
Published in Transactions on Machine Learning Research (06/2023)

Mind the Gap: Mitigating the Distribution Gap
in Graph Few-shot Learning

Chunhui Zhang chunhuizhang@brandeis.edu
Brandeis University, MA, USA

Hongfu Liu hongfuliu@brandeis.edu
Brandeis University, MA, USA

Jundong Li jundong@virginia.edu
University of Virginia, VA, USA

Yanfang Ye yye7@nd.edu
University of Notre Dame, IN, USA

Chuxu Zhang chuxuzhang@brandeis.edu
Brandeis University, MA, USA

Reviewed on OpenReview: https: // openreview. net/ forum? id= LEVbhNrLEL

Abstract

Prevailing supervised deep graph learning models often suffer from the issue of label scarcity,
leading to performance degradation in the face of limited annotated data. Although numerous
graph few-shot learning (GFL) methods have been developed to mitigate this problem, they
tend to rely excessively on labeled data. This over-reliance on labeled data can result
in impaired generalization ability in the test phase due to the existence of a distribution
gap. Moreover, existing GFL methods lack a general purpose as their designs are coupled
with task or data-specific characteristics. To address these shortcomings, we propose a
novel Self-Distilled Graph Few-shot Learning framework (SDGFL) that is both general
and effective. SDGFL leverages a self-distilled contrastive learning procedure to boost
GFL. Specifically, our model first pre-trains a graph encoder with contrastive learning using
unlabeled data. Later, the trained encoder is frozen as a teacher model to distill a student
model with a contrastive loss. The distilled model is then fed to GFL. By learning data
representation in a self-supervised manner, SDGFL effectively mitigates the distribution
gap and enhances generalization ability. Furthermore, our proposed framework is task and
data-independent, making it a versatile tool for general graph mining purposes. To evaluate
the effectiveness of our proposed framework, we introduce an information-based measurement
that quantifies its capability. Through comprehensive experiments, we demonstrate that
SDGFL outperforms state-of-the-art baselines on various graph mining tasks across multiple
datasets in the few-shot scenario. We also provide a quantitative measurement of SDGFL’s
superior performance in comparison to existing methods.

1 Introduction

Deep graph learning, such as graph neural networks (GNNs), has garnered significant attention for its
exceptional performance in various domains, such as information systems (Kipf & Welling, 2017; Hamilton
et al., 2017; Zhang et al., 2022a; Liu et al., 2023), molecular chemistry/biology (Jin et al., 2017; Hao et al.,
2020), and recommendation (Ying et al., 2018; Fan et al., 2019). However, the success of GNNs typically
requires a substantial amount of annotated data, which can be prohibitively expensive to obtain. To address

1

https://openreview.net/forum?id=LEVbhNrLEL

Published in Transactions on Machine Learning Research (06/2023)

this challenge, graph few-shot learning (GFL) (Zhang et al., 2022b) has emerged as an area of active research
aimed at improving performance in the face of limited labeled data.

Previous GFL models have been developed using meta-learning (or few-shot learning) techniques, such as
metric-based approaches (Vinyals et al., 2016; Snell et al., 2017) or optimization-based algorithms (Finn
et al., 2017). These models aim to quickly learn an effective GNN for new tasks with only a few labeled
samples. GFL has been applied to a variety of graph mining tasks, including node classification (Zhou et al.,
2019; Huang & Zitnik, 2020), relation prediction (Xiong et al., 2018; Lv et al., 2019; Zhang et al., 2020a),
and graph classification (Chauhan et al., 2020; Ma et al., 2020). Despite considerable progress, most existing
GFL models suffer from the following limitations: (i) Impaired generalization. Current GFL methods often
rely too heavily on labeled data, which can result in limited generalization and transferability to new tasks
due to the existence of a distribution shift between non-overlapping meta-training and meta-testing data.
Without supervision signals from ground-truth labels, GFL may not learn an effective GNN for novel classes
of test data, thus limiting its overall performance. (ii) Constrained design. Most current GFL methods lack
a general purpose, as they assume that the designated task is universally the same prior across different
graph tasks or datasets, which is not always guaranteed. For instance, GSM (Chauhan et al., 2020) requires
the manual definition of a superclass of graphs, which cannot be extended to node-level tasks. The task or
data-specific design limits the applicability of GFL to different graph mining tasks.

The challenges highlighted earlier underscore the need for a novel, generic GFL framework that can learn
a transferable, effective, and generalizable GNN for various graph mining tasks with limited labeled data.
Fortunately, contrastive learning has emerged as a promising approach to reduce the dependence on labeled
data and learn label-independent yet transferable representations from unsupervised pretext tasks for vision,
language, and graphs (Chen et al., 2020; Gao et al., 2021; You et al., 2020; Sohn et al., 2020). Consequently,
we propose a novel Self-Distilled Graph Few-shot Learning framework (SDGFL) that leverages contrastive
learning to enhance GFL.

Specifically, our proposed framework pre-trains a GNN by minimizing the contrastive loss between the
embeddings of two views generated from two augmented graphs. Then, in order to learn more general and
transferable representations for fast adaptation in GFL, we introduce a self-distillation step, an implicit
ensemble of two pre-trained models (teacher and student), which reduces the variance (Allen-Zhu & Li, 2023)
to improve the pre-training: the pre-trained GNN is frozen as a teacher model and utilized in the contrastive
framework to distill a randomly initialized student model by minimizing the agreement of the embeddings
generated by the two models. Both pre-training and the distillation steps can operate without requiring
labeled data before the meta-learning phase. Finally, the distilled student model is taken as the initialized
model for GFL in few-shot graph mining tasks. SDGFL learns graph representation in a self-supervised
manner, effectively mitigating the negative impact of distribution shift, while producing transferable and
discriminative graph representation for new tasks in the test data. Furthermore, our simple and generic
framework is applicable to different graph mining tasks. To quantitatively measure the capability of SDGFL,
we introduce an information-based method that measures the quality of learned node (or graph) embeddings
on each layer of the model. Specifically, we assign each node a learnable variable as a noise and train these
variables to maximize the entropy while keeping the change of output as small as possible.

To summarize, our contributions in this work are:

• We develop a general and effective SDGFL framework that leverages a self-distilled contrastive learning
procedure to enhance GFL. SDGFL mitigates the impact of distribution shift and has a task and
data-independent capacity for general graph mining purposes.

• We introduce an information-based method to quantitatively measure the capability of SDGFL by
evaluating the quality of learned node (or graph) embeddings. To our knowledge, this is the first study
that explores GFL model measurement.

• Comprehensive experiments on multiple graph datasets demonstrate that SDGFL outperforms state-of-the-
art methods for both node classification and graph classification tasks in the few-shot scenario. Additional
measurement results further confirm that SDGFL learns better node (or graph) embeddings than baseline
methods.

2

Published in Transactions on Machine Learning Research (06/2023)

2 Related Work

Few-Shot Learning on Graphs. In recent years, several GFL models have been proposed to solve various
graph mining problems in the face of label sparsity, such as node classification (Yao et al., 2020; Ding et al.,
2020; Huang & Zitnik, 2020; Wang et al., 2022; Zhang et al., 2022b;c), relation prediction (Xiong et al.,
2018; Lv et al., 2019; Chen et al., 2019; Zhang et al., 2020a;b; 2022d), and graph classification (Chauhan
et al., 2020; Ma et al., 2020; Guo et al., 2021; Wang et al., 2021; Zhang et al., 2023b). These models are
built on meta-learning (or few-shot learning) techniques that can be categorized into two major groups: (1)
metric-based approaches, which learn effective similarity metrics between few-shot support data and query
data (Vinyals et al., 2016; Snell et al., 2017); (2) optimization-based algorithms (Finn et al., 2017), which aim
to learn well-initialized GNN parameters that can be quickly adapted to new graph tasks with few labeled
data. For example, GPN (Ding et al., 2020) conducts node informativeness propagation to build weighted
class prototypes for a distance-based node classifier. The second group proposes to learn well-initialized GNN
parameters that can be fast adapted to new graph tasks with few labeled data. For instance, G-Meta (Huang
& Zitnik, 2020) builds local subgraphs to extract subgraph-specific information and optimizes GNN via
MAML (Finn et al., 2017). While previous efforts have relied on labeled data and had task and data-specific
designs, we aim to develop a novel framework that explores unlabeled data and has a generic design for
general graph mining purposes.

