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Quantum geometry is central to modern condensed matter physics. Due to the

quantum nature, quantum geometry has two parts, the real part quantum metric

and the imaginary part Berry curvature. Berry curvature has led to countless break-

throughs, ranging from the quantum Hall effect in 2DEGs to the anomalous Hall effect

(AHE) in ferromagnets. In contrast, the quantum metric has rarely been explored.

Here, we report a new nonlinear Hall effect induced by quantum metric dipole by in-

terfacing even-layered MnBi2Te4 with black phosphorus. Like the AHE brought Berry

curvature under the spotlight, our results open the door to discovering quantum metric

responses. Moreover, our data suggests that the AFM can harvest wireless electro-

magnetic energy, potentially enabling applications that bridges nonlinear electronics

with AFM spintronics.

Introduction

Nonlinearities are crucial in many branches of physics, ranging from atomic physics to condensed

matter and complex dynamical systems. Nonlinear electrical transport is the foundation of appli-

cations such as rectification and wave mixing. Classically, the most well-known nonlinear device is

a PN diode (Fig. 1A). Noncentrosymmetric polar materials (Fig. 1B) are similar to PN diodes as

they both possess an electric dipole. They have recently been discovered to show intrinsic nonlin-

ear electrical transport, which not only suggests novel nonlinear applications but also provides a

powerful probe of the quantum geometry of the conduction electrons [1–16]. Broadly, the nonlinear

transport in both diodes (Fig. 1A) and noncentrosymmetric conductors (Fig. 1B) arise from an

inversion asymmetric charge distributions (e.g. an electric dipole). Since the electron has another

fundamental degree of freedom, spin, an interesting question is whether spin can also lead to an

electrical nonlinearity even in a centrosymmetric lattice. One ideal platform is the PT -symmetric

AFMs [17], where only the spins feature a noncentrosymmetric distribution (Fig. 1C).

Important clues can be drawn from previous optical experiments, where optical second-harmonic

generation (SHG) has been observed in the PT -symmetric AFMs including Cr2O3 and CrI3 [18].

Nevertheless, nonlinear transport is distinct because it directly probes the Fermi surface electrons

and in many cases their geometrical properties [1, 2]. As such, it enables a probe of the quantum

geometry [1, 2] of the topological bands at the Fermi level of novel conductors.

The quantum geometry has two parts, T = g + iΩ [1] (T is the quantum geometrical tensor).

The imaginary part is the well-known Berry curvature Ωαβ = −2Im
∑

m6=n[〈un|i∂kαum〉〈um|i∂kβun〉],

which describes the curvature of wavefunction in Hilbert space (n,m are band indices and
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α, β are spatial directions). Berry curvature has been identified as the source of many novel

electronic and optical responses. By contrast, the real part is the quantum metric, gαβ =

Re
∑

m6=n[〈un|i∂kαum〉〈um|i∂kβun〉], which measures the distance between neighboring Bloch wave-

functions in Hilbert space (i.e., the distance when Bloch wavefunctions are mapped onto a Bloch

sphere, see [19]. IV.2). Although being equally important, the quantum metric is much less ex-

plored. There have been a few examples related to the quantum metric, including prediction for

the electrical and orbital magnetic susceptibilities [20], observation of a third order Hall effect [13]

and the quantum metric in atomic physics [21]. However, examples have remained limited and how

quantum metric regulates the electronic motion remains largely unknown. Recently, theory has

started to predict a wide range of exotic quantum metric responses [20, 22–34].

Here, we report the observation of the quantum metric dipole induced second-order anomalous

Hall effect (AHE) [20, 22–25]. In the past decades, there have been numerous studies of the

AHE (both linear and nonlinear) induced by Berry curvature. Recent theoretical studies, however,

predict that quantum metric can also lead to AHE, therefore advancing our understanding of

the fundamental origin of the AHE. Distinct from the Berry curvature induced AHEs, this new

effect is predicted to exist in the PT -symmetric AFMs [20, 22–25], where PT forces the Berry

curvature to vanish identically but the effects of quantum metric can manifest strongly. We design

and fabricate a feasible material platform and demonstrate the first realization of this quantum

metric nonlinear Hall effect. We show that it exhibits distinctly different properties compared to

the nonlinear Hall effect induced by Berry curvature dipole in noncentrosymmetric crystals. To

conceptualize this new nonlinear Hall effect, we draw comparison with the well-known AHE in

ferromagnetic metals [35], where Berry curvature leads to the anomalous velocity and therefore

the AHE, vanomalous ∝
∫
k

E‖ ×Ω, (E‖ is the in-plane source-drain electric field). By contrast, in a

PT -symmetric AFM, Berry curvature is zero due to PT . However, a nonzero quantum metric g

can induce an anomalous velocity to the second-order of E‖, vanomalous ∝
∫
k

E‖ × [∇k × (gE‖)], as

proposed in [20]. This leads to the intrinsic second-order Hall effect. From the expression above,

one can show that this effect is nonzero only when the system breaks both P and T . Therefore, we

need PT -symmetric AFM conductors with a large quantum metric on the Fermi surface. We have

carefully considered possible materials, and identified 2D even-layered MnBi2Te4 [15, 36–38, 38–46]

as an ideal platform. Even-layered MnBi2Te4 is a PT -symmetric AFM. Moreover, its topological

bands support gate-tunable transport and a giant quantum metric. However, its lattice has C3z

rotational symmetry (Figs. 1D,E), which forces the effect to vanish [22]. To break C3z, we interface

it with black phosphorus (BP) [47].
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Demonstration of rotational symmetry breaking

