
Journal of Scientific Computing (2021) 86:30
https://doi.org/10.1007/s10915-020-01390-y

Nonisometric Surface Registration via Conformal
Laplace–Beltrami Basis Pursuit

Stefan C. Schonsheck1 ·Michael M. Bronstein2 · Rongjie Lai1

Received: 15 July 2020 / Revised: 30 November 2020 / Accepted: 12 December 2020 /
Published online: 16 January 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Surface registration is one of the most fundamental problems in geometry processing. Many
approaches have been developed to tackle this problem in cases where the surfaces are nearly
isometric. However, it is much more challenging to compute correspondence between sur-
faces which are intrinsically less similar. In this paper, we propose a variational model to
align the Laplace-Beltrami (LB) eigensytems of two non-isometric genus zero shapes via
conformal deformations. Thismethod enables us to compute geometricallymeaningful point-
to-point maps between non-isometric shapes. Our model is based on a novel basis pursuit
schemewherebywe simultaneously compute a conformal deformation of a ’target shape’ and
its deformed LB eigensystem.We solve the model using a proximal alternating minimization
algorithm hybridized with the augmented Lagrangian method which produces accurate cor-
respondences given only a few landmark points. We also propose a re-initialization scheme
to overcome some of the difficulties caused by the non-convexity of the variational problem.
Intensive numerical experiments illustrate the effectiveness and robustness of the proposed
method to handle non-isometric surfaces with large deformation with respect to both noises
on the underlying manifolds and errors within the given landmarks or feature functions.

Keywords Shape analysis · Laplace–Beltrami eigensystem · Conformal deformation ·
Nonisometric manifold matching

1 Introduction

The computation of meaningful point-to-point mappings between pairs of manifolds lies at
the heart of many shape analysis tasks. It is crucial to have robust methods to compute dense
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correspondences between twoormore shapes in different applications including shapematch-
ing, label transfer, animation and recognition [18,25,33,37,46,51]. In cases where shapes are
very similar (isometric or nearly isometric), there are many approaches for computing such
correspondences [3,9,14,16,22,23,27,33,44,45]. However, it is still challenging to compute
accurate correspondences when the deformation between the shapes are far away from near
isometry.

One of the key challenges in largely deformed non-isometric shape matching is that the
intrinsic features of the two shapes are not similar enough for standard techniques to recognize
their similarity. For example, when computing the correspondence between human faces, it
is not particularly difficult to geometrically characterize the structure of a ‘nose’. However,
similar techniques can not work well to compute a map between a horse and an elephant face
since these two surfaces have many largely deformed local structures including the drastic
difference between the trunk of the elephant and the nose of the horse. Because of this, it is
crucial to develop new methods to adaptively characterize large deformations on surfaces.

The LB eigensystem is a ubiquitous tool for 3D shape analysis (see [3,6,10,28,29,31,35,
37,39,42–44,48] and references therein). It is invariant under isometric transformations and
intrinsically characterizes the local and global geometry ofmanifolds through its eigensystem
up to an isometry. In principle, the LB eigensystem reduces high-dimensional nonlinear
isomorphism ambiguities between two isometric shapes to a linear transformation group
between two LB eigensystems. This linear transform is necessary due to the possible sign or
sub-eigenspace (geometric multiplicity) ambiguity of LB eigensystems [27]. Additionally,
similar shapes often have similar eigensystems which allow for joint analysis of similar
shapes their spectral properties [33]. However, when the deformation between two shapes is
far from an isometry, the large dissimilarity between LB eigensystems of two shapes is the
major bottleneck to adapt the existing spectral geometry approach to conduct registration.

A natural idea to extend spectral geometry methods to register non-isometric surfaces is
to deform the metric of a “target surface” to the metric of a “source surface” so that two
surfaces share similar LB eigensystems after deformation. However, directly computing this
deformation often requires specific knowledge about corresponding regions of the surfaces.
In this work, we propose a method to simultaneously compute such a deformation while
learning features that can be used for registration. Mathematically, one way to characterize
this type of deformation is through measuring its conformal factor–the local scaling induced
by a conformal deformation. It is well known that there exists a conformal mapping between
any two genus-zero surfaces [20]. Rather than reconstruct the conformally deformed surfaces
and/or exact conformal map, we exploit a fundamental link between the conformal factor and
the LB eigensystem bymanipulating the conformally deformed LB eigensystem. This allows
us to compute a new basis on the target surface to align the naturally defined LB eigensystem
on the source surface. This leads to a variational method for non-isometric shape matching
which enables us to overcome the natural ambiguities of the LB eigensystem and align the
bases of non-isometric shapes while avoiding the direct computation of conformal maps.

Numerically, we solve our model using a proximal alternating minimization (PAM)
method [1] hybridized with the augmented Lagrangian method [15]. The method is iter-
atively composed of a curvilinear search method on orthogonality constrained manifold [54]
in one direction to compute the conformally deformed LB eigenfunctions and the BFGS [5]
method for the other direction to compute the conformal factor. Theoretically, we guarantee
the local convergence of the proposed algorithm since the objective function and constraints
satisfy the necessary Kurdyka-Lojasiewicz (KL) condition [1]. Comprehensive numerical
results on largely deformed problems, including horse-to-elephant and Faust benchmark
database [7], validate the effectiveness and robustness of our method.
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Related Works 1390 3D nonrigid shape matching approaches are based on analysis of the
LB eigensystem (see [10,23,27,31,33,34,36,37,39,44] and reference therein). The LB eigen-
system is intrinsic and invariant to isomorphism, and also characterizes the local and global
geometry of a manifold. This makes it ideal for many shape processing tasks and many early
works in the field involve directly comparing the LB spectrum of the shapes to determine how
alike shapes are [31,36,37]. More recently, the general concept of functional maps [33] has
played a central role in many new methods that have allowed for the formulation of accurate
correspondence maps. This technique essentially reduces the non-linear transform between
two shapes to a linear transform between their eigensystems. In general, these techniques
work well for isometric and near isometric cases, but can not produce satisfactory results
when the LB eigensystems of shapes are very dissimilar. This occurs when the deformation
between shapes is far from an isometry. To overcome this, the concept of coupled bases (also
known as joint-diagonalization) was introduced for shape processing tasks in [23]. In this
work, the authors propose a variational model to define a shared basis for a pair of shapes
which is ‘nearly harmonic’ on one shape and ’similar’ to the natural LB basis on the other.
This joint optimization allows for much more accurate correspondence, but does not charac-
terize the underlying deformations which lie at the heart of the non-isometric shape matching
problem.