Self-Supervised Learning on Graphs. Self-supervised graph learning (SGL) has recently received
considerable attention due to its effectiveness in pre-training GNNs and its competitive performance in
various graph mining applications. Previous SGL models can be categorized into two main groups: generative
learning and contrastive learning (Liu et al., 2020; Sohn et al., 2020; Zhao et al., 2021; Yu et al., 2022; Yue
et al., 2022; Qian et al., 2022; Zhang et al., 2023a; Tian et al., 2023). The generative models learn the
graph representation by recovering feature or structural information on the graph. The task can recover
only the adjacency matrix alone (You et al., 2018) or together with the node features (Hu et al., 2020b).
As for the contrastive methods, they first define the node context, which can be node-level or graph-level
instances. Then, they perform contrastive learning either by maximizing the mutual information between the
node-context pairs (Hassani & Ahmadi, 2020; Velickovic et al., 2019; Sun et al., 2020) or by discriminating the
context instances (Qiu et al., 2020; Zhu et al., 2021). In addition to the above strategy, random propagation
has recently applied graph augmentation (Rong et al., 2020) for semi-supervised learning (Feng et al., 2020).
Motivated by the success of SGL, we propose to use it to improve GFL.

3 Preliminary

GNNs. A graph is represented as G “ pV, E, Xq, where V is the set of nodes, E Ď V ˆ V is the set of edges,
and X is the set of node attributes. GNNs (Hamilton et al., 2017; Xu et al., 2019; Zhang et al., 2019) learn
compact representations (embeddings) by considering both graph structure E and node attribute X. To be
specific, let fθp¨q denote a GNN encoder with parameter θ, the updated embedding of node v at the l-th layer
of GNN can be formulated as:

hplq
v “ Mphpl´1q

v , thpl´1q
u | @u P Nvu; θq, (1)

where Nv denotes the neighbor set of v; Mp¨q is the message passing function for neighbor information
aggregation, such as a mean pooling layer followed by a fully-connected (FC) layer; h

p0q
v is initialized with

node attribute Xv. The whole graph embedding can be computed over all nodes’ embeddings as:

h
plq
G “ READOUTthplq

v | @v P V u, (2)

where the READOUT function can be a simple permutation invariant function such as summation.

GFL Setting and Problem. Let Cbase and Cnovel denote the base classes set and novel (new) classes set in
training data Ttrain and testing data Ttest, respectively. Similar to the general meta-learning problem (Finn
et al., 2017), the graph few-shot learning (GFL) aims to train a GNN encoder fθp¨q over Cbase that can be
quickly adapted to Cnovel with limited labeled data per class. The base and novel classes are disjoint, denoted

3

Published in Transactions on Machine Learning Research (06/2023)

as Cbase X Cnovel “ H. In K-shot setting, a batch of classes (tasks) is randomly sampled from Cbase during
the meta-training phase, where K labeled instances are used to form the support set S for model training
and the remaining instances are taken as the query set Q for model evaluation. After sufficient training, the
model is further transferred to the meta-testing phase to conduct N -way classification over Cnovel (N is the
number of novel classes), where each class is only with K labeled instances. The GFL framework can be
applied to various graph mining problems, such as node classification or graph classification, depending on
the class definition. In this study, we consider both node classification and graph classification problems
under the few-shot setting, formally defined as follows:

Problem 1 Few-Shot Node Classification. Given a graph G “ pV, E, Xq and labeled nodes of Cbase, the
problem is to learn a GNN fθp¨q to classify nodes of Cnovel, where each class in Cnovel only has few labeled
nodes.

Problem 2 Few-Shot Graph Classification. Given a set of graphs G and labeled graphs of Cbase, the
problem is to learn a GNN fθp¨q to classify graphs of Cnovel, where each class in Cnovel only has few labeled
graphs.

In contrast to previous studies that rely solely on labeled data of Ttrain and Ttest for GFL model training
and adaptation, our approach leverages both labeled data and unlabeled graph information to learn a GFL
model for solving the above problems.

4 Methodology

Figure 1 depicts the proposed SDGCL framework, which comprises two main phases: self-distilled graph
contrastive learning and graph few-shot learning (GFL). The first phase (Figure 1(a)) involves pre-training a
GNN encoder with contrastive learning, followed by knowledge distillation to enhance the pre-trained GNN
in a self-supervised manner. The distilled GNN is subsequently fed into the GFL phase (Figure 1(b)) for
few-shot graph mining tasks. Additionally, we introduce an information-based approach to quantify the
superiority of SDGCL.

4.1 Self-Distilled Graph Contrastive Learning

GNN Contrastive Pre-training. In the first phase, we employ contrastive learning to pre-train the GNN.
Inspired by the representation bootstrapping technique (Grill et al., 2020), our method learns node (or graph)
representations by discriminating context instances. We introduce two GNN encoders: an online GNN fθp¨q

and a target GNN fξp¨q, to encode two randomly augmented views of a given graph. The online GNN is
supervised under the target GNN’s output, while the target GNN is updated by the online GNN’s exponential
moving average. Figure 1(a) shows the contrastive pre-training step.

Graph Augmentation: We process the given graph G with random data augmentations to generate a contrastive
pair (G1, G2) as input for the two GNN branches (online branch and target branch) used in GNN training.
We apply a combination of stochastic node feature masking, edge removal, and node dropping with constant
probabilities for graph augmentation.

GNN Update: Using the generated graph pair (G1, G2), the online GNN fθp¨q and the target GNN fξp¨q are
respectively utilized to process G1 and G2 for node (or graph) embedding generation. Both GNNs have the
same architecture, while a two-layer FC (one-layer FC) is attached after an online GNN (target GNN) to
refine embedding. To prevent the prediction of the online model from being exactly the same as the output
of the target model and avoid the learned representation collapse, two branches have different FC layers. To
enforce the online GNN’s embeddings zθ to approximate the target GNN’s embeddings hξ, we formulate the
mean squared error between them as the objective function:

Lθ,ξ “ ∥zθ ´ hξ∥2
2 “ 2 ´ 2 ¨

zθ, hξ

∥zθ∥2 ¨ ∥hξ∥2
. (3)

4

Published in Transactions on Machine Learning Research (06/2023)

augment
2 views

Node dropping
Edge dropping
Attribute mask

!!!

!!

unlabeled !

stop grad
loss

target GNN f"($)

online GNN f#($)

FC

FC FC embedding &#

update weights by
exponential moving average

stop grad
loss

teacher GNN f#!($)

student GNN f#"($) FC

FC

FC embedding z′#"

stop weight sharing

embedding ℎ′#!

(a) self-distilled graph contrastive learning phase

norm

norm

… support data

support
prototypes

query data

outer loop
update

inner loop
update

support loss

query loss…

support data

support
prototypes

query data

inner loop
update

support loss

query loss

copy meta-trained
weights

…

…

copy distilled model for GFL
copy pre-trained model for distillation

GNN

GNN

support set

query set

support set

query set

meta-training set

meta-testing set

*$
*%

embedding ℎ"

augment
2 views

!∗∗

!∗

unlabeled !

shared graph
augmentation
strategy

(b) graph few-shot learning phase

Figure 1: The SDGCL framework consists of two phases: (a) self-distilled graph contrastive learning, where a
GNN encoder is pre-trained with stop-grad contrastive learning (Grill et al., 2020; Chen & He, 2021) and
further evaluated with knowledge distillation in a self-supervised manner; (b) graph few-shot learning, which
takes the distilled student network as the initialized model and uses a meta-learning algorithm for model
optimization.

We update the parameters θ of the online GNN using the Adam optimizer (Kingma & Ba, 2015):

θ Ð Adampθ, ∇θLθ,ξ, ηq, (4)

where η is the learning rate. We use the target GNN to provide the regression target to supervise the
online GNN, and its parameters ξ are updated as the exponential moving average (EMA) of the online GNN
parameters θ. More precisely, ξ is updated as follows:

ξ Ð τξ ` p1 ´ τqθ, (5)

where τ P r0, 1s is the decay rate. Note that the target GNN stops the backpropagation from Lθ,ξ, and it is
only updated by EMA.