We start by showing that interfacing MnBi2Te4 with BP indeed breaks its C3z rotational sym-

metry. To this end, we study the directional dependence of the resistance [6] of MnBi2Te4 without

and with BP. We fabricated a 6-septuple-layer (6SL) MnBi2Te4 device with radially distributed

electrical contacts (Device-BM1). As shown by the blue curve in Fig. 1G, the four-probe resistance

(T = 1.8 K) is found to be fully isotropic, consistent with the presence of the C3z symmetry. We

then stacked a BP layer (∼ 10 nm) onto this MnBi2Te4 sample and performed the measurements

again. As shown by the red curve in Fig. 1G, the resistance develops a clear anisotropy with a 180◦

periodicity, providing a clear signature of the breaking of C3z symmetry (In [19]. I.3, we present

additional experiments to show that the transport signal is dominated by the MnBi2Te4 layer of

the heterostructure). The transverse resistance and two-probe resistance also show the breaking of

C3z (fig. S12). We further substantiate the breaking of C3z symmetry by an independent method,

the optical second harmonic generation (SHG) at room temperature. As shown in Fig. 1H, our

SHG data also shows the clear breaking of C3z symmetry (see detailed discussions in SM. I.5 and

fig. S13). Our demonstration of C3z breaking establishes the BP/MnBi2Te4 heterostructure as an

ideal platform to search for this effect.

Observation of the nonlinear Hall effect

In order to measure the linear and nonlinear electrical transport, we pass a current at frequency

ω (Iω) and use the lock-in technique to detect linear voltage V ω and nonlinear voltage V 2ω. We

describe the nonlinear voltage as V 2ω
ijk , where i is the direction of the nonlinear voltage V 2ω and j, k

are the directions of the injected current Iω. All measurements are performed at B = 0.

Figure 1I shows the nonlinear Hall voltage V 2ω
yxx of the Device-BM1 before and after interfaced

with BP. Remarkably, a prominent nonlinear Hall signal only emerges after BP is introduced. This

is in sharp contrast to the linear voltage (inset of Fig. 1I), which becomes even slightly smaller

upon the introduction of BP. Such observation agrees well with the theoretical expectation of the

intrinsic nonlinear Hall effect induced by a quantum metric dipole. To exclude that the effect

is caused by a Berry curvature dipole [4, 6, 7, 9], which leads to a second-order Hall effect in

nonmagnetic, noncentrosymmetric conductors, we study the relationship between the second-order

nonlinear Hall effect and the AFM order in MnBi2Te4.

The AFM spin-induced nonlinearity

Overall, we have fabricated 30 BP/even-layered MnBi2Te4 heterostructure devices (see SM.I.0
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for our systematic data that confirm the MnBi2Te4 thickness in our devices). In all of the 30 devices,

we have observed the nonlinear Hall effect with consistent behaviors as a function of AFM order,

spatial direction, scattering time, vertical electric field and doping (see fig. S22 and table S1 for a

summary of all 30 devices). Here, we focus on the Device-BMB1 (Fig. 2A), which has 2L BP on

both sides of 6SL MnBi2Te4. Moreover, we have made sure that the crystalline a axes of the BPs

and the MnBi2Te4 are all aligned (Fig. 2A). Such a carefully controlled configuration is important

to preserve MnBi2Te4’s PT symmetry, which enforces the Berry curvature and Berry curvature

dipole to vanish. Figure 2B shows the basic nonlinear transport responses. A large transverse

nonlinear response V 2ω
yxx is found, showing the nonlinear Hall effect in Device-BMB1. We have also

measured the longitudinal nonlinear response V 2ω
xxx, which shows no observable signal. Therefore,

our data reveals an interesting “Hall dominance” in the nonlinear transport.

We now focus on exploring how the nonlinear Hall signal depends on opposite AFM states. In

ferromagnets, the opposite FM states can be controlled by sweeping B field. In PT -symmetric

AFMs including Cr2O3, even-layered CrI3 and even-layered MnBi2Te4 [44, 48, 49], previous works

have shown that the opposite AFM states can be controlled by sweeping vertical Bz field under a

fixed vertical Ez field. Hence, we follow the procedures established by previous works [44]: under

a fixed Ez (Ez = −0.17 V/nm), we sweep Bz from −8 T to 0 T or from +8 T to 0 T to prepare

the two AFM states (Fig. 2, C and D). We first study the AFM-I. The linear voltage V ω
xx (Fig. 2E)

exhibits a typical Ohm’s law behavior. The nonlinear voltage V 2ω
yxx (Fig. 2G) is prominent and its

sign is positive. We then prepare AFM-II. The linear voltage V ω
xx (Fig. 2F) remains unchanged.

