Sparse Learning of Dynamical Systems in RKHS:
An Operator-Theoretic Approach

Boya Hou' Sina Sanjari ! Nathan Dahlin! Subhonmesh Bose' Umesh Vaidya?

Abstract

Transfer operators provide a rich framework for
representing the dynamics of very general, non-
linear dynamical systems. When interacting with
reproducing kernel Hilbert spaces (RKHS), de-
scriptions of dynamics often incur prohibitive data
storage requirements, motivating dataset sparsifi-
cation as a precursory step to computation. Fur-
ther, in practice, data is available in the form
of trajectories, introducing correlation between
samples. In this work, we present a method
for sparse learning of transfer operators from /3-
mixing stochastic processes, in both discrete and
continuous time, and provide sample complex-
ity analysis extending existing theoretical guaran-
tees for learning from non-sparse, i.i.d. data. In
addressing continuous-time settings, we develop
precise descriptions using covariance-type oper-
ators for the infinitesimal generator that aids in
the sample complexity analysis. We empirically
illustrate the efficacy of our sparse embedding ap-
proach through deterministic and stochastic non-
linear system examples.

1. Introduction

Transfer operators such as the Koopman and the Perron-
Frobenius (PF) operators are central to global analysis of
complex dynamical systems across a variety of fields, includ-
ing biology, engineering, finance, and physics. In contrast
to direct finite-dimensional, nonlinear state-space descrip-
tions, operator approaches offer infinite-dimensional, but
linear system models. The spectra of such operators can be
utilized to characterize basins of attraction, perform model
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reduction, propagate uncertainties and analyze global stabil-
ity of the dynamics among other application uses. Taking a
biological context, for instance, protein folding conforma-
tions can be understood in terms of metastable sets, which in
turn may be estimated using the eigenvalues and eigenfunc-
tions of transfer operators describing underlying molecular
dynamics (Klus et al., 2020a).

Practically speaking, approximations to transfer operators
can be computed from data. Of the existing parametric
methods available, extended dynamic mode decomposition
(EDMD) (Williams et al., 2015), and its continuous-time
analog Mauroy & Goncalves (2019); Klus et al. (2020b);
Niiske et al. (2023) are perhaps the most frequently used.
Given the difficulty of selecting a proper set of basis func-
tions in such techniques, non-parametric approximation
methods employing operator embeddings within RKHS
were proposed in (Williams et al., 2014) and (Klus et al.,
2020a) for discrete and continuous time systems, respec-
tively. While such methods typically enjoy sample com-
plexity bounds independent of the underlying system state
dimension, they suffer from other drawbacks. In particular,
as kernel-based methods automatically produce a set of ba-
sis functions from data, the resulting system descriptions
grow with input dataset size, making scalability a key hurdle
to their usage (Lever et al., 2016).

Sparsification, the process of discarding selected input data
found to be redundant in some sense, is a common ap-
proach to improving scalability of kernel methods (Engel
et al., 2002; Wu et al., 2006; Richard et al., 2008; Koppel
et al., 2017). In this paper, we study the sample complexity
impacts of coherency-based (Richard et al., 2008) sparse
learning on transfer operators interacting with RKHS. To
the best of our knowledge, for discrete-time settings such
as Markov chains, existing analyses in this vein have been
limited to the following cases: (i) embeddings are estimated
from sparsified i.i.d. input/output data (Hou et al., 2021),
and thus are not applicable to the case where only a collec-
tion of trajectories is available (ii) the process is mixing but
stationary (Mollenhauer et al., 2020; Kostic et al., 2022), and
no sparsification is considered. Here, under the assumption
that system dynamics can be described by a non-stationary,
[B-mixing process which converges to a unique stationary



Sparse Learning of Dynamical Systems in RKHS: An Operator-Theoretic Approach

distribution, we establish sample complexity bounds for
transfer operator learning, given correlated, non-stationary,
and sparsified data.

In many applications, it is desirable to study continuous-
time system models. Operator theoretic analysis of such
systems centers around the estimation of the infinitesimal
generator of transfer operator families, parameterized in
time. Prior work has connected such generators to RKHS,
and offered effective estimation algorithms under minimal
assumptions (Klus et al., 2020a; Rosenfeld et al., 2019).
Still, key theoretical properties of embedded generators, in-
cluding their domain and the continuity of their associated
operator families have yet not been rigorously established,
a gap that this work bridges. Further, embedding gener-
ators within an RKHS requires that partial derivatives of
RKHS elements can be represented within the same RKHS,
a result that heretofore has only been established in cases
where the underlying state space is compact (Zhou, 2008).
As we target SDE-driven dynamics where the system do-
main is not compact, we develop an alternative sufficient
condition for closedness under partial differentiation based
upon boundedness and decay of the partial derivatives of
the kernel.

The representation we develop for embedded generators in
terms of covariance-type operators allows for application of
our discrete-time sample complexity analysis methodology
to continuous-time settings. We prove sample complexity
bounds for learning embeddings of generators correspond-
ing to non-stationary, S-mixing processes.

Our key contributions are as follows: (a) We provide sam-
ple complexity bounds for learning transfer operators from
sparsified data produced by non-stationary S-mixing pro-
cesses. (b) We define generators of such operator families
for continuous-time systems, and characterize their domains
among other properties. For this purpose, we study partial
derivatives of functions in RKHS over non-compact spaces.
(c) We characterize these generators in terms of covariance—
type operators and provide sample complexity guarantees
for learning them in RKHS.

Section 2 serves as a prerequisite for learning dynamical
systems using RKHS. For the discrete-time case, a sparse
learning algorithm based on both i.i.d. samples and tra-
jectories is proposed in Section 3 and 4, followed by the-
oretical analysis. Sections 5 and 6 are devoted to defining
and characterizing generators of transfer operator families
in continuous-time settings. A data driven algorithm with
sample complexity guarantees is presented in Section 7.

2. RKHS and Conditional Mean Embedding

We begin by formally defining an RKHS. See Muandet
et al. (2016) for an introduction. Let X be a subset of an

Euclidean space and x : X x X — R be a continuous,
symmetric, positive semi-definite kernel. Define # as the
RKHS associated with the kernel x — the completion of the
span of {¢(z) := k(x,-) : € X}, equipped with the inner
product (-, -), satisfying (¢(z), ¢(y)) = k(z,y). Here, ¢
is called the feature map for kernel «. The inner product
satisfies the reproducing property, given by (¢(z), f) =
f(z) forallz € Xand f € H. The norm associated with
H is defined as || f||lx = /{f, f) for f € H. Consider
a probability space (2, F,P) with Borel o-algebra F and
a probability measure P. Let X : 2 — X be a random
variable with distribution Px. The kernel mean embedding
(KME) of Px in H is the Bochner integral

upy = Ex [k(X,)] for X ~ Px. (1)

Under measurability and boundedness assumptions on
(see Muandet et al. (2016, Lemma 3.1)), up, € H.

Suppose that P(X,Y") denotes a joint distribution over X x
X, then P(X,Y’) can be embedded in the tensor product
space Hg := H&QH, per Berlinet & Thomas-Agnan (2011),
as

Cxy = Exy[¢p(X) ® o(Y)] = pipyy » 2

where Hg is equipped with the kernel k), defined by

ke ((T1,y1), (T2,92)) = k(z1,22) K(Y1,92), (3)

for 1, x2, y1, Y2 in X. Its joint feature map is ¢ (x;,y;) =
k(xi,) K (yi, ). Let HS(H) be the Hilbert space of Hilbert-
Schmidt (HS) operators from H to H, endowed with the
norm || Al = e | Aesll5, for A € HS(H), where
{ei}ien is an orthonormal basis of H. In (2), we identify
Cxy as an element in the tensor product space. Since HQH
is isometrically isomorphic to HS(#) (Aubin, 2011), it can
also be viewed as an HS operator Cxy € HS(H) that
satisfies

Exy[f(X)g(Y)] = (Cxvg.f), VfigeH. @)

Cxy is called the (uncentered) cross-covariance operator.
Also, define the (uncentered) covariance operator as

Cxx = Ex[p(X) @ ¢(X)], )

which can be viewed as the embedding of the marginal
distribution Py in Hg. Throughout this paper, we make the
following standing assumption.

Assumption 1. The kernel k is continuous and bounded as
Sup,ex k(x, &) < B, < oo for some B,, € R.

According to Steinwart & Christmann (2008, Chapter 4),
the feature map ¢ and x : X x X — R are measurable under
Assumption 1.
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Let Py, denote the conditional distribution of Y, given
X = x € X. The H-embedding of Py, is

HPy |, * Eyu[ (Y)‘X = LE] Vr € X. (6)

Per Song et al. (2009), the conditional mean embedding
(CME) operator Uy |x : H — H is a linear operator that
satisfies up,,, = Uy xd(x). Tf Cxx is injective and
Ey [f(Y)|X = 2] € Hforall f € H and z € X, then
Uy x =Cy XC@( x - For technical reasons, we consider its
regularized version,

U. = Cyx (Cxx +eid) ™", ©)

for € > 0, where id is the identity operator.

3. Transfer Operators via CME Operator

Let T be the set of nonnegative integers and { X }+c7 be a
R™-valued time-homogeneous Markov process defined on a
filtered probability space (£, F, {F; }et, P), where X is
the F;-adapted state of the system at time ¢. Such a stochas-
tic dynamical system can be described by the transition ker-
nel density p as P{X;;1 € A|X; =z} = [, p(y|x)dy for
measurable A C R”™. If f is a probability density over R",
then the Perron—Frobenius (PF) operator P : L'(R") —
L'(R™) propagates f € L'(R") as

(PF) (4) = / p(ylz) f(z)dz. ®)

If f is a scalar function of R™, then the Koopman operator
K L®(R") — L*°(R™) actson f € L>*(R") as

(Kf) () = / p(ylz) F(y)dy. ©)

These transfer operators are infinite-dimensional but linear.
They are related to CME as follows. When interacting
with RKHS, P propagates the embedded distribution of
states through the system dynamics. Now, let Xt be the
system state at the next time-step starting from X. We
have that Ux+ x : ppy — pp,, and it satisfies pp , =
Ux+ |x lpx per Song et al. (2009); Hou et al. (2021). Hence,
we identify P as the CME operator Ux +|x = Cx+ XC’; x
and its regularized variant as P, := U.. Furthermore, the
Koopman operator satisfies

(Kf,o(x)) (f,Ux+xo(x))  (10)

for all f € H. Thus, K is the adjoint of Ux+|x = P, given
by K := C}L( xCxx+. In this paper, we learn regularized
variants of P and K from data. While we report sample
complexity results for learning variants of P, they also apply
to the variants of /C.