Contrastive Distillation. With the pre-trained GNN fθp¨q obtained in the previous step, we propose a
method called Contrastive Distillation to enhance the performance of a pre-trained GNN fθp¨q. Our approach
is inspired by the Born-again strategy (Furlanello et al., 2018), which posits that a well-trained teacher can
improve a randomly initialized identical student. The distillation step adopts a similar contrastive framework
as the previous step, as shown in Figure 1(a). Specifically, we first use the pre-trained GNN fθp¨q as the
teacher model fθtp¨q, and then generate two augmented views (G˚, G˚˚) of a graph G to be fed into both the
teacher and the student models (fθtp¨q and fθsp¨q), respectively. The teacher model is then frozen and used
to distill the student model fθs

p¨q. To ensure that the student model approximates the teacher model, we use
a contrastive framework, as illustrated in Figure 1 (a). Specifically, we force the student’s normalized output
to approximate the teacher’s normalized output, which is represented as follows:

Lθs “ ∥z1
θs

´ h1
θt

∥2
2 “ 2 ´ 2 ¨

z1
θs

, h1
θt

∥z1
θs

∥2 ¨ ∥h1
θt

∥2
, (6)

5

Published in Transactions on Machine Learning Research (06/2023)

z1
θs

“
zθs

∥zθs
∥2

, h1
θt

“
hθt

∥hθt
∥2

, (7)

where zθs
and hθt

are the output embeddings of the student and teacher models, respectively. The student
model is then updated using the Adam optimizer, as follows:

θs Ð Adampθs, ∇θsLθs , ηq. (8)

In contrast to the target GNN update in contrastive pre-training that uses the EMA method (Eqn. 5), the
teacher model in our method is frozen and can be seen as a special case of EMA, which is represented as
follows:

θt Ð τθt ` p1 ´ τqθs, τ “ 1. (9)

4.2 Graph Few-Shot Learning

In the GFL phase, we take the distilled student GNN fθs
p¨q generated in the previous phase as the initialized

GNN model using an optimization-based algorithm called model-agnostic meta-learning (MAML) (Finn et al.,
2017). During meta-training, we compute the task-specific parameters θ1

s,i for task Ti using a number of
gradient descent updates over the support set Si of Ti (i.e., inner-loop), as follows:

θ1
s,i Ð θs ´ α∇θs

LSi

Ti
pfθs

q, (10)

where α is the learning step size, and LSi

Ti
denotes the downstream task loss over Si. To perform node or

graph classification, we use the prototypical loss (Snell et al., 2017), which utilizes embeddings extracted
from the support set by a neural network as the class prototype, and the query set is classified according
to the distance between its embeddings and prototypes. We then utilize the task-specific parameter θ1

s,i

to compute the loss over the query set Qi of Ti, which is denoted as LQi

Ti
pfθ1

s,i
q. The losses of a batch of

randomly sampled tasks are then summed up to update the model parameters θs (i.e., outer-loop), as follows:

θs Ð θs ´ β∇θs

ÿ

i

LQi

Ti
pfθ1

s,i
q, (11)

where β is the learning step size. During meta-testing, we apply the same procedure, but using the final
meta-updated parameter θs for novel tasks, without the outer-loop. θs is learned from knowledge across
meta-training tasks and represents the optimal parameter for quickly adapting to novel tasks. It is important
to note that the GFL algorithm can be applied to various graph mining problems by changing the meaning
of each task. Specifically, for node classification (or graph classification), each task corresponds to a node
class (or graph class).

4.3 Quantitative Measurement of GFL

The previous GFL studies target developing better methods in performance while none of them has thought
about model capability measurement. To fill the gap, we extend the neural network model capability
measurement method proposed by Ma et al. (Ma et al., 2019) to graph data and use mutual information
(MI) to measure the information of the input graph G encoded by the hidden state Z of a GFL model f .
Specifically, the mutual information MIpG; Zq is given by:

MIpG; Zq “ HpGq ´ HpG|Zq, (12)

where Hp¨q denotes the entropy, HpGq is a constant, and HpG|Zq represents the amount of discarded
information after G is processed by f and encoded by Z. We can compute HpG|Zq by decomposing it into
the node level as follows:

HpG|Zq “

ż

zPZ

ppzqHpG|zqdz, (13)

where z “ fpxq denotes the hidden state corresponding to attribute x of a node. To disentangle information
components of individual nodes from the whole graph, we assume that each node is independent of the others
and have:

HpG|zq “
ÿ

i

Hpxi|zq, (14)

6

Published in Transactions on Machine Learning Research (06/2023)

where xi denotes a random variable of the i-th node attribute in the graph. Then, we introduce a noise
perturbation-based method to approximate Hpxi|zq. Specifically, let rxi “ xi ` ϵi (ϵi „ N p0, Σi “ σ2

i Iq) and
we aim to optimize the following loss function:

Lpσq “ Eϵ∥fprxiq ´ z∥2´β
n

ÿ

i“1
Hprxi|zq|ϵi„N p0,σ2

i Iq, (15)

where σ = rσ1, σ2, ¨ ¨ ¨ , σns are learnable parameters and β is a trade-off weight. In particular, The first
term of the above objective minimizes the difference between the encoded embedding of noisy input and
the hidden state, while the second term encourages a high conditional entropy according to the maximum
entropy principle. In this way, we have pp rxi|zq “ ppϵiq and Hpxi|zq is approximated by Hprxi|zq as follows:

Hp rxi|zq “ pp rxi|zq log pp rxi|zq9 log σi ` C, (16)

where C “ 1
2 logp2πeq. By taking Eqn. 16 into Eqn. 15, we can optimize Lpσq using the Adam optimizer to

obtain the optimal σ for computing the overall discarded information HpG|Zq. Comparing the discarded
information of different GFL models allows us to measure their capabilities. Ideally, we want the GFL model
to encode valid node (or graph) embeddings as much as possible, which means discarding as little information
as possible.

5 Experiments

We have performed comprehensive experiments on multiple graph datasets to evaluate our model’s performance
against state-of-the-art models. In this section, we first describe our experimental settings and then present
our findings by comparing the performance of various models. Finally, we compute the discarded information
to demonstrate the capabilities of different GFL models. Additional experimental results can be found in
Appendix C.

5.1 Experimental Setup

Datasets. To conduct our experiments, we used multiple graph datasets. Specifically, for the node
classification task, we used ogbn-arxiv (Hu et al., 2020a), Tissue-PPI (Hamilton et al., 2017), Fold-PPI (Zitnik
& Leskovec, 2017), Cora (Sen et al., 2008), and Citeseer (Sen et al., 2008). For the graph classification task,
we used the datasets in (Chauhan et al., 2020), namely, Letter-High, Triangles, Reddit-12K, and Enzymes.
Appendix A provides more detailed information about the datasets.

Baseline Methods. We employ a diverse range of baseline methods for model comparison in the two tasks.
For few-shot node classification, we use node2vec (Grover & Leskovec, 2016), DeepWalk (Perozzi et al., 2014),
Meta-GNN (Zhou et al., 2019), FS-GIN (Xu et al., 2019), FS-SGC (Wu et al., 2019), No-Finetune (Triantafillou
et al., 2019), Finetune (Triantafillou et al., 2019), KNN (Triantafillou et al., 2019), ProtoNet (Snell et al.,
2017), MAML (Finn et al., 2017), G-Meta (Huang & Zitnik, 2020), and TENT (Wang et al., 2022). For
few-shot graph classification, we utilize WL (Shervashidze et al., 2011), Graphlet (Shervashidze et al.,
2009), AWE (Ivanov & Burnaev, 2018), Graph2Vec (Narayanan et al., 2017), Diffpool (Lee et al., 2019),
CapsGNN (Xinyi & Chen, 2018), GIN (Xu et al., 2019), GIN-KNN (Xu et al., 2019), GSM-GCN (Chauhan
et al., 2020), GSM-GAT (Chauhan et al., 2020), and AS-MAML (Ma et al., 2020). Details of the baseline
methods are presented in Appendix B.

