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ABSTRACT. In this paper we present a nonlinear programming approach for selecting an optimal scheduling of freight
transportation from sources to destinations to maximize revenue. The decision variables in the model are number of batches to be
transported from sources to destinations. These decision variables take on integer values. In our model we treat them as continuous
variables and add a nonlinear constraint which will enforce the variables to take on integer values at the optimal solution. The
nonlinear constrained problem is transformed to an unconstrained optimization problem using a penalty method. We use gradient
descent to find the optimal solution of the unconstrained optimization problem. A numerical example with two sources and two
destinations is provided.
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1. Introduction

Freight delivery problem gained even more importance with recent supply chain disruptions, increase in cost of transportation,
global warning awareness, and sustainability objectives. Cooperative freight logistic is one of the alternative framework that intends
to minimize costs and drawbacks for all. The problem can be solved in various time intervals and sizes using game theoretic
(combinatorial games). Formulations can be equivalently explained as programming and usually solved with mixed linear integer
programming.

In the literature, there are number of game theoretic approaches (CITE).

In this paper, we present a nonlinear programming approach to determine an optimal scheduling of freight transportation from
sources to destinations. Items to be transported are grouped in batches. The decision variables in the nonlinear programming model
presented are the number of batches from sources to destinations. These decision variables take on integer values. In our approach,
we treat these decision variables as continuous and add a nonlinear constraint to our model to enforce them to take integer values
within a specified tolerance limit at the optimal solution. The constrained optimization problem is transformed to an unconstrained
minimization problem using a penalty method. A gradient decent method is used to find an optimal solution of the unconstrained
optimization problem.

2. Problem Statement and Model

In this section we define the problem that we want to address in this paper and also provide the model that describes the problem.
Suppose we have s sources from where items in batches are to be picked up and delivered to d destinations.

Let S(k),k = 1,-+-,d be the number of batches to be delivered to destination k from all the s sources.
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Suppose the maximum number of batches source i can transport is a(i),i = 1,-*,s.

We assume that a(i) = f(k), Vi=1,---,s, Vk =1, ,d.

Let
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1. c(,k) = cost of transporting a batch from source "to destination k, *=1,---,s, k=1,---,d

2. b(’ k) = cost of transportation (which include fuel, storage cost, and other transportation costs) of a batch from source " to

destination k, *=1,++,s, k=1,--,d

3. x(,k) = number of batches to be transported from source "to destination k, *=1,---,s,k=1,---,d

The cost is to the suppliers at the sources who want to deliver batches of items to various destinations. For the freight transport
companies this cost will be a revenue. From the freight transportation company’s point of view, the problem is to maximize revenue

following the definitions of §(k) and a(i) described above. Our goal thus is to maximize

s d s d

max{XXe(R)x( k) - XXb(Lk)x(Sk)}
=1 k=1 =1k=1

subject to the restrictions described above. The optimization model described below describes the problem.

s d s d
max{XXc(Lk)x(K) - XXb (k)X ()}
=1k=1 =1k=1

subject to
Blk)

1—e< E:(:_‘J‘\‘("'“?'M_")2 <l4e k=1,---,d;f=1,---.5
i=1

S a(tk) < Blk), k=1,-.d

£=1s

0<B(k)<m(k), k=1,---.d

OSX(‘,k)Sa(‘), ‘:1’-..15;](: 11"';d

in the model above, The parameter A is a positive number to be chosen (eg 5, 10, 15 etc). The parameter is a very small positive

number (eg 0.0005) to be chosen. For each k, m(k) is an upper bound for (k) to be chosen. The first constraint is to enforce the

decision variables x(,k) to take on integer values. Unless you match one of the i’s only the best candidate will be close to 1.

We use a penalty method to convert the above constrained optimization problem to an unconstrained minimization problem as
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follows.
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Li>0,i=1,---,6 are penalty parameters. The function w is defined as follows,

(z) = r if x>0
Y 0 i <o

The derivative w0(x) is

() = 1 if 2>0
1o if z<0

w is not differentiable at x = 0. However, take the derivative at x = 0 to be 1. We use gradient descent method to find optimal solution
of the above unconstrained minimization problem. The optimal solutions x(,k) are also optimal solutions to the original constrained

optimization problem. We present an algorithm to find optimal solution of the unconstrained minimization problem.
Algorithm

Initialize Parameters in the model
Choose 6 the step size in gradient descent for

n=1: maxiter do
) (ZL(A) e AR - _ 1 _ 20) w
i
1—e— $BF) —A@(tk)-i)? .
( € Zz:l e = 0) wzz 1 else wz=0 end if
S e w (@ k) —a(0) > 0) wa_ _
=1 else wa=0end
if (ZR @ (i =i, k) — Bk) > O)) “3_ 1 else w3=0
d 3(k n(k >
end if (( k=1 Alk) = m( )) 0) =1else ws=0end

Bk )) >
if ( (E" 1 U6 1 else ws=0 end
Compute the gradient of the objective function.