In sharp contrast, the nonlinear voltage V 2ω
yxx (Fig. 2H) flips sign. For both AFM-I and II, if we

measure V 2ω
yxx while warming up, we found that the nonlinear Hall effect is only present in the

AFM phase but is absent in the nonmagnetic phase (Fig. 2, I and J). Our observation that the

nonlinear Hall signal flips sign upon reversing the AFM order further demonstrates its quantum

metric dipole origin, because the quantum metric dipole is theoretically expected to be opposite

for the opposite AFM domains (see SM.III). In addition, we note that our nonlinear Hall signal

measures an average over all AFM domains. On the other hand, our experiments suggest that our

sample is prepared into predominantly one domain. If our sample consists of opposite domains

with 50%-50% composition, then the measured nonlinear Hall signal would average to zero. In

contrast, our data show large nonzero nonlinear Hall signal. Moreover, the sign of the observed

signal flips as we prepare the opposite AFM domain. Further, the magnitude of the measured

signal is consistent with the theoretically calculated value, which assumes a single domain. These

facts combined suggest that our sample is prepared into one predominant domain. Future spatially-
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resolved magnetic measurements will be interesting to determine the exact domain composition.

We now perform further systematic studies. Because the nonlinear Hall current flips sign upon

reversing the AFM order, all the nonlinear Hall data (apart from Fig. 2) are obtained by taking the

difference between the two AFM domains. First, the intrinsic nonlinear Hall effect is expected to be

independent of the scattering time. Interestingly, this represents the first known nonlinear transport

effect that is independent of scattering. Note that similar to the intrinsic AHE in ferromagnetic

metals [35], there is still dissipation through the linear Drude conductivity σxx. So they are different

from the QAHE that has no dissipation channel at all. The nonlinear Hall conductivity can be

directly extracted from our data by σ2ω
yxx = J2ω

yxx/E
ω
x

2 =
V 2ω
yxx

Iωx
2R3

xx

l3

w2d
, where l, w, d are the length, width

and thickness of the sample. Previous experiments have studied the scattering time τ dependence

of various Hall effects [6, 9, 14, 35] by investigating the scaling between the corresponding Hall

conductivity and the Drude conductivity. Therefore, following the established method, we study

the scaling between σ2ω
yxx and σxx. Our data (Fig. 3A) show that σ2ω

yxx is independent of σxx below

∼ 15 K. Moreover, consistent results have been observed at multiple charge densities in the same

sample and from different samples (SM.III.9). These systematic data point to the conclusion that

the σ2ω
yxx is independent of scattering time τ below ∼ 15 K. Above ∼ 15 K, σ2ω

yxx vanishes quickly

across TN because the AFM order vanishes and our nonlinear Hall effect only exists in the AFM

phase. Hence studying the τ dependence at temperatures near TN would require one to take the

strong influence of the AFM order near TN into account (see SM.III.8 for additional measurements

and analysis). Second, the intrinsic nonlinear Hall effect does not require a noncentrosymmetric

lattice or any explicit breaking of PT symmetry. To test this, we explicitly break PT by applying a

vertical Ez field via dual gating. As shown in Fig. 3D, the nonlinear Hall signal is already prominent

even at Ez = 0, confirming that it does not require any PT breaking. Moreover, the nonlinear

Hall signal is symmetric for ±Ez, also consistent with the expectation (see SM. IV.3). Third, the

nonlinear Hall effect is expected to be sensitive to the direction of the incident current Iω. In

Fig. 3B, we measure the nonlinear Hall conductivity as a function of the direction of Iω. Indeed,

we found that the signal is most prominent when Iω is along a particular in-plane direction. In

this way, we managed to experimentally map out the direction of the relevant geometrical dipole

(in our case it is the quantum metric dipole as we demonstrate next). Moreover, the intrinsic

nonlinear Hall effect is expected to be independent of frequency. In SM.III.2, we present additional

experiment which confirms that our nonlinear Hall signal is indeed frequency independent for the

tested range. In principle, due to its independence of τ , the intrinsic nonlinear Hall effect is expected
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to persist all the way until ~ω is large enough to induce an inter-band transition (roughly terahertz

or far-infrared). Future experiments are needed to test the nonlinear Hall effect in that regime.

Demonstrating the quantum metric mechanism by excluding competing mechanisms

Although we tried to eliminate Berry curvature dipole by aligning the crystalline a axes between

BPs and MnBi2Te4 to preserve PT symmetry (Fig. 2A), let us assume that the alignment is im-

perfect, so Berry curvature dipole is allowed. We now show that the observed relationship between

the nonlinear Hall signal and AFM order can discern Berry curvature dipole DBerry and quantum

metric dipole DMetric [22]. DBerry can be understood as a distribution of the Berry curvature around

the Fermi surface such that it is larger on one side of the Fermi surface than on the opposite side.

