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We develop a Nonparametric Empirical Bayes (NEB) framework for compound estimation in
the discrete linear exponential family, which includes a wide class of discrete distributions
frequently arising from modern big data applications. We propose to directly estimate the
Bayes shrinkage factor in the generalized Robbins’ formula via solving a convex program,
which is carefully developed based on a RKHS representation of the Stein’s discrepancy
measure. The new NEB estimation framework is flexible for incorporating various struc-
tural constraints into the data driven rule, and provides a unified approach to compound
estimation with both regular and scaled squared error losses. We develop theory to show
that the class of NEB estimators enjoys strong asymptotic properties. Comprehensive sim-
ulation studies as well as analyses of real data examples are carried out to demonstrate the

superiority of the NEB estimator over competing methods.
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1. Introduction

Shrinkage methods, exemplified by the seminal work of James and Stein (1961), have re-
ceived renewed attention in modern large-scale inference problems (Efron, 2012; Fourdrinier et
al., 2018). Under this setting, the classical Normal means problem has been extensively
studied (Brown, 2008; Jiang and Zhang, 2009; Brown and Greenshtein, 2009; Efron, 2011,
Xie et al., 2012; Weinstein et al., 2018). However, in a variety of applications, the observed
data are often discrete. For instance, in the News Popularity study discussed in Section 5,
the goal is to estimate the popularity of a large number of news items based on their
frequencies of being shared in social media platforms such as Facebook and LinkedIn. An-
other important application scenario arises from genomics research, where estimating the
expected number of mutations across a large number of genomic locations can help identify
key drivers or inhibitors of a given phenotype of interest.

We mention two main limitations of existing shrinkage estimation methods. First, the
methodology and theory developed for continuous variables, in particular for Normal means
problem, may not be directly applicable to discrete models. Second, existing methods have
focused on the squared error loss. However, the scaled loss (Clevenson and Zidek, 1975),
which edectively reflects the asymmetries in decision making [cf. Equation (3)], is a more
desirable choice for many discrete models such as Poisson, where the scaled loss corresponds to
the local Kulback-Leibler distance. The scaled loss also provides a more desirable criterion in
a range of sparse settings, for example, when the goal is to estimate the rates of rare
outcomes in Binomial distributions (Fourdrinier and Robert, 1995). Much research is needed
for discrete estimation problems under various loss functions. This article develops a general
framework for empirical Bayes estimation for the discrete linear exponential (DLE) family,
also known as the family of discrete power series distributions (Noack, 1950), under both
regular and scaled squared error losses.

The DLE family includes a wide class of popular members such as the Poisson, Binomial,
Negative Binomial and Geometric distributions. Let Y be a non-negative integer valued
random variable. Then Y is said to belong to a DLE family if its probability mass function
(pmf) is of the form

Y

where ay and g(v') are known functions such that a, 0 is independent of v and g(v') is
a normalizing factor that is di<erentiable at every V. Special cases of DLE include the
Poisson( ) distribution with ay= (y!) 1,V = and g(v) = exp(v), and the Binomial(m, q)
distribution with ay = ”; ,v =0q/(1 q)andg(v)= (1+ v)™. Suppose Y1,...,Y, obey
the following hierarchical model

Yi [Vi " DLE(), Vi G(), (2)

where G(-) is an unspecified prior distribution on v/;. The problem of interest is to estimate
vV =(1,...,¥n) basedonY = (Y1,...,Y,). Empirical Bayes (EB) approaches to this com-
pound decision problem date back to the famous Robbins’ formula (Robbins, 1956) under
the Poisson model. In the terminology of Efron (2014, 2019) there are two main modeling
strategies for such EB estimation, namely, g-modeling and f-modeling strategies. The main
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goal under g-modeling is to model the prior distribution G of v using, for example, Non-
parametric Maximum Likelihood estimation (NPMLE) techniques (Kiefer and Wolfowitz,
1956; Laird, 1978) or by modeling G as a low dimensional exponential family (Efron, 2016).
With an estimate G of G, one can then derive an estimate of v’ by plugging G into the
Bayes rule for various loss functions (see for example Jiang and Zhang (2009); Koenker and
Mizera (2014); Gu and Koenker (2017)). The f-modeling strategy, on the other hand, first
starts from a particular form of the Bayes rule and then directly estimates the unknown
marginal pmf p(-) of Y using, for instance, the observed empirical frequencies (Robbins,
1956), the smoothness-adjusted estimator of Brown et al. (2013), kernel density estimation
techniques (Brown and Greenshtein, 2009) or through maximum likelihood estimation in
flexible exponential family models (Efron, 2012).

This article develops a general non-parametric empirical Bayes (NEB) framework for
compound estimation in discrete models. We first derive generalized Robbins’ formula
(GRF) for the DLE model (2), and then implement GRF via solving a convex program which is
carefully developed based on a reproducing kernel Hilbert space (RKHS) representation of
Stein’s discrepancy measure and leads to a class of e cient NEB shrinkage estimators. Our
work is related to the aforementioned f-modeling strategy however, in contrast with
existing f-modeling approaches that estimate p(y), the proposed NEB estimation framework
directly produces estimates of Bayes shrinkage factors that are ratios of the marginal pmf
p(y) and appear in the GRF for the DLE model (2). We develop theories to show that the
NEB estimator is = n consistent up to certain logarithmic factors and enjoys superior risk
properties. Simulation studies are conducted to illustrate that the e ciency gain of the
NEB estimator over existing approaches, such as Brown et al. (2013), Koenker and Mizera
(2014); Koenker and Gu (2017), Efron (2016), is substantial in many settings.

There are several advantages of the proposed NEB estimation framework. First, in con-
trast with existing methods such as the smoothness-adjusted Poisson estimator in Brown et
al. (2013), our methodology covers a much wider range of distributions and presents a
unified approach to compound estimation in discrete models. Second, our proposed convex
program directly produces stable estimates of optimal Bayes shrinkage factors and can easily
incorporate various structural constraints into the decision rule. By contrast, the three-step
estimator in Brown et al. (2013), which involves smoothing, Rao-Blackwellization and mono-
tonicity adjustments, is complicated, computationally intensive and sometimes unstable (as
the numerator and denominator of the ratio are computed separately). Third, the RKHS
representation of Stein’s discrepancy measure provides a new analytical tool for developing
theories such as asymptotic optimality and convergence rates. Finally, the NEB estimation
framework is robust to departures from the true model due to its utilization of a generic
quadratic program that does not rely on the specific form of a particular DLE family. Our
numerical results in Section 4 demonstrate that the NEB estimator has a better risk perfor-
mance than competitive approaches of Efron (2011), Brown et al. (2013) and Efron (2016)
under a mis-specified Poisson model.

An alternative approach to compound estimation in discrete models, as suggested and
investigated by Brown et al. (2013), is to employ variance stabilizing transformations, which
converts the discrete problem to a classical normal means problem. This allows estimation
via Tweedie’s formula for normal variables (Efron, 2011). However, there are several draw-
backs of this approach compared to our NEB framework. First, Tweedie’s formula is not
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applicable to scaled error loss whereas our methodology is built upon the generalized Rob-
bins’ formula, which covers both regular and scaled squared error losses. Second, there can
be information loss in conventional data processing steps such as standardization, transfor-
mation and continuity approximation. While investigating the impact of information loss on
compound estimation is of great interest, it is desirable to develop methodologies directly
based on generalized Robbins’ formula that is specifically derived and tailored for discrete
variables. Finally, our NEB framework provides a convenient tool for developing asymptotic
theories. By contrast, convergence rates are yet to be developed for normality inducing
transformations, which can be highly non-trivial.

The rest of the paper is organized as follows. In Section 2, we introduce our estima-tion
framework while Section 3 presents a theoretical analysis of the NEB estimator. The
numerical performance of our method is investigated using both simulated and real data in
Sections 4 and 5 respectively. Section 6 concludes with a discussion. Additional technical
details and proofs are relegated to the Appendices.

2. A General Framework for Compound Estimation in DLE Family

This section describes the proposed NEB framework for compound estimation in discrete
models. We first introduce in Section 2.1 the generalized Robbins’ formula for the DLE
family (2), then propose in Section 2.2 a convex optimization approach for its practical
implementation. Details regarding tuning parameter selection are discussed in Section 2.3.

2.1 Generalized Robbins’ formula for DLE models

Denote = ( 1,..., n) to be an estimator of v based on Y . Consider a class of loss
functions

s, ) = v G )P (3)

for k 2 {0, 1}, where *(©(V;, ;) is the usual squared error loss, and "V (v, i) = v, (i V)2
corresponds to the scaled squared error loss (Clevenson and Zidek, 1975; Fourdrinier and
Robert, 1995). In compound estimation, one is concerned with the average loss

X
L, y=nt Ky,
i=1

i).

The associated risk is denotean(k)(\/, )= Ey rh\/L(k)(\/, ). Let G(V') denote the joint

dis-tribution of (V'1,---,Vvn). The Bayes éstimator (K) that minimizes the Bayes risk

R 8 (v)
R(r':)(\/, )dG (V') is given by Lemma 1.

kemma 1 (Generalized Robbins’ formula). Consider the DLE Model (2). Let p(:)
p(-|v)dG(V) be the marginal pmf of Y. Define for k 2 {0, 1},

plyi k)

— < foryi=k,k+ 1,---.
ply, +1_ k)’ OV

wl(yi) =
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Then the Bayes estimator that minimizes the risk B<,':)(\/) is given by (?k) = { (?k)'i(yi) 01
i @n}, where
8
Ay, k/ayi+1 k’ foryi= k,k+ 1,---
GV = wptyi) : (4)
-0, for yi < k

Remark 1. Under the squared error loss (k = 0) with Y; | Vi ¢ Poi(V) and ay, = (yi!) 1,

Lemma 1 yields

p(y + 1)' (5)
p (yi)

which recovers the classical Robbins’ formula (Robbins, 1956). In contrast, under the scaled

loss, we have

(oilyi) = (yi+ 1)

p(yi)

(?1),i(Vi) = YIp(y 1 for yi > 0 and fl)li(yi) = 0 otherwise. (6)

i
Under scaled error loss the estimator (5) can be much outperformed by (6) (and vice versa
under the regular loss). We develop parallel results for the two types of loss functions.

Next we discuss related works for implementing Robbins’ formula under the empirical
Bayes (EB) estimation framework. Inspecting (4) and (5), we can view ay ik/ay +1 k asa
naive and known estimator of V;. The ratio functional w(pk)(yi), which is unknown in
practice, represents the optimal shrinkage factor that depends on p(:). Hence under the f-
modeling strategy a simple EB approach, as done in the classical Robbins’ formula, is to
estimate w(k;)gy) by plugging-in empirical frequencies: v?/(OrZ(y) = Pnly)/Pnly + 1), where
Pn(y)=n 1 " Hyi = y). It is noted by Brown et al. (2013) that this plug-in estimator
can be highly ine cient especially when v; are small. Moreover, the numerator and denom-
inator in wéjo)(y) are estimated separately, which may lead to unstable ratios. Brown et al.
(2013) showed that Robbins’ formula can be dramatically improved by imposing additional
smoothness and monotonicity adjustments. An alternative approach is to estimate G using
NPMLE under appropriate shape constraints. However, e cient estimation of G may not
directly translate into an e cient estimation of the ratio functional w(k)(oy). We recast the
compound estimation problem as a convex program, which directly produces consistent
estimates of the ratio functionals

n (o]
Wl = Wy, w )

from data. The estimators are shown to enjoy superior numerical and theoretical properties.
Unlike existing f-modeling works that are limited to squared loss and specific members in
the DLE family, our method can handle a wide range of discrete distributions and various
types of loss functions in a unified framework.

2.2 Shrinkage estimation by convex optimization

This section focuses on the scaled squared error loss (k = 1). Methodologies and theories
for the case with the squared error loss (k = 0) can be derived similarly; details are provided



Banerjee, Liu, Mukherjee and Sun

in Appendix A.1. We first introduce some notations and then present the NEB estimator in
Definition 1.

Suppose Y is a non-negative integer-valued random variable with pmf p(-). Define

(

1, ify=20
hiP(y) = .

7
wi(y), ify2{1,2,...}. 7)

Let K (y,y%) = exp{ ZL(y v9)2} be the positive definite Gaussian kernel with bandwidth
parameter 2 & where ¥ is a compact subset of R* bounded away from 0. Given observa-

- 1 _ " (1), \° )
tionsy = (y1,...,Yn) from model (2), let h 0 = h0 (y1), ..., ho (yn) . Define operators
yK (y,¥%)= K (y+ 1,y°) K (y,y°) and

y,yoK (y’y0)= yo yK (y:yo) =y yoK (y’yo).

