
Adaptive Oracle-Efficient Online Learning

Guanghui Wang†, Zihao Hu†, Vidya Muthukumar‡,!, Jacob Abernethy†
College of Computing†

School of Electrical and Computer Engineering‡
School of Industrial and Systems Engineering!

Georgia Institute of Technology
Atlanta, GA 30339

{gwang369,zihaohu,vmuthukumar8,prof}@gatech.edu

Abstract

The classical algorithms for online learning and decision-making have the ben-
efit of achieving the optimal performance guarantees, but suffer from computa-
tional complexity limitations when implemented at scale. More recent sophisti-
cated techniques, which we refer to as oracle-efficient methods, address this prob-
lem by dispatching to an offline optimization oracle that can search through an
exponentially-large (or even infinite) space of decisions and select that which per-
formed the best on any dataset. But despite the benefits of computational feasi-
bility, oracle-efficient algorithms exhibit one major limitation: while performing
well in worst-case settings, they do not adapt well to friendly environments. In this
paper we consider two such friendly scenarios, (a) “small-loss” problems and (b)
IID data. We provide a new framework for designing follow-the-perturbed-leader
algorithms that are oracle-efficient and adapt well to the small-loss environment,
under a particular condition which we call approximability (which is spiritually re-
lated to sufficient conditions provided in (Dudík et al., 2020)). We identify a series
of real-world settings, including online auctions and transductive online classifica-
tion, for which approximability holds. We also extend the algorithm to an IID data
setting and establish a “best-of-both-worlds” bound in the oracle-efficient setting.

1 Introduction

Online learning is a fundamental paradigm for modeling sequential decision making problems (Cesa-
Bianchi & Lugosi, 2006; Shalev-Shwartz, 2011; Hazan, 2016). Online learning is usually formulated
as a zero-sum game between a learner and an adversary. In each round t = 1, . . . , T , the learner
first picks an action xt from a (finite) set X = {x(1), . . . , x(K)} with cardinality equal to K. In
the meantime, an adversary reveals its action yt ∈ Y . As a consequence, the learner observes
yt, and suffers a loss f(xt, yt), where f : X × Y #→ [0, 1]. The goal is to minimize the regret,
which is defined as the difference between the cumulative loss of the learner

∑T
t=1 f(xt, yt), and

the cumulative loss of the best action in hindsight L∗
T = minx∈X

∑T
t=1 f(x, yt).

A wide variety of algorithms have been proposed for the goal of minimizing worst-case regret
(without any consideration of computational complexity per iteration); see (Cesa-Bianchi & Lu-
gosi, 2006; Shalev-Shwartz, 2011; Hazan, 2016) for representative surveys of this literature. These
algorithms all obtain a worst-case regret bound of the order O(

√
T logK), which is known to be

minimax-optimal (Cesa-Bianchi & Lugosi, 2006). Over the last two decades, sophisticated adaptive
algorithms have been designed that additionally enjoy problem-dependent performance guarantees,
which can automatically lead to better results in friendly environments. One of the most important
example for this kind of guarantees is the so-called “small-loss” bound (Hutter & Poland, 2005;
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Cesa-Bianchi & Lugosi, 2006; Van Erven et al., 2014). Such a bound depends on the best cumula-
tive loss in hindsight (i.e. L∗

T ) instead of the total number of rounds (T ). Thus, this bound is much
tighter than the worst-case bound, especially when the best decision performs well in the sense of
incurring a very small loss. Another example is the “best-of-both-worlds” bound (Van Erven et al.,
2014), which results in an even tighter regret bound for independent and identically distributed (IID)
loss functions.

However, all of these algorithms applied out-of-the-box suffer a linear dependence on the number of
decisionsK. This is prohibitively expensive, especially in problems such as network routing (Awer-
buch & Kleinberg, 2008) and combinatorial market design (Cesa-Bianchi et al., 2014), where the
cardinality of the decision set grows exponentially with the natural expression of the problem. Sev-
eral efficient algorithms do exist, even for uncountably infinite decision sets, when the loss functions
have certain special structure (such as linearity (Kalai & Vempala, 2005) or convexity (Zinkevich,
2003)). However, such structure is often absent in the above applications of interests.

Notice that the efficiency of the above specialized methods is usually made possible by assuming
that the corresponding offline optimization problem (i.e., minimizing the (averaged) loss) can be
solved efficiently. This observation motivates the oracle-efficient online learning problem (Hazan
& Koren, 2016). In this setting, the learner has access to a black-box offline oracle, which, given
a real-weighted dataset S = {(w(j), y(j))}nj=1, can efficiently return the solution to the following
problem:

argmin
x∈X

n∑

j=1

w(j)f(x, y(j)). (1)

The goal is to design oracle-efficient algorithms which can query the offline-oracle O(1) times each
round. Concrete examples of such an oracle include algorithms for empirical risk minimization
(Bishop, 2007), data-driven market design (Nisan & Ronen, 2007), and dynamic programming (Bert-
sekas, 2019).

