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Although the operator (spectral) norm is one of the most widely used metrics for covariance estimation, compara-

tively little is known about the fluctuations of error in this norm. To be specific, let Σ̂ denote the sample covariance

matrix of n i.i.d. observations in Rp that arise from a population matrix Σ, and let Tn =
√

n∥Σ̂−Σ∥op. In the setting

where the eigenvalues of Σ have a decay profile of the form λj (Σ) $ j−2β , we analyze how well the bootstrap can

approximate the distribution of Tn. Our main result shows that up to factors of log(n), the bootstrap can approxi-

mate the distribution of Tn with respect to the Kolmogorov metric at the rate of n
− β−1/2

6β+4 , which does not depend

on the ambient dimension p. In addition, we offer a supporting result of independent interest that establishes a

high-probability upper bound for Tn based on flexible moment assumptions. More generally, we discuss the con-

sequences of our work beyond covariance matrices, and show how the bootstrap can be used to estimate the errors

of sketching algorithms in randomized numerical linear algebra (RandNLA). An illustration of these ideas is also

provided with a climate data example.

Keywords: Bootstrap; error estimation; high-dimensional statistics; covariance estimation; randomized numerical

linear algebra; sketching

1. Introduction

Within the areas of covariance estimation and principal components analysis, it is of central importance

to understand how well a sample covariance matrix Σ̂ = 1
n

∑n
i=1 XiX

⊤
i

approximates its population

version Σ = E[X1X⊤
1
], where X1, . . . ,Xn ∈ Rp are centered i.i.d. observations. In particular, a major

line of research in high-dimensional statistics has focused on the problem of deriving non-asymptotic

bounds for the operator (spectral) norm error

Tn =
√

n∥Σ̂ − Σ∥op,

where the norm is defined as ∥A∥op = sup∥u ∥2=1 ∥Au∥2. A partial overview of work on this problem,

as well as some of its extensions, may be found in the papers (Adamczak et al. (2011), Bickel and

Levina (2008), Bunea and Xiao (2015), Cai, Zhang and Zhou (2010), Koltchinskii and Lounici (2017a),

Lounici (2014), Minsker (2017), Rudelson (1999), among numerous others).

As a whole, this line of work offers many conceptual insights into the ways that error is influenced

by model assumptions. However, the literature is less complete with regard to inference, and there are

not many guarantees for the problem of constructing confidence intervals for Tn, which is equivalent
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to constructing numerical bounds on the error of Σ̂, or confidence regions for Σ. Accordingly, the chal-

lenges of inference on high-dimensional covariance matrices have stimulated much recent activity, and

there has been a particular interest to understand the limits of the bootstrap in this context (Johnstone

and Paul (2018) §X.C, El Karoui and Purdom (2019), Han, Xu and Zhou (2018), Lopes, Blandino and

Aue (2019), Naumov, Spokoiny and Ulyanov (2019), Yao and Lopes (2022)).

Simultaneously with these developments, the burgeoning field of randomized numerical linear al-

gebra (RandNLA) has generated many other error estimation problems of a similar nature (Drineas

and Mahoney, 2018, Halko, Martinsson and Tropp, 2011, Kannan and Vempala, 2017, Mahoney, 2011,

Woodruff, 2014). A prototypical example deals with computing a fast randomized approximation of the

product A⊤A, where A is a very large matrix. Most commonly, the matrix A is randomly “sketched”

into a much shorter matrix Ã, which can then be used to quickly compute Ã⊤ Ã as an approximation

to A⊤A. In turn, it is necessary to assess the unknown error ∥ Ã⊤ Ã− A⊤A∥op, which leads to a notable

parallel with the statistical literature: There are many existing theoretical error bounds, but very few

tools for numerical error estimation (see Sections 1.2 and 4). Furthermore, the operator norm is of spe-

cial importance, because it governs the accuracy of numerous matrix computations, and it frequently

appears in numerical analysis.

Motivated by the challenges above, this paper aims to quantify how well the bootstrap can ap-

proximate the error distribution L(Tn) for sample covariance matrices, and likewise in the context

of RandNLA. Specifically, we consider a setup where Σ has low “effective rank” and its ordered eigen-

values satisfy a decay profile of the form

λj (Σ) $ j−2β
, (1.1)

for some parameter β > 1/2. Variations of this setting have drawn considerable attention in recent years,

especially in connection with principal components analysis (e.g., Bunea and Xiao (2015), Koltchinskii,

Löffler and Nickl (2020), Koltchinskii and Lounici (2017a,b), Lounici (2014), Reiss and Wahl (2020),

and Naumov, Spokoiny and Ulyanov (2019), among others). Moreover, the condition (1.1) corresponds

to problems where sketching algorithms can be highly effective.

1.1. Contributions

To briefly outline our main result, let the Kolmogorov metric be denoted as dK(L(U),L(V)) =

supt∈R |P(U ≤ t) − P(V ≤ t)| for two generic random variables U and V , and let T∗
n denote the boot-

strap version of Tn, obtained by sampling with replacement from (X1, . . . ,Xn). Then, as long as (1.1) is

satisfied and the observations have suitable tail behavior, it follows that the bound

dK

(
L(Tn) , L(T∗

n |X)
)

≤ c n
− β−1/2

6β+4 log(n)c (1.2)

holds with probability at least 1 − c
n

, where L(T∗
n |X) is the conditional distribution of T∗

n given the

observations. (Going forward, we use symbols such as c, c0, c1, etc. to denote positive constants not

depending on n whose values may change at each occurrence.) Most importantly, this non-asymptotic

bound does not depend on the ambient dimension p, and explicitly accounts for the structural complex-

ity parameter β.

From the standpoint of methodology, our work illustrates new possibilities for applying the boot-

strap in the domains of computer science and applied mathematics. At this interface, the bootstrap has

a largely untapped potential to make an impact, because error estimation allows randomized computa-

tions to be done adaptively, so that “just enough” work is done. More specifically, the estimated error
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of a rough initial solution can be used to predict how much extra computation is needed to reach a

high-quality solution—and this will be demonstrated numerically in Section 4. Lastly, to put this type

of application into historical perspective, it is notable that the bootstrap has been traditionally labeled

as “computationally intensive”, and so in this respect, it is relatively novel to use the bootstrap in the

service of computation.

With regard to theoretical considerations, our work contributes to recent developments on bootstrap

methods, as well as covariance estimation. For the bootstrap, we expand upon the progress achieved

in the series of papers (Chernozhukov, Chetverikov and Kato, 2013, 2014, 2016, 2017), which address

bootstrap approximations for “max statistics” of the form Mn = sup f ∈F Gn( f ), where F is a class

of functions, and Gn( f ) = 1√
n

∑n
i=1( f (Xi) − E[ f (Xi)]). The basic similarity between Mn and Tn is that

they can be represented in a common form, due to the variational representation of ∥ · ∥op. Nevertheless,

the statistic Tn seems to present certain technical obstructions with regard to previous results. First, in

order to handle the metric dK, the mentioned works typically require a “minimum variance condition”

such as

inf
f ∈F

var(Gn( f )) ≥ c, (1.3)

which poses a difficulty in our setting, because the minimum variance may decrease rapidly with n. As

a result, a challenge arises in showing that our statistic is well approximated (in dK) by the supremum

sup f ∈F ′
n
Gn( f ), where F ′

n ⊂ F is a “nice” subset for which inf f ∈F ′
n

var(Gn( f )) decreases slowly with

n. Second, further challenges are encountered when controlling the discretization error that comes from

replacing F with a discrete ε-net. More specifically, this error is significant in our analysis because

the relevant class F is exponentially larger than VC-type — in the sense that ε-covering numbers

grow exponentially in 1/ε , rather than polynomially. By contrast, previous applications of bootstrap

approximation results for max statistics have often been concerned with VC-type function classes,

which allow for strong control of the discretization error.

Another segment of our work deals with tail bounds for ∥Σ̂−Σ∥op that do not depend on the ambient

dimension p, as studied in (Hsu, Kakade and Zhang, 2012, Koltchinskii and Lounici, 2017a, Minsker,

2017, Oliveira, 2010, Rudelson and Vershynin, 2007). In the setting of (1.1), this line of work shows that

if the observations satisfy ∥Xi ∥2 ≤ c almost surely, or ∥⟨u,Xi⟩∥ψ2
$ ∥⟨u,Xi⟩∥2 for all unit vectors u, then

the operator norm error can be bounded as ∥Σ̂−Σ∥op ≤ c n−1/2 log(n)c with high probability. However,

the ℓ2-boundedness condition is often restrictive, while the ψ2-L2 equivalence condition is not well-

suited to the discrete distributions that arise from resampling (Vershynin, 2018, §3.4.2). Consequently,

as a way to streamline our analysis of both (X1, . . . ,Xn) and the bootstrap samples (X∗
1
, . . . ,X∗

n), it is of

interest to develop a bound that can be applied in a more general-purpose way. Indeed, an extension of

this type is also suggested briefly in the paper (Rudelson and Vershynin, 2007), but to the best of our

knowledge, such a result has not been available without involving dependence on the ambient dimen-

sion. Accordingly, one of our secondary main results (Theorem 2.2) serves this purpose by showing

that if q ≥ 3, and if ξ1, . . . ,ξn are i.i.d. random elements of a separable Hilbert space, then

(
E

&&&& 1
n

n∑

i=1

ξi ⊗ ξi − E[ξi ⊗ ξi]
&&&&
q

op

) 1/q

≤ c ·
&&E[ξ1 ⊗ ξ1]

&&
op

·
(√

r(q)

n1−3/q ∨ r(q)

n1−3/q

)
.

where r(q) is a parameter that plays the role of an effective rank, and satisfies r(q) <∞ as long as ∥ξ1∥
has at least 2q moments. In particular, the proof of Theorem 2.2 extends the approach of Rudelson

and Vershynin (2007) based on non-commutative Khintchine inequalities. For comparison, the pa-

per (Chen, Gittens and Tropp, 2012) has also extends the approach of Rudelson and Vershynin (2007)

to allow for sums of more general types of random matrices, but it differs from our work insofar as its

results depend on the ambient dimension.
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1.2. Related work

The most closely related work to ours is the recent paper (Han, Xu and Zhou, 2018), which studies

bootstrap approximations for certain variants of Tn. To explain the connection, first recall that Tn may

be written in terms of a supremum over the unit sphere Sp−1 ⊂ Rp , namely Tn = supu∈Sp−1

√
n |u⊤(Σ̂ −

Σ)u|. As an alternative to this, the paper (Han, Xu and Zhou, 2018) analyzes “sparse versions” of Tn
obtained by taking the supremum over {u ∈ Sp−1 | ∥u∥0 ≤ s}, where 1 ≤ s ≤ p. For these sparse versions

of Tn, bootstrap approximation results are obtained in the Kolmogorov metric with rates of the form

s9/8/n1/8, up to logarithmic factors. As this relates to our work, it should be emphasized that the setting

in (Han, Xu and Zhou, 2018) is quite different, since the eigenvalues of Σ are not assumed to decay.

The difference becomes most apparent when s = p, so that the sphere Sp−1 coincides with the set

{u ∈ Sp−1 | ∥u∥0 ≤ s}. In this case, the analysis without spectral decay requires p 1 n1/9 for bootstrap

consistency, whereas our setting places no constraints on p. Another work that looks at bootstrapping

a structured variant of the operator norm is (Silin and Fan, 2020), but for the different purpose of

analyzing the errors of empirical spectral projection matrices. Although this work appeared after our

2019 preprint (Lopes, Erichson and Mahoney, 2019), it is still worth noting that it shares the approach

of using a variational representation of the norm and applying the techniques for bootstrapping suprema

of empirical processes mentioned earlier.

Next, the recent papers (El Karoui and Purdom, 2019, Yao and Lopes, 2022) look at bootstrapping

sample eigenvalues. These works show that if Σ is nearly low-rank, then the bootstrap can consis-

tently approximate the distribution of Ln =
√

n(λj (Σ̂) − λj (Σ))1≤ j≤ j0 , provided that the eigenvalues

(λj (Σ))1≤ j≤ j0 each have multiplicity 1, and j0 is held fixed as (n,p) → ∞. This illustrates a key dif-

ference between the statistics Tn and Ln, since it is known that repeated eigenvalues can interfere

with bootstrap approximations for Ln (e.g. Hall et al., 2009), whereas our work will show that the

bootstrap can work for Tn even in the presence of repeated eigenvalues. Two more papers on boot-

strap methods for high-dimensional sample covariance matrices are (Lopes, Blandino and Aue, 2019)

and (Naumov, Spokoiny and Ulyanov, 2019). The first of these generalizes the parametric bootstrap

for high-dimensional models without spectral decay, and it establishes consistency for linear spectral

statistics, while the latter deals with bootstrapping the error of empirical spectral projection matrices.

(We refer to (Koltchinskii and Lounici, 2017b,c) for other related distributional approximation results.)

At a more technical level, our work is related to the paper (Lopes, Lin and Müller, 2020), which

analyzes rates of bootstrap approximation for max statistics of the form Mn =max1≤ j≤p
√

nX̄j , where

the vector X̄ is the sample average of centered i.i.d. observations X1, . . . ,Xn ∈ Rp satisfying a “variance

decay” condition. This condition has the form σ2
(j)

$ j−2α for some fixed parameter α > 0, where

σ2
(1)

≥ · · · ≥ σ2
(p)

are the sorted versions of σ2
j
= var(X1j ) for j = 1, . . . ,p. One of the key steps in the

analysis of (Lopes, Lin and Müller, 2020) is to “localize the maximizing index” for Mn. That is, if

ȷ̂ ∈ {1, . . . ,p} is a random index such that Mn =
√

nX̄ ȷ̂ , then the variance decay condition can be used

to show that ȷ̂ is likely to fall into a small subset of {1, . . . ,p}. In the present context, we also use this

localization technique. Namely, the eigenvalue decay condition λj(Σ) $ j−2β implies that if û ∈ Sp−1

denotes a maximizing index for Tn = supu∈Sp−1

√
n |u⊤(Σ̂ − Σ)u|, then Σ1/2û is likely to fall into a

suitable subset of an ellipsoid. In carrying out this localization argument, our Proposition A.1 and its

supporting Lemmas A.1 and A.2 in this work are parallel versions of Proposition B.2 and Lemmas B.1

and B.2 from (Lopes, Lin and Müller, 2020). (The localization of the maximizer for the bootstrapped

statistic T∗
n is similarly handled here in Appendix E.) Apart from this connection, the analyses in the

two papers are essentially different. In particular, it should be emphasized that the high probability

bound on ∥Σ̂ − Σ∥op in Theorem 2.2, the discretization error bound in Proposition 2.1, as well as the

intermediate results in Appendices B, C, D, and F are distinct from the earlier paper. Furthermore,
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the overall qualitative difference between the analyses is illustrated by the fact that in (Lopes, Lin and

Müller, 2020), the rate of bootstrap approximation does not depend on the variance decay parameter α,

whereas here, the rate does depend on the spectrum decay parameter β.