Experimental Settings. In our proposed SDGCL approach, we adopt GCN (Kipf & Welling, 2017) as the
GNN backbone for the node classification task, which includes a two-layer graph convolution and a one-layer
fully connected layer. For the graph classification task, we add an additional average pooling operation
as a readout layer. In the pretraining phase, we pretrain the GNN on the unlabeled graph dataset using
contrastive learning. To augment graph data, we randomly drop 15% of the nodes, remove 15% of the edges,
and mask 20% of the node features. The mini-batch size is set to 2,048, and we use a learning rate of 0.05
with a decay factor of 0.9. Furthermore, we set the τ value for exponential moving average to 0.999. We
consider both inductive and transductive settings for our experiments. In the inductive setting (SDGCL-I),

7

Published in Transactions on Machine Learning Research (06/2023)

Table 1: Few-shot node classification results. Baselines are designed for inductive setting only. The best
results in our methods are highlighted in bold, while the best results in baselines are underlined. Also,
baselines are implemented under inductive settings as stated in their original papers. -I and -T denote
inductive and transductive settings of SDGCL, respectively. Teacher indicates the SDGCL model without
knowledge distillation.

Method Tissue-PPI Fold-PPI Cora Citeseer ogbn-arxiv
3-shot 5-shot 3-shot 5-shot 3-shot 5-shot 3-shot 5-shot 3-shot 5-shot

node2vec 48.5˘3.3 49.3˘3.9 36.6˘3.7 37.4˘1.9 25.7˘1.3 26.9˘3.0 20.0˘2.5 21.7˘2.9 28.9˘4.0 29.5˘3.7
DeepWalk 46.2˘4.8 47.4˘3.6 35.0˘4.4 36.3˘3.2 25.6˘0.8 26.7˘2.0 21.2˘0.6 22.6˘ 2.7 30.3˘2.1 31.5˘3.4
Meta-GNN 50.8˘8.1 53.5˘1.5 30.8˘5.4 33.5˘2.1 76.8˘0.9 79.2˘1.9 69.4˘1.4 72.6˘1.9 27.3˘1.2 30.2˘3.6

FS-GIN 49.2˘2.4 51.5˘3.0 36.7˘2.1 39.1˘1.4 53.5˘1.6 56.2˘2.8 50.2˘2.6 53.2˘3.8 33.6˘4.2 36.8˘2.5
FS-SGC 49.8˘3.8 52.3˘2.2 38.0˘1.6 40.9˘3.9 57.2˘2.1 60.3˘1.2 52.0˘2.1 54.4˘2.5 34.7˘0.5 37.3˘1.0

No-Finetune 51.6˘0.6 55.0˘2.1 37.6˘1.7 39.9˘3.6 61.2˘1.2 64.5˘1.3 54.9˘1.7 58.3˘2.5 36.4˘1.4 38.8˘2.0
Finetune 52.1˘1.3 54.3˘2.4 37.0˘2.2 40.0˘2.6 63.5˘0.8 65.7˘2.1 57.8˘1.8 59.0˘2.9 35.9˘1.0 38.6˘2.5

KNN 61.9˘2.5 65.2˘3.2 43.3˘3.4 46.2˘1.9 67.8˘1.4 70.3˘3.6 60.6˘1.4 63.2˘1.6 39.2˘1.5 42.3˘1.8
ProtoNet 54.6˘2.5 57.5˘2.9 38.2˘3.1 41.3˘1.1 42.6˘3.7 56.6˘2.9 55.5˘1.5 58.0˘3.7 37.2˘1.7 39.7˘1.7
MAML 74.5˘5.1 77.4˘2.7 48.2˘6.2 51.3˘3.3 65.7˘0.9 68.8˘1.1 63.1˘1.6 65.7˘1.7 38.9˘2.1 41.3˘2.4
GPN 77.3˘3.0 79.0˘3.6 57.0˘4.7 58.2˘3.7 73.1˘2.4 76.1˘2.2 68.3˘1.4 71.1˘2.0 44.4˘3.5 48.2˘4.0

RALE 76.6˘3.3 79.2˘3.3 57.8˘4.5 58.8˘3.3 62.8˘3.1 65.9˘3.2 69.9˘2.3 71.3˘2.2 45.1˘2.7 47.8˘1.5
G-Meta 76.8˘2.9 79.4˘2.6 56.1˘5.9 59.0˘2.5 71.9˘2.9 74.5˘2.0 67.8˘2.2 70.8˘3.8 45.1˘3.2 48.2˘3.1
TENT - - - - 64.8˘4.1 69.2˘4.5 54.2˘3.4 62.0˘2.3 55.6˘3.1 62.9˘3.7

Teacher-I 77.9˘2.6 80.8˘1.7 58.8˘3.4 61.3˘3.6 78.2˘1.3 80.9˘1.9 70.0˘1.3 72.7˘1.8 52.0˘2.0 54.9˘1.6
SDGCL-I 78.7˘2.8 81.5˘3.6 59.5˘4.1 62.0˘2.0 78.5˘1.5 81.2˘1.5 70.6˘1.2 73.1˘2.0 52.8˘1.8 55.6˘1.1
Teacher-T 79.8˘3.1 82.9˘1.3 63.0˘3.6 65.6˘2.2 80.0˘2.7 82.6˘1.9 72.1˘1.1 75.0˘1.5 54.3˘2.7 58.4˘3.9
SDGCL-T 80.9˘3.0 84.1˘3.2 66.9˘3.4 69.0˘2.7 80.7˘1.9 83.5˘3.0 72.6˘1.6 75.3˘2.0 55.2˘2.5 58.7˘2.7

we only use the unlabeled data in the training set, whereas in the transductive setting (SDGCL-T), we
use the unlabeled data in both the training and testing sets. For pre-trained models without knowledge
distillation, we denote them as Teacher-I and Teacher-T for the two settings, respectively. In the GFL
phase, we utilize MAML for fine-tuning the model. Our SDGCL implementation is based on PyTorch, and
we train it on NVIDIA V100 GPUs.

5.2 Few-Shot Node Classification

Overall Performance. Table 1 presents the performances of all models for 3/5-shot node classification. Our
observations are as follows: 1) SDGCL outperforms all baseline methods on all datasets, demonstrating its
superiority for few-shot node classification; (2) The improvement of SDGCL-I over baseline methods ranges
from 1.1% to 50% (3-shot) and from 2.1% to 51% (5-shot), while the improvement of SDGCL-T ranges
from 4.8% to 55.0% (3-shot) and from 4.5% to 56.6% (5-shot). These significant improvements demonstrate
the effectiveness of contrastive pre-training and self-distillation in learning rich node representations from
unlabeled graph data and addressing the label-hungry issue; (3) SDGCL-T (or Teacher-T) outperforms
SDGCL-I (or Teacher-I), indicating that the model benefits from unlabeled data in the meta-testing set, thus
improving generalization ability over testing data; (4) The contrastive distillation employed in SDGCL leads
to an additional boost compared with the pre-trained teacher model without any label cost in distillation,
demonstrating its effectiveness.

Impact of Shot Number. In Figure 2a, we present the performance of our model (SDGCL-T) under
different shot numbers (1 to 5) compared to selected baselines. SDGCL almost outperforms other methods
across all shot numbers, demonstrating the stability of our model for node classification. Note that we show
results for two datasets only, while results for other datasets are presented in Appendix C.1.

Impact of Training Label Rate. To evaluate SDGCL’s performance under different training label rates
(10%, 20%, 30%, 40%, 50%, 100%), we compare it with baseline methods for 3-shot node classification, as
shown in Figure 2b. Our model nearly consistently outperforms the baseline models across all label rates.
Furthermore, the performance improvement of SDGCL over baseline models is more significant when the
label rate becomes lower (e.g., 10%), demonstrating that the contrastive pre-training and self-distillation of
SDGCL are effective in cases of label sparsity.

8

Published in Transactions on Machine Learning Research (06/2023)

1 2 3 4 5
Shot number

15

25

35

45

55

65

Ac
cu

ra
cy

ogbn-arxiv

Ours
G-Meta
MAML
ProtoNet
TENT

1 2 3 4 5
Shot number

30

45

60

75

90

Ac
cu

ra
cy

Tissue-PPI

Ours
G-Meta
MAML
ProtoNet

(a) Impact of shot number.