As pointed out by Hazan & Koren (2016), the design of oracle-efficient algorithms is extremely
challenging and such an algorithm does not exist in the worst case. Nevertheless, recent work
(Daskalakis & Syrgkanis, 2016; Syrgkanis et al., 2016; Dudík et al., 2020) has introduced a series of
algorithms which are oracle-efficient when certain sufficient conditions are met. Among them, the
state-of-the-art method is the generalized-follow-the-perturbed-leader algorithm (GFTPL, Dudík
et al., 2020), which is a variant of the classical follow-the-perturbed-leader (FTPL) algorithm (Kalai
& Vempala, 2005). Similar to FTPL, GFTPL perturbs the cumulative loss of each decision by
adding a random variable, and chooses the decision with the smallest perturbed loss as xt. However,
the vanilla FTPL perturbs each decision independently, which requires to generate K independent
random variables in total. Moreover, the oracle in (1) can not be applied here since as it cannot
handle the perturbation term. To address these limitations, GFTPL only generates a noise vector
of low dimension (in particular, much smaller dimension than the size of the decision set) in the
beginning, and constructsK dependent perturbations based on the multiplication between the noise
vector and a perturbation translation matrix (PTM). Therefore, the PTM critically ensures that the
computational complexity for the noise generation itself is largely reduced. Furthermore, oracle-
efficiency can be achieved by setting the elements in the PTM as carefully designed synthetic losses.
Dudík et al. (2020) show that a worst-case optimal regret bound can be obtained when the PTM is
admissible, i.e., every two rows are substantially distinct. This serves as a sufficient condition for
achieving oracle-efficiency.

While these results form a solid foundation for general worst-case oracle-efficient online learning, it
remains unclear whether problem-dependent, or data-adaptive bounds are achievable in conjunction
with oracle-efficiency. In other words, the design of a generally applicable oracle-efficient and
adaptive online learning algorithm has remained open. In this paper, we provide an affirmative
answer to this problem, and make the following contributions.

• We propose a variant of the GFTPL algorithm (Dudík et al., 2020), and derive a new suf-
ficient condition for ensuring oracle-efficiency while achieving the small-loss bound. Our
key observation is that while the admissibility condition of the PTM in GFTPL success-
fully stabilizes the algorithm (by ensuring that P[xt &= xt+1] is small), it does not always
enable adaptation. We address this challenge via a new condition for PTM, called approx-
imability. This condition ensures a stronger stability measure, i.e., the ratio of P[xt = x(i)]
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and P[xt+1 = x(i)] is upper-bounded by a universal constant for any i ∈ [K], which is
critical for proving the small-loss bound. In summary, we obtain the small-loss bound
by equipping GFTPL with an approximable PTM, a data-dependent step-size and Laplace
distribution for the perturbation noise. As a result of these changes, our analysis path dif-
fers significantly from that of Dudík et al. (2020). Our new condition of approximability is
simple and interpretable, and can be easily verified for an arbitrary PTM. It shares both sim-
ilarities and differences from the admissibility condition proposed in Dudík et al. (2020).
We demonstrate this through several examples where one of the sufficient conditions holds,
but not the other.

• We identify a series of real-world applications for which we can construct approximable
PTMs: (a) a series of online auctions problems (Dudík et al., 2020); (b) problems with
a small adversary action space |Y| (Daskalakis & Syrgkanis, 2016); and (c) transductive
online classification (Syrgkanis et al., 2016; Dudík et al., 2020). This is the first-time that
the small-loss bound is obtained in all of these applications. To achieve this, we introduce
novel PTMs and analysis for showing the approximability condition on these PTMs.

• We achieve the “best-of-both-worlds” bound, which enjoys even tighter results when the
data is IID or the number of leader changes is small. The main idea is to combine our pro-
posed algorithm with vanilla FTL leveraging ideas from a meta-algorithm called FlipFlop
introduced in Van Erven et al. (2014).

2 Related Work

Our work contributes to two bodies of work: oracle-efficient online learning and adaptive online
learning. In this section, we briefly review the related work in these areas.

