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Abstract
Let p be a prime number. We prove that the P = W conjecture for SLp is equivalent
to the P = W conjecture for GLp. As a consequence, we verify the P = W conjecture
for genus 2 and SLp. For the proof, we compute the perverse filtration and the weight
filtration for the variant cohomology associated with the SLp-Hitchin moduli space
and the SLp-twisted character variety, relying on Gröchenig–Wyss–Ziegler’s recent
proof of the topological mirror conjecture by Hausel–Thaddeus. Finally we discuss
obstructions of studying the cohomology of the SLn-Hitchinmoduli space via compact
hyper-Kähler manifolds.
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0. Introduction

Throughout the paper, we work over the complex numbers C.
Let C be a nonsingular projective curve of genus g ≥ 2, and let G be a reduc-

tive group. The P=W conjecture of de Cataldo, Hausel, and Migliorini [3] predicts
a surprising connection between the topology of G-Hitchin systems and the Hodge
theory G-character varieties via the non-abelian Hodge correspondence. More pre-
cisely, it suggests that the perverse filtration for the Hitchin system associated with
the G-Dolbeault moduli space MDol coincides with the weight filtration associated
with the corresponding G-Betti moduli space MB ,

“P = W " : PkH
d (MDol, Q) = W2k H

d (MB , Q) = W2k+1H
d (MB , Q), ∀k, d ≥ 0; (1)

see Sect. 1 for a brief review.
When G = GLn , the P = W conjecture was established for any genus g and rank

n = 2 in [3], andvery recently, for genus g = 2 andarbitrary rankn in [4]. Furthermore,
for aribitrary genus and rank, [4] shows P = W for the tautological generators of the
cohomology, and reduces the full P = W conjecture to the multiplicativity of the
perverse filtration.

The G = PGLn case is equivalent to the GLn case for a fixed curve C ; see [4] the
paragraph following Theorem 0.2. It is natural to explore non-trivial examples of the
P = W phenomenon for a reductive group G other than GLn and PGLn .

The purpose of this paper is to study P = W for G = SLn . The case of SL2 was
already established in [3]. We provide in the following theorem an affirmative answer
to the P = W conjecture when the curve has genus g = 2 and the rank n is any prime
number.

Theorem 0.1 The P = W conjecture (1) holds when C has genus g = 2 and G = SLn

with n a prime number.

We refer to Sect. 1.5 for more precise statements. Here we briefly explain the main
difference between the G = GLn case and the G = SLn case.

Let MDol be the SLn-Dolbeault moduli space assocated with a curve C of genus
g ≥ 2 and a line bundle L with gcd (c1(L), n) = 1 (see Sect. 1). There is a natural
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action of the finite group � = Pic0(C)[n] on MDol via tensor product. This group
action yields a decomposition with respect to the irreducible characters of �,

H∗(MDol, Q) = H∗(MDol, Q)�
⊕

H∗
var(MDol, Q). (2)

Here the �-invariant part H∗(MDol, Q)� corresponds to the trivial character, and
the variant cohomology H∗

var(MDol, Q) corresponds to all the non-trivial characters.
Note that we have the same decomposition (2) for the Betti moduli space MB . The
�-invariant part

H∗(MDol, Q)� ⊂ H∗(MDol, Q) (3)

is canonically identified with the cohomology of the corresponding moduli of stable
PGLn-Higgs bundles (see (8)). In particular, it is the sub-vector space of H∗(MDol, Q)

generated by the tautological classes with respect to a universal family.
As a consequence, P = W for GLn is equivalent to P = W for the invariant part

(3). The following theorem proves P = W for the variant cohomology for any genus
when n is prime.

Theorem 0.2 We have P = W for the variant cohomology H∗
var(MDol, Q) for any

genus g ≥ 2 with n a prime number,

Pk H
d
var(MDol, Q) = W2k H

d
var(MB, Q), ∀k, d ≥ 0.

Theorem 0.2 shows that, for a curve C of genus g ≥ 2, the P = W conjecture
for the groups GLn , SLn , and PGLn are equivalent when n is prime. The proof of
Theorem 0.2 relies on the recent proof [8] of the topological mirror conjecture [14],
and the calculations of E-polynomials for character varieties [13, 20].

For general rank n. we refer to [19, Sect. 5] for a discussion on the connection
between the Hausel–Thaddeus topological mirror conjecture and the P = W conjec-
ture for SLn . We expect that the P = W conjecture for SLn is reduced to the P = W
conjecture for GLd where d runs through all divisors of n. Such a reduction can be
achieved by proving the compatibility between the endoscopic correspondence for the
Hitchin moduli spaces with the weight filtrations for the character varieties; see [19,
Question 5.5] and the paragraph follwing it for more details.