10 20 30 40 50 100
Label rate

20

30

40

50

60

Ac
cu

ra
cy

ogbn-arxiv

Ours
G-Meta
MAML
ProtoNet
TENT

10 20 30 40 50 100
Label rate

30

40

50

60

70

80

90

Ac
cu

ra
cy

Tissue-PPI

Ours
G-Meta
MAML
ProtoNet

(b) Impact of label rate.

Figure 2: Impact of shot number and label rate on node classification.

Impact of Data Augmentation. Graph augmentation is a crucial step in contrastive learning of SDGCL,
and it significantly affects model performance. We conduct experiments to evaluate the model performance
with different augmentation strategies, including node dropping (ND), feature masking (FM), edge removing
(ER), and their combinations. In Figure 3, we report the performances of SDGCL under these augmentation
strategies. The combination of all three augmentation strategies outperforms single or two augmentations,
demonstrating that various graph augmentations generate sufficient contrastive pairs to improve the model
performance.

ogbn-arxiv
48

50

52

54

56

Ac
cu

ra
cy

ND
ER

FM
ND+ER

ER+FM
ND+FM

ND+ER+FM

Tissue-PPI
72

74

76

78

80

82

Ac
cu

ra
cy

Figure 3: Impact of data aug. on node classification.

Table 2: Info. loss for node classification.

Method Layer ogbn-arxiv Tissue-PPI
GNN-1 385.15 788.30

G-Meta GNN-2 383.39 789.78
FC 374.42 753.85

GNN-1 315.70 -
TENT GNN-2 296.67 -

FC 293.55 -
GNN-1 305.29 663.38

SDGCL-I GNN-2 300.29 650.59
FC 290.99 612.98

GNN-1 276.30 533.86
SDGCL-T GNN-2 267.33 525.42

FC 264.23 503.86

Loss Information Comparison. In Section 4.3, we propose to compute the amount of graph information
discarded in the GFL model. Here we compare the results between SDGCL and a selected baseline method
(G-Meta) in Table 2. It can be observed that the amount of discarded information in each layer of SDGCL
is smaller than that of baseline models. This may be due to the fact that SDGCL can learn more label-
independent information from unlabeled graph data, which demonstrates the superiority of SDGCL in learning
node embeddings for node classification.

5.3 Few-Shot Graph Classification

Overall Performance. The presented results in Table 3 demonstrate the superiority of SDGCL over all
baseline models in few-shot graph classification. Specifically, the improvement of SDGCL-I over baseline
models ranges from 0.95% to 38.36% (5-shot) and from 0.8% to 34.33% (10-shot), while the improvement
of SDGCL-T ranges from 5.65% to 46.21% (5-shot) and from 2.18% to 41.51% (10-shot). These results
demonstrate the effectiveness of contrastive pre-training and self-distillation in learning informative graph
embeddings from unlabeled data. Furthermore, the transductive setting of SDGCL-T outperforms the
inductive setting of SDGCL-I, indicating the benefit of using unlabeled data in the testing set to improve
generalization performance. Additionally, it is worth noting that the SDGCL model with contrastive

9

Published in Transactions on Machine Learning Research (06/2023)

Table 3: Results of few-shot graph classification. Baselines are designed for inductive setting only. The
best results in our methods are highlighted in bold, while the best results in baselines are underlined. Also,
baselines are implemented under inductive settings as stated in their original papers. The suffixes -I and -T
denote the inductive and transductive settings of SDGCL, respectively. The term "Teacher" refers to the
SDGCL model without knowledge distillation.

Method Letter-High Triangles Reddit-12K Enzymes
5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

WL 65.27˘7.67 68.39˘4.69 51.25˘4.02 53.26˘2.95 40.26˘5.17 42.57˘3.69 55.78˘4.72 58.47˘3.84
Graphlet 33.76˘6.94 37.59˘4.60 40.17˘3.18 43.76˘3.09 33.76˘6.94 37.59˘4.60 53.17˘5.92 55.30˘3.78

AWE 40.60˘3.91 42.20˘2.87 39.36˘3.85 42.58˘3.11 30.24˘2.34 33.44˘2.04 43.75˘1.85 45.58˘2.11
Graph2Vec 66.12˘5.21 68.17˘4.26 48.38˘3.85 50.16˘4.15 27.85˘4.21 29.97˘3.17 55.88˘4.86 58.22˘4.30

Diffpool 58.69˘6.39 61.59˘5.21 64.17˘5.87 67.12˘4.29 35.24˘5.69 37.43˘3.94 45.64˘4.56 49.64˘4.23
CapsGNN 56.60˘7.86 60.67˘5.24 65.40˘6.13 68.37˘3.67 36.58˘4.28 39.16˘3.73 52.67˘5.51 55.31˘4.23

GIN 65.83˘7.17 69.16˘5.14 63.80˘5.61 67.30˘4.35 40.36˘4.69 43.70˘3.98 55.73˘5.80 58.83˘5.32
GIN-KNN 63.52˘7.27 65.66˘8.69 58.34˘3.91 61.55˘3.19 41.31˘2.84 43.58˘2.80 57.24˘7.06 59.34˘5.24
GSM-GCN 68.69˘6.50 72.80˘4.12 69.37˘4.92 73.11˘3.94 40.77˘4.32 44.28˘3.86 54.34˘5.64 58.16˘4.39
GSM-GAT 69.91˘5.90 73.28˘3.46 71.40˘4.34 75.60˘3.67 41.59˘4.12 45.67˘3.68 55.42˘5.74 60.64˘3.84
AS-MAML 70.23˘1.53 73.19˘1.17 71.56˘1.17 75.56˘2.39 41.90˘1.65 45.66˘1.11 56.03˘1.85 60.79˘2.74
Teacher-I 71.43˘5.23 73.62˘2.93 71.93˘3.51 76.21˘2.87 42.32˘4.48 46.31˘3.84 57.53˘3.16 61.12˘4.80
SDGCL-I 72.12˘4.88 74.08˘3.30 72.34˘3.42 76.91˘2.98 42.85˘4.62 46.89˘4.96 57.94˘2.85 61.66˘4.61
Teacher-T 75.20˘4.34 78.35˘1.95 78.55˘3.75 81.03˘3.37 44.80˘4.85 48.95˘4.03 59.85˘2.34 62.30˘3.29
SDGCL-T 75.97˘5.02 79.10˘4.23 79.32˘4.05 81.78˘3.30 45.55˘3.67 49.32˘4.21 60.34˘4.04 62.97˘2.92

5 10 15 20
Shot number

65

70

75

80

85

Ac
cu

ra
cy

Letter-High

SDGFL
GSM-GAT
GSM-GCN
AS-MAML

5 10 15 20
Shot number

64

68

72

76

80

84

88

Ac
cu

ra
cy

Triangles

SDGFL
GSM-GAT
GSM-GCN
AS-MAML

(a) Impact of shot number.

10 20 30 40 50 100
Label rate

58

63

68

73

78

Ac
cu

ra
cy

Letter-High

SDGFL
GSM-GAT
GSM-GCN
AS-MAML

10 20 30 40 50 100
Label rate

55

60

65

70

75

80

Ac
cu

ra
cy

Triangles

SDGFL
GSM-GAT
GSM-GCN
AS-MAML

(b) Impact of label rate.

Figure 4: Impact of shot number and label rate on graph classification.

distillation (Teacher-T) outperforms the SDGCL model without distillation, highlighting the effectiveness of
the proposed knowledge distillation method.

Impact of Shot Number. In Figure 4a, we present the results of our model (SDGCL) under varying shot
numbers (5, 10, 15, 20) compared to select baseline methods. Similar to Figure 2a, SDGCL consistently
outperforms the baseline models across varying shot numbers, demonstrating the robustness of SDGCL. We
note that the results are presented for two datasets, namely Letter-High and Triangles, and the results for
the other datasets are shown in Appendix C.2.
Impact of Training Label Rate. In Figure 4b, we show the performance of SDGCL under different
training label rates in comparison with baseline models for 5-shot graph classification. Consistent with the
results in the node classification task, SDGCL exhibits better accuracy across various label rates, with the
performance gaps between SDGCL and baseline models being more pronounced for lower label rates. These
results underscore the significance of SDGCL in scenarios where labeled data is scarce.
Impact of Data Augmentation. We also study the influence of graph augmentation on the few-shot graph
classification task. As shown in Figure 5, the combination of three augmentation strategies yields the best
performance, highlighting the significance of generating enough contrastive pairs during model training.