= <fa,uX+|X> =

Covariance operators in (7) can be estimated from data via
sample average approximation given by (2). However, such

description grows with the size of the dataset as kernel
functions centered around each data point are added to the
empirical operator description; see Engel et al. (2002); Kivi-
nen et al. (2004); Koppel et al. (2017) for discussions. This
work extends the framework proposed in Hou et al. (2021)
that reduces the dictionary D to D, using the notion of co-
herency from Richard et al. (2008)). For a given dataset D
of M points (21,27 ),. .., (¥a, x},), we construct D, by
identifying a subset that satisfies

747 J

| < \Jtar ae(@ay),  aD

at,a}) is either (2, 2;5) or (x7,27),
and (x;,z;), (x;, 2] ) are in D,. One can construct such
a D, using the Gram matrix Wlth all elements in D; see
(Hou et al., 2021) for details. Let Z be the indices among

, M for which (z;,z;") are in D,. Then, the sparse

covariance operator estlmates are

for each 4, j, where (z}

Cyix = Zaicp (zF, 1) ,Cxx = Zﬁi@(mwi% (12)

1€T 1€T
where o (and similarly, ) is defined via o = G~1lg,
and G € R0 g ¢ RPY are G =

ke ((z], ), (xj, ;) and g; = & Zﬁl G,,; for each

iand j in Z. The compressed covariance operators then

become C,, x = {X X, X X}. The sparse PF estimator
~ ~ -1

is then defined as P. Cxx +e id) . The fol-

lowing result corrects a minor error in (Hou et al., 2021),
and is proven in Appendix A. We use the notation || - || to
denote operator norm, and define

E(v) =14 +/2log(1/v),

Theorem 1. Let D = ((z1,2]), -, (za,2;)) be a
dataset with M i.i.d. samples. Then, under Assumption

M/H (Mv s 5/2)0(572) :

ity at least 1 — 0 for § € (0, 1), if the sparse estimate Cxx
is positive semi-definite > , where

LE((S) + (1 - @”l) V1—A2. (13)

= 6X+X(

veR.

with probabil-

wl(M7775) = \/M

Tt was brought to our attention that an alternate analytical
framework presented in (Li et al., 2022), which in turn relies on
(Steinwart & Scovel, 2012; Fischer & Steinwart, 2020), holds
promise to improve the O (¢~ ?) dependency on the regularization
parameter €.

2Such an assumption is satisfied when coefficients 2 > 0. An
alternative estimate which satisfies the positive semi-definiteness

of Cxx is by using uniform weights,i.e., o = 8 = ‘1| 1. This will

introduce an additional error term in (13) depending on v, B, M,
which encodes the effect of weights adjustments.
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Decreasing the coherency parameter v leads to a less co-
herent dictionary and a smaller D.,. However, this sparsity
comes at the cost of approximation accuracy. One cannot
avoid this cost with more data if | D, | saturates—a scenario
that arises when the dynamics evolves over a compact do-
main as the next result (proven in Appendix B) reveals.

Theorem 2. Suppose {X;}icr takes values on a compact
subset K C R"™ and B, < k(z,2) < By, forallz € K. If
BJ, > \/7yBy, then for any possible sequence (zs,7]) €
K x K, any «y-coherent subset D., of the sequence satisfies
|Dy| < Cx/(1 — )" for some value Ck that depends on
K and k.

A kernel « is translation invariant if x(x, y) can be written
as a function of x — y. Such kernels, including the Gaussian
kernels considered in Section 9, satisfy B/, = B,;, meaning
that |D, | is bounded for all 0 < v < 1.

4. Sparse PF Operator Learning from
Trajectories

Samples of a dynamical system are often collected along
trajectories, i.e., non-i.i.d or time-correlated data. In this
section, we develop sample complexity bounds for PF op-
erator estimation based on data collected from trajecto-
ries of discrete-time systems. In our setting, dependencies
among samples weaken over time, and samples converge
to a unique stationary distribution II in a suitable sense.
Specifically, we assume that the data is drawn from a (-
mixing stochastic process, defined below. See Yu (1994);
Mohri & Rostamizadeh (2008); Vidyasagar (2013) for other
applications.

Definition 1. Agarwal & Duchi (2012, Definition I1.1) (3-
Mixing. Let {X;}ieT be a stochastic process on a filtered
probability space (2, { Fi }iet, P) where Xy is Fy-adapted
and takes values in X = R"™. Let Py (- | Fi) be a ver-
sion of the conditional distribution of X, given F;. As-
sume that 11 defines the unique stationary distribution of
the stochastic process over R™. Then, the 3-coefficients of
{X:}ier are defined as

Bls) =sup B[P (- F2) —Hllyy, (A4

where || - ||7v is the total variation distance. A process
{ X }ier is said to be B-mixing, if 5(s) — 0as s — oo.

In addition, we make the following assumption which re-
quires P;1 (- | F+) and the stationary density II to span the
state space.

Assumption 2. P, (- | F;) and II are absolutely contin-

uous with respect to the Lebesgue measure on X for all
t,s e T.

Before stating our results for the CME operator, we first
present a theorem on learning KME with trajectories. In

particular, sample complexity guarantees for learning KME
(1) fromi.i.d. data are studied in Smola et al. (2007); Gretton
etal. (2012); Lopez-Paz et al. (2015); Tolstikhin et al. (2017).
We extend these results to S-mixing stochastic processes.

Theorem 3. Let { X;}cT be a S-mixing stochastic process
defined on a filtered probability space (2, F,{F; }ieT, P)
where Xy is Fi-adapted and takes values in X = R", with a
stationary distribution 11. Starting from Xq sampled accord-
ing to an initial distribution Px, and evolving through the
system dynamics, let X*(m) = (X(l), . ,X(m)) be an
m-length sequence of states, sampled s time-points apart.
Suppose further that Assumptions 1 and 2 hold. Then, the
empirical KME estimate [i(X*(m)) = L > w(X s 0)
and the embedding 1 of 11 satisfy

~ s B _
1A(X5(m)) = pllyy < (/=B (8 —mB(s)) (15
with probability at least 1 — 0 for any mB(s) < § < 1.

According to Tolstikhin et al. (2017, Proposition A.1), KME
learning from i.i.d. data achieves O(m~'/2)-consistency
with m samples. The same learning rate is thus preserved
in the -mixing case when sub-samples are separated by s
steps. The spacing s controls the Markovian dependency
between subsampled data points. Increasing s reduces 3(s)
and tightens the bound. This tightening, however, comes at
the cost of discarding more samples.

One can utilize the techniques from Section 3 to con-
struct a sparse PF operator from a sub-sampled S-mixing
dataset. Theorem 3 applied to estimates in Hg yields

S < B2Z(5§ —mp(s)) /y/m with
probability at least 1 — ¢ for any mfB(s) < § < 1. The

above observation then yields the following result; the proof
is similar to that of Theorem 1, and is omitted.

|Coxex = Cxrx

Theorem 4. Under the same assumptions as Theo-
rem 3, |Po=P.| < Bupa(m.s,:8/2)0(2) for
mpB(s) < § < 1, with probability at least 1 —
5, where y(m,s,y;0) = (1—‘%") V1—72 4+
1 =(5_

\/—mu(é mp(s)).

5. PF Semigroup in Continuous Time

For a diffusion process X; (a time-homogeneous Markov
process in continuous time with almost surely continuous
sample paths), one can associate a PF operator family, pa-
rameterized by time. Let T := [0,00). Consider a fil-
tered probability space (2, F,{F:}ier, P), where X, is
Fi-adapted and takes values in X = R". The embedded PF
operator P; is defined via a Bochner conditional expecta-
tion,

Pik(x,-) = Elx(Xy, )| Xo = z]. (16)
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Let P be the transition function such that for fixed =z,
P(t,z; A) := P{X; € A|Xo = z}. The PF operator family
{P:}+er then defines a semigroup because Py = id, and

Piiskilz,-) :/n(y,~)P(t+s,x;dy)
(i)///f(y,~)P(s7z;dy)P(t,x;dz)

Z/Psn(z,-)P(t,x;dz)
- Pt O,Ps’i(xv')v

7

where Chapman-Kolmogorov equation implies (a). We now
study properties of the semigroup of operators {P;}ie1. A
semigroup is strongly continuous if lim; o ||Psf — f|l3 =
0 forall f € H, and uniformly continuous, if lim;_,q ||P; —
Z|| = 0, where ||-|| is the operator norm. Furthermore, define
its infinitesimal generator A as the operator that satisfies

1
Af = lim - (Pof = ). (18)

for f € H. The limit in H-norm exists over a subspace
D(A) of H. Next, we study the properties of {P; }+er and
A. Let Cy be the covariance operator at time ¢ = 0 and C,
be the cross-covariance with time-lag ¢, i.e., Cp := Cx, x,
and C} := Cx, x,. We make the following assumption.

Assumption 3. E[f(X;)|X = ] € H forall f € H,
Vt € T; and Cy is invertible.

