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Abstract

We study Bayesian optimization (BO) in high-
dimensional and non-stationary scenarios. Exist-
ing algorithms for such scenarios typically require
extensive hyperparameter tuning, which limits
their practical effectiveness. We propose a frame-
work, called BALLET, which adaptively filters
for a high-confidence region of interest (ROI) as
a superlevel-set of a nonparametric probabilistic
model such as a Gaussian process (GP). Our ap-
proach is easy to tune, and is able to focus on
local region of the optimization space that can be
tackled by existing BO methods. The key idea is
to use two probabilistic models: a coarse GP to
identify the ROI, and a localized GP for optimiza-
tion within the ROI. We show theoretically that
BALLET can efficiently shrink the search space,
and can exhibit a tighter regret bound than stan-
dard BO without ROI filtering. We demonstrate
empirically the effectiveness of BALLET on both
synthetic and real-world optimization tasks.

1. Introduction

Bayesian optimization (BO) is a popular statistic-model-
based sequential optimization method in various fields of
science and engineering, including scientific experimental
design (Yang et al., 2019), robotics planning (Berkenkamp
et al., 2016; Sui et al., 2018), self-tuning systems (Zhang
et al., 2022) and hyperparameter optimization (Snoek et al.,
2012). These applications often involve optimizing a
black-box function that is expensive to evaluate, where the
statistics-guided efficient optimization algorithm is desired.
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The common practice in BO is to employ Gaussian pro-
cesses (GPs) (Rasmussen & Williams, 2006) as a statistic
surrogate model for the unknown objective function due to
its mathematical simplicity as well as the promising capa-
bility in terms of learning and inference, which allows for
defining effective acquisition functions.

Despite strong empirical and theoretical results under certain
assumptions (e.g., smoothness) (Srinivas et al., 2009; Wang
& Jegelka, 2017; Wang et al., 2016b), BO has struggled
in many real-world settings due to the high-dimensional,
large-scale, and heterogeneous nature of optimization tasks.
Besides the well-known curse of dimensionality (Bengio
et al., 2005), the heterogeneity and scarcity of training data
in real-world tasks make it challenging to fit a single (global)
GP for data acquisition (Eriksson et al., 2019). Meanwhile,
purely relying on local characteristics has been proven to be
ineffective for global optimization, due to the ignorance of
the correlations on observations that are normally captured
by the GP. The trade-off between exploiting data locality
and exploring uncertainty at a global scale emerges as a
critical problem in real-world BO settings, especially when
the global smoothness assumption no longer holds.

Historically, various partitioning-based BO methods have
been proposed to tackle this challenge. These methods, of-
ten based on certain clustering heuristics, learn the regions of
interest (ROI) to better reflect the data locality. A common
issue for existing heuristics is the added layer of complexity
for model fine-tuning, which involves optimizing extra hy-
perparameters such as the number of ROIs (Eriksson et al.,
2019), maximum leaf size in the tree-structured partitioning
methods, and methods to generalize the partition learned
on the accumulated observations to the whole search space
(Munos, 2014).

We propose a novel nonparametric approach for partitioning-
based BO that demonstrates strong empirical performance
in real-world tasks, while having few hyperparameters to
maintain. The proposed algorithm is inspired by the level-
set estimation (LSE) problem, where a level-set corresponds
to a set of points for which the black-box objective function
takes value above (or below) some given threshold. Given a
threshold, Gotovos et al. (2013) show that one can leverage
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(b) [lustration on a synthetic 1D function.

