parameters.

We consider the following discrete model covering the period December 1, 2020, to June 1,
2021. We have data for infected population and dead population for this model. We are going to
rely on our model to estimate the recovered populations day by day covering this period. The
recovered population for Dec. 1, 2020, is known to be 115152. Constrained optimization and
neural network(deep/reinforcement learning in lieu of curse of dimensionality) methodologies
are relevant in dealing with the discrete models ([54], [58], [63]).

z1(i+1) = (1-vc)-Asc: N+ z1(i) — psc+ za(i)
-(1/(1 + exp(-u(0))))z1()z2()) (1/N) + (1/(1 + exp(-s(1))))z3 (1),
z2(i+1) = z2(i) + u(i)z1()z2(i)/N - (v(i) + 1 /(1 + exp(-w(1))) + psc)z2(i)
+1/(1 + exp(-r(i))) - z3(),
z3(i+1) = vc-Asc- N+ z3(i) + (1/(1 + exp(-v(1)))) - z2(7) — (usc

(3.1) +1/(1 + exp(-r(1))) + 1/(1 + exp(=s(1)))) - z3(1),

In this model, Asc=.058 birth rate; usc=.0095, natural
death rate vc =.40, vc - N represents proportion of
vaccinated people, N=the susceptible population,
5149000, transmission rate=1/(1+exp(-u(i))), recovery
rate=1/(1+exp(-v(i))), relapse rate= 1/(1+exp(-r(i))),
immunity rate=1/(1+exp(-s(i))), death rate from
infection=1/(1+exp(-w(i))).

Thus, the number of recovered compartment, z3, increases by vc-N, whereas the susceptible
compartment z1 increases by (1-vc)-Asc-N. We see the recovery, relapse, and death rates are
numbers between zero and 1. The optimization model determines what are appropriate.The
number of infections arising from an infected individual is then modeled by the number Ro(7)
given below.

A(i) = (u(i)z(i,1)/N)/(v(i) + w(i) + psc)
Ro(i) = (A®) + 1/2+/A(0)? + 4v(i)r (i) /((v(i) + w(i) + pse) (puse + (i) + s(i)))

The dynamic parameters of interest are obtained by minimizing the objective function
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where
C(1)
D()
E(i)

> (C(0)* + D(i)* + E(i)*)

z

(z2(D) - Inf(1)),

((1/(1 + exp(-w(2)))) - z2(7) - Dead(1)),

(z2(i) - z3(D))-

221

subject to the discrete model above. In the objective function above, Inf{i) is the number of
infected people at or on the i-th date after December 1, 2020. The numbers are gotten from
CDC. Likewise Dead(i) represents the number of dead people. The quantity E(7) represents the
difference between the number of infected people according to our model z2(i), and infected
people, Inf{i), gotten from CDC data. We represent the recovered people by z3(i). Infected and
recovered and contact rates based on the discrete model are shown in Fig. 1 and Fig. 2

0.0103038

0.0103036

0.0103034

0.0103032

0.010303[

0.0103028

Figure 1. Infected Recovered, Discrete

Model.

recovered graph.

0.0103026
0

Figure

2. Tansmission rates
Discrete Model

Thus, the number of recovered compartment, z3, increases by vc:N, whereas the susceptible
compartment z1 increases by (1 - vc) - Asc- N. We see the recovery, relapse, and death rates are
numbers between zero and 1. The number of infections arising from an infected individual is
modeled by the reproduction number Ro(i) given below. The average basic reproduction
number is 1.6133. We note that it is slightly bigger than 1 consistent with the infected-
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4. CONTINUOUS MODEL-OPTIMAL CONTROL APPROACH