2.1 Oracle-efficient online learning

For oracle-efficient online learning, the pioneering work of Hazan & Koren (2016) points out that
oracle-efficient methods do not exist when dealing with general hostile adversaries, which implies
that additional assumptions on the problem structure have to be made. Daskalakis & Syrgkanis
(2016) consider the setting in which the cardinality of the adversary’s action set Y is finite and small,
and propose to add a series of “fake” losses to the learning history based on random samples from Y .
They prove that for this setting an O(|Y|

√
T ) regret bound can be obtained. Syrgkanis et al. (2016)

study the contextual combinatorial online learning problem, where each action is associated with
a binary vector. They make the assumption that the loss function set contains all linear functions
as a sub-class. The approach in Syrgkanis et al. (2016) constructs a set of synthetic losses for
perturbation based on randomly-selected contexts, and achieves worst-case optimal bounds when all
the contextual information can be obtained beforehand, or when there exists a small set of contexts
that can tell each decision apart. Dudík et al. (2020) is the first work to focus on the general non-
contextual setting, and propose the generalized FTPL algorithm. This algorithm generates a small
number of random variables at the beginning, and then perturbs the learning history via the innter
product between the PTM matrix and the random variables. The algorithm can be implemented
efficiently by setting the entries of the PTM as carefully designed loss values. Niazadeh et al.
(2021) consider a more complicated combinatorial setting where the offline problem is NP-hard,
but a robust approximation oracle exists. For this case, they propose an online algorithm based
on a multiplicative approximation oracle, and prove that it has low approximate regret, which is a
measure weaker than regret, since it only compares with a fraction of the cumulative loss of the best
decision in hindsight. Note that none of the aforementioned methods can be easily shown to adapt
to friendly structure in data. Recently, several concurrent works (Block et al., 2022; Haghtalab et al.,
2022a) investigate how to obtain tighter bounds oracle-efficiently in the smoothed-analysis setting
where the distribution of data is close to the uniform distribution (Rakhlin et al., 2011; Haghtalab
et al., 2022b). The main focus is to adapt to the VC dimension of the hypothesis class, rather than
improve the dependence on the number of rounds T .

In this paper, we mainly focus on the so-called the learning with expert advice setting (Cesa-Bianchi
& Lugosi, 2006), where the action set is discrete, and the loss can be highly non-convex. On the other
hand, efficient algorithms can be obtained even for continuous action sets when the loss functions
have certain properties, such as linearity (Kalai & Vempala, 2005; Hutter & Poland, 2005; Awerbuch
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& Kleinberg, 2008), convexity (Zinkevich, 2003; Hazan et al., 2007) or submodularity (Hazan &
Kale, 2012). Finally, we note that, in this paper we mainly focus on the full-information setting,
where the learner can observe the whole loss function after the action is submitted. Oracle-efficient
online learning has also been widely studied in the contextual bandit setting (Langford & Zhang,
2008; Dudik et al., 2011; Agarwal et al., 2014; Foster et al., 2018; Foster & Rakhlin, 2020). The
nature of the oracle-efficient guarantees for the contextual bandit problem is much weaker compared
to full-information online learning: positive results either assume a stochastic probability model on
the responses given covariates (e.g. Foster et al. (2018); Foster & Rakhlin (2020)) or significantly
stronger oracles than Eq. (1) (e.g. Agarwal et al. (2014)).

2.2 Adaptive online learning

In this paper, we focus on designing oracle-efficient algorithms with problem-dependent regret guar-
antees. Note that this kind of bound can be achieved by many inefficient algorithms in general, such
as Hedge and its variants (Cesa-Bianchi & Lugosi, 2006; De Rooij et al., 2014; Luo & Schapire,
2015), follow-the-perturbed-leader (Kalai & Vempala, 2005; Van Erven et al., 2014) or follow-the-
regularized-leader (Orabona, 2019). Small-loss bounds can also be obtained efficiently when the
loss functions are simply linear (Hutter & Poland, 2005; Syrgkanis et al., 2016). On the other hand,
in online convex optimization, small-loss bounds can be obtained when the loss functions are ad-
ditionally smooth (Srebro et al., 2010; Orabona et al., 2012; Wang et al., 2020). However, these
algorithms heavily rely on the special structure of the loss functions. In this paper, we take the
first step to extend these methods to support the more complicated (generally non-convex) problems
which appear in real-world applications.

Apart from the small-loss, there exist other types of problem-dependent bounds, such as second-
order bound (Cesa-Bianchi et al., 2005; Gaillard et al., 2014), quantile bound (Chaudhuri et al., 2009;
Koolen & Erven, 2015), or parameter-free bound (Luo & Schapire, 2015; Cutkosky & Orabona,
2018). Moreover, advanced adaptive results can also be obtained by minimizing more advanced
performances measures other than regret, such as adaptive regret (Hazan & Seshadhri, 2007; Zhang
et al., 2019), or dynamic regret (Zhang et al., 2018; Zhao et al., 2020). How to obtain these more
refined theoretical guarantees in the oracle-efficient setting remains an interesting open problem.

3 GFTPL with Small-Loss Bound

In this section, we ignore computational complexity for the moment and we provide a new FTPL-
type algorithm that enjoys the small-loss bound. We then show that the proposed algorithm can be
implemented efficiently by the offline oracle in Section 4. Before diving into the details, we first
briefly recall the definition of online learning and regret.