Consider the following n—1n matrices, which are needed in the definition of the NEB estimator:
K =n 2[K (vi, v, K =n 2 K (vi,y)lj, 2K = n 20y Ky )l

Definition 1 (NEB estimator). Consider the DLE model (2) with loss *1)(V4, i). For any
fixed 2 -, let M,l)( ) = T’\l(l)( ), .. .,Ahq(l)( ) be the solution to the following quadratic
optimization problem:

min hTK h+2h" K 1+17 ,K 1, (8)
h2Hn

where H, = {h = (hy,...,hy) : Ah b, Ch = d} is a convex set and A,C,b and
d are known real matrices and vectors that enforce linear constraints on the components of

h. Define Wi(l)( ) = 1 ﬁi(l)( ). Then the NEB estimator is given by (nle)b( ) =
n o

(nf)tfi( ):1@iBn , where

dy. dy; .
(nf)bi( ) = M, ifyi2{1,2,...},
, A (1)
W ()

and (”f)tji( )= 0if yi = 0.

Remark 2. In problem (8) the linear inequality constraints Ah b can be used to impose
structural constraints on the NEB decision rule (“le)b( ). These structural constraints, which

may take the form of monotonicity constraints (Brown et al., 2013; Koenker and Mizera,
2014), have been shown to be edective for stabilizing the estimator and hence improving

the accuracy. For instance, a monotonicity constraint on (”16)bi( ) will imply (rﬁb(l)( )
neb

mmt ) foryay  y@ - By In particular, when Y; | Vi ¢ Poi(V;) then
Ff)b,i( ) = yi/{1 Fli(l)( )} and the monotonicity constraints in this setting will imply

h(l)( ) + y(i) R ()@ ym 1, for1@i @A (n 1)
(i) y(i+1) (i+1) y(i+1)

6
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These n 1 linear inequality constraints may be imposed with an (n 1) - n matrix A and
an n 1 column vector b such that for 1&i B (n 1) and 1@ r B n,

8
2 1, wheny: =y

A(i,r) = S Y(i)/Yii+1), Wheny = y(i1)
" 0, otherwise
and by = yu/yiay 1
Moreover, when y; = 0 we set " () = 0 by convention (see lemma 1). The equality

constraints Ch = d accommodate stich boundary conditions along with instances of ties for
which we require F]i(l)( ) = ﬁ;lj( ) whenever y; = ;.

Next we provide some insights on why the optimization criterion (8) works; theories are
developed in Section 3 to establish the properties of the NEB estimator rigorously. Denote
hél) and h(1) as the ratio functionals corresponding to pmfs p and p, respectively and let M

a(h)=hTK h+2hT K 1+ 17 ,K 1. Suppose Y; are i.i.d. samples obeying p(y).
Theorem 1 shows that .
3 |0g2n

M n(h) = M (h) + Op —7=
where M ,(R) is the objective function in (8) and M (R), also denoted S [p](p), is the
kernelized Stein’s discrepancy (KSD). Roughly speaking, the KSD measures how diderent
one distribution p is from another distribution §, with S [g](p) = Oif and only if = p. A key
feature of the KSD is that S [p](p) can be equivalently represented by the discrepancy
between the corresponding ratio functionals hc()l) and k(1. Hence, optimizing (8) is asymp-
totically equivalent to finding K1) that is as close as possible to the true underlying hél),
which corresponds to the optimal shrinkage factor in the compound estimation problem.
Theorems 2 and 3 demonstrate that (8) is an e<ective convex program in the sense that the
minimizer h, is P r consistent with respect to hél), and the resultant NEB estimator

converges to the Bayes estimator.

2.3 Bandwidth selection

The implementation of the quadratic program in (8) requires the choice of a tuning pa-
rameter in the Gaussian kernel. For practical applications, must be determined in a
data-driven fashion. For infinitely divisible random variables (Klenke, 2014) such as Pois-
son variables, Brown et al. (2013) proposed a modified cross validation (MCV) method for
choosing the tuning parameter. However, the MCV method cannot be applied to distribu-
tions with bounded support as they are not infinitely divisible (Sato and Ken-Iti, 1999) such as
the Binomial distribution. To provide a unified estimation framework for the DLE family, we
develop an alternative method for choosing . The key idea is to derive an asymptotic risk

estimate ARE(l)( ), that serves as an approximation to the true loss L(l)(\/,n (1) ( MebThen
the tuning parameter is chosen to minimize ARE(l)( )on

The methodology based on ARE is illustrated below under the scaled loss (see definition
2) and in Appendix A.2 we provide relevant details for choosing under the regular squared

(0)
loss L', ".
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Definition 2 (ARE of (“f)b( ) in the DLE model). Suppose Y; | Vi " DLE (Vi). Under
the loss *(1)(V/}, -), an asymptotic risk estimate of the true loss Plf) neb( ) js

(1) 1 X Xoeb
ARE( ,y) = o i) 2 (i ), where
i=1 i=1

()= {2 ()P (ayea/ay), vi= 0,1,....
with j; 2 {1,...,n} such thaty;, = y; + 1.

We propose the following estimate of the tuning parameter based on the ARE(:)( , V)

"= argminARErgl)( ,Y) (9)
2=
In practice we recommend using « = [10,102], which worked well in all our simulations
and real data analyses. In Section 3, we present Lemma 2 which provides asymptotic
justifications for selecting using equation (9).

3. Theory

This section studies the theoretical properties for the NEB estimator under the Poisson
and Binomial models. We first investigate the large-sample behavior of the KSD measure
(Section 3.1), then turn to the performance of the estimated risk ratios w, (Section 3.2), and
finally establish the consistency and risk properties of the proposed estimator '(‘g? (Section
3.3). The accuracy of the ARE criteria, which are used in choosing tuning parameter , will
also be investigated.

3.1 Theoretical properties of the KSD measure

To provide motivation and theoretical support for Definition 1, we introduce the Kernelized
Stein’s Discrepancy (KSD) (Liu et al., 2016; Chwialkowski et al., 2016) and discuss its
connection to the quadratic program (8). While the KSD has been used in various contexts
including goodness of fit tests (Liu et al., 2016; Yang et al., 2018), variational inference
(Liu and Wang, 2016) and Monte Carlo integration (Oates et al., 2017), our theory on its
connection to the compound estimation problem and empirical Bayes methodology is novel.
Assume that (Y, Y 9) are i.i.d. copies from the marginal pmf p. Consider hg defined in
Equation (7)! and let p denote a pmf on the support of Y, for which we similarly define K.
The KSD, which is formally defined as
hn o n oi
S [Bllp) = Ep  h(Y) ho(Y) K (Y,Y9) h(¥Y9 ho(Y9 (10)

provides a discrepancy measure between p and § in the sense that (a)

S [pl(p) OandS [pl(p)= 0if and only if p= g,

1. Tn Section 3.1 we shall drop the superscript from ho, which is used to indicate whether the loss is scaled or
regular. The simplification has no impact since the general idea holds for both types of losses and the
discussion in this section focuses on the scaled loss.
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and (b) informally, S [p](p) tends to increase when there is a bigger disparity between hg
and h (or equivalently, between p and p).

The direct evaluation of S [p](p) via Equation (10) is di cult because hg is unknown.
Note that while the pmf p can be learned well from a random sample {Y1,...,Yn} ¢
p, we introduce an alternative representation of KSD, developed by Liu et al. (2016), ina
reproducing kernel Hilbert space (RKHS) that does not directly involve unknown hg.
Concretely, consider a positive definite kernel function B [R(u), h{v)] where

[h(u), h(v)I(u,v) = h(u)h(v)K (u,v)+h(u) K (u,v)+h(v) oK (u,v)+ 4K (u,v).

(11)
For i.i.d. copies (Y, Y 9) from distribution p, it can be shown that
h i
S BIP) = Eyyoyue, B IACY)ACYINY, YO . (12)
1 h X !
= —F (RYi), ROY)IYiL YY)
n(n 1) 1@i=j@n
= M (h),

where {Y1, ..., Yn} is a random sample from p. It can be similarly shown that M (hJ = 0 if
and only if h = hg. Substituting the empirical distribution g, in place of the pmf p in (12),
we obtain the following empirical evaluation scheme for S [p](p)

1 Xn Xn
S [A1(Pn) = . [Alyi), hly;)lyi, v;)- (13)
i=1 j=1

Note that (13) is exactly the objective function M ,n(ﬁ) of the quadratic program (8).

The empirical representation of KSD (13) provides an extremely useful tool for solving
the discrete compound decision problem under the EB estimation framework. A key obser-
vation is that the kernel function @ [h(u), h(v)](u, v) depends on § only through h. Mean-
while, the EB implementation of the generalized Robbins’ formula [cf. Equations (4) and
(7)] essentially boils down to the estimation of hg. Hence, if S [p](pn) is asxmptotically equacl)
toS [pl(p), then minimizing S [P](Pn) with respect to the unknowns h = R(y1), ..., h(yn)

is edectively the process of finding an h that is as close as possible to hg, which yields an
asymptotically optimal solution to the EB estimation problem. Therefore our formulation of
the NEB estimator (1) (reb would be justified as long as we can establish the asymp-totic

consistency of the sample criterion S [§](pn) around the population criterion S [p](p)
uniformly over (Theorem 1).

Our analysis in this and the following sections will be based on the hierarchical model of
equation (2): Y; |V pd- DLE(V), \/i'i'é'-j-- G(-) where G(-) is an unspeciﬁ%l prior distribution
on Vi. In this setup the marginal pmf of Y is p(y):= P(Y = y) = pl(y|V)dG(V).
We impose the following regularity conditions that are needed in our technical analysis.

(A1) Ep|® [A(U),A(V)I(U,V)|2 < 1 forall 2 « where « is a compact subset of R*
bounded away from 0.
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(A2) For some =2 (0,1), Eg{exp(=+v')} < 1 where the expectation is taken with respect
to the prior distribution G of V.

(A3) For any functFion g that satisfies 0 < kgkz2 < 1, there exists a constant ¢ > 0 such
that lim,,; | ,o08(Y)K (y,y%g(y°) > ckgk% for every 2 -,

Remark 3. Assumption (A1) is a moment condition on the kernel function related to V-
statistics; see, for example, Serfling (2009). Assumption (A2) is a moment condition on the
prior distribution G. In particular, it ensures that with high probability max(Y, ..., Y,) @log
nasn! 1. This ideais formalized in Lemma 4 in Appendix B. It is likely that assump-tion
(A2) can be further relaxed but we do not seek the full generality here. Assumption (A3)
is a standard condition which ensures that the KSD S [p](p) is a valid discrepancy measure
(Liu et al., 2016; Chwialkowski et al., 2016).

Theorem 1. If fis a probability mass function on the support of Y then, under Assump-
tions (A1) and (A2), we have

Iog2n.

sup M ,(R) M (R) = O, —p=
n

2 k=
In the context of our compound estimation framework, Theorem 1 is significant because it
guarantees that the empirical version of the KSD measure given by M ,(h) is asymptoti-
cally close to its population counterpart M (R) uniformly in 2 . Moreover, along with
the fact that M (hg) = 0, Theorem 1 establishes that M~ ,(h) is the appropriate criteria to
minimize with respect to h h.~” In Theorem 2, we further show that the resulting

estimator of the ratio functionals le) from equation (8) are consistent.

3.2 Theoretical properties of w,

The optimization problem in (8) is defined over a convex set H,, = {h = (hy,...,hy) :Ah
b, Ch = d} which is a subset of R". However, the dimension of H,, denoted by
dim(Hp), is usually much smaller than n. Consider the Binomial case where Yj|qgi «-
Bin(m;j, g;) with q; 2 (0,1), mi@m< 1 and V= qi/(1 q;). Here dim(H,) is at most m
since max(Yy,...,Yn) @ m. While the boundedness of the support is not always available
outside the Binomial case, in most practical applications it is reasonable to assume that the
distribution of v/; has some finite moments, which ensures that dim(H,) grows slower than
log n; see Assumption (A2). In Lemma 4 we make this precise. Moreover, as discussed in
remark 2, the linear inequality constraints Ah b impose structural constraints on
(”f)b( ). For the ensuing discussion and following Brown et al. (2013), we let these structural
constraints to take the form of monotonicity constraints on the NEB decision rule. Sincethe
Binomial and the Poisson models have the monotone likelihood ratio property, () is
monotone and so hy 2 H . The next theorem establishes the asymptotic consistency of

wil().

Theorem 2. Let K (-, ‘) be the positive definite Gaussian kernel with bandwidth parameter
2 . If limni1 can Y2log?n = 0 then, under Assumptions (A1) - (A3), we have for

any 2 -,

1

n

>
1
- == = 0, for any = > 0,

2
; A (1) (1)
nIl!rq P Wl () wy, , c

10
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where WP )= 1 A ).

Theorem 2 shows that under the scaled squared error loss, wn(“( ), the optimizer of

quadratic problem in equation (8), is a consistent estimator of w(l), the optimal shrinkage
factor in the Bayes rule (Lemma 1). In particular, the aforementioned consistency result is
related to the theoretical analysis of minimum KSD estimators in Barp et al. (2019). While
Barp et al. (2019) establish almost sure convergence and asymptotic normality of such
minimum KSD estimators, the analysis in this section is geared towards studying the
asymptotic optimality of the proposed NEB estimator in the sense of Theorem 3 below.
The proof of Theorem 2 is available in Appendix B.3 which also includes relevant details for
proving a companion result under the regular squared error loss.