In Sect. 4, we discuss obstructions of studying the cohomology ofMDol via com-
pact hyper–Kähler manifolds; see Propositions 4.2 and 4.3 . In particular, we provide
obstructions to extend the method of [4] for proving the P = W conjecture for genus
2 and GLn to the genus 2 and SLn case.

1 Hitchinmoduli spaces and character varieties

Througout the section, we let C be a nonsingular projective curve of genus g ≥ 2.
We also fix 2 integers n, d satisfying n ≥ 2 and gcd(n, d) = 1, and a line bundle
L ∈ Picd(C).
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1.1 Moduli spaces

We review the two moduli spaces MDol and MB associated with the curve C , the
group SLn , and the line bundle L ∈ Picd(C). We refer to [3, 11, 13, 15, 16] for more
details.

The Dolbeault moduli space MDol parametrizes stable Higgs bundles

(E, θ), θ : E → E ⊗ �C

satisfying the conditions

trace(θ) = 0, det(E) = L.

The Hitchin system associated with MDol is a proper surjective morphism π :
MDol → � sending (E, θ) to the characteristic polynomial

char(θ) ∈ � := ⊕n
i=2H

0(C,�⊗i
C ).

It is Lagrangian with respect to the canonical hyper-Kähler metric onMDol. The Betti
moduli space MB is the SLn-twisted character variety,

MB :=
⎧
⎨

⎩ak, bk ∈ SLn, k = 1, 2, . . . , g :
g∏

j=1

[a j , b j ] = e
2π

√−1d
n Idn

⎫
⎬

⎭ // SLn,(4)

which is obtained as an affine GIT quotient with respect to the action by conjugation.
BothMDol and MB are nonsingular quasi-projective varieties satisfying

dim(MDol) = 2dim(�) = dim(MB) = (n2 − 1)(2g − 2).

The non-abelian Hodge theory [25, 26] provides a diffeomorphism between MDol
and MB , which identifies the cohomology

H∗(MDol, Q) = H∗(MB, Q). (5)

1.2 Perverse filtrations

The P = W conjecture (1) predicts the match of two completely different structures
under the identification (5), namely the perverse filtration associatedwithπ : MDol →
� and the weight filtration with respect to the mixed Hodge structure on MB .

The perverse filtration

P0H
∗(MDol, Q) ⊂ P1H

∗(MDol, Q) ⊂ · · · ⊂
PkH

∗(MDol, Q) ⊂ · · · ⊂ H∗(MDol, Q) (6)
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is an increasing filtration defined via the perverse truncation functor [3, Sect. 1.4.1].
It is governed by the topology of the Hitchin system π : MDol → �. We recall the
followinguseful characterization of the perverse filtration (6) by deCataldo–Migliorini
[5].

Theorem 1.1 (de Cataldo–Migliorini [5]) Let �s ⊂ � denote an s-dimensional gen-
eral linear sub-space. Then we have

Pi H
i+k(MDol, Q) = Ker

(
Hi+k(MDol, Q) → Hi+k(π−1(�k−1), Q)

)
.

1.3 0-actions

Let L ∈ Pic0(C)[n] be a n-torsion line bundle. Then for (E, θ) ∈ MDol, we have
(L ⊗ E, θ) ∈ MDol. Hence the finite abelian group

� = Pic0(C)[n] � (Z/nZ)2g

acts on MDol, with the quotient

M̂Dol = MDol/�

a Deligne–Mumford stack parametrizing stable PGLn-Higgs bundles. The Hitchin
map π : MDol → � is �-equivariant with the trivial action on the Hitchin base �.
The PGLn-Hitchin map π̂ : M̂Dol → � fits into the commutative diagram

MDol M̂Dol

�

π π̂

(7)

where the horizontal arrow is the quotient map. We obtain from (7) the canonical
isomorphism

H∗(MDol, Q)� = H∗(M̂Dol, Q) (8)

compatible with the perverse filtrations,

PkH
∗(MDol, Q)� = PkH

∗(M̂Dol, Q),

Here the perverse filtration for M̂Dol is associated with π̂ : M̂Dol → �.
We also have the corresponding �-action on the Betti moduli space MB . More

precisely, we view � as a sub-group of (C∗)×2g , which acts on the matrices ai , bi ∈
SLn of (4) by multiplication. The �-action onMB is induced by the action of the rank
1 character variety (C∗)×2g on the GLn-twisted character variety, which, via the non-
abelian Hodge correspondence, coincides with the action of the rank 1 Hitchin moduli
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space T ∗Pic0(C) on the GLn-Hitchin moduli space. Hence the �-decomposition

H∗(MB, Q) = H∗(MB, Q)�
⊕

H∗
var(MB, Q)

matches the�-decomposition (2) forMDol via the non-abelianHodge correspondence
(5). Analagous to (8), we have a canonical isomorphism of mixed Hodge structures

H∗(MB, Q)� = H∗(M̂B, Q) (9)

with M̂B the PGLn-character variety diffeomorphic to M̂Dol via the non-abelian
Hodge correspondence for PGLn .