(a) The BALLET framework

Figure 1: (a) Schematic of the algorithmic framework of BALLET. It first identifies the regions of interest by estimating
the superlevel-set via a global GP. Then it trains a second GP on the superlevel-set ROIs and uses this GP to acquire the
next data point to evaluate (marked by “%”). (b) illustrates a single iteration of BALLET. The upper figure shows the
underlying objective function, together with the posterior mean for both the and ROI GP. Training examples
(i.e. observations) for the and the ROI GP are marked by “e”” and “4” accordingly. The lower figure shows the
filtering mechanism using the UCB (- - - -) of the and the threshold determined by the maximal LCB ( ) of
the ROI GP (section 3.1, line 4 of algorithm 1). By learning the ROI GP on the filtered area, BALLET is guided by its
acquisition function (— —) to the ROIs rather than the “bad” regions which, with high confidence, is sub-optimal. The

next data point is then chosen from the ROIs (¥). Details for this 1D synthetic experiment are provided in section 4.

the point-wise confidence interval to actively identify the
level-set with a theoretical guarantee. In the context of
Bayesian optimization, the threshold could reduce to the
lower confidence bound of the global optima.

Our contribution Following the above insight, we pro-
pose the novel Bayesian optimization framework with adap-
tive estimation of regions of interest. As illustrated in Fig-
ure 1, The algorithm partitions the search space based on
confidence intervals and identifies the superlevel-set as the
ROIs of high confidence contain the global optimum. We
propose a novel acquisition function that relies on both the
global model and the ROI model to capture the locality while
not sacrificing global knowledge through optimization. We
further provide rigorous theoretical analyses showing that
the proposed acquisition function can, in a principled way,
exhibit an improved regret bound compared to its canon-
ical BO counterpart without the filtering component. We
demonstrate the effectiveness of the proposed framework
with an empirical study on several synthetic and real-world
optimization tasks.

2. Related Work

High-dimensional Bayesian optimization BO often uses
Gaussian processes as a (mathematically) simple yet pow-
erful tool to parametrize the black-box function. However,
GPs are difficult to fit and be applied in optimization in the

high-dimensional setting due to the curse of dimensional-
ity; thus classical BO algorithms need to be modified for
high-dimensional function classes (Djolonga et al., 2013).

A class of methods leverages additional structures, such as
additive GPs, to mitigate the challenge of training a single
global GP. For instance, LineBO restricts its search space to
a one-dimensional subspace with reduced sample complex-
ity at each step (Kirschner et al., 2019). GP-ThreDS relies
on Holder condition on the unknown objective to prune the
search space, avoids the discretization cost exponential to
the dimensionality of the search space, and speeds up the
optimization (Salgia et al., 2021). In contrast, we aim at
the applications where no Holder smoothness is guaranteed,
while valid discrete candidates in the search space are given.

Another line of work assumes that despite the high dimen-
sionality of the original input, the effective dimensional-
ity is smaller. Therefore, it is feasible to embed the high-
dimensional input space into a lower-dimensional subspace
using techniques such as random projection and variable
selection, while preserving the desired properties for opti-
mization (Song et al., 2022; Wang et al., 2016a; Letham
et al., 2020; Munteanu et al., 2019; Papenmeier et al., 2022).
Additionally, McIntire et al. (2016); Moss et al. (2023) pro-
pose that a reduced set of points can effectively represent
the original high-dimensional space without significantly
sacrificing uncertainty quantification. They introduce sparse
GP as an efficient surrogate for high-throughput Bayesian
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optimization. Although these works share the spirit of con-
ducting Bayesian optimization on a reduced complexity set
compared to the original high-dimensional input space, they
can be integrated into any GP-based optimization frame-
work. Hence we do not make comparison with them in
experiments.

Our proposed method relates most closely to methods with
input space partitions (Wabersich & Toussaint, 2016; Eriks-
son et al., 2019; Wang et al., 2020; Sazanovich et al., 2021).
Notably, TurBO (Eriksson et al., 2019) maintains a collec-
tion of local GPs and allocates queries with a multi-armed
bandit procedure. LA-MCTS (Wang et al., 2020) learns a
partition of the input space and uses Monte Carlo tree search
(MCTS) to decide a subspace to apply BO. Compared with
the proposed BALLET, these partitioning methods rely on
heuristics and add extra complexity to the optimization task
with hyperparameters of these heuristics, e.g., TuURBO relies
on the number of trust regions and LA-MCTS relies on leaf
size, a hyperparameter in UCB for the subspace selection
and one for the partitioning algorithm. '