In essence, the first part of this assumption imposes closed-
ness of the RKHS H with respect to the evolution of func-
tions and probability densities through the system dynam-
ics. Such a closedness assumption is not new to Koop-
man operator-based analysis, e.g.,Yeung et al. (2019); Nan-
danoori et al. (2020). Nevertheless, it is restrictive and is
often violated as noted in (Park & Muandet, 2020; Kle-
banov et al., 2020). While our proofs require this strong
assumption, it may be possible to relax it in light of recent
developments in (Li et al., 2022; Kostic et al., 2022). We
leave exploration of such a relaxation for future efforts. The
proof of the next result is provided in Appendix D.

Theorem 5. Under Assumptions 1 and 3, {P;},cp is uni-
formly continuous in H. Moreover, its generator A is a
bounded linear operator with D(A) = H.

Previous analysis in Klus et al. (2020a) and Rosenfeld et al.
(2019) consider generators of transfer operator families.
Continuity properties of the operator family and the do-
main of the generator were not rigorously established to our
knowledge—a gap that Theorem 5 bridges.

The Koopman operator family can be defined as the ad-
joint of the PF operator family, i.e., ; = P} and satisfies
(f,Kirg) = (P:f,g). Also, {K;}ier defines a semigroup

that satisfies

(f; (Keg = 9)/t) = ((Pef = F)/t, 9) (19)

for all f,g € H and ¢t > 0. Taking ¢ — O allows us to
write the right hand side of (19) as (Af, g), and define the
generator of {K;};cr as A*, the adjoint of A. Next, we
establish D(A*); see Appendix E for a proof.

Corollary 1. Suppose Assumptions 1 and 3 hold. Then, A*
is a bounded linear operator with D(A*) = H.

6. PF Generator for Stochastic Differential
Equations via Covariance-Type Operators
Under Assumption 3, P, = C:C 1. 'We now develop an

analogous expression for A in terms of covariance-type
operators. To that end, notice that
Cy — Co

— d
Ap = lim Pt o= limTC’o_lu, (20)

t—0 t t—0

where the limit is taken in the #-norm. When lim;_,o(C; —
Cy)/t exists, we identify the limit as the operator 9Cy. In
the following, we identify 0C as an element in the tensor
product RKHS. For all f, g € H, we have

(,0C0g) = lim ({f, Cug) — (£, Cog)

= lim & (B (X0)g(Xo)] — B[ (X0)g(Xo))
= tim - (B[ (B0 X0] -~ £(X0))g(X0)] )

2

The above derivation uses the definition of Cy, Cy and the
tower property. We simplify the above expression using the
Koopman generator A* of { X, };cr, characterized by

(A*f)(z) := lim : (E[f(X1) = f(Xo)| X0 = 2]) (22)

for f € H. For any v > 0, there is a sufficiently small ¢,
such that for 0 < ¢ < ¢, Assumptions 1 and 3 yield

LB o] - Fao))| < v+ [(A*F) (o)

t
= v+ (A", 5 (20, )5l
S v A AT fll5 B

Thus, the dominated convergence theorem allows us to infer
from (21) and (22) that

(f,0Cog) = E[A"f(X0)g(X0)]- (23)
We now restrict attention to dynamics described by the

following stochastic differential equation (SDE),

AX, =b(X,)dt + o (X,)dB,, Xo=z,  (24)
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where B; is an n-dimensional Brownian motion. The drift
and diffusion functions b : R™ — R"™ and 0 : R® — R™**"™,
are assumed Lipschitz continuous, and bounded as

1bill <9, llaijle <8, dj=1,-,n (25

The Koopman generator for such a system, according to
Schilling (2021, Theorem 19.9), is

g(z)
Zb E)xl Z 83: am ’

zg 1
for any g € H, where a(x) :=

(26)

o(x)o(x)". The domain of
this operator is #, when a and b are such that Assumption
3 holds. To relate ICj to A* as defined in (26), we need
machinery to describe partial derivatives of functions in .
In Section 6.1, we present these preliminaries and return to
defining 9C in terms of A* in Section 6.2.

6.1. Partial Derivative of Kernel Functions

Representability of partial derivatives of functions in RKHS
within the same RKHS has been studied in Zhou (2008),
where the analysis considers RKHS over compact domains.
We study dynamics driven by an SDE over a non-compact
domain, necessitating technical extensions to the analysis in
Zhou (2008). We relax compactness and instead consider
bounded kernels whose partial derivatives vanish at infinity.

The partial derivatives of x are denoted by

olal sl

D(aﬁ)m((E,y = axaayﬁﬁ (£C17 ey (p"’ yl’ . 7yn) ,
for a := (a1, - ,ap) and B := (B1, -+, Bn). Also, let
D%k(x,-) := D% g(x,-). Define Cy to be the family of

all continuous functions f : R™ xR™ — R such that for each

€ > 0, there is a compact set K. for which |f(z,y)| < € for

all (z,y) € R" x R™ \ K.. Denote || = 377, a;. With

this notation, we make the following assumption about «.

Assumption 4. HD(aﬁ)mH < B, and DBk € Cy
o0

Sorall |a + B| < 2s for some positive integer s.

In the following result, we establish that the partial deriva-
tive of  is also an element of # and satisfies a partial
derivative reproducing property. See Appendix F for proof.

Theorem 6. Let I, := {a € N" : |a| < s}. If k satisfies
Assumption 4, then for any x € R", f € H and o € I, we
have Dk (x,-) € H, and (D f) (x) = (D“k(x, "), f)4-
6.2. Writing 0C|, in Tensor Product Hilbert Space
Define the second order differential operator

DI

Zjl

z+ej ¢

d®¢ = Zb Dt s Q27

Assume that b and a are such that b; - D¢ € H and
a;j - D% ¢ € H fori,j = 1,---,n. This assumption
holds, for example, when a and/or b are constants. With this
assumption, Theorem 6 implies that d(®) ¢ € #, and (26)
can be written as (A*g)(z) = (g,d P ¢()).

Therefore, (21) yields

(f,0C0g) = B[ (A*f) (Xo)g(X0)]
= E[(f,d?¢(X0))(g, $(X0))]

= <f ® g,E[d“’qb(Xo) ® ¢>(X0)]> (28)

- <f, E [d(2)¢(Xo) ® ¢(Xo)}9>~

Analogous to the covariance operator, C| can be identified
as the element in H, as

dCy := E[dP ¢ (Xy) ® ¢(Xo)], (29)

The proof of the following result is in Appendix G.

Lemma 1. Suppose Assumptions 1, 3, and 4 hold. Then
0Cy is a Hilbert-Schmidt operator.

The PF generator is then A = 9CyC, '. Similar to the
discrete time case (c.f. (7)), its regularized variant is

A, =0C, (Cy+eid) ™" (30)

7. Sparse Approximation of PF Generators

Writing A as an element in the tensor product space Hg, al-
lows us to analyze the sample complexity of learning it from
data along the lines of Tolstikhin et al. (2017, Proposition
A.1) as follows. See Appendix H for proof.

Theorem 7. Given M i.i.d. samples {xm} | drawn ac-
cording to Px, suppose Assumptions I and 4 hold Define

M M
Co := Z (Zm, Tm), 800 = Z d(2)¢’ m) ® ¢ (Tm),
~ —_ -1
and A. .= 0Cy (Co +e id) . Then, for ¢ € (0,1), the

following holds with probability at least 1 — 6.

focs ], < Fp=0, o
|4 -4l < Z=z6moE. @

where sup, cgn [|d® é(z) @ ¢($)||%{® < Bg with Bg :=
B2 (n? +n® + in*) S, and B"* := max {\/Bg, B }.
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Next, we propose sparse learning of A, from i.i.d. data
using the same notion of coherency introduced in (Mallat &
Zhang, 1993; Tropp, 2004; Gilbert et al., 2003), but adapted
to the setting involving the derivatives of functions in RKHS.
Construct a y-coherent dictionary by selecting a subset D,
of D such that for each p, g with z,,, 2, € D, and p # g,

(d®@e(2,), AP () n < VAIAP o) I lld® d(ag) [,

(33)

and (11) with (z7,2%) = (2, 2,). In addition, let T be the
indices among 1, ..., M such that z; € D, fori € Z. Then,
the compressed estimator of 9Cy and Cjy are computed as

sz( Jo(1) @ p(:) Zzl (zi,zi) s (34)
€T i€T
where z (and similarly, z’) is obtained as z = H —1p,

with H € RIP2IXIP2| has entries H; ; = (d@¢(z;) @
¢(x:),dP¢(z;) @ d(x;)) and h € RIP2| is defined as
hj = & >°M H, ; for each i and j in Z. The sparse PF
generator is then

-1

A =00, (60 te id) : (35)

whose approximation error is given as follows. See Ap-
pendix I for a proof.

Theorem 8. Under the assumptions of Theorem 7,
Hﬁa —AEH < Bmexy, (M,;8/2) O(e=2) holds with
probability at least 1 — § for any 6 € (0,1), where i
is defined in (13).

Similar to the discrete time case, one can learn the generator
from trajectory data. We consider a generalization of the
notion of S-mixing in discrete-time to continuous-time as
follows. Define the S-coefficients 8(s) exactly as (14),
and call the process {X;}tcr S-mixing, if B(s) — 0 as
s — oo®. A direct application of results from Section 4
gives the following result.

Theorem 9. Let { X, }ic1 be a 5-mixing diffusion process
defined on a filtered probability space (0, F,{F; het, P)
where X, is Fi-adapted and takes values in X = R". Sup-
pose it has a unique stationary distribution 11 and satisfies
Assumption 2. Consider the evolution of the state, starting
from X that is sampled according to an initial distribution
Px,. Let X°(m) = (X(l), . 7X(m)) be an m-length se-
quence, sampled s time apart. Under Assumptions 1, 2 and
(m, s,7;6/2)O(e72) holds with
probability at least 1 — 6 formfB(s) < § < 1.

3When restricted to stationary Markov processes, an alternate
but equivalent definition is given by Ait-Sahalia et al. (2010, Defi-
nition 8)

8. Learning SDE Coefficients from Data

Our data-driven approximation of the regularized PF gen-
erator A, in Section 7 is premised on the knowledge of the
drift and diffusion coefficients, band @ = oo T, respectively,
of the SDE in (24). We now study the same, when b and a
are not known. Notice that

b(x) = lim IE X; = Xo)|[Xo==2
(z) = lim . (( ) I G6)
a(w) = lim ~E (X, = Xo) (X = Xo)T|Xo = x] .