10

Published in Transactions on Machine Learning Research (06/2023)

Letter-High
68

70

72

74

76

Ac
cu

ra
cy

ND
ER

FM
ND+ER

ER+FM
ND+FM

ND+ER+FM

Triangles
72

74

76

78

80

Ac
cu

ra
cy

Figure 5: Impact of data aug. on graph classification.

Table 4: Info. loss for graph classification.

Method Layer Letter-High Triangles
GNN-1 1286.67 1520.94

GSM-GAT GNN-2 1250.54 1487.42
FC 1105.96 1364.11

GNN-1 1023.23 1402.09
ASMAML GNN-2 901.60 1221.45

GNN-3 899.12 1102.12
GNN-1 932.23 1276.77

SDGCL-I GNN-2 920.58 1219.91
FC-3 892.03 1107.56

GNN-1 792.65 923.35
SDGCL-T GNN-2 780.59 894.09

FC 765.73 885.35

Loss Information Comparison. We also compare the amount of discarded graph information between
our proposed model and a selected baseline method (GSM-GAT), as shown in Table 4. Notably, our model
(SDGCL) discards less graph information than the baseline, which suggests that SDGCL can effectively
capture and leverage more relevant information for graph classification tasks. This finding supports the
superiority of our model in learning informative graph embeddings.

6 Conclusion

In this paper, we proposed a novel framework called SDGCL (Self-Distilled Graph Few-shot Learning) to
address the limitations of existing Graph Few-shot Learning (GFL) models. Our framework is designed to
learn generalized graph representations and overcome constraints in task-specific design. SDGCL leverages a
self-distilled contrastive learning approach to enhance GFL by pre-training the GNN encoder with contrastive
learning and then further improving it with knowledge distillation in a self-supervised manner. We also
introduced an information-based method to compute the amount of discarded graph information by the
GFL model. Our extensive experiments on multiple graph datasets demonstrated that SDGCL outperforms
state-of-the-art baseline methods for both node classification and graph classification tasks in the few-shot
scenario. The discarded information value further validates the superiority of SDGCL in learning node and
graph embeddings.

Acknowledgement

This work is partially supported by the NSF under grants CMMI-2146076 and Brandeis University. Any
opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of any funding agencies.

References
Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and self-distillation

in deep learning. In ICLR, 2023.

Jatin Chauhan, Deepak Nathani, and Manohar Kaul. Few-shot learning on graphs via super-classes based on
graph spectral measures. In ICLR, 2020.

Mingyang Chen, Wen Zhang, Wei Zhang, Qiang Chen, and Huajun Chen. Meta relational learning for
few-shot link prediction in knowledge graphs. In EMNLP-IJCNLP, 2019.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In ICML, 2020.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In CVPR, 2021.

11

Published in Transactions on Machine Learning Research (06/2023)

Kaize Ding, Jianling Wang, Jundong Li, Kai Shu, Chenghao Liu, and Huan Liu. Graph prototypical networks
for few-shot learning on attributed networks. In CIKM, 2020.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural networks for
social recommendation. In WWW, 2019.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny Kharlamov,
and Jie Tang. Graph random neural networks for semi-supervised learning on graphs. In NeurIPS, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In ICML, 2017.

Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar. Born again
neural networks. In ICML, 2018.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of sentence embeddings.
In EMNLP, 2021.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena Buchatskaya,
Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap
your own latent: A new approach to self-supervised learning. In NeurIPS, 2020.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In KDD, 2016.

Zhichun Guo, Chuxu Zhang, Wenhao Yu, John Herr, Olaf Wiest, Meng Jiang, and Nitesh V Chawla. Few-shot
graph learning for molecular property prediction. In WWW, 2021.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
NeurIPS, 2017.

Zhongkai Hao, Chengqiang Lu, Zhenya Huang, Hao Wang, Zheyuan Hu, Qi Liu, Enhong Chen, and Cheekong
Lee. Asgn: An active semi-supervised graph neural network for molecular property prediction. In KDD,
2020.

Kaveh Hassani and Amir Hosein Khas Ahmadi. Contrastive multi-view representation learning on graphs. In
ICML, 2020.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In NeurIPS, 2020a.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative pre-training
of graph neural networks. In KDD, 2020b.

Kexin Huang and Marinka Zitnik. Graph meta learning via local subgraphs. In NeurIPS, 2020.

Sergey Ivanov and Evgeny Burnaev. Anonymous walk embeddings. In ICML, 2018.

Wengong Jin, Connor W Coley, Regina Barzilay, and Tommi Jaakkola. Predicting organic reaction outcomes
with weisfeiler-lehman network. In NeurIPS, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In ICLR,
2017.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In ICML, 2019.

Xiao Liu, Fanjin Zhang, Zhenyu Hou, Zhaoyu Wang, Li Mian, Jing Zhang, and Jie Tang. Self-supervised
learning: Generative or contrastive. arXiv preprint arXiv:2006.08218, 2020.

Zheyuan Liu, Chunhui Zhang, Yijun Tian, Erchi Zhang, Chao Huang, Yanfang Ye, and Chuxu Zhang. Fair
graph representation learning via diverse mixture-of-experts. In WWW, 2023.

12

Published in Transactions on Machine Learning Research (06/2023)

Xin Lv, Yuxian Gu, Xu Han, Lei Hou, Juanzi Li, and Zhiyuan Liu. Adapting meta knowledge graph
information for multi-hop reasoning over few-shot relations. In EMNLP-IJCNLP, 2019.

Haotian Ma, Yinqing Zhang, Fan Zhou, and Quanshi Zhang. Quantifying layerwise information discarding of
neural networks. arXiv preprint arXiv:1906.04109, 2019.

Ning Ma, Jiajun Bu, Jieyu Yang, Zhen Zhang, Chengwei Yao, Zhi Yu, Sheng Zhou, and Xifeng Yan.
Adaptive-step graph meta-learner for few-shot graph classification. In CIKM, 2020.

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu, and Shan-
tanu Jaiswal. graph2vec: Learning distributed representations of graphs. arXiv preprint arXiv:1707.05005,
2017.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. In
KDD, 2014.

Yiyue Qian, Chunhui Zhang, Yiming Zhang, Qianlong Wen, Yanfang Ye, and Chuxu Zhang. Co-modality
graph contrastive learning for imbalanced node classification. In NeurIPS, 2022.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, and Jie
Tang. GCC: graph contrastive coding for graph neural network pre-training. In KDD, 2020.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convolutional
networks on node classification. In ICLR, 2020.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. Collective
classification in network data. AI magazine, 2008.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. Efficient
graphlet kernels for large graph comparison. In AISTATS, 2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borgwardt.
Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 2011.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In NeurIPS,
2017.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Dogus Cubuk,
Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning with consistency and
confidence. NeurIPS, 2020.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-supervised
graph-level representation learning via mutual information maximization. In ICLR, 2020.

Yijun Tian, Kaiwen Dong, Chunhui Zhang, Chuxu Zhang, and Nitesh V Chawla. Heterogeneous graph
masked autoencoders. In AAAI, 2023.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross Goroshin,
Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, et al. Meta-dataset: A dataset of datasets for
learning to learn from few examples. arXiv preprint arXiv:1903.03096, 2019.

Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon Hjelm. Deep
graph infomax. In ICLR, 2019.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one shot
learning. In NeurIPS, 2016.

Song Wang, Kaize Ding, Chuxu Zhang, Chen Chen, and Jundong Li. Task-adaptive few-shot node classification.
In KDD, 2022.

13

Published in Transactions on Machine Learning Research (06/2023)

Yaqing Wang, Abulikemu Abuduweili, Quanming Yao, and Dejing Dou. Property-aware relation networks for
few-shot molecular property prediction. In NeurIPS, 2021.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying graph
convolutional networks. In ICML, 2019.