A similar picture holds for DMetric (Fig. 3). As we observe that the nonlinear Hall signal changes

sign upon the reversal of AFM order, the dipole that causes our observed nonlinear Hall signal

must also flip. Let us assume that the AFM-I has DBerry > 0 and DMetric > 0, which is visualized

in a tilted gapped Dirac band structure in Figs. 3E and G. We now flip the AFM order to the

AFM-II by performing time reversal T . Under T , the bands are flipped between ±k (Figs. 3F-H),

the Berry curvature flips sign (Ω(k)
T−→ −Ω(−k)), but the quantum metric keeps the same sign

(g(k)
T−→ g(−k)). Hence, from Figs. 3F-H, one can see that, DBerry(AFM-II) = DBerry(AFM-I), but

DMetric(AFM-II) = −DMetric(AFM-I). Therefore, our observation that the nonlinear Hall signal flips

sign upon reversing the AFM order excludes the Berry curvature dipole mechanism. In SM.II.1, we

present thorough analysis to enumerate systematic experimental results including the relation with

AFM order, scaling, vertical electric field dependence and relation with mirror symmetry, which

further corroborate that the Berry curvature dipole mechanism cannot account for our data.

Within the nonlinear effects that flip sign upon reversing the AFM order, there is another

possibility, the second-order Drude effect [5, 12, 17, 22]. This effect can be ruled out based on our

scaling data in Fig. 3A, because it is expected to be proportional to τ 2 [22]. Moreover, the nonlinear

Hall effect (NHE) is antisymmetric (upon exchanging the first two indices) σNHE
αβγ = −σNHE

βαγ but the

second-order Drude effect (SODE) is symmetric σSODE
αβγ = σSODE

βαγ [22]. Using a novel electrical

sum-frequency generation method (SM. II.2), we showed that our signal is indeed antisymmetric,

i.e., σ2ω
yxx = −σ2ω

xyx, which demonstrates that the SODE is insignificant in our signal (SM II.2). In

SM.II.2.3, we present additional data which suggests that the NHE is dominant over the SODE at

different temperatures and charge densities. In SM.III.5, we show that the nonlinear Hall signal

is negligibly small at ±8 T because the forced FM state recovers inversion symmetry. Finally,

we also carefully addressed other competing origins such as thermal (including current-induced
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overall temperature increase) and accidental diode junctions (SM. II.3). By excluding competing

mechanisms, we establish the quantum metric dipole as the underlying interpretation.

Energy-resolved probe of quantum metric in PT -symmetric AFM

We also study the evolution of the nonlinear conductivity σ2ω
yxx with the charge density n. As

shown in Fig. 4A, the nonlinear Hall signal is zero inside the charge neutrality gap. This is consistent

with the expectation that the nonlinear Hall effect is a Fermi surface property. As we tune the

Fermi energy away from the charge neutrality, the nonlinear Hall signal emerges. Importantly, the

conductivity in electron and hole regimes have the same sign. As we go deeper into the electron-

doped regime, the signal reverses sign.

We now provide an intuitive physical picture to understand the large quantum metric dipole

and its Fermi level dependence. MnBi2Te4 features Dirac surface states, which are gapped due to

the AFM, leading to large quantum metric near the gap edge. Moreover, because the AFM order

breaks both T and P , the Dirac bands are asymmetric about k = 0, as shown in Fig. 3G. Hence, at

a fixed energy, positive and negative momenta have different quantum metric, leading to a nonzero

quantum metric dipole. Intuitively, we can understand the sign of the nonlinear Hall signal by

which momentum side has a larger quantum metric. We see from Fig. 3G that both upper and

lower parts of the Dirac cone have g(+kF) > g(−kF), suggesting that the nonlinear Hall signals

should show the same sign in electron and hole regimes, consistent with our data (Fig. 4A). The

sign change in the electron-doped regime is beyond this simple picture.

To achieve a more comprehensive understanding, we built an effective model of the BP/6SL

MnBi2Te4/BP heterostructure (SM.IV.4-9). Due to the incommensurability of the BP and

MnBi2Te4 lattices, we need to derive the coupling between the Bloch states of the two materials in

the real-space continuum (i.e. within the extended Brillouin zone BZ). The low-energy bands are

located in the BZ center Γ, so only Bloch bands with the same momentum hybridize. The coupling

amplitude depends only on the characteristic decay length of the atomic orbitals as any discrete

lattice structure is averaged out [47]. The Hamiltonian reads ĥ(kx, ky) =

(
ĥMBT Ût Ûb
Û†
t ĥBP,t 0

Û†
b 0 ĥBP,b

)
. ĥMBT

and ĥBP,t(b) are Hamiltonians for 6SL MnBi2Te4 and top (bottom) BP. The spin-orbit coupling

(SOC) in MnBi2Te4 is crucial for a nonzero nonlinear Hall effect because it allows the low-energy

orbitals to feel the symmetry breaking by the AFM order (SM.III.15). In particular, the SOC

was included in the model following the original work by Ref. [50] . Ût and Ûb denote the band

hybridization due to nearest-neighbors coupling between MnBi2Te4 and BP. The bare MnBi2Te4

and BP parameters were obtained by fitting the first-principle band structures. The MnBi2Te4 and
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BP coupling parameters were partly constrained by considering the independent data of Rxx/Ryy

so that an agreement in the overall magnitude was achieved independently. There are still free cou-

pling parameters in the model which we adjusted to match detailed features in the charge density

dependence (SM.IV.9) .