Preliminaries. The online decision problem we consider can be described as follows. In each
round t, a learner picks an action xt ∈ X = [x(1), . . . , x(K)]. After observing the adversary’s
decision yt ∈ Y , the learner suffers a loss f(xt, yt) where the loss function f : X × Y #→ [0, 1] is
known to the learner and adversary. The regret of an online learning algorithm A is defined as

RA
T := E

[∑T
t=1 f(xt, yt)− L∗

T

]
,

where L∗
T = min

k∈[K]

∑T
j=1 f(x

(k), yj) is the cumulative loss of the best action in hindsight, and the

expectation is taken only with respect to the potentially randomized strategy of the learner.

Our proposed algorithm follows the framework of GFTPL (Dudík et al., 2020). We first briefly
introduce to the intuition behind this method. Specifically, in each round t, GFTPL picks xt by
solving the following optimization problem:

xt = argmin
k∈[K]

∑t−1
j=1 f(x

(k), yj) +
〈
Γ(k),α

〉
,

where α is a N -dimensional noise vector (N ( K) generated from a uniform distribution, and Γ(k)

is the k-th row of a matrix Γ ∈ [0, 1]K×N , which is referred to as the perturbation translation matrix
(PTM). Compared to vanilla FTPL, which generates K random variables (one for each expert),
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GFTPL only generates N random variables, where N is much smaller than K. Each expert is
perturbed by a different linear combination of these random variables based on the PTM Γ. The
results of Dudík et al. (2020) rely on the following assumption on Γ.

Definition 1. (δ-admissibility (Dudík et al., 2020)) Let Γ ∈ [0, 1]K×N be a matrix, and denote Γ(k)

as the k-th row of Γ, and Γ(k,i) the i-th element of Γ(k). Then, Γ is δ-admissible if (a) ∀k, k′ ∈ [K],
∃i ∈ [N ], such that Γ(k,i) &= Γ(k′,i); and (b) ∀i ∈ [N ], k, k′ ∈ [K], such that Γ(k,i) &= Γ(k′,i), then
|Γ(k,i) − Γ(k′,i)| ≥ δ.

The δ-admissibility guarantees that every two rows in Γ are significantly distinct. As pointed out
by Dudík et al. (2020), this is the essential property required by GFTPL, and is used to stabilize the
algorithm in the analysis, i.e., ensuring that P[xt &= xt+1] is small. However, the adaptive analysis
of inefficient FTPL (Hutter & Poland, 2005) (i.e. using a noise vector of dimension equal to the size
of the decision set) reveals that this type of stability is insufficient. Instead, one needs to control the
following ∀t and ∀i ∈ [K],

P[xt = x(i)]

P[xt+1 = x(i)]
, (2)

the ratio of the probability of picking the i-th decision in two consecutive rounds. We note that
δ-admissibility is not sufficient to ensure this quantity is bounded, as we establish in the following
counter-example lemma. (See Appendix A.1 for proof).
Lemma 1. There is an instance of a δ-admissible Γ, and a sequence {yt : t = 1, 2, . . .}, such that
if we run GFTPL we can have P[xt=x(i)]

P[xt+1=x(i)]
= ∞ for some i ∈ [K] and some t > 0.

To address this problem, we propose a new property for Γ. Define B1
γ := {s ∈ RN : ‖s‖1 ≤ γ} as

the $1-ball of size γ.
Definition 2. (γ-approximability) Let Γ ∈ [0, 1]K×N . We say that Γ is γ-approximable if

∀k ∈ [K], y ∈ Y ∃s ∈ B1
γ ∀j ∈ [K] :

〈
Γ(k) − Γ(j), s

〉
≥ f(x(k), y)− f(x(j), y).

It may not be immediately obvious how we arrived at this condition, so let us provide some intuition.
The goal of perturbation methods in sequential decision problems, going back to the early work of
Hannan (1957), is to ensure that the algorithm is “hedging” across all available alternative decisions.
A newly observed data point y may make expert j suddenly look more attractive than expert k, as
we have now introduced a new gap f(x(k), y)−f(x(j), y) in their measured loss values. With this in
mind, we say that Γ is a “good” (i.e. approximable) choice for the PTM, if this gap can be overcome
(hedged) by some small (i.e. likely) perturbation s, so that

〈
Γ(k) − Γ(j), s

〉
makes up the difference.

The inequalitymakes this property flexible and much easier to satisfy in real-world applications: we
only need the gap approximation from above. Later, we will show that γ-approximability guarantees
the required stability measure in (2), and thus is critical for the small-loss bound.

We want to emphasize two final points. First, the γ-approximability condition is purely for analysis
purposes and we don’t need compute the quantity s in response to y and k. Second, much of
the computational and decision-theoretic challenges rest heavily on the careful design of Γ. The
PTM allows the algorithm to perform the appropriate hedging across an exponentially-sized set of
K experts with only N ( K dimensions of perturbation. As we demonstrate in the following
example, we can always construct a γ-approximable Γ, with N = O(logK), but at the expense of
computational efficiency. The proposed Γ will not generally be compatible with the given oracle, in
the sense that the optimization problem underlying GFTPL cannot be written in the form of Eq. (1).
In the next section, we will show how to address this problem via another condition on Γ called
implementablity.