Remark 4. The estimation framework in Definition 1 may be used for producing consistent
estimators for any member in the DLE family. This allows the corresponding NEB estimator to
cover a much wider class of discrete distributions than previously proposed. Compared to the
existing methods of Efron (2011) and Brown et al. (2013), our proposed NEB estimation
framework is robust against departures from the true data generating process. This is due to
the fact that the quadratic optimization problem in (8) does not rely on the specific form of
the distribution of Y |V, and that the shrinkage factors are estimated in a non-parametric
fashion. The robustness of the estimator is corroborated by our numerical results in Section 4.

3.3 Properties of the NEB estimator

In this section we discuss the risk properties of the NEB estimator. Let

Sy, () = LBy, me()) T
n (1) n (1) n X

<

i
.i=1
We begin with Lemma 2 which shows that uniformly in 2 «, the gap between ARES)( )

and E{--->n(1)(\/, (1”9‘3( ))} is asymptotically negligible. This justifies our proposed
methodol-ogy for choosing the tuning parameter in Section 2.3. In the following lemma,
we let ¢ be a sequence satisfying lim 11 can Y4log3n = 0.

Lemma 2. Under Assumptions (A1) - (A3), we have

(1). casup ARELN(,Y) =, 10 ) = o0p(2).

2 '(1)
(2). cnsup AREN(,Y)  Ef-(, S0 )} = op(1);

In Appendices B.5 and B.6 we prove Lemma 2 for the Binomial and Poisson models
under both scaled squared error and squared error losses.

To analyze the quality of the data-driven bandwidth ~ [cf. Equation (9)], we consider
an oracle loss estimator ?{) = ?f)b( 9¢), where

orc

o]
° neb( )

n
- in (1)
= argminlL~’ V, (1)

2
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The oracle bandwidth 9 is not available in practice since it requires the knowledge of
unknown V. However, it provides a benchmark for assessing the e<ectiveness of the data-
driven bandwidth selection procedure in Section 2.3. The following lemma shows that the
loss of (nf)b( ) converges in probability to the loss of (qr).

Lemma 3. Under Assumptions (A1) - (A3), if limni1 can Y4log?n = 0, then for both
the Poisson and Binomial models, we have
i

h n o}
nlim P LY v, ('Sb( ) L (v, a)* 6 Lim = 0 for any «=> 0.

Obviously, the estimator E‘f)b( 97¢) is lower bounded by the risk of the optimal solution

?(1) (Lemma 1). Next we study the asymptotic optimality of ?fg’, which aims to provide de-
cision theoretic guarantees on '}eﬁ in relation to ?(1). Theorem 3 establishes the optimality

~

theory by showing that (a) the average squared error between [‘ff’( ) and ?1) is asymp-

totically small, and (b) the NEB estimator is asymptotically as good as the corresponding
Bayes estimator in terms of expected loss.

Theorem 3. Under the conditions of Theorem 2, if lim,1 con /2 log*n = 0, then for
both the Poisson and Binomial models, we have

Cn neb( " B 2_
— = 0p(1).
A 0y, = oell)

Furthermore, under the same conditions, we have,

h i
lim E L, BP0 W, ) =o.

In Appendix A.2, we discuss the counterpart to Theorem 3 under the squared error loss
(0)
L.

4. Numerical Results

In this section we first discuss, in Section 4.1, the implementation details of the convex
program (8) and bandwidth selection process (9) (see also (19) in Appendix A.2). Then we
investigate the numerical performance of the NEB estimator for Poisson, Binomial and
Negative Binomial compound decision problems, respectively in Sections 4.2,4.3 and 4.4. In
each case, we consider both regular and scaled squared losses. Our numerical results demon-
strate that the e ciency gain of the NEB estimator over competitive methods is substantial in
many settings.

We have developed an R package, npeb, to implement the NEB estimator in definition 1
(and definition 3 in Appendix A.1). Moreover, the R code that reproduces the numerical
results in this section can be downloaded from the following link: https://github.com/
trambakbanerjee/DLE_paper.

12
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4.1 Implementation Details

For a fixed we use the R-package CVXR (Fu et al., 2017) to solve the optimization problem in
Equations (8) (and (15) in Appendix A.1). As discussed in remark 2 of section 2.2, under the
scaled squared error loss (k = 1) the linear inequality constraints, given by Ah b, ensure
that the resulting decision rule Meb( ) i(slfnonotonic, while the equality constraints

Ch = d handle boundary cases that involve y; = 0 and ties. Moreover, since w(l)(ly) > 0, the
inequality constraints also ensure that h; < 1 whenever y; > 0. Implementation under the
squared error loss (k = 0) follows along similar lines and the inequality constraints in this
case ensure that h; + y; > 0 whenever y; 0.

A data-driven choice of the tuning parameter is obtained by first solving problems (8)
and (15) over a grid of wvalues, i.e. { 1,..., s}, and then computing the corresponding

asymptotic risk estimate ARE,&k)( j) forj =1,...,s. Then is chosen according to

~

« = argmin AREM( ),
2{ 1,..., s}

where k 2 {0, 1}. For all simulations and real data analyses considered in this paper, we
have fixed s = 10 and employed an equi-spaced grid over [10, 102].

4.2 Simulations: Poisson Distribution

In this section we consider the Poisson compound decision problem and generate Y; |V '2d-

Poi(v/) fori = 1,...,n. We vary n from 500 to 5000 in increments of 500 and simulate V/;
from the following four diderent scenarios:

ii.d

Scenario 1: V; ¢ Unif(0.5, 15).

ii.d

Scenario 2: V; ¢ Gamma(10, 2).

In the next two scenarios we consider departures from the usual Poisson model and simulate
our data from the Conway-Maxwell-Poisson distribution (Shmueli et al., 2005) CMP(V/;, @).
The CMP distribution is a generalization of some well-known discrete distributions. WithB < 1,
CMP represents a discrete distribution that has longer tails than the Poisson distribution with

parameter V;.

Scenario 3: We simulate V/; id-0s {10} + 0.5 Gamma(5, 2) for each i and let

Y, | Vi "¢ 0.8 Poi(vi)+ 0.2 CMP(V}, @),
where we fix B = 0.8 for the CMP distribution.

Scenario 4.1: In this scenario we conduct estimation under the scaled squared error loss.
We let v "€ 0.5 (5, + 0.5 (155, Bi|Vi= 0.81(vi= 5)+ 1I(v; = 15) and simulate
Y;from the CMP distribution with parameters v/; and &;. Thus, about half of the samples

arise from a Poisson distribution with mean 15 while remaining are realizations from a
CMP(5, 0.8).

13
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Scenario 4.2: We consider estimation under the squared error loss and let v to be an
equi-spaced vector of length n in [1,5]. We simulate Y; from the CMP distribution with

parameters Vi and @ fixed at 0.8.

For each scenario, the following competing estimators of v; are considered:

1. the proposed estimator, denoted NEB and the oracle NEB estimator CEL) = (”lf)b( orey,
denoted NEB OR;

2. the estimator of Poisson means from Brown et al. (2013), denoted BGR;
3. Tweedie’s formula for the Poisson model, denoted TF OR;

4. Tweedie’s formula for the Normal means problem based on transformed data, denoted
TF Gauss. The approach using transformation was suggested by Brown et al. (2013).

5. the estimator of Poisson means from Koenker and Gu (2017), denoted KM;

6. the estimator of Poisson means based on the g-modeling approach of Efron (2016),
denoted Deconv.

The risk performance of the TF OR method relies heavily on the choice of a suitable band-
width parameter h > 0. We use the oracle loss estimate h°', which is obtained by minimiz-ing
the true loss L(O).nThe TF Gauss methodology is only applicable for the Normal means
problem, and uses a variance stabilization transformation on Y; to get Z; = 2 Yi&me
Z; are then treated as approximate Normal random variables with mean u; and vari-ances
1. To estimate the normal means p we rely on g-modeling and use NPMLE. Finally, v are
estimated as 0.25p1 2. It is important to note that along with the NEB estimator, BGR and TF
OR are based on f-modeling while the rest in the preceding list of six competitors are based
on g-modeling. Moreover, BGR, TF OR and TF Gauss only focus on the regular squared error
loss L9, Nevertheless, in our simulation we assess the performance of these estimators for

estimating v/ under both L% and LY,

n n

Table 1: Poisson compound decision problem  Table 2: Poisson compound decision prob-

under scaled squared error loss: Risk ratios lem under squared error loss: Risk ratios
RV, )/RE(V, (2§°) at n = 5000 for esti-  R'®(v,-)/RE(V, 8§°) at n = 5000 for esti-
mating V. mating V.
Scenario Scenario

Method 1 2 3 4.1 Method 1 2 3 4.2

KM 0.94 100 1.11 1.00 KM 1.00 1.01 159 1.21

Deconv 1.00 1.06 1.03 1.11 Deconv 1.02 1.08 1.43 1.21

TF Gauss 1.03 1.03 1.23 1.18 TF Gauss 1.00 1.01 1.51 1.08

TF OR 1.00 1.02 1.28 1.10 TF OR 1.07 1.03 166 1.12

BGR 1.22 1.07 1.28 1.25 BGR 1.01 1.02 155 1.15

NEB 1.00 1.00 1.00 1.00 NEB 1.00 1.00 1.00 1.00

NEB OR 1.00 1.00 0.98 1.00 NEB OR 1.00 1.00 0.90 1.00

The performances of these six estimators are presented in figures 1 and 2 wherein the
risk R(,':)(\/, -) is estimated using 50 Monte Carlo repetitions for varying n. Tables 1 and 2
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Deconv —=- NEB TF Gauss| Deconv = NEB TF Gauss|
KM —— NEB OR TFOR KM — NEBOR TFOR
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(a) Scenario 1: Estimation of v under loss L(nl) (b) Scenario 2: Estimation of v under loss L(nl)
where V"% Unif(0.5, 15). where v; & Gamma(10, 2).
Deconv = NEB TF Gauss
Deconv = NEB TF Gauss| KM —— NEB OR TEOR

KM —— NEB OR TFOR

4.0

3.5

risk
w
o

25

2.0
—
N %@z:

v ; ; v ; 1000 2000 3000 4000 5000
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n

(d) Scenario 4.1: Estimation of v under loss
L(nl) where V' is an equi-spaced vector of length
nin [1,5] and Y;|v; " CMP(V},0.8) .

(c) Scenario 3: Estimation of v under loss L(nl)
where V¢ 0.5 (10, + 0.5 Gamma(5, 2).

Figure 1: Poisson compound decision problem under scaled squared error loss: Risk estimates of
the various estimators for scenarios 1, 2, 3 and 4.1.

report the ratios R(ﬁ)(\/, -)/R(nk)(\/, (L")Eb) of the average risks at n = 5000 and for k = 1,0
respectively, where a risk ratio bigger than 1 indicates a smaller estimation risk for the NEB
estimator. For BGR the modified cross validation approach of choosing the bandwidth pa-
rameter was extremely slow in our simulations and we therefore report its risk performance
only at n = 5000.

Figure 1 and table 1 present the risk performances of the competing estimators under
the scaled squared error loss. Under scenarios 1 and 2 all estimators, with the exception of
BGR in scenario 1 (table 1), exhibit competitive risk performance. For scenarios 3 and 4.1,
which represent departures from the Poisson model, the NEB estimator demonstrates a
substantially better performance than TF Gauss, TF OR and BGR. We note that KM and
Deconv are competitive in scenarios 4.1 and 3, respectively, which indicates that along
with the NEB estimator these g-modeling based approaches are potentially robust to mis-
specifications of the Poisson model considered in scenarios 3 and 4.1. Figure 1 reveals that

the risk profile of Deconv is adected by its poorer estimates of v at various sample sizes
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Deconv —=- NEB TF Gauss| Deconv = NEB TF Gauss|
KM —— NEB OR TFOR KM — NEBOR TFOR
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risk
=
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——

7000 2000 3000 4000 5000 1000 2000 3000 4000 5000
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(a) Scenario 1: Estimation of v under loss L(no) (b) Scenario 2: Estimation of v under loss L(no)
where "€ Unif(0.5, 15). where Vi & Gamma(10, 2).
Deconv —= NEB TF Gauss|
Deconv —= NEB TF Gauss| KM — NEBOR TFOR

KM —— NEB OR TF OR

3.25-
17.5 3.00-

15.0 $275-

125 2.50- \\
10.0 e - \\‘\\‘\

1000 2000 3000 4000 5000
1000 2000 3000 4000 5000 n
n

risk

(c) Scenario 3: Estimation of v under loss L'°! (c(lg)Scenario 4.2: Estimation of v/ under loss
n L', where V' is an equi-spaced vector of length

where V'¢-0.5 (10, + 0.5 Gamma(5, 2). nin [1,5] and Yi| Vi " CMP(v/;, 0.8)

Figure 2: Poisson compound decision problem under squared error loss: Risk estimates of the
various estimators for scenarios 1, 2, 3 and 4.2.

and especially at the smaller sample sizes for scenarios 3 and 4.1. This behavior continues
to appear even when the number of Monte Carlo repetitions are increased.