We first turn off the coupling between the MnBi2Te4 and BP (Ût = Ûb = 0). The Fermi sur-

face shown in Fig. 4C (−50 meV) is C3z symmetric and there are already large quantum metric

(gxx and gyx) around it. According to Ref. [22], the DMetric responsible for the nonlinear Hall is

given by DMetric =
∫
k
(vygxx − vxgyx)δ(ε− εF) (v is the Fermi velocity).We plot the integral kernel

(vygxx− vxgyx) as color in Fig. 4D. Positive and negative contributions around the contour exactly

cancel because of C3z symmetry. So the integral goes to zero (the left panel in Fig. 4D). We then turn

on the MnBi2Te4-BP couplings, which breaks C3z. For the C3z-breaking contour, we observe unequal

contributions from the two colors, leading to a nonzero DMetric (the right panel in Fig. 4D, see details

in the caption and in SM.III.14). Figure 4E shows the band structure of the BP/6SL MnBi2Te4/BP

heterostructure, based on which we can compute the intrinsic nonlinear Hall conductivity σ2ω
yxx as a

function of chemical potential. In particular, near the charge neutrality gap, we found that σ2ω
yxx in-

deed mainly comes from the quantum metric of the Dirac surface states, consistent with the intuitive

picture above. The sign inversion in the electron-doped regime mainly comes from the quantum

metric of the avoided crossing inside conduction bands according to our calculation (SM.IV.9) .

Note that due to the multiband nature of our model, the σ2ω
yxx was calculated by the general expres-

sion σ2ω
yxx = 2e3

∑εn 6=εm
n,m Re

∫
k

(vny 〈un|i∂kxum〉〈um|i∂kxun〉
εn−εm − vnx 〈un|i∂kyum〉〈um|i∂kxun〉

εn−εm

)
δ(εn − εF) [22]. This

general expression can be decomposed into the quantum metric dipole DMetric contribution plus

additional inter-band contributions (AIC),

σ2ω
yxx = 2e3

∑
n

∫
k

vny g
n
xx − vnxgnyx
εn − εn̄

δ(εn − εF) + AIC, (1)

where the first term is the quantum metric dipole contribution, and the second term is AIC =

2e3
∑εm 6=εn,εn̄

n,m Re
∫
k

(vny 〈un|i∂kxum〉〈um|i∂kxun〉
εn−εm − vnx 〈un|i∂kyum〉〈um|i∂kxun〉

εn−εm

)
εm−εn̄
εn−εm δ(εn − εF) (n̄ is the band

whose energy is closest to n). In our BP/6SL MnBi2Te4/BP system, we found that the quantum

metric dipole contribution strongly dominates, whereas the AIC is small (see details in SM. IV.3).

Therefore, our nonlinear Hall measurement is a powerful, energy-resolved probe of the quantum

metric.

Possible AFM spin-based wireless rectification and outlook

The second-order nonlinear effect enables not only frequency doubling (ω → 2ω) but also rectifi-
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cation (ω → DC). The rectification is crucial for harvesting electromagnetic radiation energy [9, 12]

because we can convert the electromagnetic radiation into DC electricity. We use the intrinsic AFM

nonlinear Hall effect to demonstrate wireless rectification with zero external bias (battery-free) and

without magnetic field. We inject microwave radiation and measure the DC signal. As shown in

Fig. 4F, we observe clear rectification DC voltage in response to the microwave radiation, which

shows a broad band response, including the WiFi frequencies (2.4 GHz and 5 GHz) and even higher

frequencies (see fig. S35. Also see SM.V.2 for a thorough analysis of the efficiency of the wireless

rectification as well as its potential advantages and disadvantages). In SM.III.12, we show that

the rectification signal flips sign as we reverse the AFM state, which suggests that the observed

rectification arises from the intrinsic quantum metric dipole origin. We note that, apart from the

intrinsic quantum metric dipole, extrinsic sources such as the the Schottky diodes at the metal-

MnBi2Te4 junction, unintentional diodes inside the MnBi2Te4, and the gap between the two gates

can also lead to microwave rectification. In order unambiguously rule out these extrinsic sources,

future systematic experiments will be interesting (discussion in SM.V.1).

In summary, we have presented the first experimental realization of the intrinsic second-order

Hall effect. This effect realizes an electrical nonlinearity induced by the AFM spins and provides

a rare example of a quantum metric response. Both aspects are of fundamental interest. Just like

the AHE about a decade ago inspired the discoveries of a variety of Berry curvature responses,

we hope that our work opens the door to experimentally search for quantum metric responses.