Mathematical models are important in analyzing the spread and control of infectious diseases.
The model formulation requires carefully designed models with appropriate assumptions, and
variable parameters. Mathematical models have been critical in the study of infectious diseases
([13], [21], [29], [53], [54]). They have been used in studying tuberculosis ([50]), HIV ([31]), and
dengue fever ([3]) models, etc. The aim here is to start with appropriate model and relevant
parameters to be determined. Among the parameters of importance to be determined are contact
rates u, recovery rates v, relapse rates r, infection reproduction rates Ro, death rates w, immunity
rates s. We also include the role of vaccination. The dynamic parameters obtained in the discrete
model serve as starting parameters in the model here and the later ones. Although vaccinated
people are unlikely to be infected contributing to immunity, there is still a possibility of relapse. In
the continuous models we use a slightly different objective function from the discrete model where
the aim is for infected population in the model to follow the data of CDC infected people. In the
continuous model the CDC data of dead people is included in relation to the susceptible and
infected people. We expect the infected population to go down due to quarantine and so it should
not be expected to align with the CDC data of infected people. Optimal control related epidemic
models are also considered in ([5], [8], [14], [15], [34], [35], [36], [37], [38], [46], [50], [51], [64]).

We first consider dynamics with no quarantine. We would like to consider the following
problem.

T
min{/(; {(w(t)z1(t) — Dead(t))* + (v(t)z2(t) — 23(t))* + (w(t)z1(t) — 22(t)*}dt}

subject to
dz r r
i (1 —wve) - Ase - N — psez —uziz2(1/N) + s - 23 = f
dZQ . .
E = ?1'-3122(1/1\’) — ('U -+ ’U,’)ZQ — Hsc 22 + rzy = f‘z,
dz: .
T; = vc-Ago - N + vz — figozs — 122 — S23 = f3.
dt

(4.1)

The adjoint equation is

dP1/dt = 2(uz1- z2)u + (usc+ uzz/N)P1 - (uzz/N)P2, dP2/dt =
2(wzz2 - Dead(t))w + 2(vz2 - z3)v - 2(uz1 - z2) + (uz1/N)P1
—(uz1/N - v —w - usc)P2 - vP3,
(4.2) dPs/dt =-2(vz2-2z3) = SP1—-rPz2+ (usc+r + s)Ps.
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Next we construct the Hamiltonian.
Set

fo(t) = (w(t)z1 - Dead(t))?+ (v(t)zz - z3)% + (u(t)z1 - z2)2
Next,

dfo/0u =2(uz1- z2)7,
dfo/0v =2(v)z2- z3)z2,
dfo/0w =2(wzz2 - Dead(t))z2.

dfi/0u =-z1z2/N,

dfi/ov =0,
dfi/ow =0.
df2/0u = ziz2/N,
df2/0v =-272,
of2/0w =-Z2.
dfs/du =0,
0f3/0v = z2, Of3/0w =
0.
0H/0u(t) = fo(t)u(t) - P10f1/0u - P20f2/0du - P30f3/0du,
0H/0v(t) = fo(t)v(t) - P1df1/0v — P20f2/0v — P30f3/0v,

OH/OW(E) = fo(Ew(t) - P1)dfi/dw — P23fs/dw — P3dfs/dw.

Finally we update our control variables.

u(®) = u(t) - deli- 9H/du(t),
w(t) = w(t)-delz- 0H/dw(t),
v(t) = v(t) - dels- dH/dv(t).

Again, we use the CDC data of infected population and dead people day by day from
December 1, 2020, to June 1, 2021. We use our model to estimate the number of recovered
people. The following figure (Fig. 3) represents the recovered (green) and infected (blue)
populations confirming what we expect.

We see that the number of infected populations increases until mid-April. The number of
recovered populations follows the pattern of infected populations. The number of recovered
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people becomes closer to the number of infected populations. Recovery rates, transmission rates
and reproductions rates are also presented. Corresponding infected, recovered and susceptible
states are shown in Fig. 3, Fig. 4 and transmission, recovery and reproduction rates are in Fig. 5,
6, 7, and the average transmission rate=0.0391, average recovery rate=0.0405. From the state
equation (4.1) we consider