The risk performance of the competing estimators under the squared error loss is pre-
sented in figure 2 and table 2. Under scenarios 1 and 2 all estimators continue to exhibit a
competitive performance. BGR, in particular, demonstrates a substantially improved per-
formance now that estimation is conducted under squared error loss. Scenarios 3 and 4.2
consider departures from the Poisson model and in these settings the NEB estimator has a
substantially better risk performance than all other competing methods considered here.
We note that in scenarios 3, 4.1 and 4.2 the NEB estimator is robust to departures from the
Poisson model. Proposition 7 in Barp et al. (2019) guarantees that, in general, the influence
function of minimum KSD estimators, such as the NEB estimator, is bounded under data
corruption and the behavior of the proposed NEB estimator in scenarios 3, 4.1 and 4.2 is
potentially an example of such robustness property of minimum KSD estimators.
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4.3 Simulations: Binomial Distribution

In this section we consider the Binomial compound decision problem and generate Y; | g; '2d-

Bin(m;j, q;) fori = 1,...,n. We vary n from 500 to 5000 in increments of 500 and simulate v/;
= q;/(1 gi) from the following four di<erent scenarios:

Scenario 1: gj - Unif(0.1,0.7) and m; = 10.
Scenario 2: Vi "€ (1/3) 0.5+ (1/3) (1 + (1/3) (2, and m; = 10.
Scenario 3: g - Beta(1, 6) and m; = 10.

Scenario 4: v; "€ Exp(2) and m; = 5.

Unlike scenarios 1 and 3, the data generating process in scenarios 2 and 4 directly sample the
odds. Moreover the compound estimation problem in scenarios 3 and 4 is challenging

because in these settings the distribution of v/; has a mean that is substantially smaller in
magnitude to the mean of V/; in scenarios 1 and 2. For example in scenario 2 the mean of
Vi is about 1.16 while that in scenario 4 is 0.5. We consider the following five competing
estimators of V;:

1. the proposed estimator NEB and its oracle version NEB OR;
2. Tweedie’s formula for Binomial log odds, denoted TF OR;

3. Tweedie’s formula for the Normal means problem based on transformed data, denoted
TF Gauss.

4. the estimator of Binomial odds from Koenker and Gu (2017), denoted KM;

5. the estimator of Binomial odds from Efron (2016), denoted Deconv.

For TF OR, analogous to the Poisson case, we continue to use the oracle loss estimate h° as a
choice for the bandwidth parameter. Since the TF Gauss methodology is only applicable for
the Normal means problem, it uses a variance stabilization transformation on Y; to get Z;
= arcsin (Y;+ %.Emnwi—+(f5).—ThTZi are then treated as approximate Normal random
variables with mean p;, variances (4m;) 1, and estimate of the means p;’s are obtained
using NPMLE. Finally, q; is estimated as {sin(fi;)}2. We note that the competitors TF OR and
TF Gauss to our NEB estimator do not directly estimate the odds v/;. For instance under the
squared error loss, TF Gauss estimates the success probabilities g; while TF OR estimates log
vi. Nevertheless, in this simulation experiment we assess the performance of these two
estimators for estimating the odds under both squared error loss and its scaled version.
The simulation results are presented in Figures 3 and 4 wherein the risks of
various estimators are calculated by averaging over 50 Monte Carlo repetitions for varying n.
Tables 3 and 4 report the risk ratios R(k).(.\/, -)/R(k)r(\/, ”?E at n = 5000 and for k = 1,0
respectively, where a risk ratio bigger than 1 indicates a smaller estimation risk for the NEB
estimator.
Under the scaled squared error loss (figure 3 and table 3) KM and Deconv demonstrate
a superior risk performance for scenarios 1 and 2 while the NEB outperforms them for the
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Deconv KM —= NEB —+ NEBOR TF Gauss| Deconv KM —= NEB —+— NEBOR TF Gauss
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(a) Scenario 1: Estimation of odds v under (b) Scenario 2: Estimation of odds v un-
loss L(nl) where q; g Unif(0.1,0.7) and m; = der loss L(,11) where Vi e (1/3) (05 +
10. (1/3) (1y+ (1/3) (2) and m; = 10.
| Deconv KM — NEB -+ NEB OR TF Gaussl | Deconv KM — NEB —— NEB OR TF Gaussl
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(c) Scenario 3: Estimation of odds v under (d) Scenario 4: Estimation of odds v under
j.i.d ji.d
loss L'3) where i el Beta(1, 6) and m; = 10. loss L'4) where /; hE Exp(2) and m; = 5.

Figure 3: Binomial compound decision problem under scaled squared error loss: Risk estimates of
the various estimators for Scenarios 1 to 4.

challenging settings of scenarios 3 and 4. The two Tweedie’s formula based estimators, TF
Gauss and TF OR, exhibit relatively poorer performance which is not surprising because
these two estimators are designed to estimate q; and log v; under loss L(no). For the squared
error loss (figure 4 and table 4) the simulation results reveal that with the exception of
scenario 3, the NEB estimator and KM demonstrate competitive risk performance. Scenario 3,
along with scenario 4, is a challenging setting wherein the mean of the distribution of v/
is substantially smaller in magnitude to the mean of V; in scenarios 1 and 2. Across the
four scenarios, TF OR exhibits the poorest performance and appears to suder from the
fragmented approach of estimating the gradient of the log density logp(y) wherein p(y) and its
first derivative with respect to y are estimated separately using a Gaussian kernel with
common bandwidth h°. Between the two g-modeling based approaches considered in this

section, Deconv exhibits a relatively poorer risk performance than KM and for scenario 3 in
particular the average risk of Deconv is substantially larger.
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Deconv KM — NEB -+ NEB OR TF Gauss| Deconv KM — NEB —— NEB OR TF Gauss
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(a) Scenario 1: Estimation of odds v under (b) Scenario 2: Estimation of odds v un-
loss L'?) where q; ""¢?" Unif(0.1,0.7) and m; = der loss L9 where v; &4 (1/3) (05 +
10. (1/3) (1 + (1/3) (23 and m; = 10.
| Deconv KM — NEB —— NEB OR TF Gaussl | Deconv KM — NEB —— NEB OR TF Gaussl
0.07
0.22-
0.06
0.20-
$ 0.05 @
= T o.18-
0.04
0.16-
S L —
‘ j ] ] ‘ 0.14- ; ! | ‘ ‘
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
n n
(c) Scenario 3: Estimation of odds v/ under (d) Scenario 4: Estimation of odds v under
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loss L'?) where Qi el Beta(1,6) and m; = 10. loss L) where Vi P Exp(2) and m; = 5.

Figure 4: Binomial compound decision problem under squared error loss: Risk estimates of the
various estimators for Scenarios 1 to 4.

Table 3: The Binomial compound decision  Table 4: The Binomial compound decision
problem under scaled squared error loss: Risk problem under the squared error loss: Risk ra-

ratios R (v, -)/R\ (v, (15°) at n = 5000 for tios RO (v, )R (v, (05°) at n = 5000 for es-

estimating V. timating v/
Scenario Scenario
Method 1 2 3 4 Method 1 2 3 4
KM 0.95 094 1.85 1.00 KM 1.01 1.00 1.15 1.02
Deconv 0.95 0.97 1.59 1.06 Deconv 1.06 1.09 1.42 1.03
TF Gauss 1.01 1.09 8.52 4.30 TF Gauss 1.21 123 1.27 1.10
TF OR >10 > 10 > 10 > 10 TF OR >10 > 10 > 10 > 10
NEB 1.00 1.00 1.00 1.00 NEB 1.00 1.00 1.00 1.00
NEB OR 099 1.00 1.00 1.00 NEB OR 1.00 1.00 0.98 1.00
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4.4 Simulations: Negative Binomial Distribution

In this section we investigate the numerical performance of the NEB estimator for compound
decision problems involving the Negative Binomial (NB) distribution. We generate obser-
vations Y; | q; 'od- NBinom(ri, gi) fori = 1,...,n and vary n from 500 to 5000 in increments

of 500. Here the goal is to estimate v = 1 q; and we consider the following three di<erent
scenarios for simulating q; fori = 1,...,n:

Scenario 1: q; hid- 0.4 0.5+ 0.6 Beta(1,1) and fix r; = 3.
Scenario 2: q; RIS (1/3) to.5p+ (1/3) (0.73+ (1/3) j0.9y and fix r; = 5.

Scenario 3: g 13d- Beta(5, 2) and fix r; = 10.

In scenarios 2 and 3 the median V/; is substantially smaller than 0.5 which represents a
challenging estimation setting for the following competing estimators:

1. the proposed estimator, denoted NEB and the oracle version NEB OR;
2. Tweedie’s formula for log v; under the NB model, denoted TF OR;

3. Tweedie’s formula for the Normal means problem based on transformed data, denoted
TF Gauss;

4. the naive estimator 1 (r; 1)/(ri+ Y; 1) of V; where (r; 1)/(ri+ Y; 1) is the
minimum variance unbiased estimator (MVUE) of g;.

We continue to use the oracle loss estimate h°™ as the bandwidth choice for TF OR. For TF
Gauss we use a variance stabilization transformation on Y; to get Z; = 2 arcsin P Y./ri. The
Z; are then treated as approximate Normal random variables with mean u; and variances
1/ri. To estimate the normal means p; we rely on g-modeling and use NPMLE. Finally, v
are estimated as 1 {1 + [sinh(0.5{%)]%?} I. It is important to note that unlike the
NEB estimator, the remaining competing estimators only focus on the regular squared error
loss L(r?). Nevertheless, in our simulation we assess the performance of these estimators for
estimating v under both L(no) and L(nl).

Figure 5 and tables 5, 6 report the performance of the competing estimators of v for the
NB compound estimation problem. Under the squared error loss table 6 and right panel of
figure 5 reveal that across all sample sizes performance of the NEB estimator is substantially
better than the competing estimators considered in this experiment. In this setting TF
OR is the next best while the naive estimator of v is outperformed by the three shrinkage
estimators. Under the scaled squared error loss (table 5 and left panel of figure 5), the NEB
estimator continues to be better than the competing estimators although the performance of
TF Gauss is impressive given that it is based on Normality transformed data under the usual
squared error loss.

5. Real Data Analyses

This section illustrates two real data applications that use the proposed method for esti-
mating Juvenile Delinquency rates from Poisson models and news popularity from Binomial
models.
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Figure 5: Negative Binomial compound decision problem: Risk estimates of the various estimators

for Scenarios 1 to 3.
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Table 5: The NB compound decision prob-
lem under scaled squared error loss: Risk ratios

R(nl)(\/, -)/Rﬁl)(\/ neb) at n = 5000 for estimat-

Table 6: The NB compound decision prob-
lem under the squared error loss: Risk ratios

ROV, )/RI®V (v, neb) at n = 5000 for esti-

) 7 (1) ! 7 (0)
ing v. mating V.
Scenario Scenario

Method 1 2 3 Method 1 2 3
Naive 1.27 1.38 1.23 Naive 231 2.02 1.53
TF Gauss 1.09 1.25 1.14 TF Gauss 1.74 155 1.23
TF OR 494 1.25 1.11 TF OR 1.36 1.33 1.12
NEB 1.00 1.00 1.00 NEB 1.00 1.00 1.00

NEB OR 1.00 1.00 1.00 NEB OR 0.99 1.00 0.99

5.1 Estimation of Juvenile Delinquency rates

We consider an application for analysis of the Uniform Crime Reporting Program (UCRP)
Database (US Department of Justice and Federal Bureau of Investigation, 2014) that holds
county-level counts of arrests and o<enses ranging from robbery to weapons violations in
2012. The database is maintained by the National Archive of Criminal Justice Data
(NACJD) and is one of the most widely used database for research related to factors that af-
fect juvenile delinquency (JD) across the United States (see for example (Aizer and Doyle Jr,
2015; Damm and Dustmann, 2014; Koski et al., 2018)). A preliminary and important goal in
these analyses is to estimate the JD rates based on observed arrest data and determine the
counties that are amongst the worst or least adected. However with almost 3,000 coun-ties
being evaluated the observed J D counts are susceptible to selection bias, wherein some of the
data points are in the extremes merely by chance and traditional estimators may
underestimate or overestimate the corresponding delinquency rates, especially in counties
with fewer total number of arrests across all age groups.

For the purpose of our analyses, we use the 2012 UCRP data that spans n = 3,178
counties in the U.S. and consider estimating the JD rate Vv for county i = 1,...,n. The
observed data for county i in the year 2012 is the pair (yij1, mi1) which represent, respectively,
the number of juvenile arrests and total arrests in county i during that year. We assume
that Yi1 | mip, vi ® Poi(mi1vi) and use the following six competing estimators of v =
(V'1,...,vn) from section 4.2: NEB, BGR, KM, TF OR, TF Gauss and Deconv. To assess the
performance of the aforementioned estimators we consider predicting the 2014 county level
JD counts Yy = (Y1a,.. L{0)
and L(nl) losses. In particular for any estimate A. of Vi, the 2014 predicted JD counts are
Y, = (Almlz,..., Anmnz) where mj; is the total number of arrests in county i during 2014.