As highlighted by recent theoretical studies, the influence of the quantum metric is expected to

span many different areas, ranging from nonlinear responses in PT -symmetric AFMs to flat band

conductivity, superconductivity and charge orders in moiré systems, the fractional Chern insulator,

and k-space dual of gravity [20, 22–34]. Another interesting future direction is to explore the

nonlinear responses in canted AFM materials (SM.V.3) [38, 46, 51], where nonzero Berry curvature

higher order to M have recently been observed. In terms of materials, the vdW interface engineering

has been widely applied to engineer band structure, such as the band alignment in semiconductors.

We show that, beyond “band structure engineering”, the vdW interfaces can be used to engineer

the properties of the wavefunction i.e., “quantum geometry engineering” [47]. We demonstrate

that, the topological Dirac surface state on the interface of a TI can be the source of a wide

range of novel topological and geometrical phenomena beyond the Berry curvature upon proper

engineering. In terms of spin-induced electrical nonlinearity, our observation enables the possibility

to use AFM spins to harvest electromagnetic energy and to realize self-powered AFM spintronic

devices, potentially at low power density and high frequencies. An exciting future breakthrough
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would be to demonstrate room temperature wireless rectification based on the quantum metric

nonlinear Hall effect in a room temperature PT -symmetric AFM material.
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Phys. 1–6 (2022).

[17] N. J. Zhang, et al., Diodic transport response and the loop current state in twisted trilayer graphene

Preprint at https://arxiv.org/abs/2209.12964 (2022).

[18] Z. Sun, et al., Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3,

Nature 572, 497 (2019).

[19] See additional text and data in supplementary materials.

[20] Y. Gao, S. A. Yang, Q. Niu, Field induced positional shift of Bloch electrons and its dynamical

implications, Phys. Rev. Lett. 112, 166601 (2014).

[21] A. Gianfrate, et al., Measurement of the quantum geometric tensor and of the anomalous Hall drift,

Nature 578, 381 (2020).

[22] C. Wang, Y. Gao, D. Xiao, Intrinsic Nonlinear Hall Effect in Antiferromagnetic Tetragonal CuMnAs,

Phys. Rev. Lett. 127, 277201 (2021).

[23] H. Liu, et al., Intrinsic Second-Order Anomalous Hall Effect and Its Application in Compensated

Antiferromagnets, Phys. Rev. Lett. 127, 277202 (2021).

[24] S. Lahiri, K. Das, D. Culcer, A. Agarwal, Intrinsic nonlinear conductivity induced by the quantum

metric dipole Preprint at https://arxiv.org/abs/2207.02178 (2022).

[25] T. B. Smith, L. Pullasseri, A. Srivastava, Momentum-space gravity from the quantum geometry and

entropy of Bloch electrons, Phys. Rev. Research 4, 013217 (2022).

[26] A. Arora, M. S. Rudner, J. C. W. Song, Quantum metric dipole and non-reciprocal bulk plasmons in

parity-violating magnets, Nano Lett. 22, 9351 (2022).

[27] J. Mitscherling, T. Holder, Bound on resistivity in flat-band materials due to the quantum metric,

Phys. Rev. B 105, 085154 (2021).

[28] J.-W. Rhim, K. Kim, B.-J. Yang, Quantum distance and anomalous Landau levels of flat bands,

Nature 584, 59 (2020).

[29] P. J. Ledwith, G. Tarnopolsky, E. Khalaf, A. Vishwanath, Fractional Chern insulator states in twisted

bilayer graphene: An analytical approach, Phys. Rev. Research 2, 023237 (2020).

[30] T. Holder, D. Kaplan, B. Yan, Consequences of time-reversal-symmetry breaking in the light-matter

interaction: Berry curvature, quantum metric, and diabatic motion, Phys. Rev. Research 2, 033100

(2020).



14

[31] H. Watanabe, Y. Yanase, Chiral Photocurrent in Parity-Violating Magnet and Enhanced Response

in Topological Antiferromagnet, Phys. Rev. X 11, 011001 (2021).

[32] K.-E. Huhtinen, J. Herzog-Arbeitman, A. Chew, B. A. Bernevig, P. Törmä, Revisiting flat band

superconductivity: Dependence on minimal quantum metric and band touchings, Phys. Rev. B 106,

014518 (2022).

[33] J. S. Hofmann, E. Berg, D. Chowdhury, Superconductivity, charge density wave, and supersolidity in

flat bands with tunable quantum metric Preprint at https://arxiv.org/abs/2204.02994 (2022).

[34] X. Hu, T. Hyart, D. I. Pikulin, E. Rossi, Quantum-metric-enabled exciton condensate in double

twisted bilayer graphene, Phys. Rev. B 105, L140506 (2022).

[35] N. Nagaosa, J. Sinova, S. Onoda, A. MacDonald, N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys.

82, 1539 (2010).

[36] M. M. Otrokov, et al., Prediction and observation of an antiferromagnetic topological insulator, Nature

576, 416 (2019).

[37] D. Zhang, et al., Topological axion states in the magnetic insulator MnBi2Te4 with the quantized

magnetoelectric effect, Phys. Rev. Lett. 122, 206401 (2019).