Conformal maps have been widely applied to various shape processing tasks in order
to characterize surface deformations [16,17,19,47]. In one of the first works to combine
spectral and deformation based approaches, [41] presents a scheme to find optimal conformal
deformation to align two shapes in the embedded LB Space. Additionally, the authors present
a general framework for computing LB eigensystems of conformally deformed surfaces as
well as several other imported related quantities. Continuing on this line of work in [21], the
authors use theLBeigenvalues as a tool to guide conformal deformations.Using derivatives of
the LB eigenvalues, they compute optimal conformal metrics which approximate conformal
and topological eigenvalues. In our work, we use the spectral coefficients of known features
to guide the deformation, so rather than align the eigenvalues we align the eigenfunctions.
This allows us to avoid the subspace ambiguity of the LB eigensystem and computational
errors in calculating high-frequency eigenvalues.
Major Contributions We introduce a novel variational basis pursuit model for computing
non-isometric shape correspondences via a conformal deformation of the LB eigensystem.
This model enhances spectral approaches from handling nearly isometric surface registra-
tion to tackling surfaces with large deformed metrics. It naturally combines the conformal
deformation to the LB eigensystem and simultaneously computes surface deformations and
LB eigenbasis which also automatically overcomes the ambiguities of LB eigensystems in
surface registration. We also propose a numerical scheme to solve the variational model with
a local convergence guarantee. Additionally, we introduce a reinitialization scheme to help
tackle local minima and improve the quality of the computed bases. This algorithm success-
fully handles non-isomorphic shape correspondence problems given only a few landmarks
and is shown to be robust to noise and perturbations of landmarks.

The rest of this work is organized as follows: In Sect. 2, we review the theoretical back-
ground of conformal deformations of LB eigensystem and functional maps. After that, we
propose the variational basis pursuit model for conformal deformations of the LB eigen-
system in Sect. 3. In Sect. 4, we discretize the model and develop an optimization scheme
based on PAM to solve the variational problem. Section 5 is further devoted to discussing a
few details of the model and a reinitialization scheme to improve our numerical solver. In
Sect. 6, numerical results on several data sets are presented to show that the model accu-
rately produces point-to-point mappings on non-isometric manifolds with large deformation
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given only a few landmark points. We also show that our approach is robust to both noises
in the underlying manifolds and inaccuracies in the initial landmarks. Furthermore, we test
the model to a benchmark data based to show its effectiveness. Lastly, we conclude our
discussions of this project in Sect. 7.

2 Mathematical Background of LBBP

In this section, we discuss the mathematical background of the proposed method. We first
review a few key properties of the LB eigensystem of a Riemannian surface and discuss
its conformal deformations with respect to deformations of the Riemannian surface metric
[11,20]. After this, we review the functional maps framework in [33] which will be closely
related to our work.

2.1 Conformal Deformation of LB Eeigensystem on Riemannian Surfaces

Given a closed Riemannian surface (M, g), its LB operator in a given local coordinate
system, {xi }i=1,2, is defined as [11,20]:

Δgφ = 1√
G

2∑

i=1

∂

∂xi

⎛

⎝√
G

2∑

j=1

gi j
∂φ

∂x j

⎞

⎠ (1)

where (gi j ) is the inverse of the metric matrix g = (gi j ) and G = det(gi j ). The LB operator
is self-adjoint and elliptic, therefore it has a discrete spectrum. We denote the eigenvalues
of −Δg as 0 = λ0 < λ1 ≤ λ2 ≤ · · · with the corresponding eigenfunctions φ0, φ1, φ2, . . .

satisfying:

− Δg(x)φi (x) = λiφi (x), and
∫

M
φi (x)φ j (x) dvolg(x) = δi j , i, j = 0, 1, 2, . . .(2)

where dvolg(x) is the area element on M with respect to g. It is well-known that Φ =
{φn | n = 0, 1, 2, . . .} forms an orthonormal basis for the real-valued, smooth function
space C∞(M,R) on the manifold (M, g). This basis can be viewed as a generalization
of the Fourier basis from flat space to a differentiable manifold. The LB eigensystem is
invariant under both rigid and nonrigid isometric transformations, and it uniquely determines
a manifold up to isometry [6].

In differential geometry, a conformal map is one which preserves angles locally. Formally,
a conformal map preserves the first fundamental form up to a positive scaling factor. Given
two manifolds (M1, g1) and (M2, g2), a map F : (M1, g1) → (M2, g2) is conformal
if and only if the pullback F∗(g2) = w2g1 with a positive function w2 (written this way
to emphasize positivity). A conformal deformation of a surface is a transformation which
changes the local metric by a positive scaling factor. A well-known result in conformal
geometry is that there exists a conformal map between any two genus-zero surfaces [20].

Given a closed surface (M, g)with conformal deformationw2, the LB eigensystem of the
deformed manifold (M, w2g) can be viewed as a weighted LB eigensystem on the original
surface (M, g). This simple fact intrinsically links the LB eigensystem of the deformed
manifold to a weighed LB eigensystem on the original manifold. It allows us to compute
the LB eigensystem of the conformally deformed manifold without explicitly reconstructing
its embedding or coordinates. This also bridges information about the local deformation
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and global eigensystem, which later becomes the cornerstone of our approach. Formally,
we have:

Proposition 1 Let {φw2

n , λw2

n }∞n=1 be a LB eigensystem of a conformally deformed surface

(M, w2g), then {φw2

n , λw2

n }∞n=1 is equivalent to the following weighted LB eigensystem on
(M, g):

− Δgφi (x) = λw2(x)φi (x),
∫

M
φi (x)φ j (x)w

2(x) dvolg(x) = δi j , (3)

Proof This is because:

Δw2gφ = 1

w2
√
G

2∑

i=1

∂

∂xi

⎛

⎝w2
√
G

2∑

j=1

w−2gi j
∂φ

∂x j

⎞

⎠ = w−2Δgφ

Hence the eigen problem: −Δw2gφ = λφ is equivalent to −Δgφ = λw2φ. Additionally, it
is clear that: dvolw2g = w2 dvolg , since changing the local metric is equivalent to rescaling
the local area element. ��

The problem of finding the LB eigensystem of a Riemannian manifold is equivalent to
finding an orthonormal set of functions Φ = {φi } which have minimal harmonic energy on
the surface. From the above proposition, the LB eigensystem of a conformally deformed
manifold (M, w2g) can be formulated as the following variational problem:

arg min
Φ={φi }

∑

i

∫

M
||∇Mφi (x)||2 dvolg(x), s.t.

∫

M
φi (x)φ j (x)w

2(x) dvolg(x) = δi j

(4)

2.2 Functional Maps

Functional maps were introduced in [33] for isometric and nearly isometric shape corre-
spondence. This method has been shown a very effective tool for various shape processing
tasks [23,33,38]. Here we provide a basic overview of their framework. Consider Rieman-
nian surfaces (M1, g1) and (M2, g2), a smooth bijection F : M1 → M2 induces a linear
transformation between functional spaces of these two manifolds as:

FT : C∞(M1,R) → C∞(M2,R), f 
→ f ◦ F−1

Instead of computing surface map F , the crucial idea of functional map is to compute the
linear map FT between these two functional spaces. After that, the desired surface map can
be encoded by considering images of indicator functions under FT .

Finding a functional map, FT , associated with a map F is equivalent to finding the matrix
representationof FT under afixedorthonormal basis {φi }ofC∞(M1,R) and afixedorthonor-
mal basis {ψi } of C∞(M2,R), respectively. Namely, if we write FT (φi ) = ∑

j c jiψ j , then
any two given corresponding functions f = ∑

i fiφi and g = ∑
j g jψ j under FT can be

represented using C = (ci j ) as:

FT ( f ) = g ⇔ FT
(∑

i

fiφi

)
=

∑

i

fi FT (φi ) =
∑

i

fi
∑

j

c jiψ j

=
∑

j

g jψ j ⇔
∑

i

c ji fi = g j .
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Each entry of thematrix ci j can be found by finding the j th coefficient of FT (φi ) expressed in
the {ψi } coordinate system, i.e. c ji = 〈FT (φi ), ψ j 〉g2 . In practice, one can use two finite sets
of orthonormal functions to approximate C∞(M1,R) and C∞(M2,R), thus the functional
map can be approximated by a finite dimensional matrix. For instance, the first N eigen-
functions of the LB eigensystem is one common choice of such a basis. Then, the problem
of finding the transformation FT can be approximated by the problem of seeking a finite
dimension matrix C . As long as C is computed, the desired map F can be computed through
C operating on indicator functions.

