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Conventional Mean-field games/control study the behavior of a large number of rational 
agents moving in Euclidean spaces. In this work, we explore the mean-field games on 
Riemannian manifolds. We formulate the mean-field game Nash Equilibrium on manifolds. 
We also establish the equivalence between the PDE system and the optimality conditions of 
the associated variational form on manifolds. Based on the triangular mesh representation 
of two-dimensional manifolds, we design a proximal gradient method for variational mean-
field games. Our comprehensive numerical experiments on various manifolds illustrate the 
effectiveness and flexibility of the proposed model and numerical methods.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Mean-field games (MFG) [27,28,31] study the behavior of a large number of rational agents in a non-cooperative game. 
It has wide applications in various fields, such as economics [1,23], engineering [18,50] as well as machine learning and 
reinforcement learning [16,49,51,19]. Recently, mean field control problems have been extended into chemistry, biology, 
pandemic control, traffic flow models, and social dynamics [35–38,22]. An important task in mean-field games is to study 
the flow of all the agents in the state space and to understand the behavior of mean-field Nash equilibrium.

Conventional studies of MFG focus on the choice of the state space as a Euclidean flat domain, for instance, [0, 1]d

with periodic boundary conditions. Besides research on Euclidean flat domains, there are existing works focusing MFGs on 
graphs [21] or graphon state spaces [24,26,12]. However, such spaces may not be adequate to reflect the metric structure of 
state spaces in many applications. For instance, the problems of population flows or resource distributions on the Earth are 
actually defined on a sphere. In machine learning, the manifold hypothesis is commonly used [17,20], since many real-world 
data sets are actually samples from low-dimensional manifolds in a high-dimensional ambient space. Therefore, it is quite 
natural and necessary to explore mean-field game/control problems on manifolds. In this work, we would like to generalize 
the concepts of finite horizon mean-field games and mean-field Nash Equilibrium from Euclidean spaces to manifolds and 
propose a numerical method to compute the Nash Equilibrium.

In this study, we consider a game with infinitely many indistinguishable agents on a finite-dimensional compact and 
connected smooth Riemannian manifold M within the time interval [0, 1]. At any time t ∈ [0, 1], each agent is in a certain 
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state x ∈ M and the state of all agents forms a distribution ρ(·, t) ∈ P(M). For each agent at t , given its current state 
x and the anticipation of future state distribution ρ(·, s), s ∈ [t, 1], the game is to optimize a control v(x(s), s) to guide 
its future trajectory x(s), s ∈ (t, 1] in order to minimize a cost Jρ(x, t, v). Therefore the optimal control v depends on the 
state distribution ρ . Although the state change of any single agent does not change ρ(·, t), when all the agents take the 
same control, the state distribution ρ changes accordingly. Thus the optimal control v and the state distribution ρ are 
interdependent, and the Nash Equilibrium [44,14], the special pair of (v, ρ), is an especially interesting topic in mean-field 
game.

In the conventional Euclidean setup, it has been shown that the mean-field Nash Equilibrium is the solution of a forward-
backward PDE system [31,28,27]. We generalize this result to MFG on manifolds. Meanwhile, for a potential mean-field 
game on a Euclidean domain [31,13,9,10], its optimality condition is exactly the forward-backward PDE system under mild 
conditions. Thus, the Nash Equilibrium can be obtained by searching for the stationary point of the optimization problem. 
In this work, we show that the equivalence between the PDE formulation and variational formulation of mean-field games 
still holds on manifolds. It is worth mentioning that [48] studies dynamic optimal transport, a special form of potential 
mean-field games, on manifolds. In this work, we consider more general forms of mean-field games on manifolds, and we 
are interested in both the PDE and variational formulations.

There are different approaches to numerically solve mean-field games on Euclidean domains, such as finite difference 
methods [3,2], monotone flows [5,25], optimization algorithms [8,11,52] and neural networks [15,39,47]. We refer readers 
to the surveys [4,32] for more details of the numerical methods on Euclidean domains. In our manifold setting, we focus 
on the variational formulation to compute the Nash Equilibrium numerically. With the help of triangular mesh and compu-
tational geometry strategies [43], we approximate the manifold, probability space, and vector field space and formulate the 
discrete optimization problem. Once the discretization is provided, most of the existing optimization-based algorithms can 
be adapted to solve the proposed discretization problem. In this work, we specifically use an optimization-based algorithm 
proposed in [52] since it is flexible and efficient. This algorithm is adapted from the proximal gradient descent method 
considered in [46,6,7].

Contributions: As far as we know, we are the first to study mean-field games on manifolds and propose computational 
methods for manifold mean-field games. We summarize our contributions as follows:

(i) We generalize the concept of mean-field games to manifolds and derive the corresponding geometric PDE formulation 
of the Nash Equilibrium.

(ii) We show the equivalence of the PDE formulation and variational formulation of mean-field games on manifolds.
(iii) We propose a numerical method for solving the variational problem based on a proximal gradient descent method. 

Comprehensive experiments demonstrate the effectiveness of the proposed method.

Organization: Our paper is organized as follows. In section 2, we derive the PDE formulation of mean-field Nash Equilib-
rium on manifolds. We also show that the PDE system is the optimality condition of an optimization problem, the potential 
mean-field game, on the manifold. We discretize the potential MFG problems in space and time domain in section 3, and 
adapt a proximal gradient method to solve the discrete counterparts in section 4. In section 5, we provide numerical exper-
iments that solve potential mean-field games with local or non-local interaction costs on different manifolds.

2. Mean-field games on manifolds

In this section, we generalize the concepts of finite horizon mean-field games (MFGs) and their variational forms from 
conventional Euclidean domains to smooth and compact Riemannian manifolds.

2.1. Mean-field games on manifold

Let’s begin with some notations for convenience. We consider MFG on (M, g), a dM-dimensional compact and 
connected smooth Riemannian manifold with a metric g . As a natural extension of MFG on Euclidean domains, con-
trols at the state x ∈ M are defined as elements in TxM, the tangent space of M at x ∈ M. We further denote 
TM = {(x, p) | p ∈ TxM} for the tangent bundle of M; use "(TM) for the set of continuous vector fields on M; and 
write P(M) for all probability density on (M, g) under the volume measurement induced by the metric g .

To derive a first-order MFG system on M, we consider a finite horizon game on the time interval [0, 1] with the state 
space M. More specifically, we assume that there is a continuum number of agents, and each agent takes a state x ∈ M at 
any time t ∈ [0, 1]. We write the state density of all the agents along t ∈ [0, 1] as ρ ∈ C([0, 1]; P(M)); and assume that the 
impact of any single agent to ρ is negligible. Since all the agents have the same goal in a mean-field game, it is sufficient 
to take a representative agent as an example. Suppose that an agent is in state x at time t , the agent aims at choosing a 
control v ∈ C((t, 1]; "(TM)) to guide the trajectory

dx(t) = v(x, t)dt, (1)

in order to minimize the cost
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Jρ(x, t,v) :=
1∫

t

[L(x(s),v(x(s), s) + F (x(s),ρ(·, s))] ds + F T (x(1),ρ(·,1)). (2)

Here L : TM → [0, +∞) is the dynamic cost, F : M × P(M) → [0, +∞) is the interaction cost, ρ(·, s) ∈ P(M) is the 
density of all agents at time s, and F T : M × P(M) → [0, +∞) is the terminal cost. Note that the control v and the state 
distribution ρ are involved interactively. The optimal control vρ := argminv Jρ(x, t, v) generally depends on the evolution 
of the state distribution ρ . Meanwhile, with given initial distribution ρ(·, 0) := ρ0 ∈ P(M), the distribution of agents ρ is 
determined by the control v ∈ C([0, 1]; "(TM)) through equation (1). The mean-field game problem is especially interested 
in a special pair of them, the Nash Equilibrium, which is the same as the conventional Euclidean case [44,14],

Definition 2.1 (Nash equilibrium). A pair of control and state distribution (v, ρ) is called a Nash Equilibrium if the following 
two conditions hold,

1. (Optimality) For any t ∈ [0, 1], x ∈ M, Jρ(x, t, v) ≤ Jρ(x, t, u), ∀ u ∈ C([0, 1]; "(TM)).
2. (Consistency) ρ(·, 0) = ρ0 where ρ0 is the state distribution of all the agents at t = 0. And ρ(·, t) is the state distribution 

of all the agents at time t following the control v.

With the definition, if (v, ρ) is a Nash Equilibrium of a MFG on (M, g). The optimality condition ensures that v is the 
optimal control for given state distribution ρ , and the consistency requires that v lead to the state distribution ρ .