Update x( k)
Update the objective function

=1else w1=0end if
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end

3. Numerical Examples

In this section we provide two numerical examples. In both examples we consider two sources and two destinations. s = 2 and d

= 2. The difference between the two examples is the initial approximation to the solution and the number of iterations.

Example-1
In this example, the cost of transportation of a batch from source i to destination j is given by the following matrix where cjis the

cost per batch from source i to destination j. These costs are revenues for the freight transportation companies.
25 17
c=
18 17,

The operational cost of transportation for the freight companies from source i to destination j is given by the following matrix where

2 :
b= ’
1 2

f=[15,9 «a=1[16,4 m=][16,100 A =14 €= 0.000005

bjjis the cost per batch from source i to destination j.

Liis taken to be 10¢for all i = 1,---,6. The initial approximation to the solution x(i;) is given by the following matrix. The step length

5 6
xr =
2 3,
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parameter 6 = 10-6



xijis the number of batches transported from source i to destination j. A MATLAB code is written to ex-cute the algorithm and obtain
the optimal number of batches from sources to destinations. The optimal solution is given by the following matrix.
( 13.9995 3

52

Thus in the optimal solution, 14 batches are transported from source 1 to destination 1, 3 batches from sources 1 to destination 2,
5 batches from source 2 to destination 1, and 2 batches from source 2 to destination 2. The optimal objective function value (that is
the revenue for the freight company) for the maximization problem we had at the beginning is found to be 478.9875.

Example-2
In this example we take the same values of the parameters as in the first example. The maximum number of iterations for this
example is half of the number of iterations used in the first example. The initial approximation of the solution in this example is

12 4
r =
3 2
The optimal solution is found to be the same as the one obtained in the first example.

13.9995 3
xr =
52

given by the following matrix.

Thus in the optimal solution, 14 batches are transported from source 1 to destination 1, 3 batches from sources 1 to destination 2,
5 batches from source 2 to destination 1, and 2 batches from source 2 to destination 2. The optimal objective function value (that is
the revenue for the freight company) for the maximization problem we had at the beginning is found to be 478.9875. The optimal
solutions and the optimal objective function values in the two examples are the same. We took two different initial approximations
of the optimal solution and obtained the same optimal solution in both cases.

4. Conclusion

In this paper, we presented a nonlinear programming approach to determine an optimal scheduling of freight transportation from
of sources to destinations. Items to be transported are grouped in batches. The decision variables are the number of batches from
sources to destinations. These decision variables take on integer values. A nonlinear constraint is added to the optimization model
to enforce these decision variables to be integers within a tolerance limit of (which is taken to be a small number). We transformed
the constrained optimization problem to an unconstrained optimization problem using a penalty method. A gradient descent
method is used to find an optimal solution of the unconstrained optimization problem. The choice of the step length in the gradient
descent method depends on the norm of the gradient of the objective function. We select the an appropriate step length by trial and
error. The initial approximation of the solution also plays an important role in the convergence of the algorithm to an optimal
solution. There is no rule for the choice of the initial approximation of the solution but starting with some feasible solution will help.
The number of iterations needed to get to n optimal solution depends on the problem and one has to make an adjustment of to the
maximum number of iterations (increase or decrease) based on the outcome of a solution to the decision variables until we get
integer or close to integer values within the tolerance limit.

The objective function in the maximization problem is linear and there could be more than one possible solution to the problem. In
the optimal scheduling problem, there could be a number of sources, a number of destinations, many batches of items to be
transported from sources to destinations. A single carrier (truck company) may not be able to perform all the task. Once the optimal
scheduling is determined, different carriers can cooperate and share revenue based on the task each carrier performed.

For example, a Shapley value can be used to divide the revenue among the carriers who cooperated to perform the task.
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