3 Conformal LB Basis Pursuit for Nonisometric Surface Registration

In this section, we propose a LB basis pursuit model for non-isometric surface registration.
On the target surface M2, the model simultaneously finds a conformal deformation and a
conformally deformed LB eigensystem so that the coefficients of the corresponding feature
functions expressed on the deformed LB eigensystem ofM2 are the same as the coefficients
on the fixed source surface M1.

3.1 Variational PDEModel

Given two non-isometric genus-zero Riemannian surfaces (M1, g1) and (M2, g2), we aim at
finding a geometrically meaningful correspondence between these two surfaces. In the case
that M1 and M2 are nearly isometric, there are many successful methods to constructing
maps between M1 and M2 by comparing their isometric invariant features. Using spectral
descriptors from solutions of the LB eigensystem on manifolds is a common way of con-
structing such descriptors [10,31,37,40,50]. As extensions, some other descriptors such as
Heat kernel signature [48], wave kernel signature [3] and optimal spectral descriptors [32]
have also been proposed in the literature. However, most of the existing methods consider
the construction of descriptors for nearly isometric manifolds. Registration methods based
on the existing LB spectral descriptors can not provide satisfactory results for constructing
correspondence between two non-isometric surfaces as their eigensystems are possibly quite
far apart.

We propose to overcome the limitation of the LB spectral descriptors for largely deformed
non-isometric shape registration by considering a continuous deformation of the LB spectral
descriptors. Intuitively, given two non-isometric shapes (M1, g1) and (M2, g2), our idea is
to deform the metric of (M2, g2) such that the deformed surface is isometrically the same as
(M1, g1). Then the LB spectral descriptors can be applied as in isometric shape matching.
However, it is challenging to find an appropriate deformation as the accurate amount of
deformation on each local region of M2 depends exactly on an accurate correspondence
which is precisely the problem we would like to solve.

To tackle this challenge, we propose to simultaneously find an optimal correspondence
and an optimal deformation. More specifically, by fixing the LB eigensystem {Φ,Λ} of
(M1, g1), we seek a map T : M1 → M2 and a conformal factor w2 : M2 → R

+ such that
the LB eigensystem {Φ,Λ} of (M1, g1) can be aligned to the LB eigensystem {Ψ , Θ} of
(M2, w

2g2) via T . This problem can be written as the following variational PDE problem:
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(T ∗, w∗, Ψ ∗) = argmin
T ,w,Ψ ={ψi }Ni=1

N∑

i=1

∫

M1

‖φi − ψi ◦ T ‖2 dM1

+ 1

2

N∑

i=1

∫

M2

‖∇M2ψi‖2 dM2,

s.t.
∫

M2

ψiψ j w2 dM2 = δi j

(5)

where dM1 = dvolg1 , dM2 = dvolg2 and w2dM2 = dvolw2g2 .The first term measures
the alignment of two bases as the correct correspondence should map one LB eigensystem
to another one. The second term together with the constraints solves the first N LB eigen-
functions {ψi } for the deformed manifold (M2, w

2g2) due to the variational problem (4).
Existence of a solution to this variational problem (5) is guaranteed as any two genus-0
surfaces are conformally equivalent and the LB operator is invariant under isometric trans-
formations.

Computationally, the numerical search for T in the mapping space is usually very time-
consuming. Inspired by the idea of functional maps [33] and the coupled quasi-harmonic
bases [23], we choose to represent T in the functional space. Instead of finding T directly,
we look for a basis Ψ = ψi ◦ T = FT (ψi ) which is nearly harmonic on (M2, w

2gM) and
represents the corresponding features with the same coefficients as Φ does. More precisely,
given a set of corresponding features F = { f1, . . . , fk} on M1 and G = {g1, . . . , gk} on
M2, such that fi (x) = gi (y) if x and y are corresponding points on M1 and M2, we can
replace the direct measurement of the basis alignment term with a coefficient matching term.
That is, instead of measuring the alignment of Ψ and Φ via T , we measure how closely
the coefficients for G in the computed basis Ψ match the coefficients for F in the fixed LB
basis Φ. Formally, we measure the coefficient alignment by constructing a matrix of the
coefficients in for F in Φ and for G in Ψ so that the i j th term represents the coefficient
for the i th corresponding function in the j th basis and computing their difference under the
Frobenius norm. With this in mind, we propose the following model:

(w∗, Ψ ∗) = argmin
w,Ψ

r1
2

‖〈F, Φ〉g1 − 〈G, Ψ 〉w2g2‖2F + r2
2

N∑

i=1

∫

M2

‖∇M2ψi‖2dM2,

s.t.
∫

M2

ψiψ j w2dM2 = δi j

(6)

where we write:

〈F, Φ〉g1 =
( ∫

M1

fiφ j dM1

)

i, j=1,2,...,k
and

〈G, Ψ 〉w2g2 =
( ∫

M2

giψ j w2dM2

)

i, j=1,2,...,k
.

In practice we use indicator functions for F and G, but heat signatures [48], wave kernel sig-
natures [3], or any other corresponding functions will also work. OnceΨ ∗ = {ψ∗

1 , . . . , ψ∗
M2

}
is obtained, we can easily compute the functional map as

FT : C∞(M1) → C∞(M2), FT (h) =
∑

i=1

( ∫

M1

hφi dvolg1
)

ψ�
i . (7)
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The main advantage of this model over previous existing methods for shape correspon-
dence is that we are able to employ much more of the information encoded in the differential
structures of M1 and M2 in our algorithm by combining the spectral descriptors and local
deformations. This additional flexibility enables us to compute correspondences between
largely deformed shapes. Information about the conformal deformation of the metric allows
us tofindaharmonic basis on thedeformed shape,meanwhile information about the alignment
of the functional spaces guides our calculation of the conformal deformation. Furthermore
the additional constraint of the feature alignment overcomes ambiguity casued by the fact
that there is no unique conformal deformation between any two genus zero surfaces. To the
best of our knowledge, the link between the conformal factor and deformed LB basis has not
been exploited in such a way. Previous works have used only the conformal factor [16,22]
or only the functional space [23,33] as stand alone tools rather than in concert as we present
here.

3.2 Regularization and Area Constraint

We add harmonic energy term to smooth the conformal deformation and regularize the
problem. This can both increase the speed of the algorithm and improve the quality of the
map, both in terms of the geodesic errors of the final correspondence, and the accuracy of the
resulting conformal factor. This is particularly helpful to handle deformations between the
shapes which are far from isometry and to reduce the required number of features. Rather
than smooth the conformal factor w2 directly, we instead add the harmonic energy of w to
the objective function. Using w instead of w2 allows for easier analytic computation of the
derivatives and a more efficient algorithm. In cases where the deformations are likely to be
highly localized, this term may be omitted.