Finally, to conclude this section, we describe related work on the estimation of algorithmic error.

Here, it is important to note that error estimation has a long history for deterministic algorithms, such

as those in numerical partial differential equations and finite-element methods, where it is called a pos-

teriori error estimation (Ainsworth and Oden, 2000, Babuška and Rheinboldt, 1978, Cangiani et al.,

2017, Verfürth, 1994, among many others). However, in the literature on randomized algorithms, error

estimation has received much less attention, and for certain types of computations there are only a

few papers addressing error estimation: (low-rank approximation: Halko, Martinsson and Tropp, 2011,

Liberty et al., 2007, Woolfe et al., 2008), (least-squares: Lopes, Wang and Mahoney, 2018), (classifi-

cation: Lopes, 2019), (matrix multiplication: Ar et al., 1993, Lopes, Wang and Mahoney, 2019, Sarlós,

2006). Among these works, the only ones to address error estimation for the operator norm are (Halko,

Martinsson and Tropp, 2011, Liberty et al., 2007, Woolfe et al., 2008), but this is done specifically

for low-rank approximation, which is complementary to our applications. Also, the approach in these

works is quite different from bootstrapping, and is based on the idea of bounding error in terms of ran-

dom “test vectors”, which is rooted in the classical works (Dixon, 1983, Freivalds, 1979). In essence,

the main difference between the test-vector approach and bootstrapping is that the former is inherently

conservative, whereas the latter can be used to directly estimate the error distribution.

Outline. Section 2 presents the problem setup and main results, as well as the proofs for some of

these results. Section 3 describes numerical results for inference tasks related to covariance matrices.

Section 4 introduces the setting of sketching algorithms, and demonstrates the performance of the

bootstrap in synthetic problems, as well as in a climate data example. Lastly, the proof of the main

result (Theorem 2.1) and some additional numerical results are deferred to the supplementary material

((Lopes, Erichson and Mahoney, 2023)).

Notation and conventions. For a vector v ∈ Rm, and a number q ≥ 1, the ℓq-norm is ∥v∥q =
(
∑m

j=1 |vj |
q)1/q . The unit sphere for the ℓ2-norm in Rm is Sm−1. For a real matrix M , its Frobenius norm

is ∥M ∥F =
√

tr(M⊤M), and its Schatten-q norm is ∥M ∥Sq = tr((M⊤M)q/2)1/q . The identity matrix of

size m × m is Im, and the standard basis vectors in Rm are {e1, . . . ,em}. The sorted singular values of a

real matrix M are written as σj(M) ≥ σj+1(M), and similarly, if M is symmetric, then the sorted eigen-

values are written as λj (M) ≥ λj+1(M). For a random variable ξ, the Lq norm is ∥ξ∥q = (E[|ξ |q])1/q .

Also, if ψq(x) = exp(xq)−1, then the ψq-Orlicz norm is given by ∥ξ∥ψq
= inf{r > 0 |E[ψq(|ξ |/r)] ≤ 1}.

If ζ is another random variable, then the conditional distribution of ζ given ξ is denoted as L(ζ |ξ). If

an and bn are sequences of non-negative real numbers, we write an ! bn if there is a constant c > 0

not depending on n, and integer n0 ≥ 1 such that an ≤ cbn for all n ≥ n0. Likewise, we write an $ bn if

an ! bn and bn ! an. Lastly, for maxima and minima, we use the notation an ∨ bn =max{an,bn} and

an ∧ bn =min{an,bn}.

2. Main results

Our setup is based on a sequence of models indexed by n, where all parameters may depend on n,

unless stated otherwise. In particular, the dimensions p = p(n) and d = d(n) below may vary with n. If

a parameter does not depend on n, then it is understood not to depend on p or d either.
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Assumption 2.1 (Data-generating model).

(i). There is a deterministic matrix A ∈ Rd×p with d ≥ p, and i.i.d. random vectors Z1, . . . ,Zn ∈ Rd ,

such that for each i ∈ {1, . . . ,n}, the observation Xi ∈ Rp is generated as

Xi = A⊤Zi . (2.1)

(ii). The random vector Z1 has independent entries that satisfy E[Z1j] = 0, E[Z2
1j
] = 1, and κ :=

E[Z4
1j
] > 1 for all j ∈ {1, . . . ,d}, where κ does not depend on n. In addition, the condition

max1≤ j≤d ∥Z1j ∥ψ2
! 1 holds.

(iii). There is a constant β > 1/2 not depending on n, such that for each j ∈ {1, . . . ,p}, the singular

value σj(A) satisfies

σj(A) $ j−β .

Remarks. In statistical applications, the matrix A is typically taken to be the square root Σ1/2, with

p = d. However, the extra generality of a rectangular matrix is needed for the application of our work to

sketching algorithms in Section 4. To comment on two other aspects of Assumption 2.1, observe that

it places no constraints on the relationship between n and p, and it allows for many eigenvalues of Σ to

be repeated.

In order to state our main result, we need to precisely define the statistic T∗
n that arises from bootstrap

sampling. Let (X∗
1
, . . . ,X∗

n) be drawn with replacement from (X1, . . . ,Xn), and define the matrix

Σ̂
∗
=

1

n

n∑

i=1

X∗
i (X

∗
i )

⊤
.

Then, the bootstrapped counterpart of Tn is defined as

T∗
n =

√
n∥Σ̂∗ − Σ̂∥op.

The following is our main result.

Theorem 2.1. Suppose that Assumption 2.1 holds. Then, there is a constant c > 0 not depending on n

such that the event

dK

(
L(Tn) , L(T∗

n |X)
)
≤ c n

− β−1/2
6β+4 log(n)c (2.2)

occurs with probability at least 1 − c
n

.

Remarks. A high-level outline of the proof will be given in Section 2.3. To explain how the difference

β−1/2 arises in the rate of bootstrap approximation, we offer some informal discussion. As preparatory

notation, define the ellipsoidal boundary set E = {Au | u ∈ Sp−1}, as well as its signed version Θ =

E × {±1}, whose generic element is denoted by θ = (v, s). With these items in place, we will consider

the following empirical process indexed by Θ,

Gn(θ) =
s√
n

n∑

i=1

⟨v,Zi⟩2 − E[⟨v,Zi⟩2], (2.3)

which allows Tn to be represented as

Tn = sup
θ∈Θ
Gn(θ). (2.4)
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Given that the set Θ is uncountable, a standard reduction is to approximate Tn with the supremum of

Gn over a discrete ε-net for Θ, where the metric is taken to be ρ(θ, θ̃) = ∥v − ṽ∥2 + |s − s̃ |. In turn, this

requires us to control the discretization error, which leads to bounding the supremum of increments,

denoted

∆n(ε) = sup
ρ(θ ,θ̃)≤ε

|Gn(θ) −Gn(θ̃)|.

In order for the discrete approximation to succeed, the quantity E[∆n(ε)] should vanish as ε → 0.

However, the demonstration of this property depends on the complexity of Θ through the parameter β.

We can gain some intuition for the role of β by looking at how it affects E[∆n(ε)] in a much simpler

case—where Gn is replaced by a linear Gaussian process indexed by Θ. Namely, consider the process

G̃n(θ) = n−1/2 ∑n
i=1 s⟨v,ζi⟩, where ζ1, . . . ,ζn are independent standard Gaussian vectors. In this case,

if ∆̃n(ε) denotes the analogue of ∆n(ε) for G̃n and p " ε−1/β , then the following lower bound can be

shown using classical facts about Gaussian processes,

E
[
∆̃n(ε)

]
" ε (β−1/2)/β

. (2.5)

(See Lemma F.3 in Appendix F.) Thus, the main point to take away here is that even in the simpler case

of a linear Gaussian process, the condition β > 1/2 is necessary in high dimensions for the discretiza-

tion error to vanish as ε→ 0.

Another benefit of looking at the linear Gaussian case is that the lower bound (2.5) provides a ref-

erence point for assessing our upper bound on the discretization error. For instance, it will follow from

Proposition 2.1 that

E[∆n(ε)] ! ε (β−1/2)/β log(n), (2.6)

as shown in Section 2.2. Hence, in light of the quadratic nature of the process Gn, it is notable that the

dependence on ε does not change in comparison to the linear Gaussian case. Moreover, it also turns out

that the dependence on ε even remains the same for Lq norms of ∆n(ε) when q is large.

One more point of theoretical interest is that the bound (2.6) arises in a situation where standard

chaining seems to give a slower dependence on ε than a more problem-specific approach. As an exam-

ple of a standard approach, one might try to show thatGn is sub-exponential with respect to ρ, and then

appeal to an entropy integral bound such as in (van der Vaart and Wellner, 2000, Theorem 2.2.4). How-

ever, this ultimately leads to an upper bound scaling like ε (β−1)/β , which would require the excessive

condition β > 1 (as opposed to β > 1/2). Likewise, the development of new techniques for quadratic

processes akin to Gn has attracted interest in the literature, as surveyed in (Talagrand, 2014, §9.3-9.4).

Nevertheless, it should also be noted that existing results in this direction do not seem to be directly

applicable to our analysis of the bootstrap. For instance, the abstract approaches based on Talagrand’s

γ1 and γ2 functionals lead to challenges in connection with the bootstrap, because the discrete process

G
∗
n (arising from sampling with replacement) induces a random metric on Θ that does not lend itself

to calculations. On the other hand, the approach taken here allows Gn and G∗n to be treated on nearly

equal footing (see Proposition D.1).

2.1. A general-purpose bound for sample covariance matrices

Below, we provide a general-purpose high-probability bound for the operator norm error of sample

covariance matrices. Notably, the result only requires control on the moments of the norm of a random

vector. Since the result may be of independent interest in other problems, we have stated it in the

general context of a separable Hilbert space H , with inner product and norm denoted as ⟨·, ·⟩ and ∥ · ∥. In

addition, if x, y, z ∈H , then x ⊗ y denotes the linear operator from H to H satisfying (x ⊗ y)z = ⟨y, z⟩x.
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Theorem 2.2. Let q ≥ 3, and let ξ1, . . . ,ξn ∈H be i.i.d. random elements. Also, let

r(q) =
q
(
E[∥ξ1∥2q

] ) 1
q

&&E[ξ1 ⊗ ξ1]
&&

op

. (2.7)

Then, there is an absolute constant c > 0 such that

(
E

&&&& 1
n

n∑

i=1

ξi ⊗ ξi − E[ξi ⊗ ξi]
&&&&
q

op

) 1/q

≤ c
&&E[ξ1 ⊗ ξ1]

&&
op

(√
r(q)

n1−3/q ∨ r(q)

n1−3/q

)
. (2.8)

Remarks. It will sometimes be useful to consider the special case where the random variable ∥ξ1∥
can be described in terms of its ψ2-Orlicz norm. This gives

r(q) ≤
c q2

&&∥ξ1∥
&&2

ψ2&&E[ξ1 ⊗ ξ1]
&&

op

, (2.9)

for an absolute constant c > 0, which can be obtained from the facts about Orlicz norms summarized in

Lemmas G.1 and G.2. Before proceeding directly to the proof of Theorem 2.2, we need a preparatory

lemma, which is a slightly relaxed version of a result from (Rudelson, 1999, p.63). As a matter of

notation, the Schatten-q norm of an operator M will be denoted as ∥M ∥Sq .

Lemma 2.1. Let x1, . . . , xn ∈H be fixed, and let ε1, . . . ,εn be independent Rademacher random vari-

ables. Then, there is an absolute constant c > 0 such that for any q ≥ 2,

(
E

&&&&
n∑

i=1

εi xi ⊗ xi

&&&&
q

Sq

) 1/q

≤ c · n1/q ·
√

q ·
(

max
1≤i≤n

∥xi ∥
)
·

&&&&
n∑

i=1

xi ⊗ xi

&&&&
1/2

op

. (2.10)

Proof. First, we make use of a non-commutative Khinchine inequality originating from (Lust-Piquard,

1986). Specifically, we use the version from (Pisier, 2016, Theorem 14.6), which implies

(
E

&&&&
n∑

i=1

εi xi ⊗ xi

&&&&
q

Sq

) 1/q

≤ c
√

q

&&&&
( n∑

i=1

∥xi ∥2xi ⊗ xi

) 1/2&&&&
Sq

.

Next, observe that any operator M with rank at most r satisfies ∥M ∥Sq ≤ r1/q ∥M ∥op, and that the

operator
∑n

i=1 ∥xi ∥2
2

xi ⊗ xi has rank at most n. Combining this with the previous bound leads to the

stated result.