In conclusion, we have the following proposition concerning the P = W for the
�-invariant cohomology.

Proposition 1.2 Assume that the P = W conjecture (1) holds for the curve C, the
group G = GLn, and the degree d. Then we have

PkH
∗(MDol, Q)� = W2k H

∗(MB, Q)�, ∀k ≥ 0.

The following is a consequence of Proposition 1.2 and [4, Theorem 0.2].

Corollary 1.3 When the curve C has genus g = 2, we have

PkH
∗(MDol, Q)� = W2k H

∗(MB, Q)�, ∀k ≥ 0.

1.4 The variant cohomology

In view of Proposition 1.2 and Corollary 1.3, our main purpose of this paper is to
understand the perverse filtration and the weight filtration on the variant cohomology

H∗
var(MDol, Q) = H∗

var(MB, Q).

Proposition 1.4 Let p be the smallest prime divisor of n. We have

Pk−n(n−n/p)(g−1)H
k
var(MDol, Q) = Hk

var(MDol, Q). (10)

Proof The argument here is a generalization of the first part of the proof of [3, Theorem
4.4.6] which treated the case n = 2. Here we apply results of Hausel–Pauly [12] and
Theorem 1.1.

Let �′ ⊂ � be a general linear subspace of dimension

dim(�′) = n(n − n/p)(g − 1) − 1. (11)

AssumeM�′ = π−1(�′) ⊂ MDol. In order to prove (10), by Theorem 1.1 it suffices
to show

r
(
Hk
var(MDol, Q)

)
= 0 (12)
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where r is the restriction morphism

r : Hk(MDol, Q) → Hk(M�′ , Q). (13)

We consider the endoscopic loci �endo ⊂ � defined in [12, Corollary 1.3], which
is formed by a ∈ � such that the Prym variety Prym(Ca/C) associated with the
corresponding spectral curve Ca is not connected. By [12, Lemma 7.1], we have

codim�(�endo) = n(n − n/p)(g − 1). (14)

Since �′ is general, it is completely contained in � � �endo by (11) and (14). An
identical argument as in the first paragraph of [12, Proof of Theorem 1.4] implies that
� acts trivially on Hk(M�′ , Q), i.e.,

Hk
var(M�′ , Q)) = 0.

On the other hand, the �-action is fiberwise with respect to the Hitchin map π :
MDol → �, and the restriction morphism (13) is �-equivariant. In particular, we see
that

r
(
Hk
var(MDol, Q)

)
⊂ Hk

var(M�′, Q)) = 0.

This completes the proof of (12). 
�

1.5 Main results

The following theorem is our main result, which generalizes [3, Theorems 4.4.6 and
4.4.7] for n = 2. It computes the perverse filtration and the weight filtration explicitly
on the variant cohomology for SLn with n a prime number.

Theorem 1.5 Assume n is a prime number, and assume

cn := n(n − 1)(g − 1).

(a) We have

0 = Pk−cn−1H
k
var(MDol, Q) ⊂ Pk−cn H

k
var(MDol, Q) = Hk

var(MDol, Q).

(b) We have

0 = W2(k−cn)−1H
k
var(MB, Q) ⊂ W2(k−cn)H

k
var(MB, Q) = Hk

var(MB, Q).

We prove Theorem 1.5 in Sect. 3. It is clear that Theorem 1.5 implies Theorem 0.2.
Hence we complete the proof of Theorem 0.1 by combining Corollary 1.3.
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Remark 1.6 Proposition 1.2 and Theorem 1.5 combined shows that, when n is a prime
number, the P = W conjecture for SLn is equivalent to the P = W conjecture for
GLn .

For general n, the perverse filtration on the variant cohomology Hk
var(MDol, Q) for

the SLn-Hitchin moduli space MDol is expected to be more complicated. In view of
[14], the variant cohomology is governed by the Hitchin moduli spaces of endoscopic
groups attached to irreducible non-trivial characters of � = Pic0(C)[n]. These endo-
scopic moduli spaces are further related to the GLn/d -Hitchin moduli space associated
with a curve C̃ given by a degree d Galois cover ofC , where d runs through all divisors
of n. We will discuss this in a future paper.

In particular, when n is prime, the relevant endoscopic Higgs bundles are of rank
1, with the corresponding moduli space the total cotangent bundle of a Prym variety.
Therefore the associated perverse filtrations are trivial. This is the heuristic reason that
the perverse filtrations on the variant cohomology are of the form Theorem 1.5 (a).

2 Characterizations for k-sequences

2.1 k-sequences

We consider double indexed sequences

{vi, j ∈ N}i, j (15)

satisfying vi, j = 0 when i < 0 or j < 0. For convenience, we assume that all indices
are non-negative integers.