Lastly, we add an area preservation constraint to our model. That is, we would like the
final deformed shape to be of the same size as the one we are matching it to. To enforce this,
we mandate that the deformed manifold have the same surface area as the original manifold.
This eliminates any scaling ambiguity. Then the final version of our model can be stated as:

(w∗, Ψ ∗) = argmin
w,Ψ ={ψi }Ni=1

r1
2

‖〈F, Φ〉g1 − 〈G, Ψ 〉w2g2‖2F + r2
2

N∑

i=1

∫

M2

‖∇M2ψi‖2dM2

+ r3
2

∫

M2

||∇M2w||2dM2,

s.t.
∫

M2

ψiψ j w2dM2 = δi j and Area(M1)g1 = Area(M2)w2g2

(8)

where Area(M1)g1 = ∫
M1

1dM1 and Area(M2)g2 = ∫
M2

w2dM2

4 Discretization and Numerical Algorithms

In this section, we describe a discretization of the proposed variational model (8) using on
triangular representation of surfaces. After that, we design a numerical algorithm to solve
the proposed model based on proximal alternating minimization method.
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4.1 Discretization of the LBBPModel

The main method we use to discretize surfaces and differential operators is based on a finite
element scheme similar to that developed in [13,37,48]. Let {pi }ni=1 be a set of vertices
sampled on the manifold M. A surface can be discretized as a triple {P, E, T } made of
vertices (P), connected by edges (E) which form triangular faces (T ). We define the first
ring of pi , the set of all triangles which contain pi as N (pi ). For each edge Ei j connecting
points pi and p j , we define the angles opposite Ei j as angles αi j and βi j .

We define a diagonal mass matrix,M, a n × n positive definite matrix with entries given
by:

Mi i = 1

3

∑

τ∈N (pi )

Area(τ )

We use this simplified version, rather than the standard finite element discretization, for
convenience in order to avoid expensive factorizations later in our algorithm. We remark
that the standard version can also be used in our algorithm at the cost of speed. The surface
area can be approximated as Area(M) ≈ ∑n

i=1Mi i . Similarly, given a function f on M
with discretization f : P → R, we have the approximation

∫
M f (x) dM ≈ 1�

M f =∑n
i=1 fiMi i . The stiffness matrix, S, is a n×n symmetric positive semidefinite matrix given

by:

Si j =
∑

τ

∫

τ

∇τ ei · ∇τ e j = −1

2
[cot αi j (pi ) + cot βi j (pi )]

where ei is a linear pyramid function which is 1 at pi and zero elsewhere. These mass and
stiffness matrices can be used to approximate the LB eigenvalue problem as: S f = λM f .

We remark that one can also work with point clouds representation instead of triangulated
meshes. These definitions for the stiffness and mass matrices can be approximated by the
point clouds method discussed in [30]. The only change wewould need to make is to use only
the diagonal entries of the version of the mass matrixM proposed in their paper to populate
the strictly diagonal version employed here.

Suppose two surfaces (M1, g1) and (M2, g2) are represented by triangular meshes with
the same number of points1. We denote M1,S1 ∈ R

n×n as the mass and stiffness matrices
of M1 and let Φ ∈ R

n×k be the first k LB eigenfunctions of M1, and F ∈ R
n×� be �

feature functions. Similarly, we write M2,S2 as the mass and stiffness matrices of M2, Ψ
as the first k LB eigenfunctions of M2 (under w2g2) that we would like approximate, and
G as � corresponding feature functions, ordered the same as in F . We also write w2 as the
discretized conformal factor on M2 and diag(w) as a diagonal matrix.

Therefore, the discretized optimization model (6) can be written as:

(w∗, Ψ ∗) = argmin
w,Ψ

r1
2

‖F�
M2Φ − G�diag(w)M2diag(w)Ψ ‖2F

+ r2
2
tr(Ψ �

S2Ψ ) + r3
2

w�
S2w,

s.t. Ψ �diag(w)M2diag(w)Ψ = Ik, and w�
M2w = A

(9)

Here Ik is the k × k identity matrix and A = ∑n
i=1 M1(i, i). SinceM2 is symmetric positive

definite and diagonal, we can easily calculate the matrix decomposition M2 = L
�
L. If we

1 In fact, we do not need to require that the surfaces have the same number of points, but doing so for now
will allow for more convenient notation.
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also substitute Ψ̄ = L diag(w)Ψ , then (9) can be written as:

(w∗, Ψ̄ ∗) = argmin
w,Ψ̄

E(w, Ψ̄ ) = r1
2

‖F�
M1Φ − G�diag(w)L�Ψ̄ ‖2F

+ r2
2
tr(Ψ̄ �

S̄2(w)Ψ̄ ) + r3
2

w�
S2w,

s.t. Ψ̄ �Ψ̄ = Ik and w�
M2w = A

(10)

where S̄2(w) = (L�)−1diag(w)−1
S2diag(w)−1

L
−1. Note that this parameterization of the

problem moves the conformal factor w out of the orthogonality constraint (and into S̄). We
will soon see that, for any fixed Ψ̄ , this will make the problem for w easier to solve.

4.2 Numerical Optimization of LBBPModel

The two variables w and Ψ̄ in (10) make the optimization problem different from orthogo-
nality constrained problems solved by nonconvex alternating direction method of multipliers
(ADMM) methods considered in [12,24,26,53]. Rather than solve this problem directly for
Ψ̄ and w simultaneously by directly minimizing (10), we employ a method based on the
framework of proximal alternating minimization (PAM) method [1].

Let S = {Ψ̄ ∈ R
n×k | Ψ̄ �Ψ̄ = Ik} and W = {w ∈ R

n | w�
M2w = A}. We also define

indicator functions

δS(x) =
{

0, if x ∈ S
+∞, otherwise

, δW (x) =
{

0, if x ∈ W
+∞, otherwise

(11)

Then it is clear that δS and δW are semi-algebraic functions as S and W are zero sets of
polynomial functions [2]. Therefore, we write an equivalent form of (10) as

(w∗, Ψ̄ ∗) = argmin
w,Ψ̄

E(w, Ψ̄ ) + δS(Ψ̄ ) + δW (w). (12)

Using the PAM method, we have the following iterative scheme
⎧
⎪⎪⎨

⎪⎪⎩

Ψ̄ j+1 = argmin
Ψ̄

E(w j , Ψ̄ ) + 1

2η
||Ψ̄ − Ψ̄ j ||2, s.t. Ψ̄ �Ψ̄ = Ik

w j+1 = argmin
w

E(w, Ψ̄ j+1) + 1

2η
||w − w j ||2, s.t. w�

M2w = A
(13)

Here η is a step size parameter. These proximal terms penalizes large step sizes in and
prevents the algorithm from “jumping” between multiple local minimums. The addition of
these proximity terms allows us to analyze the proposed method in the framework of the
PAM algorithm [1]. It has been shown in [1,2,8] that such proximal terms can guarantee
the solutions generated at each step converge to a critical point of the objective function.
Formally, we have the following convergence theorem in accordance with Theorem 9 in [1].