We approximate components of b and a using their finite
difference approximations, b™ (x) and a” (x), respectively.
To motivate the key idea, consider a scalar-valued process,
i.e., X; € R. With a slight abuse of notation, assume that
the identity function id : R — R is an element of . For
any t > 0, we have E[X;| X, = z] = (id, E[s(X}, )| Xo =
x]), where E[x(X¢,)|Xo = z] is the embedding of the
distribution of X; in H, given Xy = x. Att = 0, this
equates to k(x, -), and at ¢ = 7, to U, x(x, -). Taken together,
these observations yield
70" (z) = (id, U k(z, ) — Kk(x,-)) = id, k(z, ),
implying " = 1 (Urid—id). Likewise,
E[k(Xt, )k (Xe,) | Xo=2] is the embedding of
the conditional joint distribution of (X, Xy/), given
Xy = x. Proceeding similarly as before, this equals
(id ® id, B[ (X}, - )x(Xy, )| Xo = z]), where the second
term in the inner product can be written as Uy k(, -). Here,
U,y denotes the conditional joint mean embeddmg operator
that generalizes the CME U, to the tensor product Hilbert
space. We defer its formal definition to Appendix J and
remark that under a condition similar to that in Assumption
3, Uy can be defined using joint covariance operators Cyy
and covariance operator Y, also defined formally by (98)
in Appendix J. Using this notation,

Ta"(z) =&

(Urid —

[X2 - 2XoX, + X§|Xo = 2]
=(Ur (id ®id) — 2U% (id ® id) (37)
+ (d®id)k(z, ), k(z, )>,H,

= Ur, (id ® id) — 2U%(id ® id) + (id ®
id)k(z, -). The conditional joint mean embedding operators
can be estimated from {z,,(0), z,,(7)}_, of N, drawn
iid. according to P (Xy, X,), where xm(T) is the next
snapshot of x,,(0) with time lag 7. The details of the es-
timation of (regularized) joint covariance and conditional
joint mean embedding operators from data are relegated to
Appendlx J. Call the estimates of b™ and a” with estimated
Usasb™ anda’, respectively.

implying Ta”

For an n-dimensional diffusion process, we apply the same
technique to each scalar component of b and a. Let e; :
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X +— X evaluate the i-th coordinate of X € R™ and
assume that e; € H fori = 1,--- ,n. Then, we have

1
b“rzf Z/{* t— €i),
P=l e —e)

R . 38
ajj = (Urr(ei ® ej) —Uro(e; @ ;) 9

—Usp(ej © ei) + (e; @ e;)r(z, ).

Using empirical estimates b:T , ‘;Z of the drift and the dif-
fusion coefficients, an empirical estimate of dC{ can be
constructed from data. In turn, the estimated 0Cj yield em-
pirical generators. Such an entirely data-driven algorithm is
summarized in Appendix L.

The development in this section requires id € H. An infinite-
dimensional RKHS with bounded kernel cannot include
such a map (Muandet et al., 2016, Section 2.3). Neverthe-
less, we view the expressions to evaluate a” and b7 as ways
to obtain an approximation, where the actions of id can be
directly utilized without explicitly representing this map
within the RKHS. See Appendix K for details.

9. Numerical Experiments

In this section, we report results from applications of our
algorithms to approximations of eigenfunctions of .4 and
A*. Eigenfunction construction using Gram matrices is
described in Appendix M. When the SDE coefficients are
not known, one can first estimate them following Section
8 using a data set of snapshot pairs D;. The generator is
then constructed as in Section 7, utilizing a second dataset
Dy = {%n}%zl. A more detailed description is provided
in Appendix L.

9.1. The Duffing Oscillator

Consider the unforced Duffing oscillator, described by
P=—0:—2(B+az?),

with § = 0.5, 8 = —1, and @ = 1, where z € R and
Z € R are the scalar position and velocity, respectively. Let
x = (z, 2). As Figure la reveals, this system exhibits two
regions of attraction, corresponding to equilibrium points
x=(—1,0) and x = (1,0).

To approximate .A*, we sample 100 trajectories to form D,
by first generating 100 uniformly distributed initial points
from [—2, 2] x [—2, 2], then propagating them through the
dynamics by evolving 1000 steps with sampling interval
7 = 0.01 s. We then create a sub-sample with m = 200,
and s = 5 along each trajectory. We utilize a Gaus-
sian kernel k (71, 22) = exp(—|z1 — z2||3/(2 x 0.65%)),
whose partial derivatives are included in Appendix N. Set-
ting y1 = 0.99%, we get |D,,| = 1477. Likewise, D,

2 2
d:
-1 -1
-2 -2

-2 -1 0 1 2 -2 -1

0 1 2
z

(@ (b)
Figure 1: (a) Two trajectories of the Duffing oscillator that
converge to two different equilibrium points. (b) Leading
eigenfunction of 4% with eigenvalue 0.

is constructed from 50 uniformly distributed initial points
with 100 evaluations along each and then sub-sampled with
m = 20, s = 5 for each trajectory. Using o = 0.99952, we
obtain |D.,,| = 876. Figure 1b portrays heat-maps of the
leading eigenfunctions of 4* with learned coefficients. We
refer interested readers to (Hou et al., 2021) for a discussion
of the practical benefits of sparsification and the role of ~.

9.2. One-Dimensional Ornstein-Uhlenbeck Process

Consider a one-dimensional Ornstein-Uhlenbeck process
defined by the SDE

dXt = —OéDXtdt + Vv 2DdBt,

witha =4, D = i. With explicit knowledge of the drift
and diffusion coefficients, we first create a dataset D from 10
trajectories with 5000 evaluations each using sampling inter-
val 7 = 0.1s. The evolution was accomplished through 100
steps of the Euler-Maruyama method (Higham, 2001) with a
time-step of 10~3. We then form a sub-sample by choosing
m = 50 and s = 100 for each trajectory. Using Gaussian
kernel (21, 22) = exp(—|lz1 — 22||3/(2 x 0.6%)), and
setting v = 0.9992, we obtain D., which contains 48 sam-
ples. Figure 2 shows the leading eigenfunctions of sparse
estimates of A, A*

o(x)

Xx(t)

(b)

Figure 2: Leading eigenfunctions ¢ of sparse empirical es-
timates of A, A* with (solid line)/ without (dashed line)
explicit knowledge of drift and diffusion coefficients cor-
responding to eigenvalues A = O(==), —1(==), —2( ),
—3(==).

When the drift and diffusion coefficients are unknown, we
first sample 200 initial points uniformly distributed over
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[—2,2], then collect 10,000 points along each trajectory
with sampling interval 0.1s. We next create a sub-sample
of size 20,000 with m = 100,s = 100 for each tra-
jectory. Ds is chosen to be the same dataset as D de-
scribed in the previous paragraph. A Gaussian kernel
Kk (21, 72) = exp(—||x1 — x2]|3/(2 x 0.62)) is used. With
1 = 0.999,72 = 0.9999%, we obtain |Dy,| = 1325 and
|D,| = 106. The first 4 eigenfunctions of A and A* are
shown in Figure 2.

9.3. A Two-Dimensional Quadruple-Well
Consider the SDE for the quadruple-well dynamics,

dX, = —VV(X,)dt + /26" 1dB,,

withz = [z1, 23], V(2) = (23 —1)?+(23—1)%and B = 4.
As illustrated in Figure 3a, a trajectory will stay within one
of the four potential wells, while rare transitions happen as
“jumps” between four metastable sets.

(b)

Figure 3: (a) Potential landscape and one trajectory of the
quadruple-well dynamics; (b),(c) four metastable set ob-
tained from leading eigenfunctions of sparse A4* with (mid-
dle)/ without (right) explicit knowledge of drift and diffusion
terms.

We first approximate A* and its leading eigenfunctions
with explicit knowledge of drift and diffusion. D con-
sists of samples on [—2,2] x [—2,2] collected from 600
trajectories with 20 evolutions along each with sampling
interval 7 = 0.1s. A sub-sample is then constructed with
m = 2,s = 10 for each trajectory. We use k (z1, 23) =
exp(—|lx1 — z2||3/(2 x 0.2%)). With v = 0.81, we get
|D, | = 604. Since the spectrum encodes state space connec-
tivity information, we then apply k-means clustering tech-
niques to dominant eigenfunctions (Froyland et al., 2019)
to locate metastable sets which are shown in Figure 3b.

Next, we consider the case when neither drift nor diffusion
coefficients are known. We create D; by first collecting
from 1200 trajectories with 5,000 evaluations each with
sampling interval 7 = 0.1s. We then construct a sub-sample
of size 120, 000 with m = 100, s = 50 for each trajectory.
We utilize D described in the previous paragraph as D-.
Using the same kernel functions with v; = 0.8,y = 0.81,
we obtain D, D, with |D.,,| = 7484 and |D,,| = 594.
The resulting four metastable sets are shown in Figure 3c.

Remark 1. In our numerical experiments, Assumption 3
on the closedness of RKHS under the action of the system
dynamics is challenging to verify. It possibly does not hold
with Gaussian kernels (see discussions in Klebanov et al.
(2020); Park & Muandet (2020)). Yet, the results demon-
strate that, as a computational method, sparse learning of
CME performs well, even when the assumptions made for
the theoretical analyses are violated. On a related note,
notice that the Ornstein-Uhlenbeck process has a stationary
distribution, and its stationary variant is 3-mixing, accord-
ing to Meyn & Tweedie (1993), Jongbloed et al. (2005,
Section 3). By contrast, the Duffing oscillator has two stable
equilibrium points with two different regions of attraction,
indicating that Assumption 2 does not hold. Yet, sparse
estimates of transfer operators/generators provide efficient
computational techniques to analyze dynamical system prop-
erties.