Proof of Theorem 2.2. The proof extends the approach developed in (Rudelson and Vershynin, 2007)

to the case of unbounded random vectors. Using a standard symmetrization argument, we have

(
E

&&&& 1
n

n∑

i=1

ξi ⊗ ξi − E[ξi ⊗ ξi]
&&&&
q

op

) 1/q

≤ c

(
E

&&&& 1
n

n∑

i=1

εiξi ⊗ ξi
&&&&
q

op

) 1/q

, (2.11)

where ε1, . . . ,εn are independent Rademacher variables that are also independent of ξ1, . . . ,ξn. Next,
since ∥ · ∥op ≤ ∥ · ∥Sq , it follows from Lemma 2.1 and the Cauchy-Schwarz inequality that

(
E

&&&& 1
n

n∑

i=1

εiξi ⊗ ξi
&&&&
q

op

) 1/q

≤ c · n1/q ·

√
q
n · E

[
max

1≤i≤n
∥ξi ∥2q

] 1
2q

·

(
E

&&&& 1
n

n∑

i=1

ξi ⊗ ξi
&&&&
q

op

) 1
2q

. (2.12)
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To bound the L2q norm of max1≤i≤n ∥ξi ∥, we have

E

[
max

1≤i≤n
∥ξi ∥2q

] 1
2q ≤ n

1
2q

(
E[∥ξ1∥2q

] ) 1
2q
.

Also, to handle the last factor in the bound (2.12), we use

(
E

&&&& 1
n

n∑

i=1

ξi ⊗ ξi
&&&&
q

op

) 1/q

≤
(
E

&&&& 1
n

n∑

i=1

ξi ⊗ ξi − E[ξi ⊗ ξi]
&&&&
q

op

) 1/q

+

&&E[ξ1 ⊗ ξ1]
&&

op
.

Hence, if L denotes the left side of (2.11), then

L ≤ c · n
3

2q ·

√
q
n
·
(
E
[
∥ξ1∥2q

] ) 1
2q

·
√

L +
&&E[ξ1 ⊗ ξ1]

&&
op
.

Finally, by putting

K = c · n
3

2q ·

√
q
n
·
(
E[∥ξ1∥2q

] ) 1
2q

·
&&E[ξ1 ⊗ ξ1]

&&1/2

op
and K ′

= 1/∥E[ξ1 ⊗ ξ1]∥op

we may solve the quadratic inequality L ≤ K
√

K ′L + 1 with respect to L to reach the stated result.

2.2. An increment bound for Gn

The next result plays a key role in the proof of Theorem 2.1, since it serves to control the discretization

error that arises when approximating Tn with a supremum over an ε-net for Θ. (Recall that for any

θ = (v, s) and θ̃ = (ṽ, s̃) in Θ, we use the metric ρ(θ, θ̃) = ∥v − ṽ∥2 + |s − s̃ |.)

Proposition 2.1. Let q = log(n)∨ 3, let ε = ε(n) ∈ (0,1), and suppose that Assumption 2.1 holds. Then,

&&&& sup
ρ(θ ,θ̃)≤ε

11Gn(θ) −Gn(θ̃)
11
&&&&
q

! ε
1− 1

2β log(n). (2.13)

Proof. As an initial observation, note that the condition ρ(θ, θ̃) ≤ ε < 1 implies that the signs s and s̃

must be equal. This leads to the algebraic identity

11Gn(θ) −Gn(θ̃)
11
=

1
√

n

1111
n∑

i=1

⟨v + ṽ,Zi⟩⟨v − ṽ,Zi⟩ − E
[
⟨v + ṽ,Zi⟩⟨v − ṽ,Zi⟩

] 1111.

To rewrite the quadratic forms in terms of a symmetric matrix, let

Q = 1
2

(
(v + ṽ)(v − ṽ)⊤ + (v − ṽ)(v + ṽ)⊤

)
,

so that

11Gn(θ) −Gn(θ̃)
11
=

1
√

n

1111
n∑

i=1

Z⊤
i QZi − E[Z⊤

i QZi]

1111.
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Next, let t > 0 denote a free parameter to be chosen later, and define the vectors

ω(t) = 1
2

[
t(v + ṽ) + 1

t
(v − ṽ)

]
and ω̃(t) = 1

2

[
t(v + ṽ) − 1

t
(v − ṽ)

]
.

In turn, it can be checked that these vectors give the following representation of Q,

Q = ω(t)ω(t)⊤ − ω̃(t)ω̃(t)⊤, (2.14)

which has a certain invariance property, insofar as it holds for every t > 0, while Q itself does not

depend on t. The utility of this representation is that it will allow us to work with sums of squares, and

also, to optimize with respect to the choice of t.

To proceed, we will define a particular ellipsoid that contains the vectors ω(t) and ω̃(t), and then

take a supremum over this ellipsoid to derive a stochastic upper bound on supρ(θ ,θ̃)≤ε
11Gn(θ) −Gn(θ̃)

11.
For this purpose let A(ε) ∈ Rd×p be the matrix with the same s.v.d. as A, except that the singular value

σj(A) is replaced with
√

2 min{σj(A),ε/2} for every j ∈ {1, . . . ,p}. Also, define A(t,ε) ∈ Rd×2p as the

column concatenation

A(t,ε) =
[
t A , 1

t
A(ε)

]
.

With this matrix in hand, it can be shown that both vectors ω(t) and ω̃(t) lie in the ellipsoid
A(t,ε)(B2p(2)), where B2p(2) denotes the ℓ2-ball of radius 2 in R2p . (For the details, see Lemma F.2.)

In particular, this ellipsoid does not depend on the indices θ and θ̃ underlying ω(t) and ω̃(t). As a result,
we have

sup
ρ(θ ,θ̃)≤ε

11Gn(θ) −Gn(θ̃)
11 ≤ sup

w∈B2p (2)

2√
n

1111
n∑

i=1

⟨Zi,A(t,ε)w⟩2 − E
[
⟨Zi,A(t,ε)w⟩2

] 1111.

We now apply Theorem 2.2 with ξi = A(t,ε)⊤Zi , which gives

&&&& sup
ρ(θ ,θ̃)≤ε

11Gn(θ) −Gn(θ̃)
11
&&&&
q

!
√

n ·
&&A(t,ε)

&&2

op
·
(√

r(q)

n1−3/q ∨ r(q)

n1−3/q

)
. (2.15)

Due to the choice q = log(n)∨ 3, we have n1−3/q $ n, and also, the bound (2.9) implies

r(q) ! q2

&&∥A(t,ε)⊤Z1∥2

&&2

ψ2&&A(t,ε)
&&2

op

.

Furthermore, Lemma G.2 gives

&&&∥A(t,ε)⊤Z1∥2

&&&
ψ2

! ∥A(t,ε)∥F , (2.16)

and then combining with (2.15) leads to
&&&& sup
ρ(θ ,θ̃)≤ε

11Gn(θ) −Gn(θ̃)
11
&&&&
q

!
(
q · ∥A(t , ε )∥op · ∥A(t , ε )∥F

) ∨ (
q2
√
n
∥A(t , ε )∥2

F

)
.

Hence, to complete the proof, it remains to bound the norms of A(t,ε) and then specify a value of t.

From the definition of A(t,ε) and a short calculation, we have

∥A(t,ε)∥F ≤ t∥A∥F + 1
t
∥A(ε)∥F ! t + 1

t
ε

1− 1
2β , (2.17)
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as well as

∥A(t,ε)∥op ≤ t∥A∥op +
1
t
∥A(ε)∥op ! t + 1

t
ε . (2.18)

Taking t = ε
1
2
− 1

4β leads to the stated result.

2.3. Outline for the proof of Theorem 2.1

In this subsection, we define several objects that will recur in our arguments, and then explain how the

main components of the proof fit together.

Bootstrap and Gaussian processes. Let (Z∗
1
, . . . ,Z∗

n) be sampled with replacement from (Z1, . . . ,Zn),

and define the bootstrap counterpart of Gn as

G
∗
n(θ) =

s√
n

n∑

i=1

⟨v,Z∗
i ⟩

2 − E[⟨v,Z∗
i ⟩

2 |X],

where E[·|X] refers to expectation that is conditional on X1, . . . ,Xn, and we note that E[⟨v,Z∗
i
⟩2 |X] =

1
n

∑n
i=1⟨v,Zi⟩2. This definition of G∗n allows T∗

n to be expressed as

T∗
n = sup

θ∈Θ
G
∗
n(θ).

In addition, we define Gn as the centered Gaussian process on Θ whose covariance structure matches

that of Gn,

cov(Gn(θ),Gn(θ̃)) = cov(Gn(θ),Gn(θ̃)) for all θ, θ̃ ∈ Θ.

Subsets of indices. In order to define some special subsets of E and Θ, let

ℓn =
⌈(

1 ∨ log(n)3
)
∧ p

⌉
and kn =

⌈(
ℓn ∨ log(n)

6β+4
β−1/2

)
∧ p

⌉
,

which always satisfy 1 ≤ ℓn ≤ kn ≤ p. Also, let the columns of Vkn ∈ Rp×kn contain the leading kn

right singular vectors of A. Based on these items, we define E
↑
n as a subset of E arising from vectors in

S
p−1 that are “partially aligned” with the columns of Vkn ,

E
↑
n =

{
Au

111 u ∈ Sp−1 and ∥V⊤
kn

u∥2 >
1
2

k
−β+1/2
n

}
.

Likewise, by analogy with the definition of Θ, let

Θ
↑
n = E

↑
n × {±1}.

The next piece of notation is an ε-net for Θ
↑
n with respect to the metric ρ. This net is denoted as

Θ
↑
n(ε) ⊂ Θ↑

n and has the defining property that for any θ ∈ Θ↑
n, there is at least one point θ ′ ∈ Θ↑

n(ε)

with ρ(θ,θ ′) ≤ ε . Throughout the proofs, we will mostly use the particular choice ε = εn with

εn = n−β/(6β+4)
. (2.19)
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Lastly, due to classical bounds on the metric entropy of ellipsoids (as recorded in Lemma G.3), it is

possible to choose an εn-net Θ
↑
n(εn) with respect to ρ so that its cardinality satisfies log card(Θ

↑
n(εn)) !

ε
−1/β
n .

Decomposition into six main terms. We will bound the Kolmogorov distance between L(Tn) and

L(T∗
n |X) with six terms,

dK

(
L(Tn) , L(T∗

n |X)
)
≤ In + IIn + IIIn + ĨIIn + ĨIn + Ĩn,

which are defined below. The essential novelty of the proof deals with the four terms (In, IIn, ĨIn, Ĩn),

and almost all of the effort will be focused on these.

1. Localizing the maximizer of Gn:

In = dK

(
L
(
supθ∈ΘGn(θ)

)
, L

(
sup

θ∈Θ↑n
Gn(θ)

) )
.

(We use the phrase “localizing the maximizer of Gn”, because the problem of showing that In is

small amounts to showing that the maximizing index for Gn is likely to fall in Θ
↑
n.)

2. Discrete approximation of Gn:

IIn = dK

(
L
(
sup

θ∈Θ↑n
Gn(θ)

)
, L

(
sup

θ∈Θ↑n(εn)
Gn(θ)

) )

3. Gaussian approximation:

IIIn = dK

(
L
(
sup

θ∈Θ↑n(εn)
Gn(θ)

)
, L

(
sup

θ∈Θ↑n(εn)
Gn(θ)

) )

4. Bootstrap approximation:

ĨIIn = dK

(
L
(
sup

θ∈Θ↑n(εn)
Gn(θ)

)
, L

(
sup

θ∈Θ↑n(εn)
G
∗
n(θ)

11X
) )

5. Discrete approximation of G∗n:

ĨIn = dK

(
L
(
sup

θ∈Θ↑n(εn)
G
∗
n(θ)

11X
)
, L

(
sup

θ∈Θ↑n
G
∗
n(θ)

11X
) )

6. Localizing the maximizer of G∗n:

Ĩn = dK

(
L
(
sup

θ∈Θ↑n
G
∗
n(θ)

11X
)
, L

(
supθ∈ΘG

∗
n(θ)

11X
) )

Altogether, the six terms are handled consecutively in Appendices A through E, with each appendix

corresponding to a different term (except for IIIn and ĨIIn, which are handled together).

To comment on some of the techniques used in the various stages of the proof, the bound on In builds

on a lower-tail bound for Gaussian maxima developed in (Lopes, Lin and Müller, 2020) and requires

fine-grained control on the covariances cov(Gn(θ),Gn(θ̃)) for certain choices of θ and θ̃. Next, the anal-

ysis of IIn uses both the result on sample covariance matrices in Theorem 2.2 and the increment bound

in Proposition 2.1. With regard to the terms IIIn and ĨIIn, the localization and discrete approximation

steps make it possible to invoke Gaussan and bootstrap approximation results from (Chernozhukov,

Chetverikov and Kato, 2017). Lastly, the terms ĨIn and Ĩn are analyzed in correspondence with IIn
and In, and here the general-purpose nature of Theorem 2.2 is especially helpful, since it allows the

bootstrapped process G∗n to be treated in a similar manner to the original process Gn.
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3. Application to inference on covariance matrices

To illustrate the numerical performance of the bootstrap, this section looks at the coverage probabilities

of bootstrap confidence regions for Σ. An additional set of numerical results dealing with simultaneous

confidence intervals for the eigenvalues of Σ are presented in Appendix H of the supplementary mate-

rial. It should also be noted that both sets of numerical results were obtained in a situation where the

leading eigenvalue λ1(Σ) has high multiplicity.

Simulation settings. Simulations were based on the model described in Assumption 2.1, with n ∈
{300,500,700} and d = p = 1,000, giving n < p in every case. Also, the matrix A was constructed to

be symmetric so that it can be interpreted as A = Σ1/2. To specify A in more detail, its singular values

(equivalently eigenvalues) were chosen as

σ1(A) = · · · = σ5(A) = 1 and σj(A) = j−β for j ∈ {6, . . . ,p},

with decay parameter values β ∈ {0.25,0.50,0.75,1.0,1.25}, and its eigenvectors were taken as the or-

thogonal factor from a QR decomposition of a p× p matrix with independent N(0,1) entries. Next, for

each pair (n, β), we conducted 5,000 trials in which the n × p data matrix X = Z A was generated by

filling Z ∈ Rn×p with independent random variables drawn from N(0,1) or a standardized t20 distri-

bution. Lastly, for each trial, we generated 500 bootstrap samples T∗
n by sampling the rows of X with

replacement, as described in Section 2.