Theorem 1 Let {w j , Ψ̄ j } be the sequence produced by (13), then the following statements
hold:

1. E(w j+1, Ψ̄ j+1) + 1

2η
||Ψ̄ j+1 − Ψ̄ j ||2 + 1

2η
||w j+1 − w j ||2 ≤ E(w j , Ψ̄ j ), ∀ j ≥ 0.

2.
∞∑

j=1

(‖w j − w j−1‖2 + ‖Ψ̄ j − Ψ̄ j−1‖2) < ∞.

3. {w j , Ψ̄ j } converges to a critical point of E(w, Ψ̄ ).
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Proof To prove this, we show that our model obeys the conditions required for local conver-
gence of PAM in [1]. To do so, we need:

(1) Terms which contain only one primal variable are bounded below and lower semiconti-
nous.

(2) Terms which contain both variables are C1 and have a locally Lipschitz continuous
gradients.

(3) The entire objective satisfies the Kurdyka–Lojasiewicz (KL) property.
It is immediately clear that that the first two properties are satisfied by our objective.
Furthermore, it is known that all semi-algebraic functions have KL property [1,2,12].
Our objective is semi-algebraic so we can guarantee local convergence of the proposed
optimization method.

��

We use the augmented Lagrangian method to solve the constrained sub-optimization
problem for w in (13). For convenience, let’s write

L(Ψ̄ , w; b) = E(w, Ψ̄ ) + r4
2

(
w�

M2w − A + b
)2

(14)

Overall, we solve (10) in the following way by hybridizing PAM with the augmented
Lagrangian method.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ψ̄ j+1 = argmin
Ψ̄

E(w j , Ψ̄ ) + 1

2η
||Ψ̄ − Ψ̄ j ||2 s.t. Ψ̄ �Ψ̄ = Ik

w j+1 ←
⎧
⎨

⎩
w j+1,s+1 = argmin

w
L(w, Ψ̄ j+1; b j+1,s) + 1

2η
||w − w j ||2

b j+1,s+1 = b j+1,s + (w j+1,s+1)�M2w
j+1,s+1 − A.

(15)

The subproblems for minimizing Ψ̄ require a some special consideration. The main
challenge this first sub-optimization problem is the nonconvex orthogonality constraints.
Recently, several approaches have been developed to solve orthogonally constrained prob-
lems in feasible or infeasible ways [12,24,26,52,54]. For our implementation, we have chosen
the feasible approach developed in [54] which uses a curvilinear method based on the Cayley
transform together with Barzilai-Bowein step size line search. This method updates variables
along a geodesic curve on the Stiefel manifold, a geometric description of the orthogonality.
It preserves the orthogonality constraints and guarantees convergence to critical points in our
scenario. More precisely, given a feasible starting point Ψ̄ s and the coordinate gradient Y s

at this point, the update scheme is as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ds = Y s(Ψ̄ s)� − Ψ̄ s(Y s)�

Qs = (I + dt

2
Ds)−1(I − dt

2
Ds)

Ψ̄ s+1 = QsΨ̄ s

(16)

Here dt is a step size parameter chosen by the Barzilai–Bowein criteria developed in [4].
Although convergence to a global minimum is not guaranteed, this method has proven effec-
tive for our purposes and only requires the computation of the objective function and its

123



30 Page 12 of 24 Journal of Scientific Computing (2021) 86 :30

coordinate gradient Y s with respect to Ψ̄ at each step provided by:

∇Ψ̄

(
E(w, Ψ̄ ) + 1

2η
||Ψ̄ − Ψ̄ j ||2

)
= −r1G

�diag(w)L�(
F�

M1Φ − G�diag(w)L�Ψ̄
)

+ r2S̄2Ψ̄ + 1

η
(Ψ − Ψ̄ j )

(17)

The subproblem forw (as written in (15)), on the other hand is smooth and unconstrained.
For our implementation, we use the well known quasi-Newton BFGS algorithm [5]. The
gradient of objective function with respect to w can be written as:

∇w

(
L(w, Ψ̄ ; b) + 1

2η
||w − w j ||2

)
= r1 diag

(
G�(F�

M1Φ − GwL
�Ψ̄ ))Ψ̄ �

L

)

+ r2 diag
(
Ψ Ψ �

Sw−1
)

� w−2

+ r3S2w + r4
(
w�

M2w − A + b
)
M2w + 1

η
(w − w j )

(18)

where diag
( · )

denotes the diagonal of the matrix, � signifies element-wise Hadamard
product and w−2 is the inverse of diagonal matrix w multiplied with itself.

4.3 Computation of Point-to-Point Map

One naive way to compute a point-to-point map is to find the functional map by using the final
deformed manifold and its LB eigensystem with respect to the deforamtion. However, this
may not work well because of the ambiguity of LB eigensystem. Additional effort is needed
to handle possible ambiguity of LB eigensystem such as the method discussed in [27]. As an
advantage of the proposed method, the resulting basis generated by the proposed algorithm
(recovered as Ψ ∗ = A−1wΨ̄ ) to will naturally correct ambiguities of LB eigensystem.
This is similar to the method discussed in [23]. Thus, we can compute the functional map
as FT (h) = ∑k

i=1(
∫
M1

hφi dM1)ψ
�
i = Ψ Φ�

M1h. However, this method is still quite
inefficient and may be sensitive to small errors in the resulting basis.

Instead, after we recover the final basis from our method, we can compute the point-to-
point map between the two surfaces by comparing the values of each of the basis functions.
This is essentially the same scheme presented in [33], but applied to our new basis. We use
a KNN search (with K = 1) to match rows of Φ and Ψ . This requires a search of n points in
k dimension, but is much more efficient and accurate than using the delta function approach
described in the previous paragraph. Other methods used to refine functional maps such as
[38] can be applied in this setting without changes. We summarize our numerical method for
nonisometric surface registration as Algorithm 1.

5 Discussion

In this section, we discus our choice of feature functions, as well as ways to overcome
problems which may arise from the non-convexity of the proposed optimization problem.

123



Journal of Scientific Computing (2021) 86 :30 Page 13 of 24 30

Algorithm 1: LB Basis Pursuit (LBBP) Algorithm.
Input: Triangulated surfaces M1 andM2 and list of known corresponding functions F and G.
Output: Ψ ∗, w, point-to-point map

1 Compute stiffness and mass matrices for each surface: M1,M2,S1, S2;
2 Use stiffness and mass to calculate LBO eigensystems: M1Φ = λS1Φ;

3 Initialize: Let Ψ 0 be the LB eigenfunctions of target surface: M2Ψ = λS2Ψ ;

4 Compute Ψ̄ 0 = LwΨ ;
5 while not converged do

6 Update Ψ̄ j+1 = argmin
Ψ̄

E(w j , Ψ̄ ) + 1

2η
||Ψ̄ − Ψ̄ j ||2 using the curvilinear search algorithm (16);

7 while s ≤ � do

8 Update w j+1,s = argmin
w

L(w, Ψ̄ j+1; b j+1,s ) + 1

2η
||w − w j ||2 using BFGS;

9 b j+1,s+1 = b j+1,s + (w j+1)�M2w
j+1 − A;

10 w j+1 = w j+1,s ;