Simple Example For any online learning problem we may construct Γ as follows. Let N :=
/log2 K0, and define the kth row Γ(k) to be the binary representation of the index k, with +1/− 1
values instead of 0/1. We claim that this Γ is γ-approximable, for γ = /log2 K0. We can satisfy
the condition of Definition 2, by setting s = Γ(k). It is easy to see that for any j &= k we have〈
Γ(k) − Γ(j), s

〉
=

〈
Γ(k) − Γ(j),Γ(k)

〉
≥ 2 ≥ f(x(k), y) − f(x(j), y), where the last inequality

holds because |f(x(i), y)| ≤ 1 for any i ∈ [K].
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Algorithm 1 Generalized follow-the-perturbed-leader with small-loss bound
1: Init: Γ ∈ [0, 1]K×N

2: Draw IID vector α = [α(1), . . . ,α(N)] ∼ Lap(1)N ; that is, p(α(i)) = 1
2 exp(−|α(i)|)

3: for t = 1, . . . , T do
4: Set αt ← α

ηt
, where ηt > 0 a parameter computed online

5: Choose xt ← argmin
k∈[K]

t−1∑

j=1

f(x(k), yj) +
〈
Γ(k),αt

〉

6: Observe yt
7: end for

Comparison beteeen γ-approximabilty (this paper) and δ-admissibility (Dudík et al., 2020)
We note that, although γ-approximability leads to a much tighter bound, it is not stronger than
δ-admissibility. Instead, they are incomparable conditions. Specifically:

• In Section 4.1 we demonstrate that when Γ is binary, admissibility directly leads to approx-
imability. As shown by Dudík et al. (2020), a binary and admissible Γ exists in various
online auctions problems, including VCG with bidder-specific reserves (Roughgarden &
Wang, 2019), envy-free item pricing (Guruswami et al., 2005), online welfare maximiza-
tion in multi-unit auction (Dobzinski & Nisan, 2010), and simultaneous second-price auc-
tions (Daskalakis & Syrgkanis, 2016). We can directly obtain an approximable Γ in such
cases.

• On the other hand, in problems such as level auction (Dudík et al., 2020), one can construct
both admissible and approximable Γ, although in completely different ways; we discuss
the construction in depth in Section 4.1.

• In section 4.2, we show that, when the adversary’s action space is small, we can always
construct a γ-approximable Γ, while a δ-admissible Γdoes not exist in general.

• In Appendix A.2, we show that in some cases a δ-admissible Γ can be obtained while
γ-approximability cannot be achieved.

Equipped with the γ-approximable PTM, we develop a generalized follow-the-perturbed-leader al-
gorithm with the Laplace distribution for the noise α1 and a time-varying step size, which is summa-
rized in Algorithm 1. This choice of Laplace distribution is significantly different from the choice of
uniform distribution originally used by GTFPL: it turns out that a continuous distribution is required
to satisfy Eq. (2) and thereby the small-loss bound. Note that here we ignored the time complex-
ity and only focus on the regret. We will specify how to construct Γ in the next section. For the
proposed algorithm, we successfully obtain the following stronger stability property.

Lemma 2. Assume Γ is γ-approximable. Let x′
t = argmink∈[K]

∑t
j=1 f(x

(k), yj) +
〈
Γ(k),αt

〉
.

Then in each round t, we have ∀i ∈ [K],

P[xt = x(i)] ≤ exp (γηt)P[x′
t = x(i)].

Note that we replace the term xt+1 in (2) with x′
t, as a time-varying step-size is used. Based on

Lemma 2, we obtain the regret bound of Algorithm 1 as follows.

Theorem 1. Assume Γ is γ-approximable, and let L∗
T = mink∈[K]

∑T
j=1 f(x

(k), yj). Algorithm 1,

with ηt = min

{
1
γ ,

c√
L∗

t−1+1

}
for any c > 0, achieves the following regret bound:

RT ≤
(
4
√
2max{2 lnK,

√
N lnK}

c
+ 2γ

(
c+

1

c

))√
L∗
T + 1

+ 8γ ln

(
1

c

√
L∗
T + 1 + γ

)
+ 2γ2 + 4

√
2max{2 lnK,

√
N lnK}γ.