Error estimation and confidence regions. A natural way to formulate the problem of error estimation

for Σ̂ is in terms of the 1 − α quantile of Tn, denoted by q1−α. By definition, this quantity gives the

tightest bound of the form

∥Σ̂ − Σ∥op ≤ q1−α√
n

that holds with probability at least 1−α. Likewise, if we let q̂1−α denote the empirical (1−α)-quantile

of the bootstrap samples T∗
n , then we may regard q̂1−α/

√
n as an error estimate for Σ̂.

Alternatively, the estimate q̂1−α can be viewed as specifying an approximate (1 − α)-confidence

region for Σ. That is, if we let Bop(r; Σ̂) ⊂ Rp×p denote the operator-norm ball of radius r > 0 centered

at Σ̂, then q1−α/
√

n is the smallest value of r such that

P

(
Σ ∈ Bop(r; Σ̂)

)
≥ 1 − α.

Hence, the ideal confidence region may be approximated with Bop

( q̂1−α√
n

; Σ̂
)
.

The observed coverage probabilities based on q̂1−α have been listed in Table 1, with the nominal

coverage level always being set to 90%. (Note that these probabilities can be interpreted either with

respect to the coverage of the error bound or the confidence region.) Looking at the results, we see that

they generally conform with our theoretical analysis, in the sense that the performance of the bootstrap

depends substantially on whether β is above or below 0.50. Namely, for β > 0.50 and sufficiently large

sample sizes, the observed coverage comes within a percent or two of the desired level. Furthermore,

this holds in spite of the fact that λ1(Σ) has high multiplicity. On the other hand, when β < 0.50, the

bootstrap breaks down even at large sample sizes, with the observed coverage of 100% being far higher

than the desired 90%. Apart from this dichotomy, it should be noted that the bootstrap has the favorable

property that it errs reliably in the conservative direction, with the observed coverage never falling

below the nominal level. More generally, we observed similar patterns in the context of simultaneous

confidence intervals for the eigenvalues of Σ, as discussed in Appendix H.
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Table 1. Observed coverage probabilities for q̂1−α, with α = 0.1 and p = 1,000.

decay

param. β

sample size n

300 500 700

0.25 100% 100% 100%

0.50 94.3% 92.0% 93.6%

0.75 92.8% 92.3% 92.0%

1.00 92.7% 91.7% 91.2%

1.25 92.4% 91.5% 91.2%

(a) N(0,1) distribution

decay

param. β

sample size n

300 500 700

0.25 100% 100% 100%

0.50 95.4% 93.0% 92.2%

0.75 92.9% 92.0% 91.9%

1.00 92.5% 91.8% 91.6%

1.25 92.5% 91.7% 91.5%

(b) standardized t20 distribution

4. Application to randomized numerical linear algebra

Over the past decade, RandNLA has become the focus of intense activity in many fields related to

large-scale computation (Drineas and Mahoney, 2018, Halko, Martinsson and Tropp, 2011, Kannan and

Vempala, 2017, Mahoney, 2011, Woodruff, 2014). Broadly speaking, this new direction of research has

stemmed from the principle that randomization is a very general mechanism for scaling up algorithms.

However, in exchange for scalability, randomized sketching algorithms are typically less accurate than

their deterministic predecessors. Therefore, in order to use sketching reliably, it is crucial to verify that

the algorithmic error is small, which motivates new applications of the bootstrap beyond its traditional

domains.

The purpose of this section is to illustrate how the bootstrap can be applied to estimate operator-

norm error for randomized matrix multiplication, which has been a prominent topic in the RandNLA

literature (e.g., Cohen, Nelson and Woodruff, 2016, Drineas and Kannan, 2001, Drineas, Kannan and

Mahoney, 2006, Gupta et al., 2018, Holodnak and Ipsen, 2015, Pagh, 2013). A related study of the

bootstrap for this application can also be found in (Lopes, Wang and Mahoney, 2019), which differs

from the current work insofar as it deals exclusively with the entrywise ℓ∞-norm and does not focus

the role of spectrum decay.

To proceed, we will first provide a brief review of the algorithmic setting (Section 4.1), followed by

an efficient implementation of the bootstrap using an extrapolation technique (Section 4.2). In turn, we

will present numerical results for synthetic matrices (Section 4.3), as well as an example concerning

spatial modes of temperature variation (Section 4.4).

4.1. Rudiments of sketching

Consider a situation involving a very large deterministic matrix A ∈ Rd×p with p 1 d, where the

product A⊤A is too expensive to compute to high precision. For instance, this often occurs when A

must be stored on disk because it exceeds the constraints of fast memory. Alternatively, even when

memory is not a bottleneck, matrix products can become too expensive if they must be computed

frequently as a subroutine of a larger pipeline.

The basic idea of sketching is to work with a shorter version of A, referred to as a “sketch of A”, and

denoted as Ã ∈ Rn×p where n 1 d. This matrix is defined as

Ã= SA,

where S ∈ Rn×d is a random “sketching matrix” that is generated by the user. In particular, the user must

choose the “sketch size” n. Intuitively, the matrix S is intended to shorten A in a way that retains most

of the information, so that the inexpensive product Ã⊤ Ã will provide a good approximation to A⊤A.
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The sketching matrix. Typically, the action of S upon A is interpreted in either of two ways: randomly

projecting columns from Rd into Rn, or discretely sampling n among d rows. In addition, the matrix

S is commonly generated by the user so that its rows are i.i.d., and that it satisfies E[S⊤S] = In, which

implies that Ã⊤ Ã is unbiased with respect to A⊤A. At a high level, these basic properties are sufficient

to understand all of our work below, but numerous types of sketching matrices have been studied

in the literature. For instance, two of the most well-known are the Gaussian random projection and

uniform row sampling types, where the former has i.i.d. rows drawn from N(0, 1
n

Id), and the latter has

i.i.d. rows drawn uniformly from {
√

d/n e1, . . . ,

√
d/n ed}. More elaborate examples may be found in

the references above.

Cost versus accuracy. Whenever sketching is implemented, the choice of the sketch size n plays a

pivotal role in a tradeoff between computational cost and accuracy. To see this, note that on one hand,

the cost to compute Ã⊤ Ã is generally proportional to n, with the number of operations being O(np2).

On the other hand, the operator-norm error of Ã⊤ Ã tends to decrease stochastically like 1/
√

n, because

the difference Ã⊤ Ã− A⊤A can be expressed as a sample average of n centered random matrices (i.e., in

the same way as Σ̂ − Σ).

The need for error estimation. Although the choice of the sketch size n has clear importance, this

choice also involves practical difficulties that expose a major gap between the theory and practice of

sketching. Specifically, these difficulties arise because the value of the sketching error ∥ Ã⊤ Ã− A⊤A∥op

is unknown in practice, as it depends on the unknown product A⊤A. Hence, it is hard for the user to

know if any given choice of n will achieve a desired level of accuracy.

As a way to handle this dilemma, one option is to consult the RandNLA literature on theoretical error

bounds for ∥ Ã⊤ Ã− A⊤A∥op, as surveyed in the references above. However, much like in the setting of

covariance estimation, these results usually only provide qualitative guidance, and they rarely offer an

explicit numerical bound. Most often, this occurs because of unspecified theoretical constants, but there

is also a second key limitation: Theoretical error bounds are generally formulated to hold in a worst-case

sense, and so they often fail to account for special structure. Due to these issues, we propose instead

to directly estimate the error via a computationally efficient bootstrap method. This has the twofold

benefit of providing a numerical bound and adapting automatically to the structure of the problem at

hand.

Comparison of sketching and covariance estimation. To clarify the relationship between the sketching

error ∥ Ã⊤ Ã− A⊤A∥op and the covariance estimation error ∥Σ̂ − Σ∥op, let A, Σ, and Σ̂ be understood as

in the context of the model 2.1 with Z ∈ Rn×d having rows Z1, . . . ,Zn, and let

S = 1√
n

Z .

Under these conditions, the matrix S has the desired properties of a sketching matrix mentioned earlier,

and furthermore Ã⊤ Ã − A⊤A = Σ̂ − Σ. However, it is worth highlighting that this formal similarity

conceals some operational differences. For instance, the matrices Z and A are unobservable to the

user in covariance estimation, whereas the user does have access to S and A in sketching. Secondly,

in covariance estimation, the user often does not have the option to increase n, but in sketching, it

is possible to construct a rough initial sketch of A for inspection, and then take a second sketch to

improve performance. Later on, we will show how this second point has an important link with our

error estimation method, because it will enable the user to dynamically predict the total sketch size

needed to reach a given level of accuracy.
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4.2. Error estimation with an extrapolated bootstrap

The intuition for applying the bootstrap to sketching comes from thinking of the matrix Ã as a “dataset”

whose rows are “observations”. In particular, this interpretation is supported by the fact that many types

of sketching matrices S cause the rows of Ã to be i.i.d. Therefore, we may expect that sampling from

the rows of Ã with replacement will faithfully mimic the process that generated Ã.

To fix some notation for describing the bootstrap method, let q1−α denote the (1−α)-quantile of the

sketching error variable ∥ Ã⊤ Ã− A⊤A∥op, which is the minimal value such that the event

∥ Ã⊤ Ã− A⊤A∥op ≤ q1−α

holds with probability at least 1 − α. Our main goal is to construct an estimate q̂1−α using only the

sketch Ã as a source of information. Below, we state a basic version of the bootstrap method in Algo-

rithm 1, which will later be accelerated via an extrapolation technique in Section 4.2.1.

Algorithm 1. (Bootstrap estimate of sketching error).
Input: The number of bootstrap samples B, and the sketch Ã ∈ Rn×p .

For b = 1, . . . ,B do

1. Form Ã∗ ∈ Rn×p by drawing n rows from Ã with replacement.

2. Compute the bootstrap sample ε∗
b

:=
&&(Ã∗)⊤(Ã∗) − Ã⊤ Ã

&&
op

.

Return: q̂1−α ←− the (1 − α)-quantile of the values ε∗
1
, . . . ,ε∗

B
.

Remark. Given that the construction of Ã is fully controlled by the user, one might ask why boot-

strapping is preferable to carrying out many repetitions of the actual sketching process. The answer

comes down to the fact that constructing Ã requires a computation involving the full matrix A, which

often incurs high communication costs. In fact, this issue is one of the primary motivations for the

whole subject of RandNLA, which usually deals with situations where it is only feasible to access A

at most a handful of times. In contrast to the task of constructing Ã from A, Algorithm 1 only requires

inexpensive access to the much smaller matrix Ã, and it requires no access to A whatsoever.

4.2.1. Extrapolation

Because the user has the option to increase the sketch size n by performing an extra round of sketch-

ing, it becomes possible to accelerate the bootstrap with an extrapolation technique that is often not

applicable in covariance estimation. To develop the idea, we should first recall that the fluctuations of

∥ Ã⊤ Ã − A⊤A∥op tend to scale like 1/
√

n as a function of n, because the difference Ã⊤ Ã − A⊤A can

be written as a centered sample average of n random matrices. Therefore, if we view the sketching

error quantile as a function of n, say q1−α = q1−α(n), then we may expect the following approximate

relationship between a small “initial” sketch size n0, and a larger “final” sketch size n1,

q1−α(n1) ≈
√

n0

n1
q1−α(n0). (4.1)

The significance of this approximation is that q1−α(n0) is computationally much easier to estimate than

q1−α(n1), since the former involves bootstrapping a matrix of size n0 × p, rather than n1 × p. More

general background on the connections between extrapolation and resampling methods can be found

in (Bertail, 1997, Bertail and Politis, 2001, Bickel and Sakov, 2002, Bickel and Yahav, 1988, Lopes,

2019)), among others.
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Based on the heuristic approximation (4.1), we can obtain an inexpensive estimate of q1−α(n1) for

any n1 > n0 by using

q̂
ext
1−α(n1) :=

√
n0

n1
q̂1−α(n0), (4.2)

where q̂1−α(n0) is obtained from Algorithm 1. More concretely, if the user has the ultimate intention

of achieving ∥ Ã⊤ Ã− A⊤A∥op ≤ εtol for some tolerance εtol, then extrapolation may be applied in the

following way: First, the user should check the condition q̂1−α(n0) ≤ εtol to see if n0 is already large

enough. Second, if n0 is too small, then the rule (4.2) instructs the user to obtain a final sketch size

n1 satisfying q̂
ext
1−α(n1) ≤ εtol, which is equivalent to n1 ≥ n0

ε2
tol

q̂1−α(n0)
2. Furthermore, our numerical

results will demonstrate that this simple technique remains highly effective even when n1 is much larger

than n0, such as by an order of magnitude (see Sections 4.3 and 4.4).

4.2.2. Assessment of cost

Since the overall purpose of sketching is to reduce computation, it is important to explain why the added

cost of the bootstrap is manageable. In particular, the added cost should not be much higher than the

cost of sketching itself. As a simple point of reference, the cost to construct Ã and then compute Ã⊤ Ã

with most state-of-the-art sketching algorithms is at least Csketch =Ω(dp+ n1p2), where n1 refers to the

“final” sketch size described above. Next, to assess the cost of the bootstrap, we can take advantage of a

small initial sketch size n0 by using extrapolation, as well as the fact that the bootstrap samples can be

trivially computed in parallel, with say m processors. When these basic factors are taken into account,

the cost of the bootstrap turns out to be at mostCboot = O(Bn0p2/m).

From this discussion of cost, perhaps the most essential point to emphasize is that Csketch grows

linearly with d, whereas Cboot is independent of d. Indeed, this is of great importance for scalability,

because randomized matrix multiplication is of primary interest in situations where d is extremely

large. Beyond this general observation, we can also take a more detailed look to see that the condition

Cboot = O(Csketch) occurs when B = O((
n1

n0
+

d
pn0

)m). Furthermore, such a condition on B can be

considered realistic in light of our experiments, since the modest choice of B = 50 is shown to yield

good results.

4.3. Numerical results for synthetic matrices

We now demonstrate the performance of the bootstrap estimate q̂1−α in a range of conditions, both with

and without extrapolation. Most notably, the numerical results for extrapolation are quite encouraging.