11 Recover Ψ ∗ = wL
−1Ψ̄ ;

12 Compute correspondence map with KNN-search of coefficient space

5.1 Choice of Feature Functions

The simplest, and in many applications, most natural features to choose for F and G are
indicator functions for known landmarks. Let {x1i }ki=1 be a set of points on M1 and {x2i }ki=1
be a corresponding set on M2. We can view each fi and gi as a δ-function on M1 and M2

respectively to indicate these landmarks.
Another option is to use heat diffusion functions. Given a corresponding pair of points

we can use delta functions to define an initial condition and solve the heat diffusion problem
∂u

∂t
(x) = Δu(x, t) using the Crank–Nicholson scheme

(
M + dt

2
S

)
ui+1 =

(
M − dt

2
S

)
ui

where dt is a step size parameter. By taking “snap shots” (solutions of the equation for
various t values) of u at different time values, we can generate multiple functions from
a single corresponding pair. This choice allows for a multi-scale selection of features and
often results in better correspondences, although it is computationally more expensive. Also,
since the heat diffusion is sensitive to local geometry, it is often necessary to recompute
the diffusion with respect to the conformal factor. This can be included as a step in the
reinitialization scheme which will be discussed in the next section.

Thewave kernel signature (WKS) has also been used for characterizing points on non-rigid
three dimensional shapes [3]. These functions are defined as the solutions to the Schrodinger

equation:
∂u

∂t
(x) = iΔu(x, t) at different points on the surface. Given two corresponding

points we can solve the equation at each point and use these as our corresponding functions.
However, the solutions to these equations are highly dependent on both local and global
geometries of the manifold. Because of this, they are only suitable for shape correspondence
when the shapes are very similar and, in general, do not work well for non-nearly-isometric
problems. The same problem exists for heat diffusion features, however, in general heat
diffusion tends to be much more stable with respect to local deformations.

SHOT features [49] are also a popular choice of feature functions for shape processing
tasks. For nearly isometric shapes these descriptors work well, but since they are not intrin-
sically defined they do not work well with the re-initialization scheme detailed in the next
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section. Updating these features with respect to a conformal deformation requires computing
the deformed embedding, which the rest of our method explicitly avoids.

5.2 Reinitialization Schemes

Although we have shown that the proposed PAM based optimization algorithm converges to
a critical point of the objective function, it is still challenging to achieve a global optimum
as the problem is non-convex. In practice, we have found that the numerical results can
often be improved in terms of both accuracy and speed of computation by adding a simple
reinitialization scheme to our algorithm. The motivation for the scheme comes from an
observation that if we know the exact conformal deformation w2 and the source surface
has a simple eigensystem (no repeated eigenvalues), then the LB eigensystem of (M1, g1)
is the same as the LB eigensystem of (M2, w

2g2) up to a change in sign. With this in
mind, we propose to reinitialize the Ψ problem by resetting Ψ to be the solution to weighed
eigenproblem S2Ψ = Λdiag(w2)M2Ψ . We remark that this reinitialization method to
achieve an optimizer closer to the global one is empirical, although it is based on the geometric
intuition.

Computationally, to avoid introducing ambiguities ofLBeigensystembycalling a standard
eigen-solvers, we solve a discrete counterpart to (4) as min

Ψ
tr(Ψ̄ �

S̄2(w)Ψ̄ ), s.t. Ψ̄ �Ψ̄ = I

based on the curvilinear search method discussed in Sect. 4.2 and using the current eigen-
system, Ψ̄ j+1, as an initial guess for this problem. By using Ψ̄ j+1 as warm start for the
eigenproblem we can avoid re-introducing sign or multiplicity ambiguities into the problem
which our algorithm has already resolved.

When using heat diffusion, wavelet kernel signatures, or any other functions which are
defined based on local geometry as the input feature functions, then we also need to recalcu-
late these functions with respect to the conformally deformed metric. For example, if we are
using heat diffusions, we can recompute the heat diffusion functions on the deformed man-
ifold (M2, w

2g2) by multiplying the mass matrix by w2 in the Crank–Nicholson scheme:(
M2diag(w2)+ dt

2 S2

)
ui+1 =

(
M2diag(w2)− dt

2 S2

)
ui , A similar re-computation technique

can be applied to wave kernel signatures, or any other features which are computed using
finite element-like operators.

5.3 Sub-sampling Scheme

The most computationally demanding step of our algorithm is the update of Ψ̄ . As a result,
the time complexity of our algorithm depends on the number of points in the discretization
of M2. However, the overall geometry of the shape can often be closely estimated by a
relatively small subset of the points contained in a triangulated mesh or point cloud. Inspired
by this observation, we propose a warm start method in which we solve a smaller problem
on a subset of the full mesh and use it as a warm start for the full problem. One way to do this
would be to sub-sample the mesh and compute a new (local) triangulation [30]. However, the
re-meshing process can be computationally expensive. Therefore, we instead seek a method
to approximate Ψ̄ on the entire mesh, using only the sub-sampled points.

Given a mesh M with n points, we first compute a sub-sample of points M̄ with n̄ < n
points whichmost articulately represents the original mesh. To do so, we begin with a random
seed point and compute the point on themesh which has the greatest (geodesic) distance from

123



Journal of Scientific Computing (2021) 86 :30 Page 15 of 24 30

it and include this point in M̄ . Then we iteratively add points to M̄ by finding the point on
M which has the greatest minimal distance to any point already included in M̄ .

Algorithm 2: Subsampling and Warm Start Algorithm.
Input: Set of vertices and faces of source (M1) and target (M2) manifolds, number of subsample

points n̄, list of known corresponding functions F and G, Stiffness and Mass Matrices
S1, S2,M1,M2

Output: Ψ ∗, w∗,
1 Initialize: Let Ψ be the LBO eigenfunctions of target surface: M2Ψ = λS2Ψ ;
2 Compute downsampled points to represents M1;
3 Compute down sampled bases and representation of F ;
4 Use Algorithm 1 to solve (20) for D∗,C∗;
5 Compute Ψ̄ = ∑n̄

i=1 Ci ui and w = ∑n̄
i=1 Diui ;

To approximate a function f defined on M with only n̄ variables, we define linear projec-
tion and reconstruction operations to down-sample the problem. One naive idea would be to
restrict the values of f to M̄ and use linear interpolation in the other direction. However, this
fails to capture many of the details of functions in the projection step, and doesn’t respect
the local geometry in the reconstruction step. Instead, we use a new approximate basis with
elements, U = {ui : M → R}n̄i=1, created by diffusing a delta function on M , centered at
each point on M̄ for a fixed time t . The resulting basis contains n̄ elements. We define a
projection operation and reconstruction operations as

Proj( f ) := (U�
MU )−1U�

M f = f̄

Recon( f̄ ) := f̄ U
(19)

We can then use this new approximate basis to reduce the dimension of the optimization
problem and solve the simplified problem very quickly. We consider the projection of Ψ

and w onto the {ui } set which can be represented as the coefficients Ci = 〈Ψ̄ , ui 〉 and
D = {〈w, ui 〉}i . Plugging these into our model we get:

(D∗,C∗) = argmin
D,C

E(D,C) = r1
2

‖F�
M1Φ − G�diag(DU )L�

UC‖2F
+ r2

2
tr(C�

S̄U2C) + r3
2
D�

SU2D,

s.t. C�U�UC = In and w�
Mu2w = A

(20)

Where MU2 = U�
M1U , LU = U�

L, S̄U2 = U�
S̄2Uand SU2 = U�

S2U can all be
precomputed. Note that if {ui }n̄i=1 is, in fact, a tight frame then (20) is the same as (8). This
problem can be solved with algorithm (1), but has significantly fewer variables then (8). By
using using the elongation of the solution to (20) as an initial guess for Ψ̄ and w we can
significantly decrease the time needed to solve the full model.