dzo .
il uz129(1/N) — (v + w)ze — pscze + 123
dzg
(4.3) il (psc)zg — rze — sz3.
We rewrite this equations as
dz
— = (F+V)z,
(4.4) dt ( ) where
uzy /N r
(45) (0 0 ,
o 1 = and 7
5210 . ; ’m‘
Figure 3. Infected Recovered
States, no quarantine Figure 4. Susceptible State, no
quarantine.
—U — W — lsco 0
V f—
(4.6) 0 —lsc —T — S8 ]
Now,
Py uzy /(v 4w+ pse) r/(se +r+s)
(4.7) v/(v+w+ psc) 0
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A = (0 1/N/ 00D + )+ ),
Ro(i) = Q) +1/2/AQ) + 20(@r() /() + ) + usc)uso + (D) + 5(0)
(4.8)

The dominant eigenvalue of -FV -1is Ro (4.8) and the average of Ro(i) is 1.0314 which is less
than what had in the discrete model. A sketch of the reproduction number is shown. We have
evaluated the reproduction number for each day. We note it is slightly bigger than 1 consistent
with the infected-recovered graph. Below, Table 1 shows for the first 10 days of May 2021 the
number of susceptible, infected, dead, and recovered when there is no quarantine in our model
from the beginning Dec. 1, 2020 to the end of our data ]une 1,2021.
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Figure 6. Recovery rates.

[y oot nmeer

Figure 7. Reproduction Number.

Table 1

Susceptible | Infected | Dead | Recovered
4654300 580560 | 9560 | 365670
4652700 581290 | 9570 | 365500
4651100 581800 | 9590 | 365310
4649500 582230 | 9590 | 365130
4647900 582830 | 9600 | 364940
4646400 583480 | 9600 | 364750
4644800 584190 | 9610 | 364560
4643200 584950 | 9620 | 364360
4641700 585670 | 9630 | 364160
4640100 585810 | 9640 | 363960

4.1. EFFECT OF QUARANTINE. In the infected and recovered figure resulting from the SIR model
above we see that the number of infected people is increasing. The figure of infected people shown
is in complete agreement to the data gotten from CDC. It is not acceptable to see the number is
increasing. It is known that the disease of COVID-19 is transmitted through different mechanisms,
such as hand contamination followed by mucosal inoculation, and droplets or aerosols
disseminated by coughing and sneezing. Some measures that control the transmission of COVID-
19 involve simple habits such as washing one’s hands continuously, sneezing into one’s hand or
elbow, use of face mask low mobility, quarantine. Quarantine includes all of these measures. From
now on we introduce quarantine. What we want to show is what could have been the outcome if
quarantine had been implemented from the very beginning. We will see a model where an initial
quarantine of 50,000 susceptible people, which decreases, leads to a significant decrease in the
infected population and corresponding increase in the recovered population. We modify (4.1) to
include quarantine of a small fraction of the population. We can contrast the effect of quarantine
by comparing Fig. 1, Fig. 3, 4, where there is no quarantine to Fig. 8, 9, Fig. 10,11,12 where there is
quarantine, which is our objective. We now consider our quarantine model:
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dz T T
dtl = (1—=we)-Asc N — psczr —uz122(1/N) + s+ 23 — Az124(1/N) + 0,24
dz:
d—; = uz22(1/N) — (v+w)ze — pscza + 123,
dzs
o = Ve Asc - N 4+ vzg — psozz — rze — 823,
dz, B}
(4.9) T: Az124(1/N) — 0124 — pscza.

In this quarantine model we use the dynamic parameters for contact, recovery, relapse and
immunity rates that were obtained in the discrete/optimal methods as starting parameters in
our control problem. The parameters 41,01 are chosen to be .01. Next, we proceed to solve the
differential equation (4.9). The simulations of the infected, recovered and quarantine
populations are shown in Fig. 8 and Fig. 9. The simulations confirm what we expect that
quarantine has a positive effect.