(3)

1Note that the Laplace distribution is not the unique choice to get the small-loss bound. In Appendix A.5,

we prove that the !p perturbation p(α) ∝ exp

{
−
(∑

i |α
(i)|p

) 1
p

}
indeed works for any p ≥ 1.
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Algorithm 2 Oracle-based GFTPL for the reward feedback
1: Input: Data set Sj , j ∈ [N ], that implement a matrix Γ ∈ [0, 1]K×N , η1 = min{ 1

γ , 1}.
2: Draw IID vector α = [α(1), . . . ,α(N)] ∼ Lap(1)N
3: for t = 1, . . . , T do

4: Choose xt ← argmin
k∈[K]

t−1∑

j=1

f(x(k), yj) +
N∑

i=1

α(i)

ηt




∑

(w,y)∈Si

w · r(x(k), y)





5: Observe yt
6: Compute L̂∗

t = min
k∈[K]

∑t
j=1 f(x

(k), yj) by using the oracle

7: Set ηt+1 ← min

{
1
γ ,

1√
L̂∗

t+1

}

8: end for

The proof of Lemma 2 and Theorem 1 can be found in Appendix A.3. By setting c = Θ(1), Theorem
1 implies that our proposed algorithm achieves O(max{γ, lnK,

√
N lnK}

√
L∗
T ) regret bound.

Comparison to GFTPL (Dudík et al., 2020) The original GFTPL algorithm has an O(Nδ
√
T )

regret bound. For the dependence on T , our O(
√

L∗
T ) bound reduces to O(

√
T ) in the worst-case,

and automatically becomes tighter whenL∗
T is small. On the other hand, for the dependence on other

terms, we note that both N
δ and max{γ, lnK,

√
N lnK} are lower bounded by Ω(lnK), and their

exact relationship depends on the specific problem. In Section 4, we show that for many auction
applications, the two terms are on the same order. Moreover, in cases such as when |Y| is small,

Algorithm 1 with an appropriate c leads to O

(√
L∗
T max{lnK,

√
|Y| lnK}

)
regret bound, while

the regret bound of GFTPL in Dudík et al. (2020) can blow up since δ can be infinitely small.

4 Oracle-efficiency and Applications

In this section, we discuss how to run Algorithm 1 in an oracle-efficient way. Following Dudík et al.
(2020), we introduce the following definition.
Definition 3 (Implementability). Amatrix Γ is implementable with complexityM if for each j ∈ [N ]
there exists a dataset Sj , with |Sj | ≤ M , such that ∀k, k′ ∈ [K],

Γ(k,j) − Γ(k′,j) =
∑

(w,y)∈Sj

w
(
f(x(k), y)− f(x(k′), y)

)
.

Based on Definition 3, it is easy to get the following theorem, which is similar to Theorem 2.10 of
Dudík et al. (2020).
Theorem 2. If Γ is implementable, then Algorithm 1 is oracle-efficient and has a per-round com-
plexity O(T +NM).

In the following sub-sections, we discuss how to construct approximable and implementable Γ ma-
trices in different applications.

4.1 Applications in online auctions

In this part, we apply Algorithm 1 to online auction problems, which is the main focus of Dudík
et al. (2020). To deal with this sort of problems, we first transform Algorithm 1 to online learning
with rewards setting, i.e., in each round t, after choosing xt, instead of suffering a loss, the learner
obtains a reward r(xt, yt) ∈ [0, 1]. For this case, it is straightforward to see that running Algorithm
1 on a surrogate loss f(x, y) = 1 − r(x, y) directly leads to the small-loss bound. To proceed, we
slightly change this procedure and obtain Algorithm 2. The main difference is that, we implement Γ
with the reward function r(x, y), instead of the surrogate loss f(x, y). This makes the construction
of Γ much easier. We have the following regret bound for Algorithm 2.
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Corollary 1. Let f(x, y) = 1 − r(x, y). Assume Γ is γ-approximable w.r.t. f(x, y) and imple-
mentable with function r(x, y). Then Algorithm 2 is oracle-efficient and achieves the following
regret bound:

RT = E
[
G∗

T −
T∑

t=1

r(xt, yt)

]
= O

(
max

{
γ, lnK,

√
N lnK

}√
T −G∗

T

)
,

where G∗
T = maxi∈[K]

∑T
t=1 r(x

(i), yt) is the cumulative reward of the best expert.

Next, we discuss how to construct the PTM in several auction problems.

Auctions with binary and admissible Γ. As shown by Dudík et al. (2020), in many online auc-
tion problems, such as the Vickrey-Clarkes-Groves (VCG) mechanism with bidder-specific reserves
(Roughgarden &Wang, 2019), envy-free item pricing (Guruswami et al., 2005), online welfare max-
imization in multi-unit auction (Dobzinski & Nisan, 2010) and simultaneous second-price auctions
(Daskalakis & Syrgkanis, 2016), there exists a binary PTMwhich is 1-admissible and implementable
with N rows where N ( K. For these cases, we have the following lemma. The proof is deferred
to Appendix B.1.
Lemma 3. Let Γ ∈ [0, 1]K×N be a binary matrix and 1-admissible, then Γ is N -approximable.