., Yn2) and compare their prediction performance under both

The prediction performance of " is then evaluated under loss L(nk)(Yz,\?z) for k 2 {0, 1}.
The data were cleaned prior to any analyses which ensured that all counties in the year
2012 had at least one arrest (juvenile or not). This resulted in n = 2803 counties where all
methods are applied to. Let YZ’(")A deote the n vector of predicted JD counts for 2014 using

(k) - Tabte 7 reports the loss ratios L(k)(Yz, Xz)/L(k)“(Yz, sz,(k)) whebe a ratio bigger than 1

indicates a smaller prediction loss for "eb. We(ksee that under the scaled squared

)
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Table 7: Loss ratios of the competing methods for predicting Y.

(n = 2,803) Loss ratios

Method k=1 k=0
BGR 1.09 0.97
KM 1.04 1.01
Deconv 3.18 1.01
TF Gauss 1.07 1.00
TF OR 1.19 1.08
NEB 1.00 1.00

error loss (k = 1) all five competing estimators to NEB exhibit loss ratios bigger than 1
while BGR outperforms all others under the squared error loss (k = 0). Under this loss,
however, the NEB estimator continues to provide a better prediction accuracy than TF OR
and demonstrates a competitive performance against KM, Deconv and TF Gauss.

5.2 News popularity in social media platforms

Journalists and editors often face the critical task of assessing the popularity of various news
items and determining which articles are likely to become popular; hence existing content
generation resources can be e ciently managed and optimally allocated to avenues with
maximum potential. Due to the dynamic nature of the news articles, popularity is usually
measured by how quickly the article propagates (frequency) and the number of readers
that the article can reach (severity) through social media platforms like Twitter, Youtube,
Facebook and LinkedIn. As such predicting these two aspects of popularity based on early
trends is extremely valuable to journalists and content generators (Bandari et al., 2012). In
this section, we assess the popularity of several news items based on their frequency

Table 8: Loss ratios of the competing meth- Table 9: Loss ratios of the competing meth-
ods for estimating v/. News article genre: ods for estimating v/. News article genre:
Economy and social media: Facebook Microsoft and social media: LinkedIn

(n= 3,972) Loss Ratios (n= 3,850) Loss Ratios

Method k=1 k=0 Method k=1 k=0

NEB 1.00 1.00 NEB 1.00 1.00

KM 6.98 > 10 KM > 10 > 10

Deconv > 10 > 10 Deconv > 10 > 10

TF Gauss 4.13 3.33 TF Gauss 9.26 7.34

TF OR > 10 > 10 TF OR > 10 > 10

of propagation and analyze a dataset from Moniz and Torgo (2018) that holds 48 hours
worth of social media feedback data on a large collection of news articles since the time of
first publication. For the purposes of our analysis, we consider two popular genres of news
from this data set: Economy and Microsoft, and examine how frequently these articles
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were shared in Facebook and LinkedIn, respectively, over a period of 48 hours from the
time of their first publication. Each news article in the data has a unique identifier and 16
consecutive time intervals, each of length 180 minutes, to detect whether the article was
shared at least once in that time interval. Let Z;; = 1if article i was shared in time interval j
and O otherwise, where i = 1,...,nandj = 1,...,16. Suppose qgij 2 [0,1] denotes the
probability that news article i is shared in interval j. Note that in general q;; dependson j
since the popularity of any news article evolves with time and therefore Z;; are not
independently distributed for j = 1,...,16. However for the purposes of this analysis, we let
qij = qi forj = 1,...,16 and assume that for each i, Z;; are independent realizations from

Ber(q;). It then follows that Yj; = P ;3:1 Zi; 'pd - Bin(8, gi). To assess the popularity
of article i we estimate its odds of sharing in the remaining 8 time intervals (j = 9, ..., 16)

and consider the following 5 estimators from section 4.3: NEB, KM, Deconv, TF Gauss and
TF OR. Tables 8 and 9 report the loss ratios L“f,)(\/, )/L(nk)(\/, (E‘fb) for any estimator

of v where Vi = Y;2/(8 Yi2) and Yj; = jlfg Z;;. We observe that all four competitors
to the NEB estimator exhibit loss ratios substantially bigger than 1 under both the losses.
The relatively poorer performance of KM and Deconv in this example stems from the fact
that in this application Yj; = 8 for several news articles. For those news articles both KM
and Deconv return disproportionately bigger estimates of v/; which explains their relatively
larger estimation loss.

6. Discussion

In this paper we propose a Nonparametric Empirical Bayes framework for compound esti-
mation in the discrete linear exponential family. The proposed estimator is consistent and
presents a unified framework for compound estimation in the DLE family by estimating the
Bayes shrinkage factors via a convex program that can easily incorporate various structural
constraints, such as monotonicity, into the data driven decision rule. Our numerical evi-
dence suggests that across many settings the NEB estimator has a substantially better risk
performance than the competing approaches considered here.

We conclude this article with two open issues. First, in large scale compound estimation
problems, one is often interested in constructing confidence intervals for the EB shrinkage

estimators. Recall that for any coordinate i, A(”ke)bi is non-linear and a biased estimate of V/;.

While the CLT for minimum KSD estimators in Barp et al. (2019) will be important for
deriving the asymptotic distribution of the NEB estimator, the main challenge in constructing
confidence intervals lies in accounting for the bias in ”ef’k),ﬁor estimating V/;. In the absence of
any information on the prior G, it is not immediately clear how to accurately characterize this
bias. Notable recent developments include “de-biasing” the EB estimator (lgnatiadis and
Wager, 2019) or assuming a Normal distribution on G but using a carefully constructed larger
critical value to account for the bias due to shrinkage (Armstrong et al., 2020). Secondly,
the NEB estimation framework handles both regular and scaled squared error losses and
it is desirable to construct such empirical Bayes shrinkage estimators for other asymmetric
losses such as the Linex loss (Varian, 1975) and the Generalized absolute loss function
(Koenker and Bassett Jr, 1978). As part of our future research, we will be interested in
pursuing these aforementioned directions.
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Supplementary Material for “EB Estimation in Discrete
Linear Exponential Family”

In this supplement, we first present in Appendix A the results for the NEB estimator under
the squared loss, then in Appendix B we provide the proofs and technical details of all
theories in the main text and Appendix A.

A. Results Under the Squared Error Loss

A.1 The NEB estimator

In this section we discuss the estimation of wr(,o) that appear in lemma 1 under the usual
squared error loss (k = 0). Let Y be a non-negative integer-valued random variable with
probability mass function (pmf) p and define

+ 1

: y.y2{0}[ N (14)
(0)
wp ' (y)

Suppose K (y,y%) = exp{ 0.5 1(y y9)?2} be the positive definite Gaussian kernel with

bandwidth parameter 2 & where ¥ is a compact subset of R* bounded away from 0.

Given observations y = (y1,...,Yn) from model (2), let h(o) = (h(o)(yl), e, h(o)(yn)) and

define the following n = n matrices: n2K = [K (yi, y;)lij, K = [ y_OK (yi,yj +

1)) and n? 2K = [ y,y K (y,yj)lj where K (v,y%) = K (y+ 1,y K (y,y°) and
y,yoK (y,y°) = yo yKI (\J/'VO) = y yoK (v, vy°).

Definition 3 (NEB estimator of v;). Consider the DLE Model (2) with loss ‘(‘))(\/i0 i).
Forafixed 2w, let W' )= (yi+ 1)/(vi+ h'?( ) apd N )5 h0), 7., n90)
be

the solution to the following quadratic optimization problem:

min hTK h+2hT K y+y' 5Ky, (15)
h2Hn

where H, = {h = (hy,...,hy) :Ah b, Ch = d} is a convex set and A, C, b, d are known
real matrices and vectors that enforce linear conshraints on the compogents of h. Then the

NEB estimator for a fixed is given by (%e)b( ) = (”g)bi( ):1BiB@n , where

fori( )= /At ey 10,1,2,. )
’ ~(0)
W)
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Remark 5. In problem (15) the linear inequality constraints Ah b can be used to
impose structural constraints on the NEB decision rule ?g)b( ). The structural constraints

may take the form of monotonicity constraints so that (‘c?)b(n( ) ?85’(n)( ) for

Y1) Y@ - By Inparticular, when Y; |V «- Poi(V) then ”eb(g))_ =y + h(o)(i) and
S

the monotonicity constraints in this setting will imply

)+ RN, () By yieny, fori@ia(n 1)

These n 1 linear inequality constraints may be imposed with an (n 1) -1 n matrix A and
an n 1 column vector b such that for 1@i & (n 1) and 1@ r @ n,

8
2 1, whenyr =y

Ai,r) = N 1, when y; = y(is1)
* 0, otherwise
and by = yi) o Yi+1)-

The equality constraints Ch = d may accommodate instances of ties for which we require
Fli(o)( ) = F\J.(O)( ) whenever y; = ;.

Theorem 4. Let K (-, ‘) be the positive definite Gaussian kernel with bandwidth parameter

2 k. If limnpi1 can Y2 log* n = 0 then, under assumptions (A1) (A3), we have for any
2 &, .

lim P 1 wo()  wi i c 1;- = 0, for any o=

nt1 n " P n ’

> Owhere w'%( ) = [(Yi+ 1)/(h'OC )+ Yol

We now provide some motivation behind the minimization problem in definition 3 for

estimating the ratio functionals W(S). Let M n(h)= hTK h+2hT K y+yT ,K y bethe
objective function in equation (15). Suppose p be a probability mass function on the
support of Y and define

h i
S [Bllp) = Ep (A(Y) hP(v))K (Y + 1,¥%+ 1)(RO(v %) nl(v0)  (16)

where hg)), h(9) are as defined in equation (14) and Y,Y, are i.i.d copies from the marginal

distribution that has mass function p. S [p](p) in equation (16) is the Kernelized Stein’s
Discrepancy (KSD) measure that can be used to distinguish between two distributions with
mass functions p, p such that S [g](p) O andS [p](p) = 0 if and only if p= g (Liu et al,,
2016; Chwialkowski et al., 2016; Yang et al., 2018). Moreover for i.i.d. copies (Y, Y 9) from

p, it can be shown that
h x i

o) = L 3 ROy B0y (Y Y.
S [pl(p) n{n 1)Ep N [ (Y;), h (YJ)](YllYJ)

where Y = (Y1,...,Yn) is a random sample from the marginal distribution with mass
function p and under the squared error loss @ [h(®(u), h(®(v)](u, v) is the positive definite
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kernel function

ROMWRO WK (u,v)+ ROy oK (u+1,v)+hO(v)u K (u,v+1)+uv K (u,v).

(17)
An empirical evaluation scheme for S [p](p) is given by S [F]1(pn) where
51(6 1 X (0) (0)
S [p1(Bn) = = [(A™ (yi), A™ (yi)1lyi, vi) (18)
ij=1

where B, is the empirical CDF. Note that @ [h)(u), h®)(v)](u, v) in equation (17) involves
only through h®) and may analogously be denoted by & [R(u), A(v)](u, v) where we have
dropped the superscript from h that indicates that the loss in question is the regular squared
error loss. This slight abuse of notation is harmless as the discussion in this section is geared
towards the squared error loss only.

Under the compound estimation framework of model (2), our goal is to estimate h(g).
To do that we minimize S [F](pn) in equation (18) with respect to the unknowns h =
(h(y1), ..., h(yn)). Note that S [§](pn) is exactly the objective function M ,n(ﬁ) of the
quadratic program (15) with optimisation variables h; B h(y;) fori= 1,...,n.

A.2 Bandwidth choice and asymptotic properties

We propose the following asymptotic risk estimate ARE(,?)( ) of the true loss of (gﬁb( ) in
the DLE model (2).

Definition 4 (ARE of (n;)b( ) in the DLE model). Suppose Y; | v; "¢ DLE (V;). Under
the loss “(0)(V/;, -) an asymptotic risk estimate of the true loss o neb( ) js

n (o]
x[ neb ()2 2 ¥ i)

n i=1 (O i=1

1
AREC)( ,y) =
n

where
()= [P0 Nay 1/ay), vi= 1,2...
with ji 2 {1,...,n} such thaty;, = yi 1.

An estimate of the tuning parameter based on ARE(,,O)( ,Y) is given by:

"= argminAREr(‘O)( ,Y) (19)
2=

where a choice of « = [10,10%] worked well in the simulations and real data analyses of
sections 4 and 5. Lemma 2 continues to provide the large-sample properties of the proposed
ARELO) criteria for the Poisson and Binomial distributions provided ¢ is a sequence that
satisfies limnpi1 con Y4log*n = 0.