According to [31,28], in Euclidean space, a Nash Equilibrium can be described by a PDE system, which includes a back-
ward Hamiltonian-Jacobi-Bellman (HJB) equation by the optimality condition and a forward continuity equation by the 
consistency condition. In the rest, we will establish a similar PDE description of a Nash Equilibrium on manifolds.

Similar as the Euclidean case [31,28], let the value function φ be the cost with the optimal control,

φρ(x, t) := inf
v∈C([0,1];"(TM))

Jρ(x, t,v) (3)

and H be the manifold Hamiltonian defined on the tangent bundle of M [34]

H : TM → R, H(x,q) := sup
p∈TxM

{
−⟨q,p⟩g(x) − L(x,p)

}
(4)

we have the following theorem.

Theorem 2.2. If ρ, φ, v are C1 in t, v is C1 in x, ρ, φ are C2 in x, and (v, ρ) is a Nash Equilibrium of the aforementioned mean-field 
game on (M, g), then

v(x, t) = argmin
p∈TxM

{
L(x,p) + ⟨∇Mφ(x, t),p⟩g(x)

}
= −∂q H(x,∇Mφ(x, t)), (5)

and ρ, φ solve
⎧
⎪⎨

⎪⎩

− ∂tφ(x, t) + H(x,∇Mφ(x, t)) = F (x,ρ(·, t)),

∂tρ(x, t) − ∇M · (ρ(x, t)∂q H(x,∇Mφ(x, t))) = 0,

φ(x,1) = F T (x,ρ(·,1)), ρ(·,0) = ρ0.

(6)

Before proving the theorem, we give several remarks to explain notations.

Remark 2.3. We emphasize that the metrics ⟨·, ·⟩g(x) , and operators ∇M, ∇M· are based on the manifold metric g as a 
generalization of the conventional equations which only depend on the flat Euclidean metric. More details on differential 
geometry can be refereed in [33].

For example, let M be a two-dimensional manifold embedded in R3 with an induced metric g on the manifold. To 
be precise, consider X : % ⊂ R2 → M ⊂ R3, (ξ1, ξ2) -→ X(ξ1, ξ2) as a local chart of M, then for any x = X(ξ1, ξ2) on the 
chart, the tangent space is TxM = span{∂ξ1 X, ∂ξ2 X}. The matrix representation of the induced metric g in the coordinate 
chart X is provided as:

g X (x) :=
(

(∂ξ1 X)⊤∂ξ1 X (∂ξ1 X)⊤∂ξ2 X
(∂ξ2 X)⊤∂ξ1 X (∂ξ2 X)⊤∂ξ2 X

)
. (7)

Any tangent vectors p, q ∈ TxM have the corresponding coordinate decomposition p = p1
X∂ξ1 X + p2

X∂ξ2 X , q = q1
X∂ξ1 X +

q2
X∂ξ2 X , and the metric g on each point x is
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g(x) : TxM × TxM → R, ⟨p,q⟩g(x) :=
(

p1
X p2

X

)
g X (x)

(
q1

X

q2
X

)

. (8)

Based on this metric, we have the following definitions of gradient and divergence operators:

∇Mφ(x) =
(
∂ξ1φX ∂ξ2φX

)
(g X (x))−1

(
∂ξ1 X
∂ξ2 X

)
, (9)

∇M · v(x) = 1
√

det(g X (x))

2∑

d=1

∂

∂ξd

(√
det(g X (x))vd

X

)
, (10)

where φX (ξ1, ξ2) = φ(X(ξ1, ξ2)) is the local representation of φ under the coordinate chart X , and the tangent vector 
field v ∈ "(TM) has the local coordinate representation v(X(ξ1, ξ2)) = v1

X (ξ1, ξ2)∂ξ1 X + v2
X (ξ1, ξ2)∂ξ2 X . While the above 

definitions are provided in terms of a specific coordinate representation X , the definitions g(x), ∇Mφ and ∇M · v are 
invariant to coordinates.

Remark 2.4. Following the settings and notations in the previous remark, we take the quadratic dynamic cost function as 
an example,

L(x,p) := 1
2
∥p∥2

g(x) = 1
2
⟨p,p⟩g(x). (11)

By definition, the Hamiltonian is

H(x,q) := sup
p∈TxM

{
−⟨q,p⟩g(x) − 1

2
⟨p,p⟩g(x)

}

= sup
p1,p2∈R

{(
−q1

X − 1
2 p1 −q2

X − 1
2 p2

)(
∂ξ1 X⊤

∂ξ2 X⊤

)(
∂ξ1 X ∂ξ2 X

)(
p1

p2

)}

= 1
2

(
q1

X q2
X

)(
∂ξ1 X⊤

∂ξ2 X⊤

)(
∂ξ1 X ∂ξ2 X

)(
q1

X
q2

X

)

= 1
2
∥q∥2

g(x).

(12)

Now we view TxM = span{∂ξ1 X, ∂ξ2 X} as a manifold and consider the nature coordinate representation q = q1
X∂ξ1 X +

q2
X∂ξ2 X and the induced metric g X (x). Then H(x, ·) : TxM →R has the coordinate form

H X (x,q1,q2) := H(x,q1∂ξ1 X + q2∂ξ2 X) = 1
2

(
q1 q2

)
g X (x)

(
q1

q2

)
(13)

and by definition of manifold gradient

∂q H(x,q) =
(
∂q1 H X ∂q2 H X

)
(g X (x))−1

(
∂ξ1 X
∂ξ2 X

)
=

(
q1

X q2
X

)
g X (x)(g X (x))−1

(
∂ξ1 X
∂ξ2 X

)
= q. (14)

Remark 2.5. With manifold-metric-based notations explained in Remarks 2.3 and 2.4, the PDE system (6) is a generalization 
of the PDE system in a Euclidean space. To see the difference, we state the system (6) in a coordinate chart X . Denoting 
ρX , φX , H X and gξ as the local coordinate representations of ρ, φ, H and g X under X , respectively, we have the coordinate 
representation of (6)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− ∂tφX (ξ1, ξ2, t) + H X

(
X(ξ1, ξ2),

(
∂ξ1φX ∂ξ2φX

)
g−1
ξ (ξ1, ξ2, t)

)
= F (X(ξ1, ξ2),ρ(·, t)),

∂tρX (ξ1, ξ2, t) − 1
√

det(gξ ))

2∑

i=1

∂

∂ξ i

⎛

⎝
2∑

j=1

√
det(gξ )ρX (gξ )

−1
i j ∂q j H X

⎞

⎠ = 0,

φX (ξ1, ξ2,1) = F T (X(ξ1, ξ2),ρ(·,1)), ρX (ξ1, ξ2,0) = ρ0(X(ξ1, ξ2)),

(15)

with ∂q j H X evaluated at 
(

X,
(
∂ξ1φX ∂ξ2φX

)
g−1
ξ

)
(ξ1, ξ2, t).

It is clear to see that the above system is consistent with the formula in the Euclidean case by choosing M = R2 and 
g as the conventional flat Euclidean metric. Though (15) converts a manifold PDE system to a Euclidean PDE system, in 
practice, we do not directly work with it. Because the coordinate chart of a manifold is not easy to compute. Moreover, 
besides its forward-backward and nonlinear structure, the PDE system becomes more complicated under the coordinate 
chart.
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Next, we prove Theorem 2.2.

Proof. By definition, the terminal boundary condition of φ is

φ(x,1) = F T (x,ρ(·,1)). (16)

For t ∈ [0, 1), by optimality of φ and dynamic programming principle, for any h > 0

φ(x, t) = inf
v∈C([t,1];"(TM))

⎧
⎨

⎩

t+h∫

t

[L(x(s),v(x(s), s)) + F (x(s),ρ(·, s))] ds + φ(x(t + h), t + h)

⎫
⎬

⎭ , (17)

where x(t + h) = x(t) +
∫ t+h

t v(x(s), s)ds. Assume that φ is C2 in x and C1 in t . Then by Leibniz integral rule,

φ(x(t + h), t + h) = φ(x, t) +
t+h∫

t

[
∂tφ(x(s), s) + ⟨∇Mφ(x(s), s),v(x(s), s)⟩g(x)

]
ds. (18)

Combining (17) and (18), we have

t+h∫

t

[∂tφ(x(s), s) + F (x(s),ρ(·, s))] ds

+ inf
v∈C([t,t+h];TM)

⎧
⎨

⎩

t+h∫

t

[
L(x(s),v(x(s), s)) + ⟨∇Mφ(x(s), s),v(x(s), s)⟩g(x)

]
ds

⎫
⎬

⎭ = 0.