Note that, Γ is binary and 1-admissible, so every two rows of Gamma differ by at least one element.
This means that Γ must, at the very least, include Ω(lnK) columns to encode each row. Combining
this fact with Lemma 3 and Corollary 1, we can obtain anO(N

√
T − L∗

T ) bound for all of the above
problems. Compared to the original GFTPL algorithm, our condition leads to a similar dependence
on N and a tighter dependence on T due to the improved small-loss bound. More details about the
aforementioned auction problems and corresponding regret bounds can be found in Appendix B.2.

Level auction The class of level auctions was first introduced by Morgenstern & Roughgarden
(2015), and optimizing over this class enables a (1 − ε) multiplicative approximation with respect
to Myerson’s optimal auction when the distribution of each bidder’s valuation is independent from
others. For this problem, the PTM in Dudík et al. (2020) is not easily to be shown approximable. To
address this problem, we propose a novel way of constructing an approximable and implementable
PTM. The key idea is to utilize a coordinate-wise threhold function to implement Γ. Note that this
kind of function can not be directly obtained. Instead, we create an augmented problem with a
surrogate loss to deal with this issue. For level auction with single-item, n-bidders, s-level and m-
discretization level, our method enjoys an O(nsm

√
T − L∗

T ) regret bound, which is tighter than
the O(nm2

√
T ) (note that s ≤ m) of the original GFTPL both on its dependence on the number of

rounds T and auction parameters n, s,m. Due to page limitations, we postpone the detailed problem
description and proof to Appendix B.3.

4.2 Other applications

Oracle learning and finite parameter space In many real-world applications, such as security
game (Balcan et al., 2015) and online bidding with finite threshold vectors (Daskalakis & Syrgkanis,
2016), the decision set X is extremely large, while the adversary’s action set |Y| is finite and small.
For these problems, we can construct an implementable PTM based the following lemma, whose
proof can be found in Appendix B.4.
Lemma 4. Consider the setting with |Y| = d (d ( K), then there exists a 1-approximable and
implementable Γ with d columns and complexity 1.

Combining Lemma 4 and Theorem 1, and configuring c =
√

max{lnK,
√
d lnK}, we observe that

our algorithm achieves a small-loss bound on the order ofO(
√
max{lnK,

√
d lnK}

√
L∗
T ). On the

other hand, because of the continuity of the loss functions in this setting, a δ-admissible PTM in
general does not exist (as δ may approach 0). Therefore, our proposed condition not only leads to
a tighter bound, but can also solve problems that the original GFTPL (Dudík et al., 2020) can not
handle.
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Transductive online classification Finally, we consider the transductive online classification prob-
lem (Syrgkanis et al., 2016; Dudík et al., 2020). In this setting, the decision set X consists of K
binary classifiers. In each round t, firstly the adversary picks a feature vector wt ∈ W , where
|W| = m. Then, the learner chooses a classifier xt(·) from X . After that, the adversary reveals the
label yt ∈ {0, 1}, and the learner suffers a loss f(xt, (wt, yt)) = I[xt(wt) &= yt]. We assume the
problem is transductive, i.e., the learner has access to the adversary’s set of vectors at the beginning.
For this setting, we achieve the following results (the proof is in Appendix B.5).

Lemma 5. Consider transductive online classification with |W| = m. Then there exists a 1-
approximable and implementable PTM with m columns and complexity 1. Moreover, Algorithm 1

with such a PTM and appropriately chosen parameters achieves O(
√

max{lnK,
√
m lnK}

√
L∗
T )

regret.

Negative implementability In the this paper we assume that the offline oracle can solve the min-
imization problem in (1) given any real-weights. In some cases, the oracle can only accept positive
weights. This problem can be solved by constructing negative implementable PTM (Dudík et al.,
2020). In most of the cases discussed above, negative implementable and approximable PTM exist.
This is formally shown in Appendix B.6.

5 Best-of-Both-Worlds Bound: Adapting to IID data

In this section, we switch our focus to adapting between adversarial and stochastic data. While the
GFTPL algorithm enjoys an O(

√
L∗
T )-type regret bound on adversarial data, it is possible to obtain

much better rates on stochastic data. For example, by setting all step sizes ηt as ∞, Algorithm
1 reduces to the classical FTL algorithm, which suffers linear regret in the adversarial setting but
enjoys much tighter bounds when the data is IID or number of leader changes is small. To be more
specific, we introduce the following regret bound for FTL.

Lemma 6 (Lemma 9, De Rooij et al. (2014)). Let xFTL
t = argmini∈[K]

∑t−1
s=1 f(x

(i), ys) be the
output of the FTL algorithm at round t, CT the set of rounds where the leader changes, and δt =
f(xFTL

t , yt)− (L∗
t −L∗

t−1) the “mixability gap”2 at round t. Then for any T ≥ 1, the regret of FTL
is bounded by RFTL

T ≤
∑

t∈CT
δt ≤ |CT |.