We say that (15) is a k-sequence if vi, j = 0 when j �= k. The purpose of Sect. 2 is
to give two criteria for k-sequences.

2.2 The first criterion

Proposition 2.1 For fixed m, k ∈ N>0, we assume that (15) satisfies the following
conditions:

(i) vi, j = 0 if j < k;
(ii) vm−i, j = vm+i, j for any i, j ;
(iii) The following identify holds for any l ≥ 0,

∑

i+ j=m+k−l

vi, j =
∑

i+ j=m+k+l

vi, j .

Then (15) is a k-sequence.

Proof By (i), it suffices to show that

vi, j = 0, if k < j . (16)



On the P = W conjecture for SLn Page 9 of 21 90

We prove this by induction on the value i + j . The induction base is the case i + j = k
where (16) is clearly true.

We now assume that (16) holds if i+ j < d0. To complete the induction, we need to
show that vd0− j, j = 0 for k < j . The condition (ii) implies that vd0− j, j = v2m−d0+ j, j .
On the other hand, by (iii), we have

v2m−d0+ j, j + v2m−d0+2 j−k,k

≤
∑

i+ j=2m−d0+2 j

vi, j =
∑

i+ j=d0−2 j+2k

vi, j = vd0−2 j+k,k (17)

wherewe apply the induction assumption in the last equation (since d0−2 j+2k < d0).
We deduce from (17) and (ii) that

v2m−d0+ j, j ≤ vd0−2 j+k,k − v2m−d0+2 j−k,k = 0.

Hence we have vd0− j, j = v2m−d0+ j, j = 0 which completes the induction. 
�

2.3 The second criterion

Proposition 2.2 For fixed m, k ∈ N>0, we assume that (15) satisfies the following
conditions:

(i) vi, j = v2m+2k−i−2 j, j for any i, j .
(ii) The following identity holds for any l ≥ 0,

∑

i+ j=k+l

vi, j =
∑

j

vl, j .

(iii) The following identify holds for any i ≥ 0,

∑

j

vm+i, j =
∑

j

vm−i, j .

Then (15) is a k-sequence.

Proof We prove that

vi, j = 0, if k �= j (18)

by induction on the value i + j .
If i + j ≤ k and j < k, we have vi, j = v2m+2k−i−2 j, j by (i). Then (iii) implies

that

v2m+2k−i−2 j, j ≤
∑

l

v2m+2k−i−2 j,l =
∑

l

vi+2 j−2k,l = 0,
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since i + 2 j − 2k < 0. Hence vi, j = 0 if i + j < k, and vi,k−i = 0 if i > 0. This
provides the induction base.

Now assume that (18) holds if i + j < d0. We first show that vd0− j, j = 0 if j > k.
In fact, by (ii) we have

vd0− j, j + vd0− j,k ≤
∑

j ′
vd0− j, j ′ =

∑

i1+i2=k+(d0− j)

vi1,i2 . (19)

Then, since k + (d0 − j) < d0, the induction assumption further implies

∑

i1+i2=k+(d0− j)

vi1,i2 = vd0− j,k . (20)

Combining (19) and (20), we have vd0− j, j = 0 if j > k.
It remains to show that vd0− j, j = 0 if j < k. In this case, we have

vd0− j, j = v2m+2k−d0− j, j

by (i). The condition (ii) further implies that

v2m+2k−d0− j, j + v2m+2k−d0− j,k

≤
∑

j ′
v2m+2k−d0− j, j ′ =

∑

i1+i2=2m+3k−d0− j

vi1,i2 . (21)

For i1 + i2 = 2m + 3k − d0 − j , we have by (i) that vi1,i2 = v j1, j2 with

j1 + j2 = 2m + 2k − (2m + 3k − d0 − j) = d0 + j − k < d0.

Hence (i) and the induction assumption yield

∑

i1+i2=2m+3k−d0− j

vi1,i2 = v2m+2k−d0− j,k . (22)

Combining (21) and (22), we obtain

vd0− j, j = v2m+2k−d0− j, j = 0

which completes the induction. 
�

3 Perverse filtrations and weight filtrations

Throughout the section, we assume that n is a prime number, and complete the proof
of Theorem 1.5. For the proof, we apply the numerical criteria of Sect. 2 combined
with the following ingredients:
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(a) Hausel–Thaddeus’ topological mirror symmetry conjecture for Hitchin systems
[14], and its recent proof by Gröcheneg–Wyss–Ziegler [8].

(b) The E-polynomials of character varieties calculated by Hausel– Rodriguez–
Villegas [13] and Mereb [20] via point counting over finite fields.