[38] S. H. Lee, et al., Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall

effect in antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. Research 1, 012011 (2019).

[39] Y. Deng, et al., Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4,

Science 367, 895 (2020).

[40] C. Liu, et al., Robust axion insulator and Chern insulator phases in a two-dimensional antiferromag-

netic topological insulator, Nature Mater. 19, 522 (2020).

[41] H. Deng, et al., High-temperature quantum anomalous Hall regime in a MnBi2Te4/Bi2Te3 superlat-

tice, Nature Phys. 17, 36 (2021).

[42] D. Ovchinnikov, et al., Intertwined Topological and Magnetic Orders in Atomically Thin Chern

Insulator MnBi2Te4, Nano Lett. 21, 2544 (2021).

[43] S. Yang, et al., Odd-even layer-number effect and layer-dependent magnetic phase diagrams in

MnBi2Te4, Phys. Rev. X 11, 011003 (2021).

[44] A. Gao, et al., Layer Hall effect in a 2D topological axion antiferromagnet, Nature 595, 521 (2021).

[45] L. Tai, et al., Distinguishing two-component anomalous Hall effect from topological Hall effect in

magnetic topological insulator MnBi2Te4., ACS Nano 16, 17336 (2022).

[46] S.-K. Bac, et al., Topological response of the anomalous Hall effect in MnBi2Te4 due to magnetic

canting, npj Quantum Materials 7, 1 (2022).



15

[47] T. Akamatsu, et al., A van der Waals interface that creates in-plane polarization and a spontaneous

photovoltaic effect, Science 372, 68 (2021).

[48] A. Iyama, T. Kimura, Magnetoelectric hysteresis loops in Cr2O3 at room temperature, Phys. Rev. B

87, 180408 (2013).

[49] S. Jiang, J. Shan, K. F. Mak, Electric-field switching of two-dimensional van der Waals magnets,

Nature Mater. 17, 406 (2018).

[50] H. Zhang, et al., Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the

surface, Nature phys. 5, 438 (2009).

[51] J. Kipp, et al., The chiral Hall effect in canted ferromagnets and antiferromagnets, Commun. Phys.

4, 99 (2021).

[52] All data in the main text and supplementary materials, as well as the codes for theoretical calculations

of the quantum metric, are available from zenodo xxx.

Author contributions: SYX conceived the experiments and supervised the project. AG

fabricated the devices, performed the measurements and analyzed data with help from YFL, DB,

JXQ, HCL, CT, TD, ZS, SCH, DCB and QM. AG and SWC performed the microwave rectification

experiments. CH, TQ and NN grew the bulk MnBi2Te4 single crystals. BG made the theoretical

studies including first-principles calculations and effective modeling with the help from TVT, YO,

SWL, BS, HL, AB, TRC, LF and PPO. TVT developed the effective model with help from BG

under the guidance of PPO. KW and TT grew the bulk hBN single crystals. SYX, AG and QM

wrote the manuscript with input from all authors.

Acknowledgement: We gratefully thank Amir Yacoby for his generous help for the microwave

measurements. We also thank Marie Wesson and Nick Poniatowski for technical support during

the microwave measurements. We thank Yang Gao and Junyeong Ahn, Philip Kim for helpful

discussions. We also gratefully thank Linda Ye, Masataka Mogi, Yukako Fujishiro, and Takashi

Kurumaji for extensive discussions on the scaling of AHE. Work in the SYX group was partly

supported through the Center for the Advancement of Topological Semimetals (CATS), an En-

ergy Frontier Research Center (EFRC) funded by the U.S. Department of Energy (DOE) Office

of Science (fabrication and measurements), through the Ames National Laboratory under con-

tract DE-AC0207CH11358. and partly through AFOSR grant FA9550-23-1-0040 (data analysis

and manuscript writing). SYX acknowledges the Corning Fund for Faculty Development. QM

acknowledges support from the CIFAR Azrieli Global Scholars program. SYX and DB were sup-

ported by the NSF Career DMR-2143177. CT and ZS acknowledge support from the Swiss National



16

Science Foundation under project P2EZP2 191801 and P500PT 206914, respectively. YFL, SYX,

DCB, YO and LF were supported by the STC Center for Integrated Quantum Materials (CIQM),

NSF Grant No. DMR-1231319. This work was performed in part at the Center for Nanoscale

Systems (CNS) Harvard University, a member of the National Nanotechnology Coordinated In-

frastructure Network (NNCI), which is supported by the National Science Foundation under NSF

award no.1541959. Work at UCLA was supported by the DOE, office of Science, office of Basic

Energy Sciences under Award Number DE-SC0021117. The work at Northeastern University was

supported by the Air Force Office of Scientific Research under award number FA9550-20-1-0322,

and it benefited from the computational resources of Northeastern University’s Advanced Scien-

tific Computation Center (ASCC) and the Discovery Cluster. The work in the QM group was

partly supported through the CATS, an EFRC funded by the DOE Office of Science, through the

Ames National Laboratory under contract DE-AC0207CH11358 (fabrication and measurements)

and partly through NSF DMR-214342 (data analysis and manuscript writing). The work in the