To analyze the quality of the estimates " obtained from equation (19), we consider an

H or — neb( orc
oracle loss estimator o) ° (0)( o ) where

orc

oc = argminLi®(v, "°())

21 " (0)
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and Lemma 3 establishes the asymptotic optimality of " obtained from equation (19). In
theorem 5 below we provide decision theoretic guarantees on the NEB estimator and show
that the average squared error between ('(‘)e)b( ) and (%) is asymptotically small.

Theorem 5. Under the conditions of Theorem 4, if limni1 can 21log®n = 0 then, for
the Poisson and the Binomial model,

c
" mP(A) fo) §= op(l)-
n
Furthermore, under the same conditions, we have,
h i

lim £ L, G20 L, q) =0

B. Technical Details and Proofs

We will begin this section with some notations and then state three lemmata that will be
used in proving the statements discussed in Section 3.

Let cg,cy,... denote some generic positive constants which may vary in diderent state-
ments. Let D, = {0,1,2,...,dC log ne} where dxe denotes the smallest integer greater or
equal to x. Given a random sample (Y41, ..., Y,) from model (2) denote B, to be the event
{maxigimn Yi B C log n} where C is the constant given by lemma 4 below under assumption
(A2).

Lemma 4. Assumption (A2) implies that with probability tendingto 1asn! 1,
max(Yy,...,Yn)BC logn
where C > 0 is a constant depending on =,

Our next lemma below is a statement on the pointwise Lipschitz stability of the optimal

solution ﬁ(rlf)( ) under perturbations on the parameter 2 w. See, for example, Bon-nans
and Shapiro (2013) for general results on the stability and sensitivity of parametrized
optimization problems.

Lemma 5. Let ﬁ(nk)( o) be the solution to problems (8) and (15), respectively, for k 2 {0, 1}
and for some ¢ 2 «. Then, under Assumption (A3), there exists a constant L > 0 such

that for any 2 « the solution hrgk)( ) to problems (8) and (15) satisfies

AOC) Ao Bl ol

Lemma 6. Suppose Y |V . DLE (V). Then the following hold:

n & [ 1.(Y))%0
+ a 1
Evpv [y + 2 222 0 = 0 and
n e 0
ay 1

Eviv (oY 1)

The proofs of Lemmata 4, 5 and 6 are available in appendix B.8.
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B.1 Proof of Lemma 1

First note that for any coordinate i, the integrated Bayes risk of an estimator () ; of Vv

is p(yil\/h)\(k)(\/i: K1.i)dG (Vi) which is minimized with respect to (y ; if for each
v ). (),
Yi,
(k),i(yi) is defined as
Z
(k),i(yi) = argmin plyi Vi) (v,
(k),i1)dG(Vi) i

R
However, p(yil\/i);](k)(\/i, (k),i)dG(Vj) is @ minimum with respect to (),; when

") = Fip(Yil\/i)\l/l “dG (V)
(0. Y= VY, KdG(V)

R
The rgsult then follows by noting that p(y; k)= ay, k\/iyi k/g(\/i)dG(\/i), and p(yi+ 1
k)= "ayar kM K/g(VdG(Vi) for yi= kk+ 1,

B.2 Proof of Theorem 1
o~ P ~ ~ o ~
Define M (h) = ij2D, [h(i), h(j)I(i,j)P(Y = i)P(Y = j) and re-write M ,(h) as

. 1 X e
M n(h) = = [(h(i), h(j)1G, j)Cij,
i,j=1

wherE Cij is the number of pairs (Y, Ys) in the sample that has Y, = i,Ys = j and P(Y =
i)=  p(i|v)dG(V). Now, we have

sup M ,(h) M (h) Bsup M ,(h) ™M (h) +sup M (h) ™ (h) (20)

21 2 2

Consider the first term on the right hand side of the inequality in equation (20). Let
Pi == P(Y = i) and note that assumption (A2) and lemma 4 imply
X h . in o
Epsup M o(h) ™ (h) Ep sup B [A(i), h(j)1(i,j) =L PiP; 1+ o(1)
2k L 2k n2
i,j2Dn .
x h h . . e 201,50 o}
Ep sup B [R(i), h()IG, ) Ep = PP 1+ 0(1) .(21)
. 2= nz
i,j2Dn
In equation (21) above, Ep|n 2C;;  PiPj|? is O(1/n). Moreover, assumption (A1) to-
gether with the compactness of « and the continuity of @ [h(i), h(j)](i,j) with respect to
imply that Ey[sup 5. [B [A(i), R(j)1(i,j)]]1> < 1. Thus Epsup 5 [M 4(R) ™ (R)] is
O(logZn/" n).
Now consider the second term on the right hand side of the inequality in equation (20)
and note that it is bounded above by the following tail sums

X X
2 sup B [R(i), A(j)1(i, j) | PiPj + sup B [F(i), A(j)](, ) | PiP;.

i,jzDn 2

2

i2Dn,jZDn
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But from assumption (A1), E, sup 5. |B [h(U),h(V)I(U,V)| < 1 and together with as-
sumption (A2) and proof of lemma 4, it follows that the terms in the display above are O(n
?) for some @ > 1/2.

Now ﬁx an = > 0 and let ¢, = n/Iog n. Since Epsup 5 M o(h) ™ (R)] is
O(log? n/ n) there exists a finite constant M > 0and an N; such that chEp sup 5 |IVI n(h)
M (R)| @M foralln  Nj. Moreover since sup 5 [M (h) ™M (h)|! Oasn! , there
exists an N, such thatsup s |[M (h) M h)| BM/c,foralln N,. Thus witht= 4M/---, we

have P(c, sup 5. |M ,n(h) ™ (h)| > t) < == foralln max(Ny, N2) which su ces to prove
the desired result.

B.3 Proofs of Theorems 2 and 4

We will first prove Theorem 2. Note that from equation (7),
. 2 . 1) 2
W) wg = ) !

Now from assumption (A3) and for any == > 0, there exists a > 0 such that for any 2

h R ) i h n
.<—4} ""hP() o o Ay e @pc, M
o
(h) M (ht)
h . ..o
But thehrlght hand side is upper bounded by the sumh of P cp M (h(l)) M (h(r})) _
i n i i
/3,Pcy M (A1) n(h‘”) /3 and P cy M (b)) ™ (h‘”) /3.

From theorem 1, the first and third terms go to zero as n ! 1 while the second term is

zero since M ,n(ﬁ(nl)) M ,n(h(;)) as h(t) 2 Hn. This proves the statement of theorem 2.
To prove theorem 4 first note that from equation (14),

2 XM Yi+ 1 0,N 0;
W(O)( ) W(O) - i h(o)( ) h(o)
n

, .
2y DY ROy + h)

n,i 0,i

From assumption (A2) and Lemma 4, there exists a constant cg > 0 such that for large
n, maximien(Y; + 1) B cglogn with high probability. Moreover for i = 1,---,n, since
W(O)( ) > 0 for every 2 & and V\/O) > 0, equation (14) implies T'\(O)( )+ Y; > 0 and

h(ol) + Y; > 0. Thus, conditional on the event {maxigign(Yi+ 1) @ coglogn} we have for some
constant ¢; > 0,

5 2
W) W T KO O

and for any = > 0,
h i h i
c . 2 Cn ~ 0 2
n ngo)( ) WF()O) , o P Clnn }]1(0)( ) h(O ) , o

P
nlog?n

The proof of the statement of theorem 4 then follows from the proof of theorem 2 above
and lemma 4.
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B.4 Proofs of Theorems 3 and 5

We will prove Theorem 3 while the proof of Theorem 5 will follow using similar arguments
and Theorem 4.
Note that,

. . 2 X av. ay. 2 .
rep(”) y = v, 1/ay, Wnl,?( ) wib)
i=1 Wn,i( Jwp,i

Now, v?/ﬁ( ) > 0 for every 2 » and Wpf,li) > 0. This fact along with assumption (A2)

and lemma 4 imply that there exists a constant cg > 0 such that || r(‘gt)’ (") Tl)lLZ

Co Iogznkwfl)(A) wp(l)ké. The first result thus follows from the above inequality and

Theorem 2.
To prove the second part of the theorem, note that IL(nl)(\/, (?1)) L(nl)(\/, "(elt; ( )1 equals
r r r r

~

B, ) R 0y R, s R 0

and Triangle inequality implies

e
mep'i('\) 61),i 2/\/i

r r

"]
W, ) U, ey Bt

T n
1 X
Hi:l
&
Co neb(“) H -0 Ingn.
=W (1 ,~ Y "i/a (22)

from the first part of theorem 3. Thus, it follows from equation (22) that
r r

e b 1 o g (1) “log2n®
L n(‘/r (1 ()Ne L n(‘/r '(1))+ Op W
and
r r r
E ~ 1 £ 1 * 1 ~
LU, 5 O, 220 Ba v, ) B, ) W, () (23)

Now from assumption (A2) and the proof of Lemma 4, L(i)(\/, (?1)) c1 log® n for some
constant c; > 0. Therefore, together with equations (22) and (23) we have

$
Iogs/n.
nl 4

L0, &) LB, 5220) = o,

Define Z,( ) = la(l)(\/,T 1)) rL(l)(\/,"e'@(l;( )). We have already shown that Z,( ) !
0in probability as n ! 1. Moreover, under the Poisson model with A(l)'i( ) BY;/dy
and

(1), Yi/w(%)(Yi) where w(%)(Yi) > 0, we have for some positive constants cg, c1

1 Xn n (o]
[ Za( )] - coYi+ c1Y? = U,. (24)
i=1
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Now, under the Poisson model and from assumption (A2), sup, E(U,11+ ) < 1 for some
> 0. Thus {U,} is uniformly integrable. Therefore, from equation (24), {Z.( )} is
uniformly integrable and along with the fact that Z,( ) ! 0 in probability asn! 1, we
have E|Zn(')|! Oasn! 1. This proves the desired result under the Poisson model. For the
Binomial model, with m < 1, the result continues to hold since (1“("&)*’ m/d; and

(?1) i m/w(;)(Yi) where w(é)(Yi) > 0. Thus, |Zn( )] < 1 andso{Zn( )} is still uniformly
integrable.

B.5 Proof of Lemma 2 - Binomial model

We will first prove the two statements of lemma 2 under the scaled squared error loss and
conditional on the event B, which is the event that {maxigian Yi @ C log n}. Under as-
sumption (A2), lemma 4 guarantees that B, holds with high probability. Throughout the

proof, we shall denote d; = inf ;. infigan(l h“)( )) > 0,dy = inf 5 lnflunw n( )>0

and assume m < 1. Moreover, we will use the fact that under the Binomial model, Ih(k)
)N <1 uniformly in 2 «. This is a consequence of d; > 0, d > 0O and m< 1. The proof
for the squared error loss will follow from similar arguments and we will highlight only the
important steps.

Proof of statement 1 (Binomial model) for the scaled squared error loss (k = 1)

First note that under the Binomial model, yi @ m and ay,+1/ay; = (m vi)/(yi+ 1) B m.
Now,

; neb 2
g X0 N Yaya® L{nal N7
sup ARELI(,Y) (v, ([P0)) = sups T 2 B
2I(— ZK_ |:]_ ’ ay| i
v
xm (o] Xnn (o]
m ? Co "
sup — [ A0 [y )* +sup = [ ogl® L))
2= N i=1 21 N =1
1 X ' [ d)2e
- [ (), J.]Z e W T T+ To+ Ts. (25)
N iz ayi i
v

Here we have used the fact that ay,+1/ay, @ m and since v'; > 0, 1/V/j < ¢o for some positive
constant cg. Consider the term T3 in equation (25) above and define

) 2
2 aVi+1. [ (1) l]

Vi= [ ?1 'i]
(1),j ay, i

Note that from lemma 6, EV; = 0. MoreoveryV; are independent and E|V;|2 < 1 since |Vi|
c1m?3 for some constant c; > 0. The bound on |V;| follows from the fact that for any i,

- El),i(:yi) B m/w(yi) where w'!(y;) > 0. So, T3 is Op(n 1/2).

(1),i
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P N
We now consider the second term T, in equation (25) and defineZn( )= n 1 ;I { (1),
(”f)bi( )}. Note that under the Binomial model (”f)bi( ) @ m/d; and so for any 2 «
Xnn o
Co 1 C2 1 C2 1
o [ (1),;]2 [ (nle)t:i( )12 c2 Zn( ) o (1?9(0 ) (1, P*ﬁ (?ft( ) (W,
i=1
(26)
for some constant c; > 0. The last term in the inequality above is Op(log2 n/nt/4) from the
first part of theorem 3. Next for a perturbation %of suchthat( , 92 « .= [, u], we
will bound the increments |Z,( ) Zn( 9. To that eect, note that

m ~
nZa( ) Zal B THO) G B SHU0) AP
1

X
Now from lemma 5 we know that

Kh{V( ) A Ok Bn'2c ‘

2., Mon(h)+ o(1)k,.

su kr<
P hn (),

.| L
han (hi( 0)

However, under the Binomial model with m< 1, |F]r(11i)( )] < 1 uniformlyin 2 . Thus,
the supremum in the display above is finite. So,

Zo( ) Za( 9) p% 0,

Thus Z,( ) is Lipschitz continuous in 2 1« and, along with the compactness of -, it im-
plies that there exists a ( 1, 2) 2 w such thatsup 5, Zn( ) = Zn( 1) andinf 2 Zn( ) = Zn(
2). Therefore, taking the supremum with respect in equation (26) and using the first part
of theorem 3 su ce to prove that T, is Op(log n/nl/4). Firally, the first term T, in equation
(26) is Op(log n/n/4) whichzfollows using similar arguments for the term T,. Therefore,

we have the desired result that sup ,, [AREM(,v) --->(1)(\n/, w (DI isnOp(Iognzem/nl/“).