3.1 The topological mirror symmetry conjecture

Recall that the virtual Hodge polynomial H(X; u, v) of an algebraic variety X is

H(X; t, u, v) =
∑

i, j,k

h j,k
(
GrWj+k H

i
c (X , C)

)
t i u jvk

where GrW∗ is the graded piece with respect to the weight filtration. The E-polynomial
of X is the specialization

E(X; u, v) = H(X;−1, u, v).

The topological mirror symmetry conjecture proposed by Hausel–Thaddeus [14]
relates the E-polynomial of the SLn-Hitchin moduli space MDol to the stringy E-
polynomial of the PGLn-Hitchin moduli space M̂Dol. A generalized version of the
Hausel–Thaddeus conjecture was proven by Gröchenig–Wyss–Ziegler [8] via the
method of p-adic integrations; see also [9].

When n is a prime number, we obtain the following closed formula for the E-
polynomial of the variant cohomology ofMDol from a direct calculation of the stringy
E-polynomial of the PGLn-Hitchin moduli space M̂Dol; see [14, Proposition 8.2].

Proposition 3.1 (Topological mirror symmetry [8, 14]) Let n be a prime number. Then
we have

E(MDol; u, v) − E(M̂Dol; u, v)

= n2g − 1

n
(uv)(n

2−1)(g−1)
(
((u − 1)(v − 1))(n−1)(g−1)

−
(
(1 + u + · · · + un−1)(1 + v + · · · + vn−1)

)(g−1)
)

. (23)

We denote E(q) to be the polynomial by setting u = v = q on the righthand side
of (23),

E(q) := n2g − 1

n
qdim(MDol)

(
(q − 1)(n−1)(2g−2)−(1+q+· · ·+qn−1)2g−2

)
,(24)

which is palindromic satisfying

E(q) = q(2g−2)(2n2+n−3)E

(
1

q

)
. (25)
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We denote [E(q)]qi to be the coefficient of qi in the polynomial expansion of E(q).

Corollary 3.2 We have

dim
(
Hd
var(MDol, Q)

)
= (−1)d [E(q)]q2dim(MDol)−d .

Proof Since the cohomology groups Hk of the moduli spaces MDol and M̂Dol are
pure of weights k, their E-polynomials recover the virtual Hodge polynomials. Corol-
lary 3.2 follows from the Poincaré duality and (8). 
�

3.2 Proof of Theorem 1.5 (a).

We define

v
i, j
P := dim

(
GrPi Hi+ j

var (MDol, Q)
)

(26)

with GrP∗ the graded piece of the perverse filtration. Recall cn from Theorem 1.5. It
suffices to show that (26) forms a cn-sequence.

We check that (26) satisfies (i,ii,iii) of Proposition 2.1 for

k = cn, m = 1

2
dim(MDol) = (n2 − 1)(g − 1). (27)

The condition (i) follows directly from Proposition 1.4. The condition (ii),

dim
(
GrPm−i H

m−i+ j
var (MDol, Q)

)
= dim

(
GrPm+i H

m+i+ j
var (MDol, Q)

)
,

follows from the Relative Hard Lefschetz [2] with respect to the Hitchin map π :
MDol → �, and its compatibility with the �-decomposition.

Since

dim
(
Hd
var(MDol, Q)

)
=

∑

i+ j=d

v
i, j
P ,

the condition (iii) is equivalent to

dim
(
Hm+cn−i
var (MDol, Q)

)
= dim

(
Hm+cn+i
var (MDol, Q)

)
,

which follows from Corollary 3.2 and the symmety (25),

[E(q)]qi = [E(q)]q j , if i + j = 6m − 2cn = (2n2 + n − 3)(2g − 2).

This completes the proof. 
�
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3.3 A symmetry

We see from Corollary 3.2 that H2(MDol, Q) = H2(M̂Dol, Q). So there is only one
class η spanning H2(MDol, Q) (see [18]), and it is relatively ample with respect to the
Hitchin map. As a consequence of Theorem 1.5 (a), we obtain the following symmetry
on the cohomology of MDol.

Corollary 3.3 Cupping with a power of the class η induces an isomorphism

ηi : Hm+cn−i
var (MDol, Q)

�−→ Hm+cn+i
var (MDol, Q), ∀i,m. (28)

Proof The Relative Hard Lefschetz Theorem implies that

ηi : GrPm−i H
m+ j−i
var (MDol, Q)

�−→ GrPm+i H
m+ j+i
var (MDol, Q).

Since (26) is a cn-decompositionbyTheorem1.5 (a), the only non-trivial isomorphisms
(3.3) are those with j = cn , and Corollary 3.3 follows. 
�
Remark 3.4 In general, if n is not prime, (28) does not hold. In particular, Corollary 3.3
relies heavily on the fact that (26) is a cn-sequence, which, by the proof of Theorem
1.5 (a), further relies on the symmetries of the coefficients of the polynomial E(q).