Simulation settings. The choices for the matrix A ∈ Rd×p were developed in analogy with those in

Section 3, except that in this context, the matrix is very tall with d = 10,000 and p = 1,000. If we let

A=UDV⊤ denote the singular value decomposition, then the singular vectors were specified by taking

U ∈ Rd×p and V ∈ Rp×p to be orthonormal factors from QR decompositions of matrices filled with

independent N(0,1) entries. In addition, the singular values were chosen as σ1(A) = · · · = σ5(A) = 1

and σj(A) = j−β for j ∈ {6, . . . ,p}, with decay parameters β ∈ {0.75,1.0,1.25}. These values were

chosen in order to show that the bootstrap can work even when there are no gaps among the leading

singular values.

Design of simulations. The design of the simulations can be understood in terms of Figure 1. For each

value of β, and sketch size n ∈ {300, . . . ,2,100}, we performed 1,000 trials of sketching to compute inde-

pendent copies Ã ∈ Rn×p using two different types of sketching matrices: Gaussian random projection,
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Figure 1: (Sketching with Gaussian random projections.) The plots illustrate bootstrap estimates for the

90% quantile of the error ∥ Ã⊤ Ã− A⊤A∥op.

and uniform row sampling, as defined in Section 4.1. In turn, the actual values of ∥ Ã⊤ Ã − A⊤A∥op

in these trials yielded a high quality surrogate for the true 90% quantile q0.9 = q0.9(n), plotted as a

function of n with the black dashed line.

With regard to Algorithm 1, it was applied during each trial to compute q̂1−α using B = 50 bootstrap

samples. The average of these estimates is plotted as a function of n with the solid blue line. In addition,

the performance of the extrapolation rule (4.2) was studied by applying it to each estimate q̂0.9(n0)

computed at n0 = 300. The average of the extrapolated curves is plotted in solid red, with the pink

envelope signifying ±1 standard deviation.

Comments on results. Results for the case of Gaussian random projections are displayed in Figure 1,

and similar results for the case of uniform row sampling are given in Appendix I. Figure 1 shows that on

average, the bootstrap estimates are nearly equal to the true quantile over the entire range of sketch sizes

n ∈ {300, . . . ,2,100}, both with and without extrapolation. Indeed, the performance of the extrapolated

estimate is especially striking, because it shows that bootstrapping a rough initial sketch Ã of size

300 × 1,000 can be used to accurately predict the error of a much larger sketch of size 2,100 × 1,000.

To put this into context, we should also remember that the original matrix A is of size 10,000 × 1,000,

and hence the initial sketch is able to provide quite a bit of information about the sketching task for a

small computational price. Moreover, the fact that the extrapolation works up to the larger sketch size

of 2,100 means that a 7-fold speedup can be obtained in comparison to naively applying Algorithm 1

to the larger sketch. (In fact, the plots suggest that the extrapolation would remain accurate for sketch

sizes beyond 2, 100, and that even larger speedups are attainable.) Lastly, it is worth noting that even

though a small choice of B = 50 bootstrap samples was used, the standard deviation of the extrapolated

estimate is rather well-behaved, as indicated by the pink envelope.

4.4. Sea surface temperature measurements

Large-scale dynamical systems are ubiquitous in the physical sciences, and advances in technology for

measuring these systems have led to rapidly increasing volumes of data. Consequently, it is often too

costly to apply standard tools of exploratory data analysis in a direct manner, and there has been growing

interest to use sketching as a data-reduction strategy that preserves the essential information (e.g. Bai

et al., 2019, Brunton et al., 2015, Erichson et al., 2019, Saibaba, 2019, Tropp et al., 2019, among others).

This type of situation is especially common in fields such as climate science and fluid dynamics,

where we may be presented with a very large matrix A ∈ Rd×p whose rows form a long sequence of
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Figure 2: (a) The relevant ENSO region, marked with a rectangle. (b) The true ENSO mode, obtained

by exact computation with the full product A⊤A.

“snapshots” that represent a dynamical system at time points 1, . . . ,d. As a concrete example, we con-

sider satellite recordings of sea surface temperature that have been collected over the time period 1981-

2018, and are available from the National Oceanic and Atmospheric Administration (NOAA) (Reynolds

et al., 2002). More specifically, we deal with a particular subset of the data corresponding to d = 13,271

temporal snapshots at p = 3,944 spatial grid points in the eastern Pacific Ocean, shown in Figure (2a).

From the standpoint of climate science, this region is important for studying the phenomenon known

as the El Niño Southern Oscillation (ENSO).

This example is relevant to our discussion of sketching for several reasons. First, the matrix product

A⊤A is of interest because it describes spatial modes of temperature variation through its eigenstructure.

In particular, the fourth eigenvector (mode) of A⊤A identifies the intermittent El Niño and La Niña

warming events that are influential global weather patterns, as displayed in Figure (2b) (Erichson et al.,

2020). Second, the singular values of A have a natural decay profile, which is illustrated in Figure (4a).

Figure 3: The left and right panels show approximations to the ENSO mode based on the approximate

product Ã⊤ Ã, obtained from Gaussian random projections with sketch sizes n = 500 and n = 3,000. A

comparison with the exact ENSO mode in Figure (2b) above shows that an insufficient sketch size can

lead to a substantial distortion.
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Figure 4: The left panel displays the decaying eigenvalues of A⊤A, where the x-axis is logarithmic.

The right panel demonstrates that the extrapolated and non-extrapolated bootstrap methods accurately

estimate the 90% quantile of the sketching error ∥ Ã⊤ Ã − A⊤A∥op over a wide range of sketch sizes.

The extrapolation rule gives accurate results at a final sketch size n1 = 5,000 that is 10 times larger than

the initial sketch size n0 = 500.

Lastly, the example demonstrates the need for error estimation in order to guide the choice of sketch

size. This can be seen in Figures (3a) and (3b) below, where it is shown that an insufficient sketch size

can heavily distort the ENSO mode in comparison to the exact form given in Figure (2b).

To conclude this example, we present numerical results for the bootstrap error estimates. Analo-

gously to Section 4.3, we consider the task of estimating the 90% quantile q0.9(n) of the sketching

error, viewed as a function of n. The full matrix A is of size 13,271× 3,944, as described earlier, except

that it was normalized to satisfy σ1(A) = 1, so that the results here can be easily compared on the same

scale with the previous results in Section 4.3. Also, the results shown here in Figure (4b) are plotted in

the same format, with the number of trials being 1, 000, the number of bootstrap samples being B = 50,

and the sketching matrices being Gaussian random projections.

From looking at Figure (4b), we see that the performance of the bootstrap in the case of the natu-

rally generated matrix A is very similar to that in the previous cases of synthetic matrices. Namely, the

averages of both the extrapolated and non-extrapolated estimates virtually overlap with the true curve,

and furthermore, the fluctuations of the extrapolated estimates are well controlled. Lastly, the extrap-

olation rule accurately estimates the quantile value q0.9(n1) at a final sketch size n1 = 5,000 that is 10

times larger than the initial sketch size n0 = 500, which shows the potential of this rule to accelerate

computations without sacrificing the quality of estimation.
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Appendix A: The term In: localizing the maximizer of Gn

The following proposition is the main result of this section, and it will be established
with several lemmas later on.

Proposition A.1. Suppose that Assumption 2.1 holds. Then, there is a constant c > 0

not depending on n such that

In � n−
�−1�2
6�+4 log(n)c.

Proof. Here, we only explain the proof at a high level, with the details being given in
the remainder of this section. Observe that for any t ∈ R, we have

�P� sup✓∈ΘGn(✓) ≤ t� − P� sup✓∈Θ↑n Gn(✓) ≤ t�� = P�A(t) ∩B(t)�,
where we define the events

A(t) = � sup✓∈Θ↑n Gn(✓) ≤ t� and B(t) = � sup✓∈Θ�Θ↑n Gn(✓) > t�.
For any pair of real numbers t1,n and t2,n satisfying t1,n ≤ t2,n, it is possible to show that
the inclusion

(A(t) ∩B(t)) ⊂ (A(t2,n) ∪B(t1,n)) (A.1)

1
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holds simultaneously for all t ∈ R. To see this, first consider the case when t > t1,n. Then,
B(t) ⊂ B(t1,n), and hence

�A(t) ∩B(t)� ⊂ B(t) ⊂ B(t1,n) ⊂ �A(t2,n) ∪B(t1,n)�.
In the opposite case when t ≤ t1,n, we must also have t ≤ t2,n, which implies A(t) ⊂
A(t2,n), and the steps in the previous case can be used in a similar way. Applying a
union bound to (A.1), and then taking the supremum over t ∈ R, we obtain

In ≤ P(A(t2,n)) + P(B(t1,n)).

The difficult part of the proof is carried out below in Lemmas A.1 and A.5. In those
results, we will determine values of t1,n and t2,n for which the probabilities P(A(t2,n))

and P(B(t1,n)) are at most of order n−
�−1�2
6�+4 log(n)c. Furthermore, the chosen values of

kn and `n will ensure that the inequality t1,n ≤ t2,n holds for all large n.

Remark A.1. Note that in the special case where kn = p, the matrix Vkn
is a square

orthogonal matrix, which implies ⇥
↑
n = ⇥, and as a result, the terms I and Ĩn become

exactly 0. Therefore, in the proofs that handle the terms In and Ĩn, we may assume
without loss of generality that kn < p. This small reduction will be needed for specifying

how quickly `n and kn grow as a function of n, namely `n � log(n)
3 and kn � log(n)

6�+4

�−1�2 .

A.1. Bounding the probability P(A(t2,n))

In this subsection, we will need to introduce another special subset of ⇥. Namely, let
v1, . . . , v`n ∈ R

p denote the `n leading right singular vectors of A, and define the set

⇥`n = {(Av1,1), . . . , (Av`n ,1)}, (A.2)

which satisfies ⇥`n ⊂ ⇥
↑
n. Furthermore, we may add the points in ⇥`n to the net ⇥

↑
n(✏n)

while preserving the condition log card(⇥↑n(✏n)) � ✏
−1��
n , since `n grows logarithmically

in n, whereas ✏
−1��
n grows algebraically in n. For this reason, me may assume without

loss of generality that the condition ⇥`n ⊂ ⇥
↑
n(✏n) holds in our work below.

Lemma A.1. Suppose that Assumption 2.1 holds. Then, there are constants c, c2 > 0

not depending on n such that the choice

t2,n = c2`
−2�
n

�
log(`n)

implies

P(A(t2,n)) � n−
�−1�2
6�+4 log(n)c.
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Proof. By the definitions of A(t2,n) and IIIn, we have

P(A(t2,n)) ≤ P� sup✓∈Θ↑n(✏n)Gn(✓) ≤ t2,n� (since ⇥
↑
n(✏n) ⊂ ⇥

↑
n)

≤ P� sup✓∈Θ↑n(✏n)Gn(✓) ≤ t2,n� + IIIn

≤ P� sup✓∈Θ`n Gn(✓) ≤ t2,n� + IIIn (since ⇥`n ⊂ ⇥
↑
n(✏n)).

Lemma C.1 will show that the term IIIn is at most of order n−
�−1�2
6�+4 log(n)c, and so it

remains to control supremum of Gn over ⇥`n . This is a substantial task, involving several
ingredients that are developed in subsequent lemmas, and so we only explain how the
ingredients are combined here. To proceed, define the standardized version of Gn as

Ḡn(✓) = Gn(✓)�&n(✓) where &n(✓) =
�
var(Gn(✓)).

Also, define the minimum standard deviation &○n = inf✓∈Θ`n &n(✓), which is shown to satisfy
the following lower bound in Lemma F.1,

&○n � `−2�n .

Based on the definition of Ḡn, it follows that

P� sup✓∈Θ`n Gn(✓) ≤ t2,n� ≤ P� sup✓∈Θ`n Ḡn(✓) ≤
t2,n

&○n
�

≤ P� sup✓∈Θ`n Ḡn(✓) ≤
�
log(`n)�,

where the last step can be arranged by the choice of c2 in the definition of t2,n. Next, in
Lemmas A.2 and A.3 below, we show that the last probability satisfies the bound

P� sup✓∈Θ`n Ḡn(✓) ≤
�
log(`n)� � exp � − 1

2
`
1�3
n �.

Finally, as explained in the remark above Lemma A.1, we may assume kn < p, which

implies `n ≥ log(n)3, and hence exp(−1

2
`
1�3
n ) ≤ n−1�2 ≤ n−

�−1�2
6�+4 log(n)c. This completes

the proof.

Remark. The following lemma was developed in the paper (Lopes, Lin and Müller,
2020, Lemma B.2), and later extended in (Lopes and Yao, 2022). Although there are
many upper-tail bounds for the maxima of Gaussian processes, there are relatively few
lower-tail bounds, which is the notable aspect of this result.

Lemma A.2. For each integer m ≥ 1, let R = R(m) be a correlation matrix in R
m×m,

and let R+ = R+(m) denote the matrix with (i, j) entry given by max{Rij ,0}. Suppose the
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matrix R
+ is positive semidefinite for all m, and that there are constants ✏1 ∈ (0,1) and

c > 0, not depending on m, such that the inequalities

�
i≠j

R
+

ij ≤ cm

max
i≠j

R
+

ij ≤ 1 − ✏1

hold for all m. Lastly, let (⇣1, . . . , ⇣m) be a Gaussian vector drawn from N(0,R). Then,

there is a constant C > 0, not depending on m, such that the following inequality holds

for all m ≥ 1,

P� max
1≤j≤m

⇣j ≤
�
log(m)� ≤ C exp � − 1

2
m1�3�. (A.3)

Remark. In essence, the next lemma shows that if we restrict Gn to the finite set ⇥`n ,
then the correlation matrix of the resulting vector satisfies the conditions of Lemma A.2
(as needed for the completion of the proof of Lemma A.1).

Lemma A.3. Let the elements of ⇥`n be written as {✓1, . . . , ✓`n}. Also, let R(`n) ∈
R
`n×`n denote the correlation matrix of (Gn(✓1), . . . ,Gn(✓`n)), and define the matrix

R+(`n) ∈ R
`n×`n as

R+ij(`n) =max{Rij(`n),0}.