(19)

Dividing both sides by h and letting h → 0+ shows that φρ satisfies the HJB equation (20) on M.

−∂tφ(x, t) − inf
p∈TxM

{
L(x,p) + ⟨∇Mφ(x, t),p⟩g(x)

}
= F (x,ρ(·, t)). (20)

Plugging in the definition of manifold Hamiltonian

H : TM → R, H(x,q) = sup
p∈TxM

{
−L(x,p) − ⟨q,p⟩g(x)

}
(21)

we show that φ satisfies the HJB equation
{

− ∂tφ(x, t) + H(x,∇Mφ(x, t)) = F (x,ρ(·, t)),

φ(x,1) = F T (x,ρ(·,1)).
(22)

And by properties of the convex conjugate, we obtain the optimal control

v(x, t) := argmin
p∈TxM

{
L(x,p) + ⟨∇Mφ(x, t),p⟩g(x)

}
= −∂q H(x,∇Mφ(x, t)). (23)

On the other hand, by consistency condition of a Nash Equilibrium, with initial density ρ0 , ρ satisfies the continuity 
equation driven by v(x, t),

{
∂tρ(x, t) + ∇M · (ρ(x, t)v(x, t)) = 0,

ρ(·,0) = ρ0.
(24)

And v being the optimal control v(x, t) = −∂q H(x, ∇Mφ(x, t)) implies that ρ satisfies
{

∂tρ(x, t) − ∇M · (ρ(x, t)∂q H(x,∇Mφ(x, t))) = 0,

ρ(·,0) = ρ0.
(25)

To summarize, the solution (φ, ρ) to the following PDE system gives us a Nash Equilibrium (v, ρ) with v =
−∂q H(x, ∇Mφ(x, t)),

⎧
⎪⎨

⎪⎩

− ∂tφ(x, t) + H(x,∇Mφ(x, t)) = F (x,ρ(·, t)),

∂tρ(x, t) − ∇M · (ρ(x, t)∂q H(x,∇Mφ(x, t))) = 0,

φ(x,1) = F T (x,ρ(·,1)), ρ(·,0) = ρ0.

! (26)
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At the end of this part, we present some common examples.

Example 2.6 (Local mean-field games). When the interaction cost and terminal cost functions take the local form. I.e. the cost 
at x only depends on the density at x. The corresponding mean-field game is called a local mean-field game.

We list some common choices of F and F T here.

• F (x, ρ(·, t)) = B(x) with B : M →R. This interaction function gives a preference of states. The agents tend to stay at x
where the cost B(x) is low.

• F (x, ρ(·, t)) = log(ρ(x, t)) +1 and F (x, ρ(·, t)) = (ρ(x, t))p, p > 0. These interaction functions discourage the aggregation 
of densities.

• F T (x, ρ(·, 1)) = (ρ(x, 1) − ρ1(x))2 and F T (x, ρ(·, 1)) = log(ρ(x, 1)) − log(ρ1(x)) + 1 with a given ρ1. These terminal 
functions encourage ρ(·, 1) to approach to the desired terminal density ρ1.

Example 2.7 (Non-local mean-field games). The interaction cost function F or terminal cost function F T can also take non-
local forms. Take F as an example. If K : M × M →R is a convolutional kernel, and

F (x,ρ(·, t)) :=
∫

M

K (x,y)ρ(y, t)dMy, (27)

then the mean-field game is non-local. Symmetric kernel functions K with K (x, y) = K (y, x) are of special interest to us. 
When K is symmetric, the PDE system is the optimality condition of a variational problem [45,40]. We provide detailed 
discussions in the following section.

2.2. Potential mean-field games on manifold

According to [31,13,9,10], when the state space is Euclidean, with H(x, q) convex in q, F = δF
δρ

, F T = δFT

δρ
, the local 

minimizer of an optimization problem and the corresponding dual variable is a weak solution to the MFG PDE system. In 
this part, we establish the parallel results on manifolds. We formulate the potential MFG on a manifold and show that 
the necessary optimality condition of this variational problem is exactly the PDE system (6) under similar conditions on 
manifolds.

Theorem 2.8. Assume that L(x, p) is convex in p ∈ TxM at any x ∈ M, and there exist F : P(M) → [0, +∞), FT : P(M) →
[0, +∞) such that δF(ρ)

δρ (x) = F (x, ρ), δFT (ρ)
δρ (x) = F T (x, ρ). Consider the optimization problem,

inf
ρ,m

Y(ρ,m) :=
1∫

0

∫

M

ρ(x, t)L
(

x,
m(x, t)
ρ(x, t)

)
dMxdt +

1∫

0

F(ρ(·, t))dt + FT (ρ(·,1))

subject to ∂tρ + ∇M · m = 0,ρ(·,0) = ρ0,

ρ ∈ C([0,1];P(M)),m ∈ C([0,1];"(TM)).

(28)

When ρ(x, t) = 0, we take the conventional definition of L

L
(

x,
m(x, t)
ρ(x, t)

)
=

{
0, if m(x, t) = 0,

+∞, if m(x, t) ≠ 0.
(29)

The following statements hold

1. If (ρ, m) is a local minimizer of (28), then there exists φ such that m = −ρ∂q H(·, ∇Mφ(x, t)) and (ρ, φ) is the weak solution to 
the MFG PDE system (6), i.e. (ρ, φ) solves

⎧
⎪⎨

⎪⎩

− ∂tφ(x, t) + H(x,∇Mφ(x, t)) ≤ F (x,ρ(·, t)),

∂tρ(x, t) − ∇M · (ρ(x, t)∂q H(x,∇Mφ(x, t))) = 0,

φ(x,1) ≤ F T (x,ρ(·,1)), ρ(·,0) = ρ0.

(30)

In addition, if ρ > 0, then (ρ, φ) solves the PDE system (6).
2. If for any (ρ1, m1), (ρ2, m2) ∈ C([0, 1]; P(M)) × C([0, 1]; "(TM)), 

∫ 1
0

∫
M δρY(ρ1, m1)(ρ2 − ρ1) + δmY(ρ1, m1) · (m2 −

m1)dMxdt ≥ 0 implies Y(ρ2, m2) ≥ Y(ρ1, m1), i.e. Y is pseudo-convex in (ρ, m), and (φ, ρ) is a solution to the MFG PDE 
system (6), then m = −ρ∂q H(·, ∇Mφ(x, t)), and (ρ, m) is the minimizer of (28).

6
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Proof. We first derive the KKT system of (28) based on the theory of constrained optimization [29]. We denote φ ∈
C([0, 1] × M) as the Lagrangian multiplier for the continuity equation, and then the Lagrangian of (28) is,

A(ρ,m, φ) :=
1∫

0

∫

M

ρ(x, t)L
(

x,
m(x, t)
ρ(x, t)

)
dMxdt +

1∫

0

F(x,ρ(·, t))dt + FT (x,ρ(·,1))

−
1∫

0

∫

M

φ(x, t) (∂tρ + ∇M · m) (x, t)dMxdt (31)

=
1∫

0

∫

M

ρ(x, t)L
(

x,
m(x, t)
ρ(x, t)

)
dMxdt +

1∫

0

F(x,ρ(·, t))dt

+
1∫

0

∫

M

[
ρ(x, t)∂tφ(x, t) + ⟨m(x, t),∇Mφ(x, t)⟩g

]
dMxdt

+ FT (x,ρ(·,1)) +
∫

M

[−φ(x,1)ρ(x,1) + φ(x,0)ρ0(x)] dMx. (32)

Since ρ ≥ 0, ρ(·, 0) = ρ0, the KKT system of (28) is
⎧
⎪⎨

⎪⎩

δρA(ρ,m, φ) ≥ 0, ρδρA(ρ,m, φ) = 0,

δmA(ρ,m, φ) = 0,

∂tρ(x, t) + ∇M · m(x, t) = 0,ρ(·,0) = ρ0.