3.4 E-polynomials of character varieties

Recall the polynomial E(q) introduced in (24). In view of (9), We define the variant
E-polynomial

Evar(MB; u, v) := E(MB; u, v) − E(M̂B; u, v).

The following proposition calculates the variant E-polynomial forMB . We note that
the two sides of the equation (29) are of completely different flavors. The left-hand
side is governed by point counting over finite fields via the character tables of GLn(Fq)

and SLn(Fq), while the right-hand side calculates suitable cohomology groups of the
moduli of certain endoscopic Higgs bundles.

Proposition 3.5 We have

Evar(MB; u, v) · (uv)(n
2+n−2)(g−1) = E(uv). (29)

Proof The result of Katz [13, Appendix] and the calculations of [13, 20] imply that
the E-polynomials E(MB; u, v) and E(M̂B; u, v) are polynomials in the variable
q = uv. Hence it suffices to show that

Evar(MB;√
q,

√
q) = n2g − 1

n
q(n2−n)(g−1)
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(
(q − 1)(n−1)(2g−2) − (1 + q + · · · + qn−1)(2g−2)

)
. (30)

By [13, Equation (3.2.4)] and [20, Theorem 3.4], we have

E(M̂B;√
q,

√
q) =

∑

τ

(
q

n2
2
Hτ ′(q)

q − 1

)2g−2

C0
τ ; (31)

E(MB;√
q,

√
q) =

∑

τ,t

(
q

n2
2
Hτ ′(q)

q − 1

)2g−2

t2g−1Ct
τ . (32)

Here we follow the notation of [13, 20]: the summation in (31) is taken over types
τ of size n multi-partitions and the summation in (32) is taken over τ of size n
multi-partitions and divisors t of n (see [20, Sect. 2.5]); the polynomialHτ ′(q) is the
normalized hook polynomial associated with the conjugate τ ′ of the partition τ [20,
Sect. 3.6]; the constant C0

τ is given by [20, Equation (7)], and [20, Equation (33)]
expresses every Cn

τ in terms of C0
τ .
1

Now we calculate the difference of (31) and (32).
For our purpose, we focus on 2 types of multi-partitions τ1 and τ2 as follows. Recall

the type τ = (mλ,d)λ,d≥1 of a multi-partition from [20, Definition 2.1]. Let τ1 be the
type of the multi-partition with the only non-trivial multiplicity m(11),1 = n, and we
calculate directly that

Hτ ′
1
(q) =

(
q− 1

2 (1 − q)
)n = q− n

2 (1 − q)n . (33)

Let τ2 be the type of the multi-partition with the only non-trivial multiplicitym(11),n =
1, and we have

Hτ ′
2
(q) = q− n

2 (1 − qn). (34)

Furthermore, by a direct calculation using the concrete formula [20, Equation (33)]
for the constants Ct

τ , we obtain that

(a) C1
τ = C0

τ , Cn
τ = 0, for τ �= τ1, τ2;

(b) C1
τ1

= C0
τ1

− 1
n , C

n
τ1

= 1;
(c) C1

τ2
= C0

τ2
+ 1

n , C
n
τ2

= −1.

Since n is a prime number and t divides n, the integer t is either 1 or n on the
right-hand side of (32),

E(MB;√
q,

√
q) =

∑

τ

(
q

n2
2
Hτ ′(q)

q − 1

)2g−2

C1
τ +

∑

τ

(
q

n2
2
Hτ ′(q)

q − 1

)2g−2

n2g−1Cn
τ .

(35)

1 See [20, Equation (34)] for the connection between C0
τ and the coefficients Cτ used in [13].
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By (a,b,c), (33), and (31), we have

∑

τ

(
q

n2
2
Hτ ′(q)

q − 1

)2g−2

C1
τ = E(M̂B;√

q,
√
q)

+
(
q

n2
2
q− n

2 (1 − q)n

q − 1

)2g−2

·
(

−1

n

)
+

(
q

n2
2
q− n

2 (1 − qn)

q − 1

)2g−2

·
(
1

n

)
.

(36)

Similarly, (a,b,c) and (34) yield

∑

τ

(
q

n2
2
Hτ ′(q)

q − 1

)2g−2

n2g−1Cn
τ

= +
(
q

n2
2
q− n

2 (1 − q)n

q − 1

)2g−2

n2g−1 +
(
q

n2
2
q− n

2 (1 − qn)

q − 1

)2g−2

n2g−1 · (−1).

(37)

We complete the proof of (30) by combining (35), (36), and (37). 
�

3.5 Vanishing and Hodge–Tate

We prove some properties of the variant cohomology ofMB which play a crucial role
in the proof of Theorem 1.5 (b). We denote

wi, j := dim
(
GrWi H j

var,c(MB, Q)
)

where H∗
var,c is the variant part of the compactly support cohomology.

Lemma 3.6 If i is odd, or i = 2i ′ with i ′ + j odd, we have wi, j = 0.