10. Conclusions

In this paper, we have provided sample complexity bounds
for approximations of transfer operators from data that is
sparsified and collected from trajectories. We have rigor-
ously defined and characterized the generators of transfer
operators for continuous-time Markov processes using par-
tial derivatives of kernel functions and covariance-type op-
erators. Then, we have provided sample complexity bounds
for approximating these generators. Numerical experiments
confirmed the effectiveness of our approach.

An interesting direction for future work is the study of gener-
ators of transfer operators for controlled diffusion processes.
Particularly, for continuous-time Markov decision processes,
we plan to approximate PF generators parameterized by con-
trol policies to ultimately approximate solutions of Hamil-
ton—Jacobi—Bellman equations in an RKHS. We also plan
to extend our approach to tackle the online streaming set-
ting where samples are collected sequentially, possibly in a
decentralized fashion by multiple agents.
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A. Proof of Theorem 1
Triangle inequality and elementary algebra gives

1

Hﬁg —P.|| <|Cx+x (GXX +e id>_1 - Cx+x (axx +e id>_

—~ —1
JrHC;ﬁ-;g (Cxx+€id> *CX+X(CXXJr5id)71

Call the two norms in the last line as Z; and Zs, respectively. We now bound Z; and Z separately. Denote by ||| 5. the
Hilbert-Schmidt norm of a bounded linear operator. We upper bound Z; as

» (39)
= (6X+X — CX+X) (6}(}( +Eid)

~ -1
+ HCX+X |:(CXX +e id) —(Cxx +e¢ id)_l]

(a)
Z1 <

G = x| (G +ei0)

(CORIPN ~ -1
< HCX'*'X_CX+XH H(CX)(-‘rEid)
HS

© 1~
<= HCX+X _ CX+XH .
£ HS

(40)

Here, (a) follows from the submultiplicative nature of the operator norm. Inequality (b) follows from the fact that the
operator norm is dominated by the Hilbert-Schmidt norm. To get (c), note the the covariance operator C'x x and its empirical
estimate C'x x are positive semi-definite # and self-adjoint, where the latter property implies that the operator norm coincides
with their spectral radius, thus we have

H(C’xx-i—€ld) < - (41)
Proceeding similarly, we bound Zs as
~ N1 o
Zy < ||Cx+ x|l H (CXX +61d) — (Cxx +¢€id) H
~ N1 N o
=[x xll x || (Cxx +eid)  (Cxx = Cxx ) (Cxx +id)
(42)

IA

E%HCXU(H HOXX - aXXH

IN

1 N
S ICx+xl HCXX _CXXH .
£ HS

Here, the second last line follows from using the relation (41) and its counterpart with C 'xx replaced by C'x x. Utilizing
(40) and (42) in (39), we get

~ 104 1 =~
HPE —Pef| < - HCXJrX - CX+XH + 5 1Cx+xll HOXX - CXXH - (43)
£ HS € HS

Define the non-sparse empirical estimates of the covariance and cross-covariance operators as

1 M 1 M
~ — E oy ~ — E + .
CXX = M w(m,,m,), CX+X = M gp(xi 7371)- (44)

i=1 =1

“4See the remark in Theorem 1
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Using triangle inequality, we get
H6X+X - CX+XH < H5'X+X - CX+XH + H6X+X - 6X+XH . (45)
HS HS HS

The same holds for C'x x, C 'xx and C 'xx - The rest of the proof bounds the two terms on the right-hand-side of (45).

First, note that the HS norm of a (cross) covariance operator from H to H is equal to the Hg-norm of the operator viewed
as an element in tensor product Hilbert space Hg Fukumizu et al. (2007, Lemma 4):

1Cxxlis = [Exox [m X ) X[ (46)

Moreover, recall that C'x+ x and Cx x are the embeddings of (X, X *) and its marginal Px in Hg. Under Assumption 1,
we have

x x x

sup k2 (z,z) < (Supﬁ (x,x)) (Supn (x,x)) < B? < .
Together with Muandet et al. (2016, Theorem 3.4), we bound the first term on the right-hand-side of (45) as

|€xex = x|, < BV (14 V2108(173) @)

with probability at least 1 — §. The same bound applies to C 'xx — Cx x. For bounding the second term on the right-hand
side of (45), we introduce additional notation. Recalling that Z is the set of indices among D that are present in D.,, let [Ip

be the (linear) projection operator on the closed subspace {@(x:r, x;) : 1 € T} of Hg. Then, we have

1 M
L3 (0T, o (a7 1)

HCX‘*'X_CX‘*'XH -
HS

= H@
RSl ~ M ozt (48)
> Z M ||<P (xi 7%‘) —Ip_ p(; Jz‘)HH@
i=1
1
= LS e (et w) ~ Mo (o)
i¢T
Pythagoras’ theorem gives
2 2 2
o f ) = Tho. 0 (F ), = e (o), — M, (o 20) o
T1 T2
where T < Bg. From the coherence condition (11), we have
’ i)y -‘i_a j
K ((xz s @), (] xa))‘ _ ]m(xf,a?j)] |k(zi, 2;)] <. (50)

7

\/mg) <(33i+,33¢), (xj7xi)>;g® ((xj,xj), (« xj)> - \/K(xj,wj)n(xj7xj) Ve, z)k(z, 25)

13



Sparse Learning of Dynamical Systems in RKHS: An Operator-Theoretic Approach

for each pair (7, j) such that (z;, ;") and (x;, xj') are in D.,. Thus we can bound 75 from below as

Z" ZOLJ’QD(I’_-‘—,IL']‘)
HH'DWSD(J‘:_7]"Z)|‘ = m3X< < +] ,Qp(x?_,xi)
HZJ'GIO‘J’SD(-% >-Tj)HH
®

He
S ajfa@((xr,wi), (x;,%—))

HZjeI O‘j‘to(x;r’ xj) ’H
®
(a)

(51
m((xm», <x;7xq>>’
> max

- \/,.;@((x;,zq),(x;,xq))
9 7\//€®<(ﬁ,:ﬂi),(f€?,fﬂi)>,

where (a) results from a specific choice of coefficients. Specifically, it is obtained with «; = 0 for each j € Z, expect for

= Imax
a

a single index ¢ with o, = £1, depending on the sign of kg <(xj', z;), (xf,x4) |. From the violation of the coherence

condition (11), we obtain (b). Combining the bounds on 77 and 7% in (49), we get

o (a7, 2:) —p, (vaxi)HZ < kg (], 2), (z],2:)) (1 -~

52
< BX(1—77). 2

Utilizing this bound in (48), we get

~ ~ D
HCX+X - CX+XH < <1 - |”|) Boy/1— 2. (53)
HS M
Combining (47) and (53) in (45), we obtain
Ha)ﬁx - CX+XHHS < B (M, ~;9) (54)

with probability > 1 — §. The same bound applies to the sparse approximation C 'xx of C'xx. We then split the failure
probability  evenly between the cross covariance and covariance estimations, and use union bound to obtain the required
result as

.-

1 |C
<Bu1(M,7;0/2) (6 + ”i?”) ; (55)

B. Proof of Theorem 2

Consider two points (z*, z) and (/" 2) in D.,. Then, we have
lo(a*2) — ot ) = ke (<x+,x>, <x+7x>) T ke ((x'+,x’>, (x’ﬂx/)) ke ((mtx» tas x’>)
> ke ((mtm, (xtx)) T ke (u'*,x'), w,x/))

- 27\/ o (2 0) o (). (0%

> 2B — 2yB2.

(56)
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That is, y-coherent points in D., define two points in the image ¢ (K x K) of the continuous feature map ¢ of the product
kernel, ie., {o(z],z;) : (] xz) € K x K}, that are at least \/2B;? — 2yB2-separated. The image of a compact set under

a continuous map is compact, and hence, (K x K) is compact. Consequently, this set admits a finite covering and packing
number® with balls of radius \/2B/2 — 2yB2. This packing number bounds D., from above. The logarithm of the packing
number scales linearly with the dimension of the space, according to (Anthony et al., 1999). Then, the rest follows from
dim(K x K) = 2n.

C. Proof of Theorem 3

Our derivation makes use of the following lemma based on Yu (1994, Corollary 2.7).

Lemma 2. Kuznetsov & Mohri (2014, Proposition 2) Let { X, } 11 be a 3-mixing stochastic process on a filtered probability
space (Q, F, {Fi}iet, P) where Xy is Fi-adapted and takes values on X C R"™ and 11 a stationary distribution. Let X *(m)
be an m-length sequence, sampled s time-points apart, and X' (m) be an m-length sequence of i.i.d. samples drawn from
I1. Then, a Borel measurable function g : X™ — R with My < g(x) < Ms for all x € X™, satisfies

E [g(X"(m))] — E[g(X*(m))]| < (My — My)mp(s). (57)

We now utilize this lemma to establish the required result. Let zi(X(m)) be the KME estimator constructed from an
m-length i.i.d. sequence X™(m) = (XI1,..., XI), given by

_ 1 «—
(X E;n ). (58)

In the rest of the proof, we drop the dependency of X* and X! on m for notational simplicity. For an m-length sequence Y,
define a real-valued function g : X™ — {0,1} as

9(Y) = L) —plly ~ Bl = a5, >} (59)
where 1.} denotes the indicator function. Lemma 2 applied to g gives
B (1K) — il — BT ~ ], > ¢} < mB(s) + B[R ~ ull,, - BT -l >} 60

We now bound the second term on the right hand side of the above inequality. To that end, notice that
[a(X™) = u),, = e (f, (X" — )
(61)
Zf (X" —E[f(X)] ],
Hf H n< < 1

where X ~ II. Under Assumption 1, we have

f@)? = [(f, k(s 2))nl®

< [ls( )13 f 113

= (s(s )k (@)l 115 (62)
= r(z, )| fII3,
< By
forall f € H with || f||% < 1 and x € X, which implies
|f (@)| < V/B.. (63)

SSee (Anthony et al., 1999) for the definitions.
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Now consider an m-length sequence X™ that is identical to X I except at the i-th position, where X! is replaced by an
independently drawn sample from II. The sequences X! and X!, according to (61) and (63), satisfy

7O = sl = [[E™ = ]| < = VB (64)

m

This bounded difference property allows us to apply McDiarmid’s inequality to infer

—2¢2
~cpTIy il Iy < T
P {IFCE — il ~ BIRCEY =l > e < o (-2 )
Cme? (65)
e (22).
Combining (60) and (65), we conclude
~ s ~ I _m62
P () = il = B X = sl > ¢} < mi(e) +oxp (S ).
K
In other words, we have
~yrs ~ (311 2B, -1
IE(X) = pllyy < B{EXT) = plly, + ) == log (9= mi(s)) (66)

with probability at least 1 — 0 for any § € (mf(s), 1). The rest follows from bounding the first term on the right hand side
of (66) as

E[|[A(X") = plly, < VBi/m, (67)
from Tolstikhin et al. (2017, Equation (47)).