(33)

Among the system (33), δmA(ρ, m, φ) = 0 yields

∂pL
(

x,
m(x, t)
ρ(x, t)

)
+ ∇Mφ(x, t) = 0, (34)

and consequently m = −ρ∂q H(·, ∇Mφ) by convexity of L. Plugging in and simplifying δρA(ρ, m, φ) ≥ 0 then gives
{

− ∂tφ(x, t) + H(x,∇Mφ(x, t)) ≤ F (x,ρ(·, t)),

φ(x,1) ≤ F T (x,ρ(·,1)),
(35)

and the equality holds when ρ(x, t) > 0. Combining above, we see (30) is exactly the KKT system (33).
According to optimization theory [29], because the constraints of (28) are linear in (ρ, m), the KKT conditions are 

necessary for the local minimizer, and thus the first statement holds. In addition, when Y is pseudo-convex, the KKT 
conditions are sufficient for the minimizer [42]. Since the PDE system (6) implies the KKT system of (28), the second 
statement holds. !

With the above theorem, the forward-backward system (6) can be solved by searching for the local minimizer of varia-
tional problem (28). In this study, we majorly focus on the variational problem (28).

In the rest part of this section, we present some examples of potential mean-field games as well as their corresponding 
PDE systems.

Example 2.9 (Quadratic dynamic cost with local interaction). Let L(x, p) = 1
2 ∥p∥2

g(x) and the local interaction and terminal costs

F(ρ(·, t)) =
∫

M

ρ(x, t) log(ρ(x, t))dMx,

FT (ρ(·,1)) =
∫

M

ρ(x,1) log
(

ρ(x,1)

ρ1(x)

)
dMx,

(36)

where ρ1(x) is a given density. With these choices of costs, L(x, ·) is convex in p ∈ TxM and the objective function Y is 
pseudo-convex in (ρ, m). According to Theorem 2.8, searching for the optimizer is equivalent to solving a mean-field game 
PDE system. To be precise, if the optimizer ρ > 0, then the KKT system of this potential game is

7
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− ∂tφ(x, t) + 1
2

∥∇Mφ(x, t)∥2
g(x) = log(ρ(x, t)) + 1,

∂tρ(x, t) − ∇M · (ρ(x, t)∇Mφ(x, t)) = 0,

φ(x,1) = log
(

ρ(x,1)

ρ1(x)

)
+ 1, ρ(·,0) = ρ0,

(37)

and v = −∇Mφ(x, t). It is easy to check that this system is the PDE formulation of the mean-field game with

F (x,ρ(·, t)) = δF(ρ)

δρ
(x) = log(ρ(x, t)) + 1,

F T (x,ρ(·,1)) = δFT (ρ)

δρ
(x) = log

(
ρ(x,1)

ρ1(x)

)
+ 1.

(38)

Example 2.10 (Quadratic dynamic cost with non-local interaction cost). Let L(x, p) = 1
2 ∥p∥2

g(x) and the local terminal costs be

FT (ρ(·,1)) =
∫

M

1
2
(ρ(x,1) − ρ1(x))2dMx, (39)

with a given density ρ1. We consider a non-local interaction cost

F(ρ(·, t)) = 1
2

∫

M×M

K (x,y)ρ(x, t)ρ(y, t)dMxdMy, (40)

where K (x, y) = µ exp
(
− 1

σ 2 d2
g(x,y)

)
is a Gaussian kernel based on the geodesic distance dg of (M, g). The KKT system of 

this variational problem is
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− ∂tφ(x, t) + 1
2

∥∇Mφ(x, t)∥2
g(x) =

∫

M

K (x,y)ρ(y, t)dMy,

∂tρ(x, t) − ∇M · (ρ(x, t)∇Mφ(x, t)) = 0,

φ(x,1) = ρ(x,1) − ρ1(x), ρ(·,0) = ρ0

(41)

and v = −∇Mφ(x, t). This system is the PDE formulation of the mean-field game with

F (x,ρ(·, t)) = δF(ρ)

δρ
(x) =

∫

M

K (x,y)ρ(y, t)dMy,

F T (x,ρ(·,1)) = δFT (ρ)

δρ
(x) = ρ(x,1) − ρ1(x).

(42)

We note that δF(ρ)
δρ (x) =

∫
M K (x, y)ρ(y, t)dMy holds because K is symmetric, i.e. K (x, y) = K (y, x). For general non-

symmetric kernels, the corresponding interaction cost function can be written as F (x, ρ(·, t)) =
∫
M

( 1
2 K (x,y) + 1

2 K (y,x)
)
×

ρ(y, t)dMy.

3. Discretization on manifolds

The optimization problem (28) is defined in an infinite-dimension space and in general is solved approximately using 
appropriate discretization. Although with coordinate charts, we can recast a manifold mean-field game to a Euclidean mean-
field game, it is neither practical nor efficient, because it is not easy to compute the global coordinate chart of a manifold 
and the formulation of the problem under a coordinate chart can be extremely complicated. Therefore, we directly work 
on the manifold. In addition, our intrinsic method can be combined with conventional optimization methods naturally 
to handle the control problems on manifolds. Different from conventional MFG problems in Euclidean space, we need to 
approximate the ground manifold as well as functions and vector fields on the manifold. In this section, we focus on two-
dimensional manifolds and discuss the discrete counterpart of (28). We first approximate the manifold with a triangular 
mesh. This leads to a semi-discrete version of (28) and its associated KKT system. After that, we derive a fully discretized 
version for our numerical implementation by equally splitting the time interval.

8
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Fig. 1. Triangular mesh approximation of some manifolds.

3.1. Space discretization

We follow a conventional approach [43,30] to approximate a two-dimensional manifold M by a triangular mesh M̃, 
which is a set of non-overlapping non-degenerate triangles with no vertex of one triangle on edge (excluding both end-
points) of another triangle. For simplicity of notations, we assume that M ⊂ R3 and represent the triangular mesh M̃
with the set of vertices V = {V i ∈ R3}h

i=1 and the set of triangles T = {T j}s
j=1. We would like to remark that our model 

and numerical methods can be straightforwardly extended on two-dimensional manifolds embedded in higher-dimensional 
spaces as long as a reasonable good triangular mesh approximation of the manifold is available. In section 5.3, we conduct 
a numerical experiment on a two-dimensional unit sphere in R5. Fig. 1 shows several triangular meshes used in our nu-
merical experiments later. For convenience, we also abuse our notation M̃ for the piecewise linear approximation of M
obtained from the given triangular mesh.

For a real-valued function ψ : M → R, we approximate it with a piece-wise linear function * : M̃ → R, where on 
vertices *(V i) := ψ(V i) and on each triangle *(x) is linear. In this way, any piece-wise linear function on M̃ is fully 

represented by its values on vertices. With a slight abuse of notations, we denote * :=

⎛

⎜⎝

*(V 1)
...

*(Vh)

⎞

⎟⎠ as a vector in Rh . By 

piece-wise linearity, the gradient of * is a piece-wise constant vector field. For consistency, we let TM̃ := ⊔s
j=1 span T j

mimic the tangent bundle, "(TM̃) :=

⎧
⎨

⎩U : T → TM̃, U (T j) =

⎛

⎝
U 1(T j)

U 2(T j)

U 3(T j)

⎞

⎠ ∈ span T j

⎫
⎬

⎭ denote the set of piece-wise constant 

vector field. Similar to the function discretization, we use the matrix U =
(

U 1, U 2, U 3
)

=

⎛

⎜⎝

(U (T1))
⊤

...

(U (V s))
⊤

⎞

⎟⎠ ∈ Rs×3 to fully 

describe the vector field.
Given any * : M̃ →R, its gradient ∇M̃* ∈ "(TM̃) can be written as ∇M̃* =

(
G1* G2* G3*

)
, where G1, G2, G3 ∈

Rs×h provides a discretization of ∇M . To see this, take a triangle T1 with vertices V 1, V 2, V 3 as an example (see the left 
image in Fig. 2). We first parameterize T1 by

V (ξ1, ξ2) := ξ1(V 2 − V 1) + ξ2(V 3 − V 1), 0 ≤ ξ1, ξ2 ≤ 1, ξ1 + ξ2≤1. (43)

Thus the induced metric on T1 is the constant matrix

g =
(

⟨V 2 − V 1, V 2 − V 1⟩ ⟨V 2 − V 1, V 3 − V 1⟩
⟨V 3 − V 1, V 2 − V 1⟩ ⟨V 3 − V 1, V 3 − V 1⟩

)
. (44)

Because * restricted on T1 is linear, we have

*(V (ξ1, ξ2)) := ξ1(*(V 2) − *(V 1)) + ξ2(*(V 3) − *(V 1)). (45)

The definition of gradient gives us

(⟨V 2 − V 1, (∇M̃*)(T1)⟩
⟨V 3 − V 1, (∇M̃*)(T1)⟩

)
=

(
*(V 2) − *(V 1)
*(V 3) − *(V 1)

)
=

(−1 1 0
−1 0 1

)⎛

⎝
*(V 1)
*(V 2)
*(V 3)

⎞

⎠ . (46)

9
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Fig. 2. Illustration of definition of areas, functions and vector field on triangular meshes. (Left: gradient operator on one triangular face, right: dual cell of 
V i .)