Under these conditions, it follows that R+(`n) is positive semidefinite, and there is a

constant c > 0 not depending on n such that

�
i≠j

R+ij(`n) ≤ c `n. (A.4)

Furthermore, there is a constant ✏1 ∈ (0,1) not depending on n such that

max
i≠j

R+ij(`n) ≤ 1 − ✏1. (A.5)

Proof. Below, we will write Rij = Rij(`n) to ease notation, and likewise for R+ij . By
Lemma F.1 the following identity holds for all i, j ∈ {1, . . . , `n}, where we let u1, . . . , u`n
denote the leading `n left singular vectors of A,

cov(Gn(✓i),Gn(✓j)) = 2�i(A)
2�2

j (A)�1{i = j} + (−3)2
∑d

l=1�el, ui�2�el, uj�2�.
For distinct i and j, this leads to

Rij =
( − 3)∑d

l=1�el, ui�2�el, uj�2�
2 + ( − 3)∑d

l=1�el, ui�4�2 + ( − 3)∑d
l=1�el, uj�4 . (A.6)

In the case when  ≤ 3, we have R+ij = 0 for i ≠ j, and so the matrix R+ is clearly
positive semidefinite. Furthermore, both of the bounds (A.4) and (A.5) hold in this case.
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To consider the opposite case when  > 3, observe that R+ = R, and so again, the matrix
R+ is positive semidefinite. In addition, when i ≠ j, the formula (A.6) implies

R+ij ≤
−3
2
∑d

l=1�el, ui�2�el, uj�2,
and so

�
1≤i≠j≤`n

R+ij ≤
−3
2

`n

�
i=1

d

�
l=1

�el, ui�2 `n

�
j=1

�el, uj�2

≤
−3
2

`n

�
i=1

d

�
l=1

�el, ui�2
=

−3
2
`n,

where we have used the fact that ∑`nj=1�el, uj�2 ≤ 1. This proves the bound (A.4). Turning

to the second bound (A.5), we may again assume  > 3. If we let a = ∑d
l=1�el, ui�4 and

b = ∑d
l=1�el, uj�4, then an application of the Cauchy-Schwarz inequality to (A.6) gives

R+ij ≤

√
ab�� 2

−3
+ a�� 2

−3
+ b� ,

≤

√
ab�� 2

−3
�2 + ab

≤
1�

( 2

−3
�2 + 1 ,

where the last step follows from the the fact that ab ≤ 1. This proves (A.5).

A.2. Bounding the probability P(B(t1,n))

Remark. Before handling the probability P(B(t1,n)) in Lemma A.5 below, it is nec-
essary to state a lemma involving a bit of matrix analysis. The proof is straightforward
and is hence omitted. For notation, let A = UDV � denote the s.v.d. of A, where U ∈ Rd×p

and V ∈ Rp×p have orthonormal columns, and D ∈ Rp×p is diagonal.

Lemma A.4. Fix any � ∈ (0,1), and any symmetric matrix M ∈ Rd×d. Also, let Vkn
∈

R
p×kn denote the first kn columns of V , and define the map T

�
kn
∶ R

p×p
→ R

p×p that scales

the first kn diagonal entries of a matrix by �, and leaves all other entries unchanged.

Then, there is an absolute constant c > 0 such that

sup
�w�2≤1, �V

�

kn
w�2≤�

�w�A�MAw� ≤ c�T�kn
(D)U�MU T

�
kn
(D)�

op
.
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We now complete this section with the following bound on P(B(t1,n)).

Lemma A.5. Suppose that Assumption 2.1 holds. Then, there exists a constant c1 > 0

not depending on n such that the choice

t1,n = c1k
−2�+1
n log(n)

implies

P(B(t1,n)) �
1

n
.

Proof. Let Z ∈ Rn×d be the matrix whose rows are Z1, . . . , Zn. By the definition of ⇥↑n,

if we take � = 1

2
k
−�+1�2
n , then

sup
✓∈Θ�Θ↑n

Gn(✓) ≤ sup
�w�2≤1, �V

�

kn
w�2≤�

√
n �w�A�� 1

n
Z�Z − Id�Aw�.

This bound allows us to apply Lemma A.4, which gives

sup
✓∈Θ�Θ

↑
n

Gn(✓) ≤ c
√
n�T�kn

(D)U�� 1

n
Z�Z − Id�UT

�
kn
(D)�

op
. (A.7)

Next, we apply the form of Theorem 2.2 given by the bound (2.9), along with the choices
⇠i = T

�
kn
(D)U�Zi and q = log(n) ∨ 3. This gives

� sup
✓∈Θ�Θ

↑
n
Gn(✓)�

q
� �E[⇠1⇠�1 ]�op ⋅ �

�
r(q) ∨ r(q)√

n
�

� �q ⋅ �E[⇠1⇠�1 ]�1�2op
⋅ ��⇠1�2�

 2

��� q2√
n
⋅ ��⇠1�2�2

 2

�.
(A.8)

To simplify this bound, note that

�E[⇠1⇠�1 ]�1�2op
= �T�kn

(D)U��op � k−�+1�2n .

Also, a background fact in Lemma G.2 gives

��⇠�2� 2

= ��T�kn
(D)U�Z1�2� 2

� �T�kn
(D)U��F

= � kn

�
j=1

�2�2

j (A) +
p

�
j=kn+1

�2

j (A)�
1�2

� k−�+1�2n .

(A.9)

So, combining with the earlier bound (A.8), we have

� sup✓∈Θ�Θ↑n Gn(✓)�
q
� k−2�+1n log(n),

which leads to the stated result by Chebyshev’s inequality.
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Appendix B: The term IIn: discrete approximation of Gn

Lemma B.1. Suppose Assumption 2.1 holds. Then, there is a constant c > 0 not de-

pending on n such that

IIn � n−
�−1�2
6�+4 log(n)c.

Proof. The approach is based on the fact that the Kolmogorov metric can always be
bounded in two parts: a coupling term and an anti-concentration term. More specifically,
for any two random variables ⇠ and ⇣ defined on the same probability space, the following
inequality holds for any r > 0,

dK(L(⇠),L(⇣)) ≤ sup
t∈R

P��⇣ − t� ≤ r� + P(�⇠ − ⇣ � ≥ r). (B.1)

For the present context, we will let ⇣ play the role of sup✓∈Θ↑n(✏n)Gn(✓) and let ⇠ play

the role of sup✓∈Θ↑n Gn(✓).
With regard to the coupling inequality, first note that under the stated choices for ⇠

and ⇣ we have

�⇠ − ⇣�q ≤ � sup
⇢(✓,✓̃)≤✏n

�Gn(✓) −Gn(✓̃)��
q

. (B.2)

Secondly, note that Proposition 2.1 shows that the right side of this bound is at most

of order ✏
1−

1

2�

n log(n) when q = log(n) ∨ 3. Hence, it follows from Chebyshev’s inequality

that if we take r = c✏
1−

1

2�

n log(n) for a sufficiently large constant c > 0 not depending on
n, then

P(�⇠ − ⇣ � ≥ r) ≤ c
n
.

Next, with regard to the anti-concentration inequality, we will approximate ⇣ with
another random variable, say �, and then use an anti-concentraiton inequality for �
instead. To do this, it can be verified using the definition of the Kolmogorov metric that
the following inequality holds

sup
t∈R

P��⇣ − t� ≤ r� ≤ sup
t∈R

P��� − t� ≤ 2r� + 2dK(L(⇣),L(�)). (B.3)

Hence, if we choose � = sup✓∈Θ↑n(✏n)Gn(✓), then the distance dK(L(⇣),L(�)) is the same

as IIIn, which is shown to be of order cn−
�−1�2
6�+4 log(n)c in Lemma C.1. Furthermore, by

using the stated choice of r = c✏
1−

1

2�

n log(n) and the fact that ✏
1−

1

2�

n = n−
�−1�2
6�+4 , it follows

from Lemma B.2 that

sup
t∈R

P��� − t� ≤ 2r� � n−�−1�26�+4 log(n)c,

which completes the proof.
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B.1. Anti-concentration inequality for Gn

Lemma B.2. Suppose that Assumption 2.1 holds, and let �n ∈ (0,1) be any numerical

sequence with log(1��n) � log(n). Then, there is a constant c > 0 not depending on n

such that

sup
t∈R

P�� sup✓∈Θ↑n(✏n)Gn(✓) − t � ≤ �n� � �n log(n)
c.

Proof. For each ✓ ∈ ⇥, let

&n(✓) =
�
var(Gn(✓))

as well as
&̄n = sup

✓∈Θ↑n(✏n)

&n(✓) and &n = inf
✓∈Θ↑n(✏n)

&n(✓).

In addition, define the expected supremum

µn = E� sup✓∈Θ↑n(✏n)Gn(✓)�&n(✓)�.
As a consequence of the anti-concentration inequality in Theorem 3 of (Chernozhukov,
Chetverikov and Kato, 2015), we have

sup
t∈R

P�� sup✓∈Θ↑n(✏n)Gn(✓) − t � ≤ �n� � &̄n
&2n
⋅ �n ⋅ �µn +

�
1 ∨ log(&n��n)�,

(Note that in the paper (Chernozhukov, Chetverikov and Kato, 2015), the dependence
of the bound on &̄n and &n is not given explicitly, but a scan through the proof shows
that it is sufficient to use a prefactor of &̄n

&2n
.) To control the dependence on &̄n and &n, we

may use Lemma F.1 and the assumption log(1��n) � log(n) to obtain

&̄n
&2n
� log(n)c and log(&n��n) � log(n),

for some constant c > 0 that does not depend on n.
To complete the proof, we must bound µn. An initial step is to work with the unstan-

dardized process Gn by using the bound

µn ≤
1

&n
E� sup✓∈Θ↑n(✏n) �Gn(✓)��,

≤
2

&n
E� sup✓∈Θ↑n(✏n)Gn(✓)� + 1

&n
E��Gn(✓0)�� (some ✓0 ∈ ⇥

↑
n(✏n)),

≤
2

&n
E� sup✓∈Θ↑n(✏n)Gn(✓)� + &̄n

&n
,

where the second step is a general fact about processes that are symmetric about the
origin (Talagrand, 2014, p.14). Next, we will compare Gn with a simpler Gaussian process,
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whose expected supremum can be analyzed more easily. Due to the Sudakov-Fernique
inequality (van der Vaart and Wellner, 2000, Proposition A.2.6), if we can construct a
centered Gaussian process on ⇥

↑
n(✏n), say �n(✓), that satisfies the condition

E��Gn(✓) −Gn(✓̃)�2� ≤ E���n(✓) − �n(✓̃)�2� (B.4)

for all ✓, ✓̃ ∈ ⇥↑n(✏n), then the following bound will hold

E� sup✓∈Θ↑n(✏n)Gn(✓)� ≤ E� sup✓∈Θ↑n(✏n) �n(✓)�.
For this purpose, way may apply Lemma F.1 to obtain the following formula any ✓ = (v, s)
and ✓̃ = (ṽ, s̃),

E��Gn(✓) −Gn(✓̃)�2� = 2��v�42 + �ṽ�42� + ( − 3)��v�44 + �ṽ�44�
− 4ss̃�v, ṽ�2 − 2( − 3)ss̃ d

�
l=1

�el, v�2�el, ṽ�2.
To simplify this expression, let w, w̃ ∈ Rd be vectors with respective lth coordinates equal
to �el, v�2 and �el, ṽ�2. It can then be checked that

E��Gn(✓) −Gn(✓̃)�2� = 2�s�v�22 − s̃�ṽ�22�2 + ( − 3)�sw − s̃w̃�22 + 4ss̃��v�22�ṽ�22 − �v, ṽ�2�.
Letting the three terms on the right be denoted as J1, J2, and J3, we can obtain the
following bounds by using the fact that all vectors v ∈ E satisfy �v�22 ≤ �⌃�op � 1. For J1,
we have

J1 ≤ 4(s − s̃)2�v�42 + 4(�v�2 + �ṽ�2)2(�v�2 − �ṽ�2)2
� (s − s̃)2 + �v − ṽ�22.

Next, for J2, we have

J2 ≤ 2( − 3)+�w�22(s − s̃)2 + 2( − 3)+�w − w̃�22
� (s − s̃)2 + �v − ṽ�22.

Lastly, for the third term, it can be checked that J3 � �v − ṽ�22, and then combining
leads to

E��Gn(✓) −Gn(✓̃)�2� ≤ c0(s − s̃)
2
+ c0�v − ṽ�22,

for some constant c0 > 0 that does not depend on n. Next, we define a centered Gaussian
process �n(✓) for any ✓ = (v, s) according to

�n(✓) =
√
c0 s ⇣0 +

√
c0�v, ⇣�,
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where ⇣ ∈ Rd is a standard Gaussian vector, and ⇣0 ∈ R is an independent standard
Gaussian variable. This yields

E���n(✓) − �n(✓̃)�2� = c0(s − s̃)
2
+ c0�v − ṽ�22,

which shows that the condition (B.4) indeed holds. Finally, the expected supremum of
�n over ⇥

↑
n(✏n) satisfies

E� sup✓∈Θ↑n(✏n) �n(✓)� � E��⇣0�� + E� sup�u�2=1�Au, ⇣��
� 1 + E��A�⇣�2�
≤ 1 + �A�F
� 1,

which completes the proof.

Appendix C: The terms IIIn and �IIIn (Gaussian and
bootstrap approximation)

The following lemma is obtained as an application of the Gaussian and bootstrap ap-
proximation results in (Chernozhukov, Chetverikov and Kato, 2017).

Lemma C.1. Suppose that Assumption 2.1 holds. Then, there is a constant c > 0 not

depending on n such that

IIIn ≤ cn−
�−1�2
6�+4 log(n)c, (C.1)

and the event �IIIn ≤ cn−
�−1�2
6�+4 log(n)c (C.2)

holds with probability at least 1 − c
n
.