5. PRELIMINARIES FOR FRACTIONAL DIFFERENTIAL EQUATION MODEL

To account for the fact that the immune response involves memory we will consider a
control problem governed by fractional differential equations. For information on fractional
differential equation we recommend the references([1], [2], [19], [20], [48]). Let f: [0,0) ——
R. For -0 < a < b < oo the fractional integral of order a > 0 of f with lower limit zero is

defined as
wem LT f(s)
rlI.', f(f) - r(a) 'L (t _ S)lfu.

The left Riemann-Liouville fractional derivative of order a of fis given as

. 1 dn t f(‘?)
DY) = ——— /d. t>0,n—1<a<n.
DiSH) ['(n—a)dt® (t — s)ati-n 5 v>0m sasn

The right Riemann-Liouville fractional derivative of order a of fis given as

1 d b f(s)
L Dr) n - . ; - ;
t b f(f) F(ﬂ O")( di_) ./t (S t)(l'+—1*n (){57 t > 0, n 1 < o <n.

The right Caputo derivative of f of order a with lower limit zero is given as

n—1 .
: t* ok
§DRf(t) = §DF [f(t) =D 5 0)], t>0, n—1<a<n.
k=0
The right and left Caputo derivatives, in integral form, are given as

TR b fs) ‘
SDt f(t) - F("I’L . O[) /a (1. _ !S)Q:Jrl*'n, d.S:

; 1 " f(s)
(1 D(}‘ t — / o d( .
a b f( ) F(n o (1") J (é _ t)u—i—l—n S
Fractional differential equations and models are considered in ([17], [18], [30], [57], [65],
[66]).




228 N. BEGASHAW*, G. COMERT*, AND N. G. MEDHIN**

410

35
ab
25
g L
21y
\
.y"L-'n
15 n,
LM
\
\r 3
s Voo
Vot N
Ly
s | AT :
5
0 20 a0 60 80 10 120 140 180 180

t s Infected, Recovered after Quarantine

Figure 8. Infected Recovered after

- 104 Quarantined
I T T T T T T T 1
Quarantined
4995
499}
4.985
O 498t
4975
487
4965
456 L L L L . L L L L |
0 20 40 60 80 100 120 140 160 180

Figure 9. Quarantined.
The initial value problem

C a
oDef(t) = fltx(t), 0<a<1
(5.1) x(to) = Xxo

is equivalent to the nonlinear Volterra integral equation([48]):
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x(t) = xo + ﬁ /Ot(t —5)* (s, 2(s))ds.

In this paper we takea = 0.9.

6. PROBLEM STATEMENT

Let the functions f: [to, T] x R* x R3 —— R be such that f{-,x,u,v,w) is measurable for fixed
(x,u,v,w). For fixed t and u,v,w, the function fis continuously differentiable in x. For fixed ¢, f{¢,)
is continuous. We also assume that

koxf(t,x2,u2,v2,w2) = Oxf(t,x1,u1,v1i,wi)k + kf(t,x2,uz,v2,wz2) - f(t,x1,u1,v1,v1)k

< K{kxz - xak + k(uz,v2,w2) - (u1,vi,wi)k},
where K is a fixed constant.
Now, we consider the following fractional differential equation

C gq
0 Dex(t)

(6.1) x(to)

Suppose we consider the following optimal control problem
e

(P) min{J(x,u,v,w) —./0 {Fo(z(t), u(t),v(t), w(t))dt}

ftx(O)u(t),v(t)w(t)),0<g<1,0=to<t<T

Xo0.

subject to
C q
oDf(t) = fex(@u)v(t)w(t)),0<qg<1,0=to<t<T
(6.2) x(to) = xo.

Assume that problem (P) has a solution ("x, (u,v,” w)).