D. Proof of Theorem 5

Assumption 3 guarantees that B[f(X;)|X = ] € H forall f € H,t € T, implying that P, = C;C; . For a uniformly
continuous semigroup on H, its generator .A becomes a bounded linear operator on #, and thus, D(.A) = H, according to
(Vrabie, 2003). We show uniform continuity in two steps. First, we prove that lim; | ||C; — Co|lus = 0, and second, we
utilize that limit to argue uniform continuity.

e Proving limy g ||Cy — Collus = 0. Towards that goal, notice that

[Ce — Collys = | E[¢(X:) ® ¢(Xo)] — E[p(Xo) @ ¢(Xo)]
HS
= |B[E[6(X0) ® 6(X0)|X0] - 6(X0) ® 6(Xo0)] (68)
HS
< E|[Blo(X)  6(X0) Xo] — 6(X0) ¢><X0)HHS] ,

T

where the above derivation utilizes the tower property and Jensen’s inequality. In the following, we show that lim; o 7; = 0.
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To that end, let X be an independent copy of X, given Xy. Then, we have

(T2 =[Blo(x) @ 9(X0)|Xo] — 6(X0) @ 9(X0)|[
<E[¢(Xt) ® ¢(X0)|Xo] — ¢(Xo) ® ¢(Xo), E[o(X}) © ¢(Xo)|Xo] — ¢(Xo0) ® ¢(X0)>HS

(B[6(X0) @ 6(X0)|Xo] B[6(X)) @ 6(Xo) Xo] )

7 (69)
—2(B[6(X:) ® 6(X0)| Xo], #(X0) © 6(X0))

7;(2)

+ (9(X0) ® 6(X0), 6(X0) @ 6(X0) ).

7—15(3)

with the inner product in the Hilbert-Schmidt space defined in Gretton (2015). Denote the conditional expectation of X4,

X/, and (X;, X/) given Xy b E , E ,and E respectively. Then, we have
and (X, Xi) g O o) (iixe) T XXy P

1) @ P(X1) ® (Xo), p(X{) @ ¢(X0)>HS}

K (Xt|X0)(X |X0

(b)(Xt|Xo)(X "1 X0) { > <¢(X0) ¢(Xo)>H}
(C) [

(Xt|Xn)(X |X0
()

D (X0, Xo) E [ X, X! X],
r(Xo o)(X“X”XO) (X, X3)[Xo

(70)
K Xt; XOaXO)i|

where (a) follows from the linearity of the (conditional) expectations and the inner product. Equality (b) follows from the
definition of the inner product in Hg, and HS(#). Equality (c) follows from the reproducing property of 7, and (d) follows

from measurability of  and the fact that X; and X| are independent conditioned on Xj. Proceeding similarly with 7;(2),
we obtain

T = B [(6(X) © 6(X0). 6(X0) ® 6(X0))ys]

(X¢|Xo)
:(Xr,IFXo) {<¢(Xt)a¢(X0)>H<¢(X°)’¢(XO)>H} 7y
=k(Xo,Xo) E [k(X:, Xo0)|Xo],

(Xt|Xo)

and 7;(3) = k2(Xy, Xo). Combining the relationships obtained for 7;(i), i = 1,2, 3 in the definition of T;, we get

2 =k(Xo, X E Xe, XD Xo| — 26(Xo, Xo) E X, Xo)|X 2(Xo, Xo).
7o =r(Xo. 0)(Xt,X£\Xo)[ﬁ( b Xt)l 0} ~(Xo, 0)(X1,\Xo)[ﬁ( v Xo)] 0}—1—%( 0, Xo) (72)

Since { X }¢eT is a diffusion process®, its sample paths are almost surely continuous. Hence, boundedness and continuity of
k from Assumption 1 allow for the use of the dominated convergence theorem to infer almost surely,

lim E [X,X X}: Xo, Xo), i E [X,X’X}: Xo, Xo). 73
tlﬁ)l(Xt\Xo) Ii( K O)| 0 H( 0 0) tlg)l(Xt’X”XO) K( t t)| 0 H( 0 0) ( )

Utilizing the above relations in (72) implies lim, o 7; = 0, and therefore (68) yields
lim ||y — CollZs < lim (E[7;]) < LmE [(77)?] = 0.
oy [e ollfs < tlfg( [Te])” < 0 [(T2)?] (74)
%in the sense of Schilling (2021, Definition 19.1).
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The above derivation utilizes Jensen’s inequality and the dominated convergence theorem. This concludes the proof of the
first step.

e Concluding uniform continuity of {P};cr. Using P, = C:Cy ! we have
li —id|| =i - -
i [P, —id] = lim | (C: - Co) 5|
<lim [|Cy — Go||[|ICy |
o (75)
S%ﬂﬁf%hﬂ%ﬂ
=0.

where we have used the sub-multiplicative nature of the operator norm and invertibility of Cj from Assumption 3. This
completes the proof of the step and the result.

E. Proof of Corollary 1

Under Assumption 3, we have K; = C’ 1C’t“ . Since ||Cy — Cyllus = ||CF — Collus, an argument identical to (74) yields

that lim, o ||, — id|] = 0. It is easy to verify that {/C; };cr forms a semigroup, which in light of the above observation,
becomes a uniformly continuous semigroup on #. The rest follows from the fact that such semigroups admit bounded linear
operators as generators whose domain is .

F. Proof of Theorem 6

We utilize the induction hypothesis to show that for any « with |o| < s and f € H, we have D“k(z,-) € H and
(D*f) (x) = (D“k(x, ), f)4- The base case with a = 0 holds trivially. Assume that the claim is true for some o with
|a| < s. We will prove the validity of the same for (« + e;)-order derivatives with | + e;| < s to complete the induction
step. Here, the notation a + e; stands for the vector of the order of partial differentiation, where the j-th coefficient is
aj + 1. We prove the induction step in three parts.

First, we consider the function
1
vz (t) = n [D%k(z + tej, ) — Dk(x, )] (76)

for ¢ € R and show that for some sequence of ¢’s converging to zero, v, (t) converges weakly to DV k(z, -), using
which we argue that D" ;(, -) is an element of H. Second, we show that v,.(t) converges to D" ;(z, -) in H-norm,
and hence point-wise in H. Finally, we utilize this pointwise convergence to demonstrate the reproducing property with
(v + e;)-order derivatives.

e The induction hypothesis implies that v,,(¢t) € H for all scalar ¢ # 0. Also, the reproducing property of the induction
hypothesis with f = D%k(y, -) gives

<Da"<‘(xa')7Daﬁ(ya')>H = D(aﬁ)"i(x)y)' (77)
Using the above relation and Taylor’s expansion, we bound ||v, (¢)[|3, as
1
v ()13, = 2 D@ g(x + tej, x + te;) — D k(x + te;, x)
AJyw%@J+wﬁ+DmmML@} (78)
< Dt oo

The right-hand side of the inequality remains bounded for sufficiently small ¢, per Assumption 4. Thus, for small enough ¢’s,
v, (t)’s lie in a closed ball of # with finite radius || D(®+¢@+€i) || . H is separable, and hence, by Banach-Alaoglu’s
Theorem (or alternatively, by Eberlein-Smulian Theorem), such a ball is weakly sequentially compact. Thus, for a sequence
of ¢’s going to zero, there is a subsequence (call it {5 }7° ;) along which

lim <i[Da/<;(ac +trej, ) — D“n(x,')],f>ﬂ = <gm,f>H, VfeH (79)

k—oo \ T
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for some g, € H. Plugging f = x(y, -) for an arbitrary point y € R™ in the above relation, we infer

:(9) = i (- [D"w( +taes,) = Dl )] ),

1
= lim —[D%k(x + trej,y) — Dk(z,y)]

k—oo T
=D k(z,y),
where we use the reproducing property of the induction hypothesis. Since g, € H, we conclude that D**¢i s (x, ) € H.
e Next, we show that v, (t) converges to the weak limit D**% i;(z, -) in the H-norm. With f = D**% k(x, -) in (79), the

reproducing property of the induction hypothesis gives

2
a+e; . ate; ate;
HD K(z, )HH <D k(z,-), DO k(x, )>H

. 1 a o a+e;
:JL”;O<;[D Ala + tre;, ) = Dr(e, )], D in(e, )

1

= lim — [D(O‘+6-7’a)/£(x, T+ tye;) — DT g (g, x)]
k—oo g

=platenate) oz 1),

Hence, using fundamental theorem of calculus, we infer

1 2
H; [D%k(z + tej,-) — Dk(x,-)] — D" k(a, )HH [ D@ gz + tej, x 4 te;) — 2DV k(z + tej, )

t2
+ D(a’a)ﬁ(x, x)] + D(O‘+€j7o‘+ej)n(x, x)

2
—7 [D(aJref’a)/i(x, x + tej) — DT g (g, a:)ﬂ
1t ot
=5 / / Dleterated) g 4 uej, x4 ve;)dudv
0o Jo

2 t
- E/ Dleteraten) g(p o+ vej)dv
0

+ DleFeates) (g )

1 [t ot . ‘
e /0 /0 [D(aﬂ”aﬂ])"ﬁ(fﬂ + uej, x + vej)
— 2D\t ot k(x x + ve;) + DTt k(z 1) | dudw.