Partition-based Bayesian active learning and optimiza-
tion Partition-based methods are common in BO with
safety constraints (Sazanovich et al., 2021; Sui et al., 2018;
Makarova et al., 2021). These methods use LCB from GPs
to partition the input space into safe and unsafe subspaces.
Subsequent optimizaton queries are restricted to the safe
subspaces only. Another related work is the level set esti-
mation (LSE) method by Gotovos et al. (2013), where the
authors use both UCB and LCB to narrow down regions
where a particular function value is likely to exist. A uni-
fied framework TRUVAR for BO and LSE task (Bogunovic
et al., 2016) proposes a similar filtering method but does
not learn a local surrogate model. Instead, the filtering is
used to constrain its acquisition function. Our method in-
herits the spirit of LSE to leverage the confidence interval
to adaptively partition the search space.

Partition-based optimization methods More broadly
speaking, partitioning the input space is a general strategy
employed by several optimization methods (Munos, 2011;
2014; Shahriari et al., 2016; Merrill et al., 2021; Kawaguchi
et al., 2016). Simultaneous optimistic optimization (SOO)
algorithm (Munos, 2011; 2014), which is a non-Bayesian
approach that intelligently partitions the space based on ob-
served experiments to effectively balance exploration and
exploitation of the objective. A modification of SOO, named
Locally Oriented Global Optimization (LOGO) (Kawaguchi
et al., 2016), achieves both fast convergence in practice
and a finite-time error bound in theory. However, these

"Due to the diverse range of interests and fields of work in
HDBO, we recommend referring to the recent survey conducted by
(Binois & Wycoff, 2022) for a more extensive discussion on High-
dimensional Bayesian Optimization with Gaussian Processes.

non-Bayesian approaches have seen more degraded empiri-
cal performance on high-dimensional functions than their
Bayesian counterparts (Merrill et al., 2021).

3. Bayesian Optimization with Adaptive
Level-Set Estimation

We consider the standard BO setting for sequentially opti-
mizing a function f : X — R, where X C R? is the search
space. At iteration ¢, we maintain a Gaussian process as the
surrogate model, picks a point x; € X by maximizing the
acquisition function o : X — R, and observe the function
value perturbed by additive noise: y; = f(x:) + & with
€ ~ N(0,0?) being i.i.d. Gaussian noise. The goal is
to maximize the sum of rewards Zthl f(x¢) over T iter-
ations, or equivalently, to minimize the cumulative regret
Rr 27 7y, where r; £ max f(x) — f(x;) denotes the
X

instantaneous regret. Another common performance metric
in BO is the simple regret r3 = max f(x) — max f(x;).
xeX t<T

3.1. The BALLET framework

Global modeling and representation Existing works use
heuristics to partition the historical observations D; =
{X:,Y;} first and then generalize it to the whole search
space X (Wang et al., 2020; Eriksson et al., 2019). Here
Y: = {y1,..,y:} and Xy = {xy,...,x¢}. The heuristics
could be sensitive to additional hyperparameters of the parti-
tioning model (e.g., number of partitions, etc), which in turn
affect the optimization performance. Instead, we propose
to learn a partitioning on X with a global estimation of the
underlying blackbox function f, £ f, which is modeled
by a Gaussian process GPy, (my,(x), ky,(x,x)) trained on
the historical observations. GPj, is parameterized by 0y, ,
where my, (x) is the mean function and ky, (x,x’) is the
covariance function.