Since (∇M̃*)(T1) ∈ span T1, it is clear that the gradient of * on T1 has the decomposition (∇M̃*)(T1) =
(

V 2 − V 1, V 3 − V 1
)(

µ1

µ2

)
and therefore we have

(⟨V 2 − V 1, (∇M̃*)(T1)⟩
⟨V 3 − V 1, (∇M̃*)(T1)⟩

)
= g

(
µ1

µ2

)
. (47)

Because the triangle is non-degenerative, (46) and (47) together solves µ1, µ2

(
µ1

µ2

)
= g−1

(−1 1 0
−1 0 1

)⎛

⎝
*(V 1)
*(V 2)
*(V 3)

⎞

⎠ . (48)

And this implies

(∇M̃*)(T1) =
(

V 2 − V 1, V 3 − V 1
)

g−1
(−1 1 0

−1 0 1

)⎛

⎝
*(V 1)
*(V 2)
*(V 3)

⎞

⎠ . (49)

Assigning Gd(T1, V i) = 0 for V i ∈ V \{V 1, V 2, V 3}, d = 1, 2, 3 and
⎛

⎝
G1(T1, V 1) G1(T1, V 2) G1(T1, V 3)

G2(T1, V 1) G2(T1, V 2) G2(T1, V 3)

G3(T1, V 1) G3(T1, V 2) G3(T1, V 3)

⎞

⎠ =
(

V 2 − V 1, V 3 − V 1
)

g−1
(−1 1 0

−1 0 1

)
(50)

assures (∇M̃*)(T1) =
(
(G1*)(T1) (G2*)(T1) (G3*)(T1)

)
. Following the same approach to define Gd(T j, V i) on T j ∈ T , 

we have ∇M̃* =
(

G1* G2* G3*
)
.

Next, we define the discretization of the divergence operator based on its adjoint relation to the gradient operator. 
Consider the following discretization of surface area and inner product. Let AT j be the area of triangle T j and AV i :=
1
3

∑
j:V i∈T j

AT j be the area of the barycentric dual cell of V i (Fig. 2 right), and denote AV := diag(AV 1 , · · · , AVh ) ∈Rh×h and 
AT := diag(AT1 , · · · , ATs ) ∈Rs×s be the mass matrices of vertices and of triangles. We then define the inner products of vec-
tor fields as ⟨U1, U2⟩T := tr(U⊤

1 AT U2) =
∑3

d=1(U d
1)⊤ AT U d

2 and of functions as ⟨*1, *2⟩V := *⊤
1 AV *2. To preserve the ad-

joint relation between negative gradient and divergence under the above inner products, i.e. ⟨−∇M̃*, U ⟩T = ⟨*, ∇M̃ · U ⟩V , 
we assign ∇M̃ · U := − 

∑3
d=1 A−1

V (Gd)⊤ AT U d ∈Rh .
We use P , M to represent the discretization of ρ, m on the triangular mesh M̃. With the notations of area, we write the 

set of probability density functions on M̃ as P(M̃) := {P ∈ Rh
+ : AV P = 1}. If the initial density is given as P0 ∈ P(M̃), 

the semi-discrete constraint is then

d
dt

P (V i, t) +
(
∇M̃ · M

)
(V i, t) = 0, P (·,0) = P0,

P ∈ C([0,1];P(V )), M ∈ C([0,1];"(TM̃)).

(51)

For the objective function, let W :Rh →Rs : * -→ *, *(T j) = w({ρ(V i) : V i ∈ T j}) average the density values on each 
triangle. Below, we list some typical choices of w := w ({ρ(V 1),ρ(V 2),ρ(V 3)}).

(i) Arithmetic mean:

ω := 1
3

∑

i

ρ(V i);

10
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(ii) Geometric mean:

w :=
(

∏

i

ρ(V i)

) 1
3

;

(iii) Harmonic mean:

w := 3

(
∑

i

1
ρ(V i)

)−1

.

We remark that these choices of average functions are useful in defining the related discrete mean-field variational prob-
lems. They connect with the gradient flow studies of Markov processes on discrete states. See related studies in [41]. For 
simplicity, we select the arithmetic mean (i) in this work.

We evaluate the dynamic cost on triangles ̃L : TM̃ →R, and the interaction and terminal cost on vertices F̃ : P(M̃) →
R, F̃T : P(M̃) →R. With a suitable choice of triangular mesh and discrete cost functions, the continuous cost is approxi-
mated by

Ỹ(P , M) :=
1∫

0

s∑

j=1

AT j P (T j, t )̃L

(

T j,
M(T j, t)

P (T j, t)

)

dt +
1∫

0

F̃(P (·, t))dt + F̃T (P (·,1)), (52)

where P (·, t) = W (P (·, t)). The semi-discrete formulation of (28) on triangular mesh M is then

min
P ,M

Ỹ(P , M)

subject to
d
dt

P (V i, t) +
(
∇M̃ · M

)
(V i, t) = 0, P (·,0) = P0,

P ∈ C([0,1];P(M̃)), M ∈ C([0,1];"(TM̃)).

(53)

Remark 3.1. Recall that in the continuous setting, we show that the local minimizer of the optimization problem (28) solves 
the PDE system (30) with F (x, ρ(·, t)) = δF(ρ(·,t))

δρ (x) and F T (x, ρ(·, 1)) = δFT (ρ(·,1))
δρ (x). Since the constraint of (53) remains 

linear, the local minimizer of this semi-discrete problem also solves a KKT-based ODE system
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− d
dt

,(V i, t) +
∑

j:V i∈T j

AT j

AV i

∂ P (T j, t)

∂ P (V i, t)
H̃

(
T j, (∇M̃,)(T j, t)

)
≤ 1

AV i

∂P (V i)F̃(P (·, t)),

d
dt

P (V i, t) +
(
∇M̃ · M

)
(V i, t) = 0, M(T j, t) = −P (T j, t)∂Q H̃(T j, (∇M̃,)(T j, t)),

,(V i,1) ≤ 1
AV i

∂P (V i)F̃T (P (·,1)), P (·,0) = P0,

(54)

where

H̃ : TM̃ → R, H̃(T j, Q ) = sup
U (T j)∈span T j

{−L̃(T j, U (T j)) − ⟨Q , U (T j)⟩}.

Note that 
∑

j:V i∈T j

AT j

AV i

∂ P (T j, t)

∂ P (V i, t)
H̃

(
T j, (∇M̃,)(T j, t)

)
is an approximation of H(V i, ∇Mφ(V i, t)). If in addition,

∂P (V i)F̃(P (·, t))/AV i and ∂P (V i )F̃T (P (·, 1))/AV i approximate the costs F (x) and F T (x) evaluated at x = V i , then (54) is 
a semi-discrete formulation of (30) and is therefore consistent with (6).

Before discretizing the time interval, we discuss the semi-discrete formulations of Examples 2.9 and 2.10.

Example 3.2 (Quadratic dynamic cost with local interaction). This is a discretized counterpart of Example 2.9. Recall that in the 
continuous domain, since we choose the surface metric as the induced metric, then for U (T j) ∈ span T j , the dynamic cost 
is provided as

L̃(T j, U (T j)) = 1
2

3∑

d=1

(U d(T j))
2 = 1

2

∥∥U (T j)
∥∥2
R3 . (55)

11
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And we approximate the interaction and terminal costs F , FT by

F̃(P (·, t)) =
h∑

i=1

AV i P (V i, t) log(P (V i, t)),

F̃T (P (·,1)) =
h∑

i=1

AV i P (V i,1) log
(

P (V i,1)

P1(V i)

)
.

(56)

With w being the arithmetic average, if the optimizer P > 0, then the discrete KKT system is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− d
dt

,(V i, t) +
∑

j:V i∈T j

AT j

3AV i

1
2

∥∥(∇M̃,)(T j, t)
∥∥2
R3 = log(P (V i, t)) + 1,

d
dt

P (V i, t) +
(
∇M̃ · M

)
(V i, t) = 0, M(T j, t) = −P (T j, t)(∇M̃,)(T j, t),

,(V i,1) = log
(

P (V i,1)

P1(V i)

)
, P (·,0) = P0.