The adjoint equation has the form
(6.3)

P(s) = g7 [ (€57 [PODL(E2(6),0(6),5(6), 0(6))+0: Folé, 26), 46). 6). w(E))de
We now define the Hamiltonian by

(6.4)

H(tx(t),P(t),u(t),v(t)w(t))) = P(t) - fltx(t)u(t),v(t),w(t)) + Fo(tx(t),u(t),v(t),w(t)).
Then, for any (u,yw) € U,

(6.5) H(t,x™(t),P(t),u(t),v(t),w(t)) =2 H(tx (£),P(t),u (t),v (t),w(t)) ae. t.
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7. APPLICATION TO QUARANTINE MODEL

We consider the optimal control problem

(P) min{J(z,u,v,w) = ./o {(w(t)z (t)—Dead(t))*+(v(t) za(t)—23(t))>+(u(t) 21 (t) —2z2(t)* }dt }

subject to
Diz(t) = (1= (1-vc)-Asce N - uscz1 - uzizz2(1/N) + s - z3 - A1z1z4(1/N) + 0124,
c o Dlz(t) = = uziz2(1/N) - (v + w)zz2 - usczz + rz3,
§DJz(t) = = vc-Asce N+ vzz2— pisczs - rzz - 523,

(71§ D{z4(t) = A1z1z4(1/N) - 0124 — uscza.

where z1 represents susceptible population, zzinfected population, z3recovered population, z4
quarantined population. The control u is transmission rate, v death rate, w recovery rate, r
relapse rate, s immunity rate. To numerically solve the control problem we employ the control
updating procedure we used in the previous control problem.

Using the control problem the simulations of infected, recovered, quarantined, susceptible
during quarantine are shown in Fig. 10 11 12

1
4p20

t sinfected, Recovered after Quarantine

Figure 10. Quarantine Infected Recovered
FDE Model
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- =10 Quarantined FDE Model
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Quarantined FDE Model

Figure 11. Quarantined FDE Model.

Figure 12. Susceptible During Quarantine FDE model

Table 2 uses the first 10 days of May 2021 if quarantine were applied from the beginning,
i.e., December 1, 2020. There is a significant difference in the number of infected and
recovered from what we see in Table 1 when there is no quarantine. The number of dead
people is slightly lower than in the model without quarantine and slightly less does not
fluctuate much.

Table 2
Susceptible | Infected | Dead | Recovered
4673400 58500 | 9600 369300
4671300 58200 | 9600 369300
4669700 57800 | 9600 369300
4667800 57700 | 9600 369300
4665400 58200 | 9600 | 369100
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4663200 58700 | 9600 369100

4661700 58400 | 9600 369400

4660300 57600 | 9600 369600

4658700 56900 | 9600 | 369900

4656100 56700 | 9600 369800
8. CONCLUSION

The worldwide spread of corona virus exerts enormous pressure on healthcare systems,
societies, and governments. Therefore, predicting the epidemic dynamics is an important
problem from a data science and mathematical modeling perspective. The motivation of the
current work was to explore the potential of sequential data assimilation to create a regional
epidemic model as a forecasting tool and effectiveness of interventions such as quarantine.
The standard epidemic SIR-type models implement a compartmental description under the
assumption of homogeneous mixing of individuals.

More realistic modeling approaches must account for spatial heterogeneity due to time
varying disease onset times, regionally different contact rates, and the time dependence of the
contact rates due to the implementation of containment strategies. However, extensive data
are not currently available. Thus, we must construct models where control theory,
optimization, and neural network methodologies to approximate missing and necessary data
are used. In the work we did relating to data from December 1, 2020, to June 1, 2021, we rely
only on available data of infected and dead populations to have some ideas on the
transmission, recovery, and relapse rates and the relevance of certain interventions such as
quarantine.

In Fig. 1, 3, 4, where there is no quarantine, we see an increase in infection although not
significant and the recovered population increases and then levels off and tends to decrease.
This is in contrast to Fig. 8, 10, where we see the infected population goes down and the
recovered population tends upward when quarantine is introduced. In Fig. 4 the susceptible
population decreases not as much as when there is quarantine intervention Fig. 12. We can
infer from these simulations that quarantine would make a significant impact in decreasing
infection population and decreasing the susceptible population, i.e., susceptible people are
protected. Thus, quarantine is an effective tool in curbing the spread of the virus.
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