Proof By Proposition 3.5, we have

Evar(MB; q, q) =
∑

i, j

(−1) jwi, j · qi = q−(n2+n−2)(2g−2)E(q2).

In particularwi, j = 0 if i is odd. Together with Corollary 3.2, we have the expressions

Evar(MB; q, q) =
∑

i ′, j
(−1) jw2i ′, j q2i

′
, E(q2) =

∑

i ′, j
(−1) jw2i ′, j q2(2i

′+ j). (38)

Proposition 3.5 further implies that

∑

i ′, j
(−1)i

′+ jw2i ′, j =
∑

i ′, j
w2i ′, j
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by setting q2 = −1 in the equations (38). Thus w2i ′, j = 0 if i ′ + j is odd. 
�
The vanishing of Lemma 3.6 implies that there is no cancellation of Hodge numbers

in calculating each term of the E-polynomial Evar(MB; u, v). In particular, we deduce
the following lemma from Proposition 3.5 that the mixed Hodge structures on the
variant cohomology groups Hd

var,c(MB, Q) are of Hodge–Tate types.

Lemma 3.7 ThemixedHodge structure on Hd
var,c(MB, Q) is of Hodge–Tate type, i.e.,

hi, j (GrWi+ j H
d
var,c(MB, Q)) = 0, if i �= j .

As a corollary of Lemma 3.7 and the Poincaré duality, we obtain that Hd
var(MB, Q)

is also of Hodge–Tate type.

Corollary 3.8 The mixed Hodge structure on Hd
var(MB, Q) is of Hodge–Tate type.

3.6 Proof of Theorem 1.5 (b).

We use F•H∗(X , C) to denote the Hodge filtration on the cohomology of an alge-
braic variety X . The Hodge filtration on H∗(MB, C) induces a Hodge filtration
F•H∗

var(MB, C) on the variant cohomology.
We define the sub-vector spaces

kHdgdvar(MB) := FkHd
var(MB, C) ∩ W2k H

d
var(MB, Q) ⊂ Hd

var(MB, Q).

We obtain from Corollary 3.8 that

dim
(
kHdgdvar(MB)

)
= dim

(
GrW2k H

d(MB, Q)
)

. (39)

Recall the class η ∈ H2(MB, Q) introduced in Sect. 3.3, which lies in
2Hdg2var(MB) by [24]. Hence, Corollary 3.3 implies that cupping with ηi induces
an isomorphism

ηi : rHdgr+cn−i
var (MB)

�−→ r+2iHdgr+cn+i
var (MB), ∀r ∈ N. (40)

Now we consider

v
i, j
W := dim

(
iHdgi+ j

var (MB)
)

.

In view of (39), it suffices to check that {vi, jW }i, j satisfies (i,ii,iii) of Proposition 2.2
with k and m given by (27).

The condition (i) follows from (40). Next, we verify the condition (iii). By
Lemma 3.6 and Proposition 3.5, each summation

∑
j v

i, j
W is given by a coefficient

of the polynomial E(q), and the condition (iii) follows from the symmetry (25).
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Finally, we obtain from Proposition 3.5 and the equation (25) that

E

(
1

q

)
q2dim(MB ) = Evar(MB;√

q,
√
q)qcn . (41)

By Corollary 3.2, the left-hand side of (41) computes

dim
(
Hd
var(MDol, Q)

)
=

∑

i+ j=d

v
i, j
W ,

while the right-hand side computes
∑

j v
d−cn , j
W by the definition of E-polynomials

and the vanishing of Lemma 3.6. Hence the condition (ii) holds. This completes the
proof. 
�

4 Hitchinmoduli spaces and compact hyper-Kähler manifolds

4.1 Overview

A crucial step in the proof of the P = W conjecture for genus 2 and GLn in [4] is to
use degenerations connecting certain compact hyper–Kähler manifolds and Hitchin
moduli spaces. More precisely, we embed a genus 2 curve C into an abelian surface
A,

j : C ↪→ A. (42)

The degeneration to the normal cone associated with (42) yields a flat family

M → A
1. (43)

Its general fiber is a compact (non-simply connected) hyper–KählermanifoldMn[C],A
which is the moduli of certain stable 1-dimensional sheaves supported on the curve
class

n[C] ∈ H2(A, Z),

and its central fiber is the GLn-Hitchin moduli space MGLn
Dol . See [10] and [4, Sect.

4.2] for more details about this degeneration.
We construct in [4, Sect. 4.3] a surjective specialization morphism

sp! : H∗(Mn[C],A, Q) → H∗(MGLn
Dol , Q) (44)

which is a morphism ofQ-algebras preserving the perverse filtrations and tautological
classes constructed from universal families. Hence the morphism (44) governs the
tautological generators in H∗(MGLn

Dol , Q).
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A degeneration similar to M → A
1 can also be constructed for the SLn-Hitchin

moduli space MDol. More precisely, under the degeneration (43), the albenese map
(see [29])

Mn[C],A → Picd(A) × A

degenerates to the morphism

det × trace : MGLn
Dol → Picd(C) × A

2.