Under Assumption 4, D(@+€i:@+¢i) (2 1) is continuous and vanishes at infinity. Thus, D(®F¢i-@+¢) k(z, ) is uniformly
continuous and the right hand side of the last line goes to 0 as ¢ — 0, which gives

1 2
limHz [Dk(x + tej, ) — Dk(x,-)] — D% k(a, )H =

t—0

Therefore, as t — 0, 1 [D*k(x + te;,-) — D*k(x, )] converges to D¢ k(x, -) in H-norm. Furthermore, since in RKHS,
convergence in norm implies pointwise convergence (Steinwart & Chrlstmann, 2008), we conclude that v, (t) converges
pointwise to D“k(x, -).

e Finally, we prove the partial derivative reproducing property of the induction step. For any f € H, we have
(DT f) () := lim — [(D“f)(x +tej) — (D*f) ()]
(@) j a )~ Ds(a.-
_<%E>I(1) [D (Jf-l—te_], ) D K:(x7 )Lf>
(b)<D“+em(x ) f> ;

H

where (a) holds due to the induction hypothesis and (b) follows from point-wise convergence proved in previous step. This
completes the proof.

H
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G. Proof of Lemma 1

Let X, X’ be independently and identically distributed with distribution Px. The HS-norm of 9C{ can be computed as

10Col3s =IBAP6(X) @ 6(X)]Iiks
= |(El®@o(X) @ 6(X)), EA®6(X) @ 6(X)])
<E[(d?(X) © 6(X),dD (X)) @ 6(X")) |
—E[(dP6(X),dD6(X)) (6(X), 6(X )y
MECSIMECOIM

HS‘

<e a0, oo

= ||a®sco) lotx)1E]

-k (iibz-<X>bj<X>D<ewenﬁ<X,X) .
*3 ZZZ’) Jatpg(X)DEertea) (X, X)
#3300 e OB D (X, )

+1 ZZZZ% g () D et (X, X) | (X, X)

SBi (n2 +nd+ 4n4) S.

Therefore, we conclude that 9Cj defined in (29) is a Hilbert Schmidt operator.

H. Proof of Theorem 7

The proof follows from the same argument as that of Theorem 1 . In particular, replacing C'x+ x, C v+ x with 9Cy, 8/6'0 in
Equations (39), (40), (42) and (43) gives

<= [0¢0 - ac|, + = |co - G, NCl

<! <\/§”j <6/2>> 5 E(5/2)[0Co

<L =(5/2) ( VBa+ aCOHHSB> 81)

77
S\;ME((S/Q) ( 300“1{3) max ( B®7BK,)
:\/1M5(5/2)Bma*0(e*2),

where (a) holds with probability at least 1 — 6.
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I. Proof of Theorem 8

Let Z denotes the indices among 1, - - - , M for which z;, € D.,. Denote 7(z) := d® ¢(x) ® ¢(z). Under condition (33),
D, satisfies for any g € Z,

|(r (), 7 (24) )31 | \<d(2>¢ (2p) ® ¢ (2p) , AP (24) @ & () )5y ]

pe8 55 ) oo (e )loe — 9220 [A®6 () © 6 () [y, [4D6 () @6 ()T,
C i [P0 (@), A28 (@), (6 (@p) 6 ()|
reZpa [[d@ ¢ (zp)[|,, 16 (@p)ll5, [|[A@ ()], 16 (24) 15 (82)
= 4P () AP0 (@), | (0 (25) 6 (),
peL,p#q |‘d(2)¢(xp)’|7.[ Hd(2)¢(xq)“7{ ||¢(37p)”7-[ H(/b(xq)”q{
<.

Thus we have

‘<T(xp)vr<xq)>7{®|
max
reZp#a  ||I7(zp)|lny

<r(zg)llne <7V Bs, (83)

where the bound on r(+) follows from the intermediate step in (80).

Let I1p,, denote the projection operator onto the subspace spanned by a dictionary of functions {r(xy) : 2y € D,}. The
error due to sparsification can be upper bounded by

m=1 (84)

In the following, we justify the last inequality in (84). For any z,, ¢ D,,, we have

<Zsez asr(xS)ar(xp»H@

> sz asr(@s)llag
e 5
ke [[r(@n)llag

Z’Y\/B®v

where the first inequality follows from a specific choice of coefficients where «; = 0 for each j € Z, except for a single
index ¢ with o, = 1. The second inequality follows from the violation of (83) since x,, ¢ D,. Hence, for p ¢ 7,
Pythagoras theorem gives

o, () 32, = max

Ir(2p) = T, r(@p) |30, = I (2p) 52, — M, 7 (2p) [

86
< Bu(1—2), (50

This justifies (84).

On the other hand, using Theorem 7, we have that with probability at least 1 — ¢,

Jocs -], < =)
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Therefore, along the same lines as (43) in Appendix A, we have with probability at least 1 — §

||5(\70 — 0Co|lus < ||5(\70 - %OHHS + Hé\éo — 0Co||us
D B (88)
< (1 - lj\/;> VBg(1—=7%) 4/ ﬁ®5(5)’

where the second inequality follows from (84) and (87). This implies

|20 - aco|| + 5 |0 - G| hocol

((1 - mj\}') Bo(l—72) + \/37?5(5/20
((-5)m Ze2(6/2) ) Gl

+
(8 G e
s (L 4 19,
<
+

(89)

D, 1 0C
D) (1 ) (55,5
1 =( 1 oC,

=(6/2) ( ” Ezon)max( B®,BH)

2 1 = -2
+ma(5/2)>0(6 ).

J. Conditional Joint Mean Embedding

We discuss the notion of conditional joint mean embedding (also known as conditional cross covariance in Song et al. (2009)).
Consider an RKHS H with kernel x defined over some subset X of an Euclidean space, where ¢ is the feature map. Then, the

cross product ¢(X )®¢(Y)®¢(Z) is arandom variable in Hg := HOHRH. When IE {H(Z)(X) ®Re(Y)® ¢(Z)||H8J < 00,
we define the joint covariance operator Cxyz : Hg — H as

Cxyz =E[p(X)®@ oY) ®¢(Z)]. (90

Thus for f, g,r € H, we have

[(B(X), £ (00 © 6(2),90 1)y, |
(600 @ (6() @ 6(2)), £ © (90 7)),s | o1
= (BpX)0oV) 0 a(2).fogar)

®

= (Cxyz, fRg®r).

Also, the above equals (f, Cxyz(g ® r)). Given M data points M := {(z,, Y, zm)}ﬁf:1 sampled i.i.d. from the joint
distribution of XY, Z, the empirical estimate of C'xy 7 is given by

1 M

Cxyz =17 D ¢ (@n) @ ¢ (Um) ® 6 (5m). (92)

m=1
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We now define the conditional joint mean embedding operator Uzy |x. Assume
ElgY)r(Z2)|X =-]€H, Vg,reH.
Similar to Fukumizu et al. (2004, Theorem 2), we have
CxxElg(Y)r(2)|[X =] =Cxyz(g®r).

Together with the reproducing property, we obtain

E[g(Y)r(2)|X = 2] =(E[g(Y)r(2)|X ], k(x,-)),,
=(CxxCxvz(g®@r),k(x,")),

=(g®r,CzyxCxxr(z, ')>H®'

Therefore, the operator Uzy | x and mapping pizy |, can be defined as

Uzyix =CzvxCxkx, Hzyvie =EB[p(Y)®¢(2)|X = z] =Uzy xr(z,"),

such that

E[g(Y)r(Z)|X = 2] = (g© . pizyia)y,

In other words, U;; and U, in Section 8 can be defined as

—1
Uy ZZCtt'OCO .

One can also define the finite sample estimations of these operators with regularization parameter ¢ as

Z:{\ft’ Z:att/()(éo + € id)_l.

93)

(94)

95)

(96)

o7)

(98)

99)

The empirical estimates of b7, a” can be computed using these data-driven variants. In addition, the evaluation at a data

point can be constructed using finite dimension Gram matrices as in Appendix K.

K. Estimate Drift and Diffusion Coefficients Using Finite Dimensional Matrices

In practice often drift and diffusion terms are not known. In the following, we show that for implementing the algorithm
proposed in Section 8, Gram matrices are only required. To simplify our notations, we consider a 1-dimensional dynamical

system. The n-dimensional extension can be derived similarly.

Let {(z; (0), x; (T))}f\]:1 be N snapshot pairs used to construct empirical estimates of I, /%, and I/, in (99). Define

feature matrices
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and Gram matrix G, := ®] ®¢. Then, for z € R,

[(ﬁf)*id} (2) = <(z)5)*id, w(z)) = (id Uen(z, )

@ <id, B, (G +eid) ' @ k(2 -)>

=g(z)

N (100)
— <ida > 9i () k(i (7), ')>

where (a) follows from relation (106) and (G, + ¢ id) ' ®J k(z,-) := g (z) € RY.

(@) id] ) - (i) ()]
N (101)
{Zgi (2)m; (1) — z} )

i=1

Therefore, we have
~ 1
b7 (2) =—
() =
1
B T
In the above calculation, the first line requires id to be an element in H. As we noted in Section 8, the identity map does
not belong to an infinite-dimensional RKHS. However, the calculation utilizes the action of the identity map, and not its
representation within . In other words, the above derivation can be viewed as a formal approximation technique. Providing

guarantees on approximation error, however, remains challenging. In order to construct a”, define a feature matrix ®.,,
whose i-th column is ¢ (x; (7)) ® ¢ (z; (7)). Using (92), we have

(@) Gawid) () = (id @ id, U2 w (2, )

id, Crro (Co +21d) e -)>

I
T~

id, ., (G + ¢ id) ' @] k(z, -)>

i=9(z)

N
id ®id, Zgi (2) K (zi (7)) @k (i (1), )>
i=1

(102)

Il
—

N
= Zgi (2)([d®id, k (z; (7),-) ® & (z; (T),))

Thus, a7 (z) can also be computed using Gram matrices as

N N
—~ 1
a™(z) = . {Zgi (2) 2 (1) — ZZgi (2) x; (1) z; (0) + 22} . (103)
i=1 i=1
Again, we utilize the action of id, without its explicit representation in H.