(57)

Example 3.3 (Quadratic dynamic cost with non-local interaction cost). This is a discretized counterpart of Example 2.10. On 
triangular meshes, we use the following dynamic and terminal costs,

L̃(T j, U (T j)) = 1
2

∥∥U (T j)
∥∥2
R3 ,

F̃T (P (·,1)) =
h∑

i=1

AV i

1
2
(P (V i,1) − P1(V i))

2.

(58)

And for the discrete interaction cost, we choose dM̃(V 1, V 2) being the length of the shortest path connecting V 1, V 2 to 
approximate the geodesic distance,

dM̃(V 1, V 2) = min

⎧
⎪⎪⎨

⎪⎪⎩

n∑

k=1

∥V ik − V ik−1∥R3 :n = 0,1, · · · , V i0 = V 1, V in = V 2,

∀k = 1, · · · ,n, there exists T jk such that V ik−1 , V ik ∈ T jk ,

⎫
⎪⎪⎬

⎪⎪⎭
. (59)

And we define the kernel as K̃ (V 1, V 2) = µ exp
(
− 1

σ d2
M̃(V 1, V 2)

)
and the interaction cost as

F̃(P (·, t)) = 1
2

h∑

i

h∑

i′
AV i P (V i)K̃ (V i, V i′)AV i′ P (V i′) = 1

2
P (·, t)⊤ AV K̃ AV P (·, t). (60)

Similarly, if w is the arithmetic average and the optimizer P > 0, the discrete KKT system is
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− d
dt

,(V i, t) +
∑

j:V i∈T j

AT j

3AV i

1
2

∥∥(∇M̃,)(T j, t)
∥∥2
R3 =

∑

i′
K̃ (V i, V i′)AV i′ P (V i′),

d
dt

P (V i, t) +
(
∇M̃ · M

)
(V i, t) = 0, M(T j, t) = −P (T j, t)(∇M̃,)(T j, t),

,(V i,1) = P (V i,1) − P1(V i), P (·,0) = P0.

(61)

3.2. Time discretization

To numerically solve (53), we fully discretize the problem by dividing the time interval [0, 1] into n segments and let 
tk = k

n . Now we consider the density on central time steps P = {P (·, tk)}k=1,··· ,n ∈ (P(M̃))n and the flux on staggered time 
steps M = {M(·, tk− 1

2
)}k=1,··· ,n ∈ ("(TM̃))n .

Let the time differential operator be

(̃∂t P )(·, tk− 1
2
) :=

{
1

1/n (P (·, tk) − P (·, tk−1)), k = 2, · · · ,n,
1

1/n (P (·, t1) − P0(·)), k = 1.
(62)

Then the discrete constraint set C̃(P0) is

12
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C̃(P0) :=
{

(P , M) : (̃∂t P )(V i, tk− 1
2
) + (∇M̃ · M)(V i, tk− 1

2
) = 0,∀V i ∈ V ,k = 1, · · · ,n

P ∈ P(M̃))n, M ∈ ("(TM̃))n

}

. (63)

Additionally, letting

P (·, tk− 1
2
) := 1

2
W (P (·, tk)) + 1

2
W (P (·, tk−1)), k = 1, · · · ,n

Ỹ(P , M) := 1
n

n∑

k=1

s∑

j=1

AT j P (T j, tk− 1
2
)L

(

T j,
M(T j, tk− 1

2
)

P (T j, tk− 1
2
)

)

+ 1
n

n−1∑

k=1

F̃(P (·, tk)) + F̃T (P (·, tn))
(64)

we formulate the discrete optimization problem as

min
P ,M

Ỹ(P , M) + χC̃(ρ0)(P , M). (65)

Here χ is the indicator function χC(x) =
{

0, x ∈ C
+∞, x /∈ C of a convex set C .

In the next section, we focus on solving the optimization problem (65).

4. Algorithm for solving variational MFGs on triangular meshes

In this section, we adapt the fast algorithm proposed in [52] to solve the discretized potential mean-field game (65). This 
algorithm is based on a proximal gradient method (PGD) [46,7].

To solve (65), we conduct gradient descent on the smooth component Ỹ of the objective function and proximal descent 
on the non-smooth component χC̃(P0) . The gradient descent step is trivially

(
P (l+ 1

2 ), M(l+ 1
2 )

)
=

(
P (l), M(l)

)
− η(l)∇P ,M Ỹ

(
P (l), M(l)

)
(66)

with stepsize η(l) . The proximal descent is exactly the projection to C̃(P0). The projection guarantees that the continuity 
equation is satisfied and therefore the total mass does not change over time. To conduct the projection step, let the inner 
product in discrete spaces be

*1,*2 ∈ (P(M̃))n, ⟨*1,*2⟩V ,t := 1
n

n∑

k=1

⟨*1(·, tk),*2(·, tk)⟩V ,

U1, U2 ∈ ("(TM̃))n, ⟨U1, U2⟩T ,t := 1
n

n∑

k=1

⟨U1(·, tk− 1
2
), U2(·, tk− 1

2
)⟩T .

Then

(P (l+1), M(l+1)) = projC̃(P0)(P (l+ 1
2 ), M(l+ 1

2 )) := argmin
(P ,M)∈C̃(P0)

1
2

∥∥∥P − P (l+ 1
2 )

∥∥∥
2

V ,t
+ 1

2

∥∥∥M − M(l+ 1
2 )

∥∥∥
2

T ,t
. (67)

To solve the optimization problem (67), we introduce a dual variable * = {*(·, tk− 1
2
)}k=1,··· ,n ∈ (P(M̃))n on vertices and 

the staggered time steps. The Lagrangian is therefore

A(P , M,*) :=1
2

∥∥∥P − P (l+ 1
2 )

∥∥∥
2

V ,t
+ 1

2

∥∥∥M − M(l+ 1
2 )

∥∥∥
2

T ,t

+ 1
n

n∑

k=1

⟨*(·, tk− 1
2
), (̃∂t P )(·, tk− 1

2
) + ∇M̃ · M(·, tk− 1

2
)⟩V .

(68)

If we define ̃∂∗
t as

(̃∂∗
t *)(·, tk) :=

{ 1
1/n (*(·, tk− 1

2
) − *(·, tk+ 1

2
)), k = 1,2, · · · ,n − 1,

1
1/n *(·, tn− 1

2
), k = n,

(69)

then the Lagrangian is also

13



J. Yu, R. Lai, W. Li et al. Journal of Computational Physics 484 (2023) 112070

Algorithm 1 PGD for MFG on discrete mesh.
Parameters P0
Initialization P (0) ∈ (P(M̃))n , and M(0) ∈ ("(TM̃))n .
for l = 0, 1, 2, . . . do

gradient descent

(
P (l+ 1

2 ), M(l+ 1
2 )

)
=

(
P (l), M(l)

)
− η(l)∇P ,M Ỹ

(
P (l), M(l)

)
;

proximal descent for k = 1, · · · , n, solve * for

(̃∂t ∂̃
∗
t *)(·, tk− 1

2
) − ∇M̃ · ∇M̃*(·, tk− 1

2
) = (̃∂t P (l+ 1

2 ))(·, tk− 1
2
) + ∇M̃ · M(l+ 1

2 )(·, tk− 1
2
);

and conduct
⎧
⎨

⎩

P (l+1)(·, tk) = P (l+ 1
2 )(·, tk) − (̃∂∗

t *)(·, tk), k = 1, · · · ,n

M(l+1)(·, tk− 1
2
) = M(l+ 1

2 )(·, tk− 1
2
) + ∇M̃*(·, tk− 1

2
), k = 1, · · · ,n.

safeguard P (l+1) = max(P (l+1), ϵ).
end for

A(P , M,*) :=1
2

∥∥∥P − P (l+ 1
2 )

∥∥∥
2

V ,t
+ 1

2

∥∥∥M − M(l+ 1
2 )

∥∥∥
2

T ,t

+ 1
n

n∑

k=1

⟨(̃∂∗
t *)(·, tk), P (·, tk)⟩V − ⟨*(·, t 1

2
), P0⟩V

+ 1
n

n∑

k=1

⟨−∇M̃*(·, tk− 1
2
), M(·, tk− 1

2
)⟩T .

(70)

Thus the saddle point (P , M, *) satisfies the linear system

(̃∂t P )(·, tk− 1
2
) + ∇M̃ · M(·, tk− 1

2
) = 0, k = 1, · · · ,n (71)

and
⎧
⎨

⎩
P (·, tk) = P (l+ 1

2 )(·, tk) − (̃∂∗
t *)(·, tk), k = 1, · · · ,n,

M(·, tk− 1
2
) = M(l+ 1

2 )(·, tk− 1
2
) + ∇M̃*(·, tk− 1

2
), k = 1, · · · ,n.