Proof. We first establish (C.1), and then turn to (C.2) at the end of the proof. Let
m = card(⇥↑n(✏n)), and define i.i.d. vectors ⇠1, . . . , ⇠n ∈ R

m as follows. Let {✓1, . . . , ✓m} be
an enumeration of ⇥↑n(✏n), with jth element represented as ✓j = (vj , sj). Next, for each
i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, define the random variable

⇠ij = k
4�−1
n sj��Zi, vj�2 − E[�Zi, vj�2]�.

(The scale factor k4�−1n will only play a technical role in order to prevent the variance of
⇠ij from becoming too small.) This definition gives the relation

sup
✓∈Θ↑n(✏n)

k4�−1n Gn(✓) = max
1≤j≤m

√
n ⇠̄j (C.3)
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where ⇠̄j =
1

n ∑
n
i=1 ⇠ij . Although the left side of this relation is a scaled version of

sup✓∈Θ↑n(✏n)Gn(✓), it is important to note that the Kolmogorov metric is scale-invariant,

and so the distance between the suprema of k4�−1n Gn and k4�−1n Gn is equivalent to the
distance between the suprema of Gn and Gn.

The proof of (C.1) is completed by applying Proposition 2.1 in (Chernozhukov, Chetverikov
and Kato, 2017) to max1≤j≤m

√
n ⇠̄j . In order to apply this result, it is enough to note

that the vectors ⇠1, . . . , ⇠n are centered, i.i.d., and satisfy the following conditions, which
can be verified using Lemmas F.1, G.1, and G.2:

min
1≤j≤m

var(⇠1j) � 1 (C.4)

max
1≤j≤m

�⇠1j� 1
� k4�−1n . (C.5)

max
1≤j≤m

E[�⇠1j �2+l] � kl(12�−3)n for l ∈ {1,2}. (C.6)

Based on these conditions, as well as kn � log(n)
c and log(m) � ✏

−1��
n (by Lemma G.3), it

follows from Proposition 2.1 in (Chernozhukov, Chetverikov and Kato, 2017) that there
is a constant c > 0 not depending on n such that

dK�L� sup✓∈Θ↑n(✏n) k4�−1n Gn(✓)� , L� sup✓∈Θ↑n(✏n) k4�−1n Gn(✓)�� � n−
1

6 ✏
−

7

6�

n log(n)c.

Substituting in the choice ✏n = n
−

�

6�+4 leads to (C.1).
Finally, to prove (C.2), let (⇠∗1 , . . . , ⇠

∗

n) be drawn with replacement from (⇠1, . . . , ⇠n),
and let ⇠̄∗j =

1

n ∑
n
i=1 ⇠

∗

ij for any j ∈ {1, . . . ,m}. This gives the bootstrap counterpart of the
relation (C.3),

sup
✓∈Θ↑n(✏n)

k4�−1n G
∗

n(✓) = max
1≤j≤m

√
n(⇠̄∗j − ⇠̄j).

Due to this relation, Proposition 4.3 in the aforementioned paper shows that under the
conditions (C.4)-(C.6), there is a constant c > 0 not depending on n such that the event

dK�L� sup✓∈Θ↑n(✏n) k4�−1n G
∗

n(✓)�X� , L� sup✓∈Θ↑n(✏n) k4�−1n Gn(✓)�� � n−
1

6 ✏
−

7

6�
n log(n)c,

holds with probability at least 1 − c
n
. As before, substituting in the choice ✏n = n−

�

6�+4

leads to (C.2).

Appendix D: The term ĨIn: discrete approximation of G∗n

Lemma D.1. Suppose that Assumption 2.1 holds. Then, there is a constant c > 0 not

depending on n such that the event

ĨIn ≤ cn−
�−1�2
6�+4 log(n)c

occurs with probability at least 1 − c
n
.
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Proof. Recall the Kolmogorov distance can always be bounded in terms of an anti-
concentration term and a coupling term, as in (B.1). Using such an approach, we have

ĨIn ≤ ĨI
′

n + ĨI
′′

n

where we define the following terms for a fixed number � > 0,

ĨI
′

n = sup
t∈R

P�� sup✓∈Θ↑n(✏n)G∗n(✓) − t � ≤ � �X�
and

ĨI
′′

n = P�� sup✓∈Θ↑n(✏n)G∗n(✓) − sup✓∈Θ↑n G
∗

n(✓)� ≥ � �X�.
When � = c✏

1−
1

2�

n log(n)c for a sufficiently large constant c > 0 not depending on n, we will

show in Proposition D.1 below that ĨI
′′

n is at most c�n with probability at least 1 − c�n.
To address the anti-concentration term, recall the inequality (B.3), which implies

ĨI
′

n ≤ sup
t∈R

P�� sup✓∈Θ↑n(✏n)Gn(✓) − t� ≤ 2� � + 2�IIIn.
For the stated choice of �, it is shown in Lemma B.2 that the first term on the right side

is at most of order ✏
1−

1

2�

n log(n)c = n−
�−1�2
6�+4 log(n)c. Finally, Lemma C.1 shows that the

event �IIIn ≤ cn−
�−1�2
6�+4 log(n)c holds with probability at least 1 − c�n, which completes

the proof.

Remark. To introduce another piece of notation, for any q ≥ 1 and random variable ⇠,
define the conditional norms

�⇠�q �X = E� �⇠�q �X�1�q and �⇠� 2�X = inf �r > 0 �E[ 2(�⇠��r)�X] ≤ 1�. (D.1)

Proposition D.1. Let q = log(n) ∨ 3, and suppose that Assumption 2.1 holds. Then,

there is a constant c > 0 not depending on n such that the event

� sup
⇢(✓,✓̃)≤✏n

�G∗n(✓) −G∗n(✓̃)� �
q �X

≤ c ✏
1−

1

2�

n log(n)5�2 (D.2)

holds with probability at least 1 − c
n
, and the event

P�� sup✓∈Θ↑n G
∗

n(✓) − sup✓∈Θ↑n(✏n)G
∗

n(✓)� ≥ c ✏
1−

1

2�

n log(n)5�2�X� ≤ c
n

(D.3)

also holds with probability at least 1 − c
n
.
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Proof. We only prove (D.2), since (D.3) is essentially a direct consequence, using the
same reasoning as in (B.2). To begin, note that the first half of the of the proof of
Proposition 2.1 can be repeated to show that

sup
⇢(✓,✓̃)≤✏n

�G∗n(✓) −G∗n(✓̃)� ≤ sup
w∈B2p(2)

2√
n
� n

�
i=1

�Z∗i ,A(t, ✏n)w�2 − E��Z∗i ,A(t, ✏n)w�2�X��,
where (Z∗1 , . . . , Z

∗

n) are i.i.d. samples with replacement from (Z1, . . . , Zn), and we retain
the definition of A(t, ✏n) from that proof. Next, we use the shorthand ⇠∗i = A(t, ✏n)

�Z∗i
and apply Theorem 2.2 to the right side above, yielding

� sup
⇢(✓,✓̃)≤✏n

�G∗n(✓)−G∗n(✓̃)��
q �X
≤ c�√q⋅�E[⇠∗1(⇠∗1)��X]�1�2op

⋅E��⇠∗1�2q2 �X� 1

2q ��� q√
n
E��⇠∗1�2q2 �X� 1q �.

(D.4)

To simplify the previous bound, note that since Z∗1 is drawn uniformly from (Z1, . . . , Zn),
it follows that the inequality

E��⇠∗1�2q2 �X� 1q ≤ max
1≤i≤n

�A(t, ✏n)�Zi�22
holds almost surely, and similarly

�E[⇠∗1(⇠∗1)��X]�op = � 1n ∑n
i=1 ⇠i⇠

�

i �
op

≤ max
1≤i≤n

�A(t, ✏n)�Zi�22.
Hence, to complete the proof, it suffices to derive a high-probability bound on max1≤i≤n �A(t, ✏n)Zi�22.
Using the facts in Lemmas G.1 and G.2, as well as the earlier bounds (2.16)and (2.17),
we have

�max
1≤i≤n

�A(t, ✏n)�Zi�22�
 1

� log(n) ��A(t, ✏n)�Z1�2�2 2

� log(n) �A(t, ✏n)�2F
� log(n)�t + 1

t
✏
1−

1

2�

n �2.
Therefore, taking t = ✏

1

2
−

1

4�

n implies

P�max
1≤i≤n

�A(t, ✏n)Zi�22 ≥ c log(n)2✏
1−

1

2�

n � ≤ c
n
,

which leads to (D.2) after combining with (D.4).
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Appendix E: The term Ĩn: localizing the maximizer of G∗n

Lemma E.1. Suppose that Assumption 2.1 holds. Then, there is a constant c > 0, not

depending on n, such that the event

Ĩn ≤ cn−
�−1�2
6�+4 log(n)c

holds with probability at least 1 − c�n.

Proof. Observe that

Ĩn = sup
t∈R

�P� sup✓∈Θ↑n G
∗

n(✓) ≤ t �X� − P� sup✓∈ΘG
∗

n(✓) ≤ t �X� �
= sup

t∈R

P�A′(t) ∩B′(t) �X�,
where we define the events

A
′(t) = � sup✓∈Θ↑n G

∗

n(✓) ≤ t�
and

B
′(t) = � sup✓∈Θ�Θ↑n G

∗

n(✓) > t�.
By repeating the argument in the proof of Proposition A.1, the following inequality holds
for any real numbers t′n,1 and t′n,2 satisfying t′1,n ≤ t

′

2,n,

Ĩn ≤ P(A(t′2,n)�X) + P(B(t′1,n)�X).
To complete the proof, it remains to show there are choices of t′1,n and t′2,n such that
t′1,n ≤ t

′

2,n for all large n, and the quantities P(A′(t2,n)�X) and P(B′(t1,n)�X) are at most

of order n−
�−1�2
6�+4 log(n)c with probability at least 1− c�n. Such choices of t′1,n and t′2,n are

established below in Lemma E.2. Note also that the condition t′1,n ≤ t
′

2,n only needs to
be established in the case when kn < p, due to the considerations in Remark A.1.

Lemma E.2. Suppose that Assumption 2.1 holds. Then, there are positive constants

c1, c2, and c, not depending on n, for which the following statement is true:

If t′1,n and t′2,n are chosen as

t′1,n = c1k
−2�+1
n log(n)3 (E.1)

t′2,n = c2`
−2�
n

�
log(`n), (E.2)

then the events

P(A′(t′2,n)�X) ≤ cn−
�−1�2
6�+4 log(n)c (E.3)

and

P(B′(t′1,n)�X) ≤ c
n

both occur with probability at least 1 − c
n
.
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Proof. Based on the definitions of ĨIn, �IIIn, and IIIn, we have

P(A′(t′n,2)�X) = P� sup✓∈Θ↑n G
∗

n(✓) ≤ t
′

n,2 �X�
≤ P� sup✓∈Θ↑n Gn(✓) ≤ t

′

n,2� + ĨIn +
�IIIn + IIIn + IIn.

With regard to the first term of the last line, Lemma A.1 shows that the following holds
for a suitable choice of c2 in (E.2),

P� sup✓∈Θ↑n Gn(✓) ≤ t
′

n,2� � cn−
�−1�2
6�+4 log(n)c.

Combining this with the bounds on ĨIn, �IIIn, IIIn, and IIn in Lemmas D.1, C.1,
and B.1, we reach the stated result in (E.3).

We now turn to controlling P(B′(t′1,n)�X). Letting q = log(n) ∨ 3, the basic goal is to
identify a number bn that satisfies

� sup✓∈Θ�Θ↑n G
∗

n(✓)�
q �X
≤ bn (E.4)

with probability at least 1 − c
n
. If this can be established, then Chebyshev’s inequality

will imply that the bound

P� sup✓∈Θ�Θ↑n G
∗

n(✓) ≥ e bn �X� ≤ e−q

holds with probability at least 1 − c
n
. Hence, the number e bn corresponds to t′1,n, and

also, our choice of q gives e−q ≤ 1�n.
To proceed with the details, recall that the s.v.d. of A is written as A = UDV �, and

for any � > 0, the map T
�
kn
∶ R

p×p
→ R

p×p is defined to act on a matrix by scaling the first

kn diagonal entries by � and leaving all other entries unchanged. Also, let � = 1

2
k
−�+1�2
n

and let ⇠∗i = T
�
kn
(D)U�Z∗i , where (Z∗1 , . . . , Z

∗

n) are i.i.d. samples with replacement from
(Z1, . . . , Zn).

With this notation in place, the argument leading up to (A.8) in the proof of Lemma A.5
can be repeated for the process G

∗

n to obtain

� sup
✓∈Θ�Θ

↑
n
G
∗

n(✓)�
q �X

≤ c �q ⋅ �E[⇠∗1(⇠∗1)��X]�1�2op
⋅ ��⇠∗1�2� 2 �X

��� q2√
n
⋅ ��⇠∗1�2�2 2 �X

�, (E.5)

for some constant c > 0 not depending on n. To simplify this bound, first notice that if
we let ⇠i = T

�
kn
(D)U�Zi, then

E[⇠∗1(⇠
∗

1)
��X] = 1

n ∑
n
i=1 ⇠i⇠

�

i ,

which leads to �E[⇠∗1(⇠∗1)��X]�1�2op
≤ max

1≤i≤n
�T�kn
(D)U�Zi�2.

Similarly, we have ��⇠∗1�2� 2�X
≤ cmax

1≤i≤n
�T�kn
(D)U�Zi�2,
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for some constant c > 0 that does not depend on n. In turn, we may use the facts about
Orlicz norms given in Lemmas G.1 and G.2 to obtain

�max
1≤i≤n

�T�kn
(D)U�Zi�2�

 2

�

�
log(n)��T�kn

(D)U�Z1�2� 2

�

�
log(n)�T�kn

(D)�F
�

�
log(n)k−�+1�2n ,

where the last step re-uses the calculation from (A.9). This implies that the bounds

�E[⇠∗1(⇠∗1)��X]�1�2op
≤ c log(n)k−�+1�2n

and ��⇠∗1�2� 2�X
≤ c log(n)k−�+1�2n

simultaneously hold with probability at least 1 − c�n. Therefore, combining with the
bound (E.5) shows that the event

� sup✓∈Θ�Θ↑n G
∗

n(✓)�
q �X

≤ c log(n)3k−2�+1n

holds with probability at least 1 − c�n. Hence, the number bn in (E.4) may be taken
proportional to log(n)3k−2�+1n , which completes the proof.