Proof of statement 2 (Binomial model) for the scaled squared error loss (k = 1)

From Triangle inequality, sup 5. |ARE(§)( ,Y) E--->(1n)(J, (ff? NI BT1+T2+T3+T4 whereTy
= sup 5 [AREY(, V) (e ()], Tz = sup 5 v, (), MY,
WL T3 = -0, ) E-U, Q) and Tyo= Tsup L BBV, )
e, gy (NI
From statement 1 of lemma 2, Ty is Op(log? n/n'/4). Moreover, under the Binomial
model |--h>(1)(\/,(1?))| com? and so T3z is Op(n 1/2),

We will now consider the term T,. Define Z,( ) = --->(n1)(\/, (”fb( )) --->n(1)(\/, i)) and
note that for the Binomial model the proof of the second part of theorem 3 impl(ies that
|Zn( )| is Op(logZ n/nt/4) for any 2 «. Moreover, for ( , 92 «

0 Co neb neb; 0 C1 1) ~(1); O
Zo() Zo( 982 (B0 EPCO B AR A
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Now using Lemma 5 and the fact that under the Binomial model withm < 1, |F1f11)i( )< 1

uniformly in 2 -, we conclude
C
Zo( ) Za( ) Bp ‘.

Thus Z,( ) is Lipschitz continuous in 2 « and, along with the compactness of -, it implies
that there exists a ( 1, 2) 2 & such that sup 2.<_Z“( ) = Zn( 1) and inf 2 Zn( ) =
Zn( 2). Therefore, T, is Op(log2n/nt/4).
Our desired result will follow if we can now show that T4, ! Oasn! 1. To do

that we consider the proof of the second part of theorem 3 which shows that for any

2 «,Zy( ) ! Oin probability as n! 1. Moreover, under the Binomial model with
(”f)tji( ) @ m/d; and (1)?,i m/w(l)gyi) where w(l)(yi) > 0, we have |Zy( )] < 1. Thus{Z,(
)} is uniformly integrable and along with the fact that Z,( ) ! 0 in probabilityas n !
1, we have E|Zy( )| ! Oasn ! 1. Therefore, for any 2 1« we have
shown that |E---;1(1)(\/, i) E---g(l)(\/,nepl)( D! Oasn! 1. To prove the result uni-
formly in  we note that Z,( ) is Lipschitz continuous in 2 & and « is compact. SoT4
Esup 5 [Zn( )] = E|Zn( )| where * 2 wis such that sup 5 |Zn( )| = |Zn( )|.Thus Ty
I 0Oasn! 1 which completes our proof.

Proof of statement 1 (Binomial model) for the squared error loss (k = 0)

Under the Binomial model, yi @ m and ay, 1/ay, = yi/(m yi+ 1) B m. Now,

7 XN ¥ au. 1o
sup AREV)(,Y) =0, () = sup- nes (Wi sk () 2
21« Zk—n i=1 ayi
$ Eo
2 X" n S ° 2 X" n N N dy, 1
—su \/ neb_ i . + = H \/ H - yli
niap i) i * i o
2m X" n E 0
£ Tsup oy ) = T Ta T (27)
2 k=

i=1
Consider the term T, in equation (27) above and define

¥
* dy; 1

Vi= (oY (o

ay;

Note that from lemma 6 and conditional on V/;, Ev, v Vi = 0. Moreover, V; are independent
and |Vi| @ coV; for some constant cg > 0. The bound on |Vi| follows from the fact that for
any i, (O)j = p)?,i(yi) m/w(oz,(yi) where w(%)(yi) > 0. Thus, applying Hoedding’s
inequality ton 1| [, V;| we get that T2 is Op(kv'ka/n). Now, from assumption (A2) the
distribution of v has finite second moments which implies T2 is Op(n 1/2).

We now consider the second term T; in equation (27) and defineZ,( )= n 1 ?:1\/i{n(%b),i
(?0),i}' For any 2 &, we have
2 X" " neb t ° C3 neb t
Vi (S0 o BeZal) B 2V, GB0) o (28)

i=1
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for some constant c3 > 0. From assumption (A2) and the proof of theorem 5, the last
term in the inequality above is Op(log H/n1/4). Next for a perturbation %of such that( ,
0)2 = = [+, ul, we will bound the increments |Z,( ) Zn( 9)|. To that edect, note that

NZo( ) Za( QB vV, ") T B v, h) hO9
(0) (0 2 n n 2
Now from lemma 5 we know that

kh©() RO O mc | O sup krzﬁ(o)( | M o n(h) + o(1)kz,
haN (hH)( ) T

and the supremum in the display above is finite since |F1§10)i( )] < 1 uniformly in 2 .
So, from assumption (A2) and Lemma 4

log n
Zo( ) Zn( %) Bes é—n| 0,

for n su ciently large. Thus Z,( ) is Lipschitz continuous in 2 - and, along with the com-
pactness of k-, it implies that there exists a ( 1, 2) 2 « such thatsup 5 Zn( )= Zn( 1)and
inf 2 Zn( )= Zn( 2). Therefore, taking the supremum with respect in equation (28) and
using the first part of theorem 5 su ce to prove that Ty is Op(log n/n'/4)3 Finally, the third
term T3 in equation (28) is Op(log n/n/4) which follows using similar argu-

ments for the term T;. Therefore, we have the desired result that sup , |AREn(0)( ,Y)
AW, e )] is Op(log® n/n/4).

Proof of statement 2 (Binomial model) for the squared error loss (k = 0)

From Triangle inequality, sup 5. |ARE(2)( ,Y) E--->(0n)(\/, ”(eob)( NIBT1+T2+T3+T4 whereT;
0 0 0 0
= sup 5 |AREQ(, V) 0, neb ()], T2 = sup 5 @ vieb g, (), Y,
) . (0 »
WLTas 1990, o) B, )l and T4 = Tsup [E-18(v, o))
0
e, o (NI

Under squared error loss, statement 1 of lemma 2 implies T; is Op(log3 n/n'/4). More-
over, under the Binomial model, |---,§(0)(\/, ?(o))l con kv'ky. Thus, applying Hoedding’s
inequality to T3 and using assumption (A2) we get that T3 is Op(n 1/2),

We will now consider the term T,. Define Z,( ) = --->(r?)(\/, (”;b( )) --->n(0)(\/, g)) and
note that for the Binomial model, the proof of the second part of theorem 5 implies that
|Zn( )| is Op(log® n/n'/4) for any 2 «. Moreover, for ( , 92 «

2¥n

0y 5 Co neb neb, 0 5 C1 ~(0) (0); o
Zo( ) Zo( 0B 2Vke () (0 B vk RPC) AD(O)

Now under the Binomial model and along with Lemmata 4 and 5, we conclude

log n
Zo( ) Za( 9) C2-|9g—n| 9
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for n su ciently large. Thus Z,( ) is Lipschitz continuous in 2 & and, along with the
compactness of -, it implies that there exists a ( 1, 2) 2 % such that sup JZal ) =
Zn( 1) andinf 3 Zn( ) = Zn( 2). Therefore, T, is Op(log3 n/nt/4).

Our desired result will follow if we can now show that T4 ! Oasn! 1. We already
know from the proof of the second part of theorem 5 that forany 2 &, Z,( )! O0in
probability as n ! 1. Moreover, under the Binomial model with (f(‘ﬁf’i( ) @ csm and

(?o) i m/w(g)(y;) where w(g)(yi) > 0, we have

Xn
C
1Zo( ) B2 | Vi] = Up.
ni=1

Now, from assumption (A2), sup, E(Un1+ ) < 1 for some > 0. Thus {U,} is uniformly
integrable. Therefore, {Z,( )} is uniformly integrable and along with the factthatZ,( )! 0
in probability asn! 1, we have E|Z,( )]! Oasn! 1. Therefore, for any 2 « we
have shown that |E--->(O)$‘\/, o) E--->(On)(\/, (5t NI! Oasn! 1. To prove the result
uniformly in  we note that Z,( ) is Lipschitz continuous in 2 - and & is compact. So T4
Esup 5 |Zn( )| = E|Zn( )| where ' 2 wis such that sup 5 |Zn( )| = |Zn( )|.Thus Ty
I 0Oasn! 1 which completes our proof.

B.6 Proof of Lemma 2 - Poisson model

Here we will prove the two statements of lemma 2 under the Poisson model. As in the Bino-
mial case, the statements will be proved first under the scaled squared error loss and condi-
tional on the event B, which is the event that {maxigizn Yi @ C log n}. Under assumption
(A2), lemma 4 guarantees that B,, holds with high probability. Throughout the proof, we
will denote dy = inf s infien(1 ALY ) > 0 and dy = inf 2 infagpe WO () > O.
Moreover, in the proof we will use |h( )( )| < colog n uniformly in 2 « which is a conse-
guence of lemma 4. The proof for the squared error loss will follow from similar arguments
and we will highlight only the important steps.

Proof of statement 1 (Poisson model) for the scaled squared error loss (k = 1)

First note that under the Poisson model ay,+1/ay, = 1/(Y;+ 1) @ 1. Now,

b RO Yaya® IR0
i+ ,
sup ARE!V( ,Y) -";(1)(\/,(1';e () = sup- ["fR)5 0 1* =
2 2= N i=1 ayi i
v
1 Xm b + 20 C1 X T2 b 20
sup — [ 25 )12 [ (1)1 + sup— [ ™ Tt
21 i=1 2% n i=1
1 xnn Y3 | [ 1]20
oy [ (:1),1'1]2 re ( ),l F T1+ T+ Ts. (29)
i=1 vi '
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Here we have used the fact that ay,+1/ay, @1 and since v'; > 0, 1/V; < c¢1 for some positive
constant c;. Consider the term T3 in equation (29) above and define

? 1 2
]2 ay|+1 [ (1);i]

= [ (. _
yi i

Note that from lemma 6, EV; = 0. Moreover, V; are independent and |Vi| @ ¢, log? n for
some constant c; > 0. The bound on |V;| follows from the fact that for any i and conditional on
Bn, (1)) = )filyi) B co log n/w(l)(yi) where w(l)(yi) > 0. Thus, applying Hoe<ding’s
inequality to n 1| P Vi| we get that T3isO (Iog n/Pm.

We now consider tﬁe second term T, in equation (29) and defineZ,( )= n 1 P no{ (?1),i

(1)b,i( )}. Note that under the Poisson model (f‘l‘?)'?i( ) @Y;/d1 and so for any 2 «

Xhn o

c cslogn »

LUyl LR Balognza() BT 5 (30)
i=1

for some constant c3 > 0. In equation (30), we have used the fact that under assumption
(A2) and lemma 4, Y; B cg log n with high probability Moreover, the Iast term in the
mequallty in (30) is Op(log h/nt/4) since k r“*b( ) kil B nl/2 neb( 2 ' ka and n 12k
neb( ) kz is Op(log?n/nt/4) from the ﬁrst part of theorem 3. Next for a perturbatlon

of such )(hat (0, )2 «, we will boand the increments |Z,( ) Zn( )|.To that edect, note
that conditional on B,

logn - A
nZo() Zo( OB ) FPCO BRI RO
1

Now from lemma 5 we know that

kht( ) A Ok, @n?2 o sup kr} K o(h)+ o(l)ky.

h2N (hH)( )

1 |

However, under the Poisson model, assumption (A2) and lemma 4, |Ahrﬁli)( )] < calogn
uniformly in 2 «. Thus for n su ciently large, the supremum in the display above is
much smaller than logn. So,

log n

Zo() Za( O Bes "l L
Thus Z,( ) is Lipschitz continuous in 2 1« and, along with the compactness of -, it im-
plies that there exists a ( 1, 2) 2 « such thatsup 5, Zn( ) = Zn( 1) andinf 2 Zn( ) = Zn(
2). Therefore, taking the supremum with respect in equation (30) and using the first part
of theorem 3 su ce to prove that T, is Op(log n/n/4). Firally, the first term T, in equation

(30) is Op(log n/n/4) which3follows using similar arguments for the term T,. Therefore,

we have the desired result that sup ;. [AREYM(,v) --->(1)(\n/, w (DI isnOp(Iog?ém/nl/“).
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Proof of statement 2 (Poisson model) for the scaled squared error loss (k = 1)

From Triangle inequality, sup 5. |ARE(§)( ,Y) E--->(1n)(\/ neb )| @T1+To+T3+T4 whereTy