With this warm start algorithm 2 and the re-initialization procedure described in Sect. 5.2,
we propose a modified version of our numerical solver as Algorithm 3.
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Algorithm 3: LB Basis Pursuit Algorithm with warm start and reinitialization.
Input: Set of vertices and faces of source (M1) and target (M2) manifolds and list of known

corresponding functions F and G
Output: Ψ ∗, w∗, point-to-point correspondence map

1 Compute stiffness and mass matrices for each surface: M1,M2,S1, S2;
2 Use stiffness and mass to calculate LBO eigensystems: M1Φ = λS1Φ;

3 Compute corresponding feature functions F and G onM1 andM2 respectively;

4 Initialize: Let Ψ 0 be the LBO eigenfunctions of target surface: M2Ψ = λS2Ψ ;
5 Compute down sampled bases through downsample and heat diffusion;

6 Compute Ψ̄ 0 and w̄0 through warm start through Algorithm 2;
7 while number of re-initialization steps complete < max number of re-initializations do

8 Update Ψ̄ j+1 = argmin
Ψ̄

E(w j , Ψ̄ ) + 1

2η
||Ψ̄ − Ψ̄ j ||2 using the curvilinear search algorithm (16);

9 while s ≤ � do

10 Update w j+1,s = argmin
w

L(w, Ψ̄ j+1; b j+1,s ) + 1

2η
||w − w j ||2 using BFGS;

11 b j+1,s+1 = b j+1,s + (w j+1)�M2w
j+1 − A;

12 w j+1 = w j+1,l ;
13 if update < tolerance then
14 Re-Initialize Ψ̄ as argmin

Ψ̄
tr(Ψ̄ �

S̄2(w
j+1)Ψ̄ ), s.t. Ψ̄ �

M2Ψ̄ = I;

15 if Using feature functions which depend on local geometry then
16 Re-Compute features using M2diag(w2) as Mass matrix

17 Compute correspondence map with KNN-search of coefficient space

6 Numerical Experiments

In this section, we apply our algorithm to several problems. We begin by working on a
typical non-isomorphic matching problem for a pair of shapes with a large deformation: a
horse and an elephant. We preform tests showing the effectiveness of our approach given
different amounts of landmark points, and demonstrate robustness with respect to noise both
on the manifold and in the initial correspondences. We further conduct experiments on the
Faust benchmark data set [7] and conduct comparisons with several existing methods. All
numerical experiments are implemented in MATLAB on a PC with a 32GB RAM and two
2.6GHz CPUs.

In all of our experiments, we use randomly chosen correspondence points to create indi-
cator functions as the input features. The first 100 non-trivial LB eigenfunctions are chosen
to calculate the coefficient matching term, as well as for computing the final correspondence.
We set r1 = 10, r2 = 10, r3 = 1, r4 = .01, � = 1 for all experiments, even though the
data sets and experimental conditions are very different. This choice of r1 and r2 allows the
coefficient matching terms and eigenfunction term to balance each other out, with the choice
of r3 still being large enough to preserve the area constraint. r4 is chosen to be small so that
the harmonic energy, which tends to be quite large, does not dominate the others. In general,
we have observed that our algorithm is quite robust to different choices of parameters.

6.1 A Large Deformation Pair: Horse to Elephant

The first experiment is designed to test the effectiveness of the proposed method on a pair
of shapes with large deformation. Each surface, a horse and an elephant, is represented
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Fig. 1 Left top: The coefficientmatching termmeasures: ‖F�
M1Φ−G�diag(w)L�Ψ̄ ‖F . The eigen problem

is: (Ψ �
S2Ψ ) and the harmonic energy measures: w�

S2w and the total energy is the entire model derived in
(10). Left bottom: Resulting and exact conformal factors. Right panel: First two rows: the first 9 non-trivial
natural LB eigenfunctions of manifolds. The third row: Results from the proposed basis pursuit algorithm.
The fourth row: Ground truth. Left: convergence curves of our method

by a mesh with 1200 points. One of the challenges in this pair is the large deformations
in the sharp corner and elongated regions such as ears, teeth, noses and tails on the horse
and elephant surfaces. Those regions make the registration problem very challenging. To
demonstrate the efficacy of our approach, we perform this experiment under several different
conditions. Our algorithm produces excellent results given a sufficient number of landmarks,
and it still finds reliable correspondences given limited landmarks. We also show that using
our reinitialization scheme (Algorithm 3) produces a more accurate map than without this
extra step (Algorithm 1).
Qualitative Illustration The left panel of Fig. 1 shows the convergence of the objective
function and illustrates the effectiveness of the reinitialization step. We plot the three terms
in the objective function separately as well as the overall objective. We typically observe
that the convergence curves in the coefficient matching and total energy flatten quickly as
the algorithm tends to a local minimizer. More importantly, each reinitialization significantly
reduces the objective function. We further demonstrate the validity of our algorithm by
examining the resulting conformal factor. In the left bottom image of Fig. 1, we show the
conformal factor calculated by our algorithm as well as the ground truth. The ground truth
conformal factor is calculated by using the ground truth point-to-point map to compare the
area of the first ring structure around each point on the source and target surface respectively.
Here we plot u wherew2 = e2u for better visualization. From this figure we can confirm that
the produced conformal factor from our algorithm is very close to the true factor.

Since the elephant and horse are dramatically different shapes, the large dissimilarity of
their natural LB eigenfunctions (first two rows of the right panel in Fig. 1) cannot be expected
to produce meaningful correspondence. However, our model overcomes this by capturing
the conformal deformation between the surfaces. As results plotted in the third of the right
panel in Fig. 1, the basis computed for the horse (target surface) by our model is consistent
with the LB eigenfunctions of the elephant (source surface).We further compare these results
with the ground truth (showed in fourth row of the right panel in Fig. 1) which is calculated
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Fig. 2 Top left: 9th, 11th and 44th natural LB eigenfunctions on source. Bottom left: Results and ground truth.
Middle: alignment of the LB eigenvalues. Right: visualization of point-to-point map and texture transfer

through the push forward of the LB eigenfunction of the source to the target surface using the
ground truth map. This comparison also confirms that functions obtained from the proposed
model produces satisfactory results. Moreover, We highlight the consistency of the produced
bases on several highly distorted regions including ears, nose/trunk and the tails in the left
picture of Fig. 2. All of these results visually illustrate that our approach produces a new
basis on the target that aligns very closely to the natural LB basis on the sources manifold.
As an additional evidence, the middle picture in Fig. 2 shows that the eigenvalues of the
deformed eigenesytem are much closer to the eigenvalues of the source surface than they are
to the target. Although these values are never explicitly taken into account in our numerical
algorithm, it is not surprising that aligning the eigenfunctions also aligns their eigenvalues.
This close alignment of the eigensystems is the reason that accurate registration results can
be obtained using the new basis. Finally, we visually show the obtained high quality point-
to-point correspondence based on the resulting basis.
Quantitative Illustration Next, we quantitatively demonstrate the dependence of the perfor-
mance on the number of given landmarks, the effectiveness of the sub-sampling scheme, the
necessity of using conformal deformation as well as the robustness of our method to noisy
data and landmark perturbation. To quantitatively measure the mapping quality, we calculate
the normalized geodesic distance from the point on the target surface produced by the map to
ground truth following the Princeton Benchmark method [22]. These distances are collected
into a cumulative error plot where the y-axis measures the percent of points whose distances
are less than or equal to the x-axis value.