Appendix F: Supporting results and proofs

This section contains a lemma summarizing facts about the covariance structure of the
process Gn (Lemma F.1), as well as some supporting details involved in the proof of
Proposition 2.1, and a proof of the lower bound (2.5) from the main text.

Lemma F.1. Suppose that Assumption 2.1 holds, and let two generic elements of ⇥

be denoted as ✓ = (v, s) and ✓̃ = (ṽ, s̃). Then,

cov�Gn(✓),Gn(✓̃)� = 2ss̃�v, ṽ�2 + ( − 3)ss̃ d

�
l=1

�el, v�2�el, ṽ�2, (F.1)

as well as

inf
✓∈Θ↑n

�
var(Gn(✓)) � k−4�+1n and sup

✓∈Θ↑n

�
var(Gn(✓)) � 1. (F.2)

Furthermore, if ui and vi are the left and right singular vectors of A corresponding to

the singular value �i(A), and we let ✓i = (Avi,1), then

cov(Gn(✓i),Gn(✓j)) = 2�2

i (A)�
2

j (A)�1{i = j} + (−3)2

d

�
l=1

�el, ui�2�el, uj�2�. (F.3)
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Lastly, if we let ⇥`n be as defined in (A.2), then

inf
✓∈Θ`n

�
var(Gn(✓)) � `−2�n . (F.4)

Proof. We start with the basic identity

cov(Gn(✓),Gn(✓̃)) = cov�sZ�1 vv�Z1 , s̃Z
�

1 ṽṽ
�Z1�.

Since the entries of Z1 are standardized and independent with kurtosis , it follows
from (Bai and Silverstein, 2010, eqn. 9.8.6) that

cov�sZ�1 vv�Z1 , s̃Z
�

1 ṽṽ
�Z1� = 2ss̃ tr(vv�ṽṽ�) + ( − 3)ss̃ d

�
l=1

�el, v�2�el, ṽ�2,
which implies both (F.1) and (F.3).

To establish the lower bound in (F.2), observe that the previous paragraph gives

var(Gn(✓)) = 2�v�42 + ( − 3)�v�44. (F.5)

Due to the assumption  > 1, there is some fixed ✏0 ∈ (0,1) not depending n such that
 − 3 ≥ −(2 − ✏0). Consequently, the basic inequality �v�2 ≥ �v�4 implies ( − 3)�v�44 ≥
−(2 − ✏0)�v�42, and hence

var(Gn(✓)) ≥ ✏0�v�42. (F.6)

Next, observe that for any v ∈ ⇥↑n, there is some w ∈ Sp−1 satisfying v = Aw and �V �
kn
w�2 >

1

2
k
−�+1�2
n . Hence, the spectral decomposition A�A = V D2V �, with vl denoting the lth

column of V leads to

�v�22 = w�A�Aw

≥

kn

�
l=1

�2

l (A)�w, vl�2
≥ �2

kn
(A)�V �kn

w�22
� k−4�+1n .

This implies the lower bound in (F.2). Meanwhile, the upper bound in (F.2) follows
from (F.5) and the fact that �v�22 ≤ �A�A�op � 1. Finally, the lower bound (F.4) follows
from (F.6).

Lemma F.2. Let the vectors !(t) and !̃(t) as well as the matrix A(t, ✏) be as defined

in the proof of Proposition 2.1. Then, the vectors !(t) and !̃(t) both lie in the ellipsoid

A(t, ✏)(B2p(2)).
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Proof. The proof amounts to showing that the vector 1

2
(v + ṽ) lies in A(Bp(1)) and the

vector 1

2
(v − ṽ) lies in A(✏)(Bp(1)). Since the first of these items is straightforward to

check, we focus only on handling 1

2
(v−ṽ). From the context of the proof of Proposition 2.1,

note that �1
2
(v − ṽ)�2 ≤ 1

2
✏. Also, let the s.v.d. of A be written as A = UDV �, where

U ∈ Rd×p, D ∈ Rp×p, and V ∈ Rp×p. Hence, if we let u1, . . . , up denote the columns of U ,
then

p

�
l=1

�ul,(v−ṽ)�2�
2

✏2�4
≤ 1.

Meanwhile, considering the expression v − ṽ = A(w − w̃) = UDV �(w − w̃) gives

p

�
l=1

�ul,(v−ṽ)�2�
2

�2

l
(A)

=

p

�
l=1

�2

l (A)�el,V
�(w−w̃)�2�2

�2

l
(A)

= �1
2
(w − w̃)�22 ≤ 1.

Hence, if we let �̆l(A) =
√
2min{�l(A), ✏�2}, then combining leads to

p

�
l=1

�ul,(v−ṽ)�2�
2

�̆2

l
(A)

≤ 1.

Likewise, if we let D̆ = diag(�̆1(A), . . . , �̆p(A)), then the previous display shows that

the vector D̆−1U�(v − ṽ)�2 lies in the ball Bp(1), and since V is orthogonal, the vector

x ∶= V D̆−1U�(v − ṽ)�2 also lies in Bp(1). In turn, we have

A(✏)x = �UD̆V ��V D̆−1U�(v − ṽ)�2
= UU�(v − ṽ)�2
= (v − ṽ)�2

where the last step follows from the fact that v − ṽ lies in the image of U . Altogether,
this means that (v − ṽ)�2 lies in the ellipsoid A(✏)(Bp(1)).

Lemma F.3. Let A ∈ Rd×p satisfy the conditions in Assumption 2.1, and let G̃n be the

Gaussian process defined in Section 2 of the main text. Also, let ✏ = ✏(n) ∈ (0,1) be a

sequence of numbers converging to 0 as n→∞, and suppose that p � ✏−1��. Then,

E� sup
⇢(✓,✓′)≤✏

�G̃n(✓) − G̃n(✓
′)�� � ✏(�−1�2)�� . (F.7)

Proof. Let ⇣ ∈ Rd be a Gaussian vector drawn from N(0, Id), and observe that

E� sup
⇢(✓,✓′)≤✏

�G̃n(✓) − G̃(✓
′)�� = E

������ sup
v,v′∈E,�v−v′�2≤✏

�⇣, v − v′�������, (F.8)

where we have used the fact that if ✓ = (v, s) and ✓′ = (s′, v′) satisfy ⇢(✓, ✓′) < 1 then the
signs s and s′ must be equal, as well as the fact that E = −E . By the definition of E , we
may express v − v′ as

v − v′ = A(u − u′),
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for some u,u′ ∈ Sp−1. It is a basic fact that when p ≥ 2, the Minkowski sum S
p−1
+ S

p−1 is
equal to Bp(2), and so

E� sup
⇢(✓,✓′)≤✏

�G̃n(✓) − G̃(✓
′)�� = E

������ sup
�w�2≤2,�Aw�2≤✏

�⇣,Aw�������. (F.9)

Again, let the s.v.d. of A be written as A = UDV �, where U ∈ Rd×p, D ∈ Rp×p, and
V ∈ Rp×p. Since the p-dimensional random vector z ∶= U�⇣ has the Gaussian distribution
N(0, Ip) and V �(Bp(2)) = Bp(2), it follows that

E� sup
⇢(✓,✓′)≤✏

�G̃n(✓) − G̃(✓
′)�� = E

������ sup
�w�2≤2,�Dw�2≤✏

�z,Dw�������. (F.10)

Next, define the ellipsoid

E = �x ∈ Rp � p

�
j=1

x2

j

�j(A)2∧✏2
≤ 1�. (F.11)

which can be verified to satisfy the inclusion E ⊂ {Dw � �w�2 ≤ 2, �Dw�2 ≤ ✏}, yielding
the lower bound

E� sup
⇢(✓,✓′)≤✏

�G̃n(✓) − G̃(✓
′)�� ≥ E� sup

x∈E

�z, x��. (F.12)

Using the argument in the proof of Proposition 2.5.1 in (Talagrand, 2014), the right hand
side can be further lower bounded as

E� sup
x∈E

�z, x�� � � p

�
j=1

�j(A)
2
∧ ✏2�1�2. (F.13)

Now consider two cases. If �p(A) ≥ ✏, then

� p

�
j=1

�j(A)
2
∧ ✏2�1�2 ≥ (p✏2)1�2 � ✏(�−1�2)�� ,

where the second step uses the assumption that p � ✏−1�� . Alternatively, in the case when
�p(A) < ✏, we may let k denote the smallest index j ∈ {1, . . . , p} such that �j(A) < ✏, which
leads to a lower bound of the form ((k−1)✏2)1�2. Due to the assumption that �j(A) � j

−� ,
we must have k � ✏−1�� , which implies ((k − 1)✏2)1�2 � ✏(�−1�2)�� , as needed.

Appendix G: Background results

Lemma G.1 (Facts about Orlicz norms). Let ⇠, ⇠1, . . . , ⇠m be any sequence of random

variables, and let q ≥ 1, x > 0, and r ∈ {1,2}. Then, there are absolute constants c, c0 > 0

such that the following hold �⇠2� 1
= �⇠�2 2

, (G.1)
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�⇠� 1
≤ c �⇠� 2

, (G.2)

�⇠�q ≤ c q 1

r �⇠� r
, (G.3)

P��⇠� ≥ x� ≤ c exp� − c0 xr

�⇠�r
 r

�, (G.4)

and � max
1≤j≤m

⇠j�
 r

≤ c log(m + 1)
1

r max
1≤j≤m

�⇠j� r
. (G.5)

Proof. The first four statements follow from Lemmas 2.7.6 and 2.7.7, as well as Propo-
sitions 2.5.2 and 2.7.1 in (Vershynin, 2018). The fifth statement can be found in Lemma
2.2.2 of (van der Vaart and Wellner, 2000).

Lemma G.2. Fix any matrix M ∈ Rp×d and vector v ∈ Rd, and let the random vector

Z1 ∈ R
d be as in Assumption 2.1. Then, there is a constant c > 0 not depending on n

such that ��MZ1�2� 2

≤ c�M�F ,
and ��v,Z1�2 −E[�v,Z1�2]�

 1

≤ c�v�22.
Proof. The first statement is a slight reformulation of (Vershynin, 2018, Theorem 6.3.2),
while the second statement is a special case of (Lopes, Wang and Mahoney, 2019, Lemma
14).

Lemma G.3. Suppose that Assumption 2.1 holds. Let � = �(n) ∈ (0,1) be a sequence of

numbers converging to 0 as n →∞, and let ⇥(�) be a minimal �-net for ⇥ with respect

to the metric ⇢. Then,

log card(⇥(�)) � �−1�� .

Proof. This result is a consequence of (Tikhomirov (1993) Theorem XVI), (see also
Kolmogorov and Tikhomirov (1959)).

Appendix H: Simultaneous confidence intervals for
population eigenvalues

This appendix is a continuation of Section 3 from the main text. Here, we consider the
problem of approximating a collection of random intervals I1, . . . ,Ip that satisfy

P� p

�
j=1

��j(⌃) ∈ Ij�� ≥ 1 − ↵. (H.1)
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Our approach is based on Weyl’s inequality, which ensures that the condition

��j(⌃̂) − �j(⌃)� ≤ �⌃̂ −⌃�op
holds simultaneously for all j ∈ {1, . . . , p}, with probability 1. To proceed, let q1−↵ again
denote the (1−↵)-quantile of Tn, and let Ij = [�j(⌃̂)±q1−↵�√n]. Then, Weyl’s inequality
implies that the condition (H.1) must hold. In turn, we may use the bootstrap estimate
q̂1−↵ to form the approximate intervals defined by Îj = [�j(⌃̂) ± q̂1−↵�√n].

As a way to gain robustness against the effects of eigenvalue multiplicity, the pa-
pers (Hall and Hosseini-Nasab, 2006; Hall et al., 2009) also considered an approach of
this type — but instead using the Frobenius norm, which can lead to potentially much
wider intervals than the operator norm.

The simulation results for the intervals Î1, . . . , Îp are given in Table 2. The entries
of the table are the observed simultaneous coverage probabilities for a nominal level of
90%, and the simulation settings are the same as those used in Section 3. Although the
intervals are conservative due to Weyl’s inequality, they are still close enough to the
nominal level to be of practical interest when � > 0.50. By contrast, when � < 0.50,
the bootstrap again breaks down in the same way that it did for confidence regions (as
discussed in Section 3). Lastly, given that these results are obtained in a situation where
�1(⌃) has high multiplicity, it is important to reiterate that a naive application of the
bootstrap to the individual sample eigenvalues (rather than the operator norm error) is
known to work poorly in the presence of such multiplicity. Hence, the user may be willing
to tolerate some conservatism from bootstrapping the operator norm, in order to avoid
the harms of closely spaced population eigenvalues.

Table 2. Observed simultaneous coverage probabilities for Î1, . . . , Îp, with ↵ = 0.1 and p = 1,000.

decay
param. �

sample size n

300 500 700

0.25 100% 100% 100%
0.50 96.9% 96.5% 97.0%
0.75 94.5% 94.3% 93.3%
1.00 93.1% 92.1% 91.5%
1.25 92.6% 91.7% 91.2%

(a) N(0,1) distribution

decay
param. �

sample size n

300 500 700

0.25 100% 100% 100%
0.50 97.2% 96.7% 96.5%
0.75 94.0% 93.9% 93.8%
1.00 92.9% 91.7% 91.5%
1.25 92.6% 91.4% 91.4%

(b) standardized t20 distribution
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Appendix I: Additional numerical results on sketching
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Figure 1: (Sketching with uniform row sampling.) The plots illustrate bootstrap estimates
for the 90% quantile of the error �Ã�Ã−A�A�op. The curves are labeled as in the legend
of Figure 1 in the main text.
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