Zhang Xinyi and Lihui Chen. Capsule graph neural network. In ICLR, 2018.

Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo, and William Yang Wang. One-shot relational learning
for knowledge graphs. In EMNLP, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
ICLR, 2019.

Huaxiu Yao, Chuxu Zhang, Ying Wei, Meng Jiang, Suhang Wang, Junzhou Huang, Nitesh Chawla, and
Zhenhui Li. Graph few-shot learning via knowledge transfer. In AAAI, 2020.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec. Graph
convolutional neural networks for web-scale recommender systems. In KDD, 2018.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. Graphrnn: Generating realistic
graphs with deep auto-regressive models. In ICML, 2018.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. In NeurIPS, 2020.

Lu Yu, Shichao Pei, Lizhong Ding, Jun Zhou, Longfei Li, Chuxu Zhang, and Xiangliang Zhang. Sail:
Self-augmented graph contrastive learning. In AAI, pp. 8927–8935, 2022.

Han Yue, Chunhui Zhang, Chuxu Zhang, and Hongfu Liu. Label-invariant augmentation for semi-supervised
graph classification. In NeurIPS, 2022.

Chunhui Zhang, Chao Huang, Youhuan Li, Xiangliang Zhang, Yanfang Ye, and Chuxu Zhang. Look twice as
much as you say: Scene graph contrastive learning for self-supervised image caption generation. In CIKM,
2022a.

Chunhui Zhang, Chao Huang, Yijun Tian, Qianlong Wen, Zhongyu Ouyang, Youhuan Li, Yanfang Ye, and
Chuxu Zhang. When sparsity meets contrastive models: Less graph data can bring better class-balanced
representations. In ICML, 2023a.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V Chawla. Heterogeneous graph
neural network. In KDD, 2019.

Chuxu Zhang, Huaxiu Yao, Chao Huang, Meng Jiang, Zhenhui Li, and Nitesh V Chawla. Few-shot knowledge
graph completion. In AAAI, 2020a.

Chuxu Zhang, Lu Yu, Mandana Saebi, Meng Jiang, and Nitesh Chawla. Few-shot multi-hop relation reasoning
over knowledge bases. In EMNLP, 2020b.

Chuxu Zhang, Kaize Ding, Jundong Li, Xiangliang Zhang, Yanfang Ye, Nitesh V Chawla, and Huan Liu.
Few-shot learning on graphs. In IJCAI, 2022b.

Qiannan Zhang, Xiaodong Wu, Qiang Yang, Chuxu Zhang, and Xiangliang Zhang. Hg-meta: Graph
meta-learning over heterogeneous graphs. In SDM, 2022c.

Qiannan Zhang, Shichao Pei, Qiang Yang, Chuxu Zhang, Nitesh Chawla, and Xiangliang Zhang. Cross-domain
few-shot graph classification with a reinforced task coordinat. In AAAI, 2023b.

Yiming Zhang, Yiyue Qian, Yanfang Ye, and Chuxu Zhang. Adapting distilled knowledge for few-shot relation
reasoning over knowledge graphs. In SDM, 2022d.

14

Published in Transactions on Machine Learning Research (06/2023)

Jianan Zhao, Qianlong Wen, Shiyu Sun, Yanfang Ye, and Chuxu Zhang. Multi-view self-supervised heteroge-
neous graph embedding. In ECML/PKDD, 2021.

Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji Geng. Meta-gnn: On
few-shot node classification in graph meta-learning. In CIKM, 2019.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph Contrastive Learning with
Adaptive Augmentation. In WWW, 2021.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue networks.
Bioinformatics, 2017.

15

Published in Transactions on Machine Learning Research (06/2023)

A Dataset Details

We evaluate various models for few-shot node classification using five diverse datasets, including ogbn-
arxiv (Hu et al., 2020a), Tissue-PPI (Hamilton et al., 2017), Fold-PPI (Zitnik & Leskovec, 2017), Cora (Sen
et al., 2008), and Citeseer (Sen et al., 2008). These datasets range from citation networks to biochemical
graphs. We provide detailed information on these datasets in Table 5.

Table 5: Statistics of datasets used in the node classification task.

Dataset # Graph # Node # Edge # Feat. # Label

ogbn-arxiv 1 169,343 1,166,243 128 40
Tissue-PPI 24 51,194 1,350,412 50 10
Fold-PPI 144 274,606 3,666,563 512 29

Cora 1 2,708 10,556 1,433 7
Citeseer 1 3,327 9,228 3,703 6

For few-shot graph classification, we employ four distinct datasets (Chauhan et al., 2020): Reddit-12K,
ENZYMES, Letter-High, and TRIANGLES, to conduct extensive empirical evaluations of various models.
These datasets exhibit variations in terms of average graph size, ranging from small (e.g., Letter-High) to
large (e.g., Reddit-12K). The statistics of datasets are reported in Table 6.

Table 6: Statistics of datasets used in the graph classification task.

Dataset Class # Graph #

Train Test Training Validation Test

Letter-High 11 4 1,330 320 600
Triangles 7 3 1,126 271 603

Reddit-12K 7 4 566 141 404
Enzymes 4 2 320 80 200

B Baseline Method Details

B.1 Node Classification

Graph embedding models:

node2vec (Grover & Leskovec, 2016): We use node2vec to generate node embeddings, then employ a FC layer
as a predictor to classify nodes. We use the code at this link.1

DeepWalk (Perozzi et al., 2014): Similar to node2vec, we use DeepWalk to generate node embeddings, then
employ an FC layer as a predictor to classify nodes. We use the code at this link.2

GNN-based models:

Meta-GNN (Zhou et al., 2019): It combines MAML and simple graph convolution (SGC) to learn node
embeddings. We use the code at this link.3

FS-GIN (Xu et al., 2019): This method uses GIN to learn node embeddings and only uses few-shot nodes to
propagate loss and enable training. We use the code for GIN backbone at this link.4

FS-SGC (Wu et al., 2019): This model is similar to FS-GIN while changing GIN to SGC as GNN backbone.
We use the code of SGC at this link.5

1https://shorturl.at/sEINW
2https://github.com/phanein/deepwalk
3https://github.com/ChengtaiCao/Meta-GNN
4https://github.com/weihua916/powerful-gnns
5https://github.com/Tiiiger/SGC

16

Published in Transactions on Machine Learning Research (06/2023)

No-Finetune (Huang & Zitnik, 2020): This method trains a GCN on the support set and uses the trained
backbone to classify samples in the meta-testing set. We use the code of GCN at this link.6

Finetune (Triantafillou et al., 2019): This method trains GCN on the meta-training set, and the model is
fine-tuned on the meta-testing set. We use the code of GCN at this link.6

KNN (Triantafillou et al., 2019): This method trains a GNN on meta-training set. Then, it uses the label of
the K-closest examples in the support set for each query example. We use the related code at this link.7

ProtoNet (Triantafillou et al., 2019): This method applies prototypical network on node embeddings processed
by a neural network, which is trained under the standard meta-learning setting. We use the related code at
this link.8

MAML (Finn et al., 2017): It is similar to ProtoNet but changes meta-learner from ProtoNet to MAML. We
use the code at this link.9

G-Meta (Huang & Zitnik, 2020): This is a strong baseline for few-shot node classification. It uses GCN as
GNN backbone to learn node embeddings based on local subgraphs. It further combines prototypical loss
and MAML for model training. We use the code at this link.9

TENT (Wang et al., 2022): This is also a state-of-the-art baseline for few-shot node classification. It proposes
task-adaptive node classification framework to make node-level, class-level, and task-level adaptations. We
utilize the code at this link.10

B.2 Graph Classification

Graph embedding models:

WL (Shervashidze et al., 2011): It uses KNN search on the output embeddings of WL. We use the code of
WL at this link.11

Graphlet (Shervashidze et al., 2009): It uses Graphlet Kernel to decompose a graph and generates graph
embeddings. We use the code of Graphlet at this link.12

AWE (Ivanov & Burnaev, 2018): It uses KNN search on the output embeddings of AWE. We use the code of
AWE at this link.12

Graph2Vec (Narayanan et al., 2017): This method applies KNN search on the output embeddings of
Graph2Vec. We use the code of Graph2Vec at this link.12