(72)

Note that ̃∂t is a full rank operator, for k = 1, · · · , n, *(·, tk− 1
2
) is the unique solution to

(̃∂t ∂̃
∗
t *)(·, tk− 1

2
) − ∇M̃ · ∇M̃*(·, tk− 1

2
) = (̃∂t P (l+ 1

2 ))(·, tk− 1
2
) + ∇M̃ · M(l+ 1

2 )(·, tk− 1
2
). (73)

Since this linear solver is invariant to the data and the iteration number, in practice, we precompute it to save cost in the 
main iteration.

To make sure the density is positive, we conduct the following safeguard step with a small positive value ϵ after the 
proximal descent step.

P (l+1) = max(P (l+1), ϵ). (74)

We summarize our algorithm in Algorithm 1.

5. Numerical examples

In this section, we conduct various experiments to show the effectiveness and flexibility of our mean-field game models 
on manifolds and the proposed numerical method. We provide numerical results on different manifolds. Most of these 
manifolds are non-Euclidean, thus conventional settings of mean-field games cannot handle them. In all of our experiments, 
we choose the induced metric for the manifold geometry, the quadratic dynamic cost L 

(
T j, U (T j, t)

)
:= 1

2
∑

d

(
U d(T j, t)

)2
, 

and the arithmetic average w . The interaction and terminal cost terms vary from examples and will be specified later. All of 
our numerical experiments are implemented in Matlab on a PC with an Intel(R) i7-8550U 1.80 GHz CPU and 16 GB memory.
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Fig. 3. The error of discrete objective values and optimizers with the continuous ground truth as the triangular mesh is refined.

5.1. Numerical convergence analysis

In section 3, we derive the semi-discrete PDE system (54) from the optimality condition of the semi-discrete problem 
(53) and show that it is consistent with the PDE system of the continuous mean-field game (6). In this section, we conduct 
a numerical experiment to show that the discrete minimizer of (65) approaches the continuous minimizer of (28) when the 
mesh is refined. A theoretical convergence proof of the optimizer is out of the scope of this paper and will be explored in 
the future.

Consider a Euclidean subspace M := [0, 1]2 ⊂ R2 and its uniform equilateral triangulation. Let the dynamic cost be 
L(x, p) = 1

2 ∥p∥2
2, the interaction cost F = 0 and the terminal cost FT = ιρ1 , an indicator function of a given density ρ1. Then 

the problem becomes an optimal transport problem. Taking ρ(x, 0) = x1 + 1
2 and ρ(x, 1) = 1 gives a closed-form solution of 

the optimizer and the corresponding minimal objective value. As computed in [52], the ground truth are Y∗ = 1
120 and

ρ∗(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

x1 + 1
2
, t = 0,

s(x, t) + t − 1
ts(x, t)

, 0 < t ≤ 1,

m∗
1(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

1
4

x1(x1 − 1)(2x1 + 1), t = 0,

x1

t2 − 3 − t
2t3 s(x, t) − (t − 1)(t2 − 4)

8t3s(x, t)
− 3t − 4

2t3 , 0 < t ≤ 1,

with s(x, t) =
√

2tx1 +
( t

2 − 1
)2 and m∗

2 = 0. Let n be the number of discretization points in time and 1
nx

be the 
length of the triangles on the mesh. For given (n, nx), we apply our algorithm to find the minimizer of the discrete 
problem (65) and compare the objective value and numerical minimizer with the ground truth. We pick (n, nx) =
(8, 16), (16, 32), (32, 64), (64, 128) and plot the error in Fig. 3. It shows that when the space and time discretizations are 
refined, the numerical minimizer approaches the continuous minimizer and minimal objective value approaches the ground 
truth.

5.2. MFGs with local interactions

In this part, both F and FT take local forms for all experiments.

The U.S. map based triangular mesh We first consider a U.S. map based triangular mesh, which is the discretization of a 
subdomain on a spherical manifold. Assume that there are two obstacles on the map and it takes extra effort for masses 
(agents) to pass through the obstacle region C̃B ⊂ M̃. We define B : M̃ → R be the piece-wise linear indicator of the 

obstacle with B(V i) =
{

1, V i ∈ C̃B ,

0, V i ∈ C̃B
(see Fig. 4 obstacle).

We pick the initial density P0 shown in Fig. 4 t = 0. The mass concentrates in California. We let the mass move 
freely during the time interval. To reflect the impact of the obstacle, we choose the interaction cost F̃(P (·, t)) =
50 

∑h
i=1 AV i P (V i, t)B(V i). We also encourage the mass to stop in the central and eastern parts at the end. To achieve 

this, we define the terminal cost F̃T (P (·, t)) = 1
10

∑h
i=1 AV i P (V i, tn)BT (V i) with BT (V i) =

⎧
⎪⎨

⎪⎩

1, 105◦W ≤ the longitude of
V i ≤ 130◦W,

0, otherwise.
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Fig. 4. Illustration of obstacle indicator B (column 1) and snapshots of a MFG on the US map (column 2–4).

Fig. 5. Illustration of the model and snapshots of the density evolution.

Our numerical results in Fig. 4 show that the density in the obstacle region remains low. This means the mass circum-
vents those areas very well. In addition, at t = 1, the density in the central and eastern areas is generally denser than that 
in the western, which meets our expectations.

“8”-shape with obstacles In this example, we demonstrate that our model and algorithm can successfully handle manifolds 
with complicated topology. We consider a “8” shape surface. Similarly as before, we assume there are obstacles on the man-
ifold and the indicator of the obstacle B : M̃ →R is shown in Fig. 5(a). In plots afterwards, we indicate the obstacle region 
with a different transparency. We pick the initial density P0 aggregating on the one end of “8” and the desired terminal 
density P1 on the other end (Fig. 5(a)). For the interaction cost, we still choose F̃ (P (·, t)) = 50 

∑h
i=1 AV i P (V i, t)B(V i) to 

avoid obstacle. And we write the terminal cost as F̃T (P (·, t)) = 5 
∑h

i=1 AV i (P (V i,1) − P1(V i))
2 to push the terminal density 

P (·, 1) to the desired P1.
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Fig. 6. Snapshots of MFGs with different interactions on constrained Euclidean space.

Table 1
Comparison of dynamic, interaction and terminal costs for experiments on 
the homer surface.

Dynamic cost 1
n

∑n−1
k=1 F̃c(P (·, tk)) Terminal cost

vanilla 0.0079 0.0393 5.5 × 10−5

congested 0.0084 0.0378 8.2 × 10−5

We list the snapshots of resulting density evolution in Fig. 5(b). These results show that the mass produced by our model 
successfully circumvents the obstacle on this genus-2 manifold. Additionally, the terminal density mainly aggregated in the 
support of P1 as we expect.

Irregular Euclidean domain Besides introducing B to impose a soft constraint of the obstacle, the general setup on manifolds 
enables us to have a different implementation for the hard obstacle constraints.

For example, consider an irregular Euclidean domain shown in Fig. 6 with white regions punctured. Instead of handling 
the complicated boundary conditions when conducting mean-field game problems using conventional methods in Euclidean 
spaces, we view the region as a two-dimensional manifold and use a triangular mesh to approximate it. Then we directly 
apply our algorithm to the mesh without the shape complexity concern.

The initial density P0 and desired terminal density P1 are approximations of two Gaussian distributions. And we choose 
terminal cost as F̃T (P (·, t)) = 10 

∑h
i=1 AV i P (V i, 1) log

(
P (V i ,1)
P1(V i)

)
to push P (·, 1) to P1. In Fig. 6, we compare the results with 

a vanilla interaction cost F̃v(P (·, t)) = 0 (Fig. 6(a)) and with a disperse cost F̃d(P (·, t)) = ∑h
i=1 AV i P (V i, t) log(P (V i, t))

(Fig. 6(b)). We see that with F̃d , the mass is prone to segregate during the evolution. To understand this, we refer to the 
original game description. With F̃d , we actually solve a mean-field game with F (x, ρ(·, t)) = log(ρ(x, t)) + 1. To reduce the 
cost J , agents prefer locations with lower F (x, ρ(·, t)), i.e. lower density ρ(x).