PPO group was supported from the CATS, an EFRC funded by the DOE Office of Science, through

the Ames National Laboratory under contract DE-AC0207CH11358. TRC was supported by the

Young Scholar Fellowship Program from the MOST in Taiwan, under a MOST grant for the Colum-

bus Program, no. MOST110-2636-M-006-016, NCKU, Taiwan, and National Center for Theoretical

Sciences, Taiwan. Work at NCKU was supported by the MOST, Taiwan, under grant no.MOST107-

2627-E-006-001 and Higher Education Sprout Project, Ministry of Education to the Headquarters

of University Advancement at NCKU. K.W. and T.T. acknowledge support from JSPS KAKENHI

(Grant Numbers 19H05790, 20H00354 and 21H05233). MH and CRD were supported by the Air

Force Office of Scientific Research under award No. FA9550-20-1-0319.

Competing financial interests: The authors declare no competing financial interests.

Data and materials availability: All data in the main text and supplementary materials, as

well as the code for peak fitting, are available from Zenodo [52].



17

1050
I ω (µA)

100

50

0
V

ω
(m

V
)

P

c

a

a

b

360270180900
θ (°)

30

25

20

15

R x
x

(k
Ω)

MnBi2Te4 BP

BP/MBT

MBT

A B

G

D E F

H

Optical SHG

I

0

90

180

270

MBT
BP/MBT

BP

9 0

180

270

0

+

PN junction Non-centrosymmetric Antiferromagnet

1050
I ω (µA)

0.4

0.3

0.2

0.1

0

V
2ω

(m
V

)

BP/MBT

MBT

C

(m
V)

(m
V

)

J2ωEω

J2ω
Eω

J2ω
Eω

V
ω xx

V
2ω yx

x

BP
MBT

BN

- + - + - + - +

Mn
Bi
Te

θ
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. (B) Angular dependence of the nonlinear

Hall conductivity σ2ω in Device-BM1. (C) Dual gated resistance map of the 2L BP/6SL MnBi2Te4/2L

BP heterostructure (Device-BMB1). The vertical electric field Ez and charge density dependence can be

independently tuned by combining the top and bottom gate voltages. (D) Ez dependence of the nonlinear
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Schematic illustration of the Berry curvature dipole (DBerry) and quantum metric dipole (DMetric) for the

AFM I and AFM II of the BP/6SL MnBi2Te4/BP heterostructure . Although we aligned the crystalline

axes of BP and MnBi2Te4 in our Device-BMB1 (Fig. 2A), realistically it is difficult to make alignment

perfect. If the alignment is imperfect and PT symmetry is broken, a Berry curvature dipole is allowed.
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FIG. 4: The quantum metric dipole as the microscopic geometrical origin. (A) Experimentally

measured nonlinear Hall conductivity σ2ω
yxx as a function of charge density n. (B) Theoretically calculated

σ2ω
yxx as a function of n based on the BP/6SL MnBi2Te4/BP band structure (see text). (C to E) The

electronic structure of the BP/6SL MnBi2Te4/BP heterostructure calculated with an effective model (see

text). (C) Fermi surface at −50 meV (the lower part of the surface Dirac cone). The coupling between

MnBi2Te4 and BP is turned off, so that contour respects C3z symmetry. The quantum metric gxx and

gyx plotted around the Fermi surface. (D) The nonlinear Hall conductivity σ2ω
yxx is given by the integral

of (vygxx − vxgyx) around the Fermi surface. DMetric =
∫
k(vygxx − vxgyx)δ(ε− εF) =

∫
FS(vygxx − vxgyx)dl

(dl is an infinitesimal length along the Fermi surface (FS)). With C3z symmetry (left panel), the integral

goes to zero. After turning on the coupling between MnBi2Te4 and BP (right panel), C3z is broken,

making the integral of (vygxx − vxgyx) around the Fermi contour nonzero. To more clearly see how the

integral changes to nonzero when C3z is broken, we rewrite DMetric as an integral of the polar angle θ,

DMetric =
∫ +π
−π (vygxx − vxgyx)( dldθ )dθ. The inset presents the change of (vygxx − vxgyx)( dldθ ), which clearly

shows that the integral becomes nonzero when C3z is broken. See SM.III.14 for details.
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FIG. 4: (E) Band structure of BP/6SL MnBi2Te4/BP heterostructure. Color represents the quantum

metric gxx of the bands. (F) Measured microwave rectification based on the intrinsic nonlinear Hall effect.

Inset is the DC signal V DC as a function of microwave frequency. (G) Schematic illustration of microwave

rectification. (H) Schematic illustration of quantum metric induced nonlinear responses. The horizontal

axes are kx and ky. The two black arrows represent the Bloch wavefunctions at two nearby k points. The

two arrows point to different directions, illustrating a finite distance between two wavefunctions (i.e., a

finite quantum metric). This quantum metric leads to a nonlinear Hall effect, which can turn an external

AC electric field (e.g. the microwave in the figure) into DC signal (JDC).