By taking fibers, we obtain a flat family MSL → A
1 with general fiber Kn[C],A an

irreducible hyper–Kählermanifold ofKummer type 2 and central fiber the SLn-Hitchin
moduli space MDol. Moreover, the variety Kn[C],A admits a Lagrangian fibration

MDol → P
N = |nC |

degenerating to the Hitchin map π : MDol → �.3 By the construction in [4, Sect.
4.3], this yields a specialization morphism

sp! : H∗(Kn[C],A, Q) → H∗(MDol, Q) (45)

preserving the perverse filtrations. It is natural to ask whether (45) is surjective. More
general, we are interested in exploring whether the cohomology of H∗(MDol, Q)

can be governed by the cohomology of a compact irreducible hyper-Kähler manifold,
so that we can extend the method of [4] to studying the perverse filtration for the
SLn-Hitchin system π : MDol → �.

Question 4.1 Does there exist a grading preserved surjective morphism

f : H∗(M, Q) → H∗(MDol, Q) (46)

of graded Q-algebras such that M is a compact irreducibel hyper-Kähler manifold?

In this Section, we discuss obstructions to the existence of (46).

4.2 An obstruction for SL2

From now on, let MDol be the moduli space of stable Higgs bundles attached to a
genus 2 curve C , the group SL2, and a degree 1 line bundle L ∈ Pic1(C); see Sect. 1.
The variety MDol is nonsingular of dimension 6.

The following proposition provides a necessary condition for the cohomology of
MDol to be governed by the cohomology of another manifold M .

2 We call M an irreducible hyper-Kähler manifold if M is simply connected satisfying that H0(M, �M )

is generated by a non-where degenerate holomorphic 2-form. We say that a hyper-Kähler manifold is of
Kummer type if it deforms to a generalized Kummer variety.
3 Since this construction is not essentially used in the present paper, we omit further details.
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Proposition 4.2 Assume M is a manifold with a grading preserved surjective mor-
phism

f : H∗(M, Q) → H∗(MDol, Q) (47)

of graded Q-algebras. Then we have

dim
(
H5(M, Q)/

[
(H2(M, Q) ∪ H3(M, Q)

])
≥ 30. (48)

Proof Assume that (47) is surjective. Recall the decomposition (2). By [15], we have

H∗
var(MDol, Q) = H5

var(MDol, Q), dim
(
H5
var(MDol, Q)

)
= 30. (49)

Since H2(MDol, Q) and H3(MDol, Q) lie in the invariant part H∗(MDol, Q)� and
f is grading preserved, we have

f
[
(H2(M, Q) ∪ H3(M, Q)

]
⊂ H5(MDol, Q)�.

Hence we obtain a surjective morphism

H5(M, Q)/
[
(H2(M, Q) ∪ H3(M, Q)

]
→ H5

var(MDol, Q)

which implies (48). 
�

4.3 Compact hyper-Kähler manifolds

Recall that all known examples of compact irreducible hyper-Kähler manifolds belong
to the following families:

(a) The K3 type and the Kummer type [1];
(b) O’Grady’s 6-dimensional family (OG6 type) [23];
(c) O’Grady’s 10-dimensional family (OG10 type) [22].

Combining with structural results of the cohomology of hyper–Kähler manifolds
[17, 27, 28], Proposition 4.2 implies that M cannot be one of the known examples
listed above of irreducible hyper–Kähler 6-folds for a surjective morphism (47) to
exist.

Proposition 4.3 Assume M is a hyper-Kähler 6-fold of K3, Kummer, or OG6 type,
then any grading preserved morphism

f : H∗(M, Q) → H∗(MDol, Q)

is not surjective. In particular, the specialization morphism (45) is not a surjection.
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Proof By (49), the variety MDol has non-trivial odd cohomology. Therefore the cal-
culations of [6, 21] imply that M is not of K3 or OG6 type whose odd cohomology
vanishes.

The cohomology of a manifold of Kummer type admits an action of the Looijenga–
Lunts–Verbitsky (LLV) Lie algebra so(4, 5); see [17, 27, 28]. If M is 6-dimensional,
the precise form of the LLV decomposition of H∗(M, R) with respect to so(4, 5)-
representations was calculated in [7, Corollary 3.6]. In particular, the odd cohomology
Hodd(M, R) is an irreducible so(4, 5)-module whose highest weight vector lying in
H3(M, R). Therefore we obtain that

H2(M, R) ∪ H3(M, R) = H5(M, R).

This contradicts Proposition 4.2. 
�
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