Homer surface As the last example with local cost, we work with the surface of homer. We pick the initial density 
P0 concentrating on the belly and the desired terminal density P1 on the end of hands and feet. Fixing the termi-
nal cost F̃T (P (·, 1)) = 5

2
∑h

i=1 AV i (P (V i, 1) − P1(V i))
2, we compare the vanilla interaction cost F̃v (P (·, t)) = 0 and con-

gested F̃c(P (·, t)) = 1
10

∑h
i=1 AV i

√
P (V i, t) + 10−4. The choice of F̃c actually corresponds to the mean-field game with 

F (ρ(·, t)) = 1
10

√
ρ(x,t)+104

. To reduce the cost during evolution, the agents tend to aggregate for a larger density value.

We solve the games with F̃v , F̃c to obtain the local minimizers (P v , Mv), (Pc, Mc) and report the corresponding dynamic 
cost, terminal cost and value of F̃c in Table 1. We also show and compare P v (·, t), Pc(·, t) at several time steps in Fig. 7. 
The costs in Table 1 show that our algorithm effectively reduces the interaction cost. From the snapshots, we observe that 
with the congested interaction cost, the mass move in a more compact manner.
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Fig. 7. Snapshots of a MFG on the homer surface.

Table 2
Comparison of dynamic, interaction and terminal costs for experiments on 
the sphere.

Dynamic cost 1
n

∑n−1
k=1 F̃n(P (·, tk)) Terminal cost

vanilla 0.0267 0.1220 0.0023
non-local 0.0292 0.1152 0.0036

5.3. MFGs with non-local interactions

In this part, we show some mean-field games with non-local interaction costs.

The unit sphere In this example, we work on the triangular mesh of the unit sphere in five-dimensional space. We first 
generate the mesh in three-dimensional space and then patch zero to put the vertices in R5. After that, we apply a 
rigid transformation to the sphere by multiplying the coordinates of the vertices with an orthogonal matrix. The ini-
tial density P0 and desired terminal density P1 are spherical Gaussian. Again, we use the terminal cost F̃T (P (·, t)) =
0.5 

∑h
i=1 AV i P (V i, 1) log

(
P (V i ,1)
P1(V i)

)
. We then compute the game with vanilla interaction cost F̃v (P (·, t)) = 0 and non-local 

F̃n(P (·, t)) = 25 
∑h

i=1
∑

i′ AV i P (V i)K̃ (V i, V i′)AV i′ P (V i′ ). The kernel is defined as

K̃ (V i, V i′) = exp
(
−(arccos V i

⊤V i′)
2/σ 2

)
.

Here σ = 0.1 and V i
⊤V i′ is the inner product of the two vectors in Euclidean space and arccos V i

⊤V i′ is the geodesic 
distance between V i and V i′ on the sphere. We use the ground truth geodesic distance for simplicity. One can also compute 
the shortest path on the mesh and store it when pre-processing the manifold. We conduct the quantitative and snapshot 
comparison in Table 2 and in Fig. 8. To view the result, we inversely transform the sphere in R5 to R3 and plot the mesh 
therein. The table shows our algorithm effectively leverages the dynamic, interaction and terminal cost when taking the 
non-local cost F̃n . And the comparison in Fig. 8 clearly illustrates that the non-local cost F̃n encourages mass dispersion.

Kitten In the last example, we work with the kitten surface (Fig. 9). Let the initial density P0 concentrate on the paws and 
the desired terminal density on the ears. We take the terminal cost F̃T (P (·, 1)) = ∑h

i=1 AV i (P (V i,1) − P1(V i))
2 to push the 

mass moving from bottom to top. We also compare the non-local interaction cost F̃n(P (·, t)) = 1
2

∑h
i=1

∑
i′ AV i P (V i, t)×

K̃ (V i, V i′)AV i′ P (V i′ , t) with the vanilla F̃v (P (·, t)) = 0 in Fig. 9. The kernel is chosen as a weighted Laplacian matrix on the 
triangular mesh

K̃ (V i, V i′) = 1
AV i

1
AV i′

3∑

d=1

s∑

j=1

AT j G
d(T j, V i)Gd(T j, V i′).
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Fig. 8. Snapshots of MFGs with different interactions on the sphere.

Fig. 9. Snapshots of MFGs with different interactions on “kitten”.

With this choice, the interaction cost is exactly

F̃n(P (·, t)) = 1
2

s∑

j=1

AT j

∥∥(∇M̃ P )(T j, tk)
∥∥2

2 ,

and approximates 1
2

∫
M ∥∇Mρ(x, t)∥2

g(x) dMx. To reduce this cost, the density at each time step P (·, tk) tends to be smooth 
on the space domain. The quantitative result in Table 3 shows the value 1

n

∑n−1
k=1 F̃n(P (·, tk)) is reduced by adding F̃n to the 

objective function. And the comparisons of densities and colorbars in Fig. 9 show that with F̃n in the objective function, at 
each time step, the density distributes more uniformly on the manifold.

5.4. Computation time and accuracy

At the end of this numerical section, we report the computation time and accuracy of the above experiments in Table 4. 
As the computational complexity of our algorithm depends on the number of vertices h and number of triangles s on the 
mesh, we also include h, s in the table.
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Table 3
Comparison of dynamic, interaction and terminal costs for experiments on 
“kitten”.

Dynamic cost 1
n

∑n−1
k=1 F̃n(P (·, tk)) Terminal cost

vanilla 0.5998 213.6033 0.0312
non-local 1.2429 0.6678 0.1710

Table 4
Computation time and accuracy.

Triangle mesh and interaction cost h s Time (s) Number of iteration Time (s) per iteration KKT residue

U.S. map 2900 5431 199.4813 3000 0.0665 3.15e-02
“8”-shape 766 1536 97.5769 5000 0.0195 1.70e-01

Irregular Euclidean
vanilla

2473 4627
250.6317

5000
0.0501 1.49e-01

disperse 274.1786 0.0548 1.42e-01

Homer
vanilla

2353 4702
163.2711

3000
0.0544 2.62e-03

congested 168.6198 0.0562 2.75e-03

Unit sphere
vanilla

2562 5120
132.0967

2000
0.0660 8.42e-03

non-local 147.9476 0.0740 8.25e-03

Kitten
vanilla

2884 5768
213.8950

3000
0.0713 2.99e-02

non-local 260.6147 0.0869 1.10e-01

As we mentioned in section 4, the proximal descent step requires solving a linear system (73). And since the linear 
solver is invariant to iteration numbers, we precompute it to reduce the total cost in the main iteration. The times reported 
in Table 4 include both the precomputation and the main iteration.

To show that our numerical result is close to the local minimizer of the fully discretized problem (65), we report the 
KKT residue in Table 4. To compute the KKT residue for a given output (P , M), we first solve for * = {*(·, tk− 1

2
)}k=1,··· ,n ∈

(P(M̃))n such that

∂̃t ∂̃
∗
t * − ∇M̃ · ∇M̃* = ∂̃t(A−1

V ∂P Ỹ(P , M)) + ∇M̃ · (A−1
T ∂M Ỹ(P , M)). (75)

Then let
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E P (V i, tk) := min
{

1
AV i

∇P (V i ,tk)Ỹ(P , M) − (̃∂∗
t *)(V i, tk), P (V i, tk)

}
,∀V i ∈ V ,k = 1, · · · ,n

E M(T j, tk) := 1
AT j

∇M(T j ,tk− 1
2
)Ỹ(P , M) + (∇M̃*)(T j, tk− 1

2
) = 0,∀T j ∈ T ,k = 1, · · · ,n

Ec(V i, tk− 1
2
) := (̃∂t P )(V i, tk− 1

2
) + (∇M̃ · M)(V i, tk− 1

2
),∀V i ∈ V ,k = 1, · · · ,n.

(76)

The KKT residue is defined as min{∥E P ∥V ,t, ∥E M∥T ,t, ∥Ec∥V ,t}. And P , M is the local minimizer of (65), if and only if the 
KKT residue is 0.

6. Conclusion

In this work, we generalize mean-field games from Euclidean space to manifolds, design an optimization-based algo-
rithm to solve variational mean-field games, and conduct numerical experiments on various manifolds with triangular mesh 
representation. We first propose both the PDE formulation and the variational formulation of the Nash Equilibrium of a 
mean-field game. We also establish their equivalence on manifolds. To solve the potential mean-field games on manifolds, 
we use triangular meshes, piece-wise linear functions, and piece-wise constant vector fields for discretization. Then we ap-
ply the proximal gradient method to solve the corresponding discrete optimization problems. We conduct comprehensive 
numerical experiments to demonstrate the flexibility of the model in handling different MFG problems on various manifolds.
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