The left picture in Fig. 3 shows geodesic errors of correspondence using 100, 75, 50 and 25
known landmark points with and without our reinitialization scheme. It is reasonable to see
that the algorithm with more landmarks provide better numerical performance. For example,
in the case of 100 known landmarks, our algorithm matches over 70% of the points to exact
correct point and more than 98% within a 5% error margin. This is certain more accurate
than the correspondence obtained from 25 landmark points although it still provides a very
good corresponding result.

To illustrate the effectiveness of the sub-sampling scheme presented in Sect. 5.3, we repeat
the previous experiment twice more, both with and without the sub-sampling warm start, and
manually stop the algorithmafter 500 iterations. Themiddle picture in Fig.3 shows the quality
of the correspondences produced by the initial basis, the one produced by the subsampling
scheme after 250 iterations, the basis produced by algorithms after 250 full iterations using
the sub-sampled scheme as a warm start, one produced by the algorithm using 500 iterations
of the full scheme without using the warm start and finally results after 1500 and 2500
iterations with and without the warm start. From this figure we observe that the warm start
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Fig. 3 Left: Normalized geodesic errors for various numbers of randomly selected landmarks with andwithout
reinitialization. Middle: Quality of correspondences produced at various stages of our algorithm, with and
without warm start (WS). Right: Comparisons of results obtained from basis pursuit without deformation,
with oracle deformation and our LBBP method

Fig. 4 Left to right: Point-to-point maps for noisy data, normalized geodesic errors for noisy data, initial
perturbations to landmarks and final error of landmarks, and final registration geodesic errors for all points
using perturbed landmarks

routine can significantly speed up the basis pursuit by providing a good initialization to the
full algorithm.

To show the importance of understanding the deformation between surfaces when using
a spectral based method, we run two tests for finding correspondence between horse and
elephant using LB basis pursuit algorithm but freezing the conformal deformation. We first
set the conformal factor to be 1 everywhere. This mean no deformation is imposed in the
procedure of theLBbasis pursuit. Next,we use the exact deformation,which can be computed
as a priori using the exact correspondence. The right image in Fig. 3 shows the geodesic
errors of the correspondence produced by the optimized bases when using each of these fixed
conformal factors, as well as the result of our algorithm referred as LBBP. Although, our
algorithm does not achieve the same performance as using the oracle deformation (which is
not obtainable in practice), we vastly outperform the non-deformation case.

Next, we demonstrate that our algorithm enjoys robustness and flexibility of handling
noisy data. Since noise on the surfaces can be viewed as local deformations, our algorithm is
automatically robust to geometric noise. Medical scans often have noise resulting from the
imaging instruments and manual segmentation. Our model can solve registration problems
for this type of data. To demonstrate this, we generate noisy data by adding noise along the
normal of each point. The left two pictures in Fig. 4 shows the results of two experiments: a
noisy elephant to an elephant and a noisy horse to an elephant. We observe that our algorithm
still produces very accurate results despite this noise.

We also demonstrate the robustness of our algorithm to landmark perturbations. Working
again on the horse and elephant, we test cases where the landmarks are perturbed to another
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Fig. 5 Geodesic errors for randomly selected and least isomorphic pairs

vertex within the first ring. The magnitude of these perturbations depends on the uniformity
and meshing of the surface. The second most right picture in Fig. 4 shows the size of the
perturbations of the landmarks points as well as the error in their final mapping. The most
right picture in Fig. 4 compares the geodesic error of the for all points when 25%, 50% and
100% of the landmarks points are perturbed. From these tests we conclude that our method
can successfully reduce the error introduced in the perturbed landmarks and still produce
accurate maps in the presence of perturbations.

6.2 Benchmark test using the Faust Data set

In our next experiment, we test our algorithm on a larger data set to demonstrate its effective-
ness and robustness on a variety of shapes. The Faust dataset is a collection of 100 3D shapes
composed of 10 real individuals in 10 distinct poses. Instead of testing all 9900 possible
correspondences be each of the pairs, we select two smaller subsets of shapes to formulate
to smaller test sets. For the first test, we randomly choose 100 pairs of shapes and compute
the correspondences. In the second test, we choose l0 scans and ensure that each individual
and each pose is represented exactly once in the test set and compute all 90 correspondence
maps (Fig. 5) [7]. This selection criteria ensures that no pairs are from the same the pose
or individual. The bottom left graph in Fig. 5 shows the average error of the mappings for
each of these tests. We see that our algorithm again computes very accurate correspondences
for both tests. Furthermore, we see that the results for the harder test set are very close to
the results for the first test set. This indicates that our approach can effectively handle non-
isometric matching problems with large deformations. For each of these test we employ our
sub-sampling scheme outlined in Algorithm 2, using a subsample of 1000 points to compute
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Fig. 6 Left: Comparison of methods on non-isometric horse-to-elephant. Right: Comparison of methods on
FAUST data set

a basis which we use as a warm start for the dense meshes. Each pair took roughly 45 min to
compute.

6.3 Comparisons with Other Nonisometric Techniques

Figure 6 shows the a comparison our algorithm and that of the kernel matching [52], coupled
quasi-harmonic basis [23], basis matching (no deformation in 6.2) and functional maps [33]
approaches on the non-isometric horse to elephant problem and on a nearly isometric problem
taken from the FAUST dataset. For each test the algorithms used 100 randomly generate heat
diffusion functions as corresponding features and solve the minimization problem until the
relative objective function update falls below 10e−6.

The horse-to-elephant test has a much larger deformation, but is also much less densely
meshed.As a result the algorithmswhich are able to encapsulate the change in local geometry,
kernel matching and our approach perform much better than methods developed for near-
isometric surfaces. On the other hand the problem taken from the Faust data set has a much
smaller deformation, so methods which rely on the native eigensystems being closely aligned
(functional maps and coupled basis) perform much better on this test then on the horse-
to-elephant case. All of these comparisons show that our method produces more accurate
mapping than those from the state-of-the-art methods.

7 Conclusions

In this work, we have developed a variation method for computing correspondence between
pairs of largely deformed non-isometric manifolds. Our approach considers conformal defor-
mation of the manifolds and combines with traditional LB spectral theory. This method
naturally connects metric deformations to the spectrum of the manifold and therefore allows
us to register manifolds with large deformations. Our approach simultaneously aligns the
bases of the manifolds and computes a conformal deformation without having to explicitly
reconstruct the deformed manifolds. We have also proposed an efficient, locally convergent
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method to solve this model based on the PAM framework. Finally, we have conducted inten-
sive numerical experiments to demonstrate the effectiveness and robustness of our methods.
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