GNN-based models:

Diffpool (Lee et al., 2019): It uses Diffpool with supervised loss to generate graph embeddings. We use the
code of Diffpool at this link.13

CapsGNN (Xinyi & Chen, 2018): This method applies CapsGNN to generate graph embeddings with
supervised training. We use the code of CapsGNN backbone at this link.14

GIN (Xu et al., 2019): This model applies GIN to generate graph embeddings with supervised training. We
use the code of GIN backbone at this link.4

GIN-KNN (Xu et al., 2019): Similarly, this model implements GIN to generate graph embeddings while it
switches the MLP classifier to the KNN algorithm. We use the code of GIN backbone at this link.4

6https://shorturl.at/lwFPR
7https://shorturl.at/etBO8
8https://shorturl.at/erQU9
9https://github.com/mims-harvard/G-Meta

10https://github.com/SongW-SW/TENT
11https://github.com/BorgwardtLab/P-WL
12https://github.com/paulmorio/geo2dr
13https://github.com/RexYing/diffpool
14https://github.com/benedekrozemberczki/CapsGNN

17

Published in Transactions on Machine Learning Research (06/2023)

GSM-GCN (Chauhan et al., 2020): This is a strong model (with GCN as backbone) for few-shot graph
classification. We follow the default settings in the original paper and use the code at this link.15

GSM-GAT (Chauhan et al., 2020): This is a strong model (with GAT as backbone) for few-shot graph
classification. We follow the default settings in the original paper and use the code at this link.15

AS-MAML (Ma et al., 2020): It is a state-of-the-art model for few-shot graph classification. We follow the
default settings in the original paper and use the code at this link.16

C Additional Experiment Results

The following section presents supplementary experiment outcomes on three extra datasets for few-shot node
classification (Fold-PPI, Cora, and Citeseer) and two additional datasets for few-shot graph classification
(Reddit-12K and Enzymes).

C.1 Few-Shot Node Classification Results

Impact of Shot Number. As shown in Figure 6, we present our model’s performance on the other three
datasets (Fold-PPI, Cora, and Citeseer) under different shot numbers (1 to 5) compared with selected baseline
methods. It is evident that SDGCL outperforms baseline models consistently across various shot numbers,
demonstrating its effectiveness and generalization ability.

1 2 3 4 5
Shot number

25

40

55

70

Ac
cu

ra
cy

Fold-PPI

SDGFL
G-Meta
MAML
ProtoNet

1 2 3 4 5
Shot number

45

60

75

90

Ac
cu

ra
cy

Cora

SDGFL
G-Meta
MAML
ProtoNet

1 2 3 4 5
Shot number

45

55

65

75

80

Ac
cu

ra
cy

Citeseer

SDGFL
G-Meta
MAML
ProtoNet

Figure 6: Impact of shot number on node classification.

Impact of Training Label Rate. Figure 7 displays the performance of our model under different training
label rates compared to baseline models for 3-shot node classification. It is evident that our model achieves
better accuracy across different label rates.

Impact of Data Augmentation. Figure 8 presents the impact of graph augmentation on node classification.
It can be observed that the combination of three augmentation strategies yields the best performance.

Discarded Information Comparison. The discarded graph information of different models are shown in
Table 7. Obviously, the amount of information discarded by SDGCL is less than that by the baseline models.

C.2 Few-Shot Graph Classification Results

Impact of Shot Number. Figure 9 shows the performance of SDGCL under different shot numbers (5,
10, 15, 20) compared to some selected baselines. From this figure, it is evident that our model consistently
outperforms baseline methods across different shot numbers.

15https://github.com/chauhanjatin10/GraphsFewShot
16https://github.com/NingMa-AI/AS-MAML

18

Published in Transactions on Machine Learning Research (06/2023)

10 20 30 40 50 100
Label rate

20

30

40

50

60

70

Ac
cu

ra
cy

Fold-PPI

SDGFL
G-Meta
MAML
ProtoNet

10 20 30 40 50 100
Label rate

35

45

55

65

75

85

Ac
cu

ra
cy

Cora

SDGFL
G-Meta
MAML
ProtoNet

10 20 30 40 50 100
Label rate

35

45

55

65

75

Ac
cu

ra
cy

Citeseer

SDGFL
G-Meta
MAML
ProtoNet

Figure 7: Impact of training label rate on node classification.

Fold-PPI
59

61

63

65

67

Ac
cu

ra
cy

ND
ER

FM
ND+ER

ER+FM
ND+FM

ND+ER+FM

Cora
73

75

77

79

81

Ac
cu

ra
cy

Citeseer
69

70

71

72

73

Ac
cu

ra
cy

Figure 8: Impact of data augmentation on node classification.

Impact of Training Label Rate. Figure 10 presents the performance of SDGCL under different training
label rates for 5-shot graph classification, compared to baseline models. As can be seen from the figure,
SDGCL achieves better performance across different label rates.

Table 7: Discarded information for node classification.

Method Layer Discarded Information

Fold-PPI Cora Citeseer

GNN-1 618.52 361.70 134.20
Meta-GNN GNN-2 612.11 357.47 126.75

FC 591.13 327.49 116.55
GNN-1 585.31 356.57 129.04

G-Meta GNN-2 592.38 355.63 119.72
FC 553.25 318.87 100.10

GNN-1 509.10 340.72 111.90
SDGCL-I GNN-2 511.10 326.35 105.01

FC 461.52 316.21 92.95
GNN-1 426.23 332.39 104.04

SDGCL-T GNN-2 418.90 314.65 88.33
FC 384.23 306.98 78.25

19

Published in Transactions on Machine Learning Research (06/2023)

5 10 15 20
Shot number

35

40

45

50

55

Ac
cu

ra
cy

Reddit-12K

Ours
GSM-GAT
GSM-GCN
AS-MAML

5 10 15 20
Shot number

50

55

60

65

Ac
cu

ra
cy

Enzymes

Ours
GSM-GAT
GSM-GCN
AS-MAML

Figure 9: Impact of shot number on graph classification.

10 20 30 40 50 100
Label rate

25

30

35

40

45

50

Ac
cu

ra
cy

Reddit-12K

SDGFL
GSM-GAT
GSM-GCN
AS-MAML

10 20 30 40 50 100
Label rate

40

45

50

55

60

65

Ac
cu

ra
cy

Enzymes

SDGFL
GSM-GAT
GSM-GCN
AS-MAML

Figure 10: Impact of training label rate on graph classification.

Impact of Data Augmentation: The effect of graph augmentation on graph classification is demonstrated
in Figure 11. We observe that combining the three augmentation strategies results in the best performance.

Discarded Information Comparison: We present the discarded graph information of various methods in
Table 8. The table shows that SDGCL discards less information compared to the baseline models.

Reddit-12K
38

40

42

44

46

Ac
cu

ra
cy

ND
ER

FM
ND+ER

ER+FM
ND+FM

ND+ER+FM

Enzymes
51

53

55

57

59

61

Ac
cu

ra
cy

Figure 11: Impact of data augmentation on graph classification.

20

Published in Transactions on Machine Learning Research (06/2023)

Table 8: Discarded information for graph classification.

Method Layer Discarded Information

Reddit-12K Enzymes

GNN-1 5455.46 2455.54
AS-MAML GNN-2 5024.15 2243.25

FC 4937.99 2125.91

GNN-1 5401.30 2273.80
GSM-GAT GNN-2 5183.87 2128.04

FC 4936.76 1958.18

GNN-1 5323.04 1864.98
SDGCL-I GNN-2 5098.54 1788.97

FC 4802.03 1759.87

GNN-1 4823.91 1787.98
SDGCL-T GNN-2 4546.23 1698.35

FC 4329.39 1585.33

21

	Introduction
	Related Work
	Preliminary
	Methodology
	Self-Distilled Graph Contrastive Learning
	Graph Few-Shot Learning
	Quantitative Measurement of GFL

	Experiments
	Experimental Setup
	Few-Shot Node Classification
	Few-Shot Graph Classification

	Conclusion
	Dataset Details
	Baseline Method Details
	Node Classification
	Graph Classification

	Additional Experiment Results
	Few-Shot Node Classification Results
	Few-Shot Graph Classification Results