Note that since f ∈ [0, 1] and L∗
t − L∗

t−1 ∈ [0, f(xFTL
t , yt)], we know δt ∈ [0, 1]. For the i.i.d case,

if the mean loss of the best expert is smaller than that of other experts by a constant, then due to
the law of large numbers, the number of leader changes would be small, which results in a constant
regret bound (De Rooij et al., 2014).

Our goal is to obtain a "best-of-both-worlds" bound, which can ensure the small-loss bound in
general, while automatically leading to tighter bounds for IID data like FTL. We will now design an
algorithm that achieves such a bound by adaptively choosing between GFTPL and FTL depending on
which algorithm appears to be achieving a lower regret. The essence of this idea was first introduced
in the FlipFlop algorithm (De Rooij et al., 2014), who showed best-of-both-worlds bounds in the
inefficient case. Our contribution in this section is to adapt this idea to the oracle-efficient setting.
Denote UGFTPL

T as the attainable regret bound (as in Theorem 1) for running Algorithm 1 alone and
UFTL
T =

∑
t∈CT

δt to be that of FTL. In the following, we develop a new algorithm and prove that it
is optimal in both worlds, that is, its regret is on the order of O(min{UFTL

T , UGFTPL
T }).

The proposed algorithm, named as oracle-efficient flipflop (OFF) algorithm, is summarized in Algo-
rithm 3. The core idea is to switch between FTL and GFTPL (Algorthm 1) based on the compar-
ison of the estimated regret. We optimistically start from FTL. In each round t, we firstly pick xt

based on the current algorithm Algt, and then obtain the adversary’s action yt (line 2). Next, we
compute the estimated bounds of regret of both algorithms until round t (line 3). Specifically, let
IFTL
t = {i|i ∈ [t],Algi = FTL} and IGFTPL

t = {i|i ∈ [t],Algi = GFTPL} be the set of rounds
up to t in which we run FTL and GFTPL. Then, the estimated regret of FTL in IFTL

t is given by

2Here, we use the special definition of the mixability gap for the FTL algorithm. The details can be found
in the second paragraph, page 1286 of De Rooij et al. (2014).
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Algorithm 3 Oracle-efficient Flipflop (OFF)
Initialization: Alg1 = FTL
1: for t = 1, . . . , T do
2: Get xt by Algt, observe yt
3: Compute ÛFTL

t and ÛGFTPL
t

4: if Algt == FTL and ÛFTL
t > αÛGFTPL

t then
5: Algt+1 = GFTPL
6: else if Algt == GFTPL and ÛGFTPL

t > βÛFTL
t then

7: Algt+1 =FTL
8: end if
9: Feed yt to Algt+1
10: end for

ÛFTL
t =

∑
i∈IFTL

t
δi, and the estimated regret of GFTPL in IGFTPL

t can be bounded via Theorem 1:

ÛGFTPL
t =

(
4
√
2max{2 lnK,

√
N lnK}+ 4γ

)√
L̂∗
t + 1

+ 8γ ln

(√
L̂∗
t + 1 + γ

)
+ 2γ2 + 4

√
2max{2 lnK,

√
N lnK}γ.

(4)

where L̂∗
t = minx∈X

∑
i∈IGFTPL

t
f(x, yi) and we set c = 1. Note that, the two quantities defined

above are the exact regret upper bounds of the two algorithms on their sub-time intervals up to
round t, due to the fact that the regret bounds provided in Lemma 6 and Theorem 1 are timeless.
Moreover, note that the two values can be computed by the oracle. We compare the estimated regret
of both algorithms, and use the algorithm which performs better for the next round (lines 4-8).

For the proposed algorithm, we have the following theoretical guarantee (the proof can be found in
Appendix C).
Theorem 3. Assume we have a γ-approximable Γ, then Algorithm 3 is able to achieve the following
bound:

ROFF
T ≤ min

{
3UGFTPL

T + 1, 3UFTL
T + τ

}
,

where τ = 4
√
2max{2 lnK,

√
N lnK}+ 12γ and α = β = 1.

The Theorem above shows that the regret of Algorithm 3 is the minimum of the regret upper bounds
of GFTPL and FTL. Thus, it ensures the O(

√
T )-type bound in the worst case, while automatically

achieves the much better constant regret bound of FTL under iid data without knowing the presence
of stochasticity in data beforehand.

6 Conclusion

In this paper, we establish a sufficient condition for the first-order bound in the oracle-efficient
setting by investigating a variant of the generalized follow-the-perturbed-leader algorithm. We also
show the condition is satisfied in various applications. Finally, we extend the algorithm to adapt to
IID losses and achieve a “best-of-both-worlds” bound. In the future, we would like to investigate
how to achieve tighter results for oracle-efficient setting, such as the second-order bound (De Rooij
et al., 2014) and the quantile bound (Koolen & Erven, 2015).
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