24
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L. Algorithm Summary

Algorithm 1 Sample-based Sparse Learning of .4 Without Explicit Knowledge of SDE Coefficients

N

N_.; second dataset Dy := {z,, }M_,; kernel

1: Input: Sampling interval 7; snapshot pairs Dy := {2, (0), Z., (7)
function x; coherence parameters 71, 72; data dimension n.
2: Output: Sparse, regularized estimator A7 .

3: Prune D; to get D,, by identifying a subset of D; such that each pair (z; (0) ,z; (7)), (x; (0),z; (1)) € D, satisfies

[5(2:(0),25(0))| < vy1s(2:(0), 2:(0)(;(0), 25(0)),  [w(xi(r),2;(7))| < Vyu(i(r), @i(r))w(w; (1), 25 (7).

4: Let Z; be the indices among 1, ..., N for which (z;(0), z;(7)) are in D, . Construct
Cro= Y aip(@i(r),2:(0)), Co=Y_ Bip(x:(0),2:(0)),
€T, i€Zq

where « (and similarly, 3) 7 is defined via @ = G~ 1g, with G; ; = kg ((zi(7), 2:(0)), (z;(7),2;(0))) for i, j € Ty,
and g; = + ZN 1 ke ((zi(1),2:(0)), (;(7),2,;(0))) for j € Z;. Crro and Crop can be computed likewise.
5: Compute Z/Ale, Uz, and ﬁﬁo based on D.,, via

Z:{\,f = 6—,—0(60 +€ id)_l, Z:[\;_ = C.,—,,-U(a() +e€ id)_l, Z:EO = 6.,-00(60 +e€ id)_l
6: Construct sparse estimates of b ,a’” based on D, via (see Appendix K)
1 s AN
b =— ((Z/{g) e; —ei> , Yi=1,---,n,
’T
— * ~ * N *
7= (@) (e — (%) (e @ o)) — (i) (e @ i) + (es @ e)a(e, ) , inj =1,

7: Compute 4 )¢ via d(2)¢ S bTDe o+i>0, > a; a7, D%+ ¢, Then prune D, to get D, by identifying a
subset of Dy such that each pair xp, zq € D,, satlsﬁes

(@@ (), A2o(0) ) < VAP D) [P () s [y, 20)| < \Jv2ri(p, 24)(ps 2g)

8: Let Z; be the indices among 1, ..., M for which z), € D.,,. Compute dCy (D41, Dn,), Co (D,,) via

0Co (Dy,,Dsy) = Y 21 AP (ar) ® dlar), Co(D2) = Y #hp (xr, 1)
kET, kET,
where z (and similarly, ')’ is obtained as z = H~'h, with H; ; = (dP¢(x;) ® ¢(x;),dPgp(x;) @ ¢(z;)) for
alli, j € Tohy = 4 30,0 (26 () @ @(a:), AP (ay) © 8(zy), Vi € T
9: Compute.A (D4, D~,) via

-1

‘A (D'YI7D ) = 5(\;’0 (,D“/NID’Yz) (60 (D’Yz) +e ld)

"Alternatively, one can use uniform weights, i.e., @ = 8 = 71,z = 2’ = 7 1. See Footnote 2 for details.
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M. Constructing Eigenfunctions from Finite-Dimensional Matrices

In this section, we construct eigenfunctions of the sparse approximation of Koopman operator using Gram matrices over
sparse data. To that end, define

Cx = [(z1),. -, d(za)],  Ox+ = [0 (21),.- -, (x)]

where d = |D,|. Recall that the regularized sparse estimator of Koopman operator is given by 165 =

(@XX +<€id)

1 . ~
Cx x+. The sparse covariance and the cross-covariance operators in /C. can be written as

aXX‘*‘ = q)XAozcb;+, GXX = @XAﬁé;';,
A, = diag (o), Ap = diag(B),

where « and [ are as defined in Section 3. Define the Gram matrices

Gxx =0y Px, Gxix =Py Py, (104)
so that [Gxx]ij = #(wi,2;), and [Gx+ x]i; = k(] , 2] ), and both Gx x and G x+ x are elements of R¥*?. Using this

~

notation, rewrite /. as

~

K. = (GXX —I—Eid)il 6XX+

= (BxAgdk +eid) DxAadL,

=Dy (Ap@y By +eI)  ADL. (105)
= Oy (AsGxx +el) ' Ay Oy

e
=Ox YDy,

where Y := (AgGx x +¢el)~ ' A,, and the third equality follows from the identity
(I+PQ)~'P=PI+QP)" (106)

From Klus et al. (2020c, Proposition 3.1), we get that an operator of the form IEE =& T<I>)T(+ has an eigenvalue \ with the
corresponding eigenfunction

d
pa(z) = (Dxv)(z) = > _wvik(zi, ) (107)
i=1
ifand only if v = [vy,...,v4] " is aright eigenvector of TG x + x associated with the same eigenvalue, i.e., TG x+ xv = \v.

~

Therefore, eigenfunctions of . can be obtained by solving the finite-dimensional eigenvalue problem YG x+xv = A\v
based upon finite-dimensional Gram matrices G x x and G x+ x -

Along the same lines as above, we next construct the generator using finite dimensional matrices. Define

By = [p(x1),...,0(za)], dPDDy = [d@)qs(xl),...,d<2>¢(xd)} ,

o~ o~ -1
where d = |D,|. Recall that the regularized sparse approximation of PF generator is given by A, = 9Cy (Co +e id) .
Per (34), we have
9Co=dPDx AL, Co=DxA, DL,
A, =diag(z), A, = diag(z’).

26
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Define finite dimensional matrices
Gio=dP 0 Dy, Gy = LD, (108)

where, due to the partial derivative reproducing property, entries of matrix G1¢ are given by

Gualn = (420(2,),6(2,) )

H

b2 D% 0(e) + 5 D D a (0D 0(a,). 0(z,) )

1 i=1 j=1 H

o

2

(109)

n n

AERICATCARIERNIER > 9) EHERI CEETERRTERY
i=1 j=1
bi(l'p)D(ei’O)li(l'p, zq) + 1 z”: z”: aij(:EZQ)D(E"JF@J70)/@(:511,7 Zq).

2 £~ 4
1 i=1 j=1

-

H

i=1

-

?

Using this notation and following the same logic as the previous case, the eigenfunction of ﬁg has an eigenvalue A with the
corresponding eigenfunction

oa(z) = (PxGog v)(x) (110)

if and only if v is a right eigenvector of A,G1o (A, Goo + €I )_1 associated with the same eigenvalue.

N. Partial Derivatives of the Gaussian Kernel

Consider the Gaussian kernel & (z,y) = exp (*Hl’ —yl*/ (202)> with o > 0. The first-order partial derivative of x(x,y)

w.r.t = is given by

1

— (zi —yi) £ (2,y) .

D(eivo),ﬁ: (x, y) - —
g

Applying the partial derivative reproducing property, if ¢ = j, then we have

D(ei,ei)ﬁ(x,y) _ <(D67‘/€)x7 (Dem)y>

/v Kz 4 hey, ) —K(x,)
- <;hi% h (D K)y>
(a) ;. K,(.%' + h6i7 ) — I{(Z‘, ) (0,e4)
= %li%< I DR ’y)>
(0,e4) . _ n(0,ei)
) 1 D k(z + heg,y) — D k(z,y)
h—0 h
— lim 22 (@i + b —yi)r(x + hei,y) — (2 — yi)k(2,y)
= A h (111
. (;hm(x +heiy) | 25 ((wi = yi)r(x + hey,y) — (z — yi)r(z, Z/)))
= lim +
h—0 h h
1 [5(z 4 hei,y) — K(z,y)]
== }lgn k(x + heg, y) + Q(xl—yz)}lblgh N
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where in line (a), we use the continuity of inner product to exchange limit with inner product and (b) follows from the partial
derivative reproducing property. When i # 7,

D(ei,e]'),i(x’y) = <(Dei/1)w, (D% K:)y>

. k(x+ he, ) — k(x, ) .
= <;13§6 I (DR, )
(@ . /K@ +he;, ) —K(®,) S0
= }lLl_>H10< h 7D K:( ay)>
® o DOn(@ + hei,y) = DOx(a, y)
) h
1 s . I

— lim o=z (@j —y;)r(@ + hes, y) — 5 (25 — yj)k(z,y) (112)

h—0 h
BT /ﬁ}($+h€i,y) _K(l'7y)
— fi ey - ) SR
B k(x4 hei,y) — Kz, y)
= 2w~ ) i, h

= (s ) DOz, )
1
= *ﬁ(xz yl) (gjj 7yj)lf(l’,y).

Likewise, the second-order derivatives are given by

I L
o (i — i) (%‘ —y;) K (z,y) i # 7,
ﬁ o= (wp — yp)2 =3) (zp —yp)hlz,y) i=j=np,
Dt g(my) = ¢ L (L (wp —1p)* — 1) (2g — yg)sla,y) i # 5.0 # ¢,q € {i,j}
L (=0 = 1) (wp —wp)r(wy) i=j#p,
o (L5 —6) (2 — y,)? + &) () i=j=p=q,
2 (L2stel = 3) (2, — ) (@i — 1)) K(,) i#jp=1q
Dleterenten (e y) = & (L (ool 1) (@ - y)? + L — Ll — yp)Q) k(zy), i=j#p=4q
g (2 = 8) (@ — )i — ) (), i=jip#a
X (’”Cé”’)z — 1) (xi—y)*+ L — Sz, — yp)Q) w(z,y) iF5p#q
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