7 (1)
= sup 5 [AREY(, V) (e ()], Tz = sup e v, (), MY,
(1)”; T3n= I)(l)(‘// (1))\ E>(1)(‘/r (1))| and Tﬂ = ?sup 2¢n |E;‘&8(‘/r (1))

e, gy (NI
From statement 1 of lemma 2, Ty is Op(log® n/n/4) for the Poisson model. Moreover,
under the Poisson model and conditional on B, |---g(1)(\/, ?(1))| co logZn. Thus, applying
Hoedding’s inequality to T3 we get that T3 is Op(log? n/n 1/2),
We will now consider the term T,. Define Z,( ) = --->(1L(\/, (13‘6(’ ) --->(nl)(\/, (?1)) and
note that from the proof of the second part of theorem 3 |Z,( )| is Op(log3 n/nt/4) for any
2 . Moreover, for ( , 9)2 « and conditional on B,

cologn e
(1)

C1 Iog2 n
n

Zn( ) Za( 9 () e @

i 0
) W) R

Thus, from Lemma 5, the Poisson model and assumption (A2) we have

Zo( ) Zo( ) cg'ﬂ%fjﬂ )

Therefore, Z,,( ) is Lipschitz continuous in 2 » and, along with the compactness of -, it
implies that there existsa ( 1, 2) 2 « such that sup 2.<_Z”( )= Zn( 1) andinf 2 Zn( ) =

Zn( 2). Thus, Ty is Op(log3n/n/4).
Our desired result will follow if we can now show that T4, ! Oasn! 1. To do
that we consider the proof of the second part of theorem 3 which shows that for any
2 «,Zy( ) ! O in probability asn! 1. Moreover, under the Poisson model with

("ff’i( ) @ Y;/d1 and

constants co, C1

T(l)i Yi/w(;)(Yi) where w(;)(Yi) > 0, we have for some positive

1 X" n o
1Zo( )8 =" coYit caY? = U (31)

Ni-1
Now, the Poisson model and assumption (A2) imply that sup, E(Un1+ )< 1 forsome > 0.
Thus {U,} is uniformly integrable. Therefore, from equation (31), {Z,( )} is uniformly inte-
grable and along with the fact thatZ,( ) ! 0in probabilityasn! 1, wehaveE|Z,( })|! O
asn! 1. So, forany 2 « we have shown that |E--->(1)(\4, (1)) ? E--->(1)(\4, (1) (ngd] ! Oasn
I 1. To prove the result uniformly in we note that Z,( ) is Lipschitz continuousin 2 &
and « is compact. Therefore, T4B Esup 5 |Zn( )| = E|Zn( )| where ' 2 w issuch that
sup 5 |Zn( )= 1Zn( ) |- Thus Ta! Oasn! 1 which completes our proof.

Proof of statement 1 (Poisson model) for the squared error loss (k = 0)

First note that under the Poisson model ay, 1/ay, = Y;. Now,

2 XN ‘o, (00
sup AREZ)(,Y) %, 1%°()) = sup- oW R ) 2
2N g ’ ’ Ayi

2=
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n n o nn d Blo
2 X ~ 2 X ~ ~ dy; 1
Zsu Vi neb P + = SV FL 9y 1
A A = E
n n o
c1logn X N
o sup oL (or( ) = Ti+ To+ Ta. (32)

i=1
Here we have used the fact that we have used the fact that conditional on event By, ay,

1/ay, B Y; B cg log n for some positive constant cg. Consider the term T, in equation (32)
above and define ;

Vi= oiYi (o ngi
Note that from lemma 6 and conditional on v/, Eyiwi\}/i = 0. Moreover, V; are independent
and |Vj| B ¢,V log n for some constant c; > 0. The bound on |V;| follows from the fact that for
any i and conditional on B, (g ; = (6),i(\7i) c3 log n/w(o)(yi)pwhere w(o)(yi)p> 0. Thus,
applying Hoe<ding’s inequality to n 1| ", Vil we get that T2 is Op(kv'kz log? n/n).
Now, from assumption (A2) the distribution of v has finite second moments which implies
T2 is Op(log? n/P n).
We now consider the T; in equation (32) and define

Xn
Zo( )=t V{0 ot
i=1
Note that for any 2 -,

2 Xn n b » ° CO ~»
- ‘/i n(%)[,( ) (:0),1 CO Zn( ) F\/kz ((51)6‘? ) (:0) ) (33)

i=1

for some constant ¢cp > 0. From assumption (A2) and the proof of theorem 5, the last
term in the inequality in (33) is Op(log A/n/4). Next for a perturbation %of such that
(, 9 2 «, we will bound the increments |Z,( ) Zo( 9|. To that edect, note that
conditional on event B,

NZo( ) Za( )8 v, G0) () Belogn v, AY(C) AP0

Now from lemma 5 we know that

KR ) RO Omc | o sup kel M n(h) + o(1)ky,
han (h¥( )

and for n su ciently large, the supremum in the display above is much smaller than logn.
So, with assumption (A2)

Zo( ) Za( 9) cz'%fﬂ 9.

Thus Z,( ) is Lipschitz continuous in 2 « and, along with the compactness of «, it im-
plies that there exists a ( 1, 2) 2 % such that sup 5. Zn( )= Zn( 1) andinf 2 Zn( ) =
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Zn( 2). Therefore, taking the supremum with respect in equation (33) and using the first
part of theorem 5 su ce to prove that Ty is Op(log n/n3/4). Finally, the third term T3 in
equation (33) is Op(log n/n3/4) which follows using similar arguments for the term Tj.
Therefore, we have the desired result that sup 5, |ARE(°)( ,Y) --->(0)(\/, (0)( )) |0, (log®
n/nt/4).

Proof of statement 2 (Poisson model) for the squared error loss (k = 0)

From Triangle inequality, sup 5. |ARE(2)( ,Y) E--->(0n)(\/, ”(eob)( NIBT14+T2+T3+T4 whereT;

= sup 5 IAREY(, V) O el ()], T2 = sup 5 [ (), -,
b T3 = |-, (o)h g0, ) and Tg = Tsup |E-si®B (v,
-, () (NI

Under squared error loss, statement 1 of lemma 2 implies Ty is Op(log3 n/nt/4). More-
over, under the Poisson model and assumption (A2), [-+%(v, 7(0))| @ con !log? nkv'ks.
Thus, appla/mg Hoedding’s inequality to T3 and using assumption (A2) we get that T3 is

Op(log2n/

We will now consider the term T,. Define Zn( ) = -~+°(V, ”(eg)( ) O] (0)) and
note that from the second part of theorem 5 |Z,( )| is Op(log? n/n/4) for any 2 .
Moreover, for ( , 92 «

2em (o)

1 n o
() Z( 0BT WO @) ket Yk .

Now conditional on the event B,, kY k, B clpn log n and assumption (A2) implies that
with high probability k\/kz/p nBc, logn. Thus, for n su ciently large

czlogn calog?n a
Zo( ) Za( 9 BEFEL W) (0 BERERANC) AP

and together with Lemma 5, we have

Zo( ) Za( 9) cs'%jﬂ 9.

Thus Z,( ) is Lipschitz continuous in 2 & and, along with the compactness of -, it implies
that there exists a ( 1, 2) 2 & such that sup , Zn( ) = Zn( 1) and inf 2 Zn( ) =
Zn( 2). Therefore, T, is Op(log4n/nt/4).

Our desired result will follow if we can now show that T4 ! Oasn! 1. We already
know from the proof of the second part of theorem 5 that forany 2 &, Z,( )! 0in

probability as n! 1. Moreover, under the Poisson model with ('(‘Je)*fi( )2 (Y;+ 1)/d, and

foi B (Vi + 1)/wd(yi) where w)(y) > 0, we have

X" n 0
[Zn( ) B n coViYi+ aY; = Uy,
i=1

Now, the Poisson model and assumption (A2) imply that suan(Ui+ ) < 1 for some
> 0. Thus {U,} is uniformly integrable. Therefore, {Z,( )} is uniformly integrable and

40



EB Estimation in Discrete Linear Exponential Family

along with the fact that Z,( ) ! 0 in probabilityasn! 1, we haveE|Z,( )]! Oasn!
1. Therefore, forany 2 « we have shown that |E--->(O)(\/n ) f--»(o)(\/n, (0 ( ! Oasn
I 1. To prove the result uniformly in we note that Z,( ) is Lipschitz continuousin 2 &
and « is compact. So T4 B Esup 5. |Zn( )| = E|Zn( )| where ' 2 wis such that sup ;.
|Zn( )= |Zn( ) |- Thus T4 Oasn! 1 which completes our proof.

B.7 Proof of Lemma 3

The statement of this lemma follows from part (1) of Lemma 2. First note that by defi-
n'Htion AREﬂk)( A, Y) ARE(kn)( o, Y). $o for any = > 0 and k 2 {0, 1}, the probability P
L% (v, (k)r‘Fb)f LMy, (k)°)+ ¢ le= s bounded above by

h i
P LV, &P AREN(T,Y) LIV, ) AREN( S ¥)+ ¢t

The above display converges to 0 by part (1) of Lemma 2.

B.8 Proofs of Lemmata 4, 5 and 6

Proof of Lemma 4

First note that from assumption (A2) and for some > 0, v B == (1* ) ]ogn with high prob-
ability. We will now prove the statement of lemma 4 for the case when Y; |V 'od Poi(V/). For
distributions with bounded support, like the Binomial model, the lemma follows trivially.

Under the Poisson model, we have P(Y; V;+ t) Bexp{ 0.5t2/(V;+ t)} forany t> 0.
The above inequality follows from an application of Bennett inequality to the Poisson MGF
(see Pollard (2015)). Now consider P(maxic1,...n Yi B Vj + t) and note that since Y; are all
independent, this probability is given by i“:l[l exp{ 0.5t2/(Vi+ t)}]. Take t = slogn
where s2/{s + == (1+ )} > 4 Then with v; @ (1* ) |ogn, the above probability is bounded
above by a, = {1 n (1*B)}n for some @ > 0. As n! 1, a, ! 1 which proves the
statement of the lemma.

Proof of Lemma 5

We begin with some remarks on the optimization problems (8) and (15). Note that the
feasible set H, in equation (8) (and (15)) is compact and independent of . Moreover, the
optimization problem in definitions 1 and 3 is convex. Consequently, (i) for all 2 «, the
optimization takes place in a compact set, and (ii) the optimal solution set corresponding to

any 2 & is a singleton, {h(k)& )}. Now fix an = > 0. Then for any 2 Nu( o)\ *
there exists a > 0 such that the optimal solution h, = hu(L( )2 N (h(k)rg o)) and M
nihn}l M ,a{h(k)“(no)} B 0. Moreover, we can re-write M ; 7{hn,} M ,i{h k)(no)} as

M onfhnd M n{hn} M o ofhM( o)1+ M (A o)1+ M o{ha} M L {RI( o)}
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The last term in the display above is negative and thus we can upper bound M On{hn}
N o,n{AE( 0)} by

M on{hn} M n{hn} MR o)1+ M ofh( o)}
Now apply the mean value theorem with respect to h,, to the function M n{h } M n{hn}

~

in the display above and notice that M _n{h,} N o{R{( o)} is bounded above by
h o n _ o 0|Th
he @ oalin) () Ry o)

where h, = ﬁ(nk)( o) + B{h, Mk’( o)} for some 2 (0,1) and rp M n(h) is the
partial derivative of M ,(h) with respect to h. Using ry [M ,n(hy) ™M o(hy)] =

rhzn, M o,n(hn)( o)+ of| ol) we get

R h i

M o,nfhnl M o ofRM( o)} sup r2 . M a(h)+o(1) o hn RM( o)
h2aN (R ( o)) 2 2

Moreover assumption (A3) implies that

~ ~ A 2
Monthal Mo ahl( o)} ¢ hn BRI o)

The desired result thus follows from the above two displays with

L = sup kr2hn M ,n(h) + o(1)kz/c.
han (AY)( o))

Proof of Lemma 6

To prove the first statement of lemma 6, note that from equation (4)
" (y) = ay 1/ay

, fory 1.
. wi (y)
Now let V (y) = ay 1/(ay[w(1)(y)]2). Then,
h i h i ¥ ¥ v y h i
" ay a a a
Eviy (oY) = Ey—="V(Y) = jaylvmg—wa V(y+%YaJ):JEW V(Y +
y=1 y=0

1)I

where V(y + 1) = ay/(ay+1[w£,1)(y + 1)]2) = [ (?1)(y + 1)]1%(ay+1/ay). This proves the first
statement of lemma 6.
To prove the second statement, note that from equation (4)

1 ) = ay/ay+1

, fory 0.
© w (y)
Let V(y+ 1) = ay/layawy ()] = P(y). Then,
h i ) a ael W *1 ps h i
VEyis V(Y + 1) = Yoy(y + 1y = v = E vy
v v VI ) S (y )W yo\? (vﬁﬁ\/ Ylm ()

wherea 1= 0and(ay 1/ay)V(y)= (ay 1/ay) EO)(y 1). This proves the second statement
of lemma 6.
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