In this work, we resort to Deep Kernel Learning (DKL)
(Wilson et al., 2016) as a scalable tool to train the GPs?. The
algorithm learns a latent space mapping ¢ : X — Z on a
neural network to convert the input space X to the latent
space Z, and constructs an objective mapping h : Z — R
such that f(x) ~ h(g(x)), Vx € X. The neural network
q and the base kernel k together are regarded as a deep
kernel, denoted by ky (x,x') = k(q(x),q(x’)) (Wilson
et al., 2016). The deep kernel is trained by maximizing the
negative log-likelihood (NLL) — log(P [yt | X¢,0 fg,t]) =

>We propose a kernel-agnostic framework and in implementa-
tion, we apply the efficient deep kernel for large-scale optimization.
In deep kernel learning, which is shown to bear strong empirical
performance in regression and optimization (e.g.(Wilson et al.,
2016; Wistuba & Grabocka, 2021)), the learning cost is O(n) for
n training points, and the prediction cost is O(1) per test point and
is more efficient than exact GP in terms of computational cost.
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1y (K, 402T) Ly, — L log | (K g1+ 0°T) | — £ log(t)
which is the learning objective for the kernel (Rasmussen &
Williams, 2006). Note that DKL relies on KISS-GP (Wilson
& Nickisch, 2015) which generalize inducing point methods
with kernel interpolation for efficient inference and is related
to the sparse GP methods (Mclntire et al., 2016; Moss et al.,
2023). In addition to DKL, we use the unlabeled dataset
sampled from X to pre-train an Auto-Encoder and use the
parameters of its encoder to initialize the neural network ¢
following the protocol described by Ferreira et al. (2020).

At iteration ¢, given the selected points Dy, the posterior
over fy also takes the form of a GP, with mean iy, +(x) =
kg (x)" (Ky, ¢ +02I) "y, and covariance ky, 4 (x,x') =
k}fg (X, X/) — k‘fg,t(X)T (ng7t + 0’21) _1kfg,t (X/), where
Bra(®) 2 [y (x0,%), kg (%)) and Ky p 2
[y, (x,x' )}x}x, cp, 18 the positive definite kernel matrix
(Rasmussen & Williams, 2006).

Superlevel-set estimation and filtering The global GP,

induces a filter on X to locate the region of interest X. It
is desired for X that with high probability, the optimum
x* € argmax,x f(x) is contained in X, while | X|| <
[IX]|. Specifically, we leverage the confidence interval of
the global Gaussian process GP, to define the upper con-

fidence bound UCBy, ;(x) £ i, 1—1(x) + ,Btl/Qofg)t,l(x)

and lower confidence bound LCBy, ;(x) £ fu7, 1—1(x) —

20p o1 (%), where op 4 1(x) = kpeo1(x, )12

and (B acts as an scaling factor. Then the maximum
of the global lower confidence bound LCBy, i max £
maxyex LCBy, ;(x) can be used as the threshold, and we
attain the superlevel-set

X; 2 {x € X | UCBy,+(x) > LCBy, tmax} (1)

as the region(s) of interest. The historical observation on
this subset is denoted as

ﬁté{(x,y)€D|x€Xt}. )

Remark 1 BALLET is not assuming that the resulting
X is composed of one single cluster. BALLET learns a
single GP over X, and optimizes on all these localities at
the same time. Intuitively it aims at conducting (local) BO
on the top tier (which could consist of multiple regions)
of the unknown function. This mechanism avoids being
overconfident to identify only one region of interest or the
need to manually specify the number of clusters beforehand.
Here we use the term “superlevel-set” to differentiate from
the methods conducting local BO.

3.2. BALLET-ICI

The goal of the filtering step in BALLET is to shrink the
search space X; while ensuring that the optimum is con-

tained in the ROIs with high probability. By definition of
X, (equation 1), we note that at iteration ¢ the size of the
search space || X,| is directly affected by UCB fot(x). 7
We thus consider the width of the range of UCBy, ; over

X € Xt, formally defined as

Agort(x¢) 2 max UCBy, ;(x) —LCBj, tmax (3
x€E

as a surrogate objective to minimize.

3.2.1. ACQUISITION FUNCTION

Evaluating equation 3 for a new data point x requires 1-step
look-ahead (i.e., computing the expected Ago; 41 should
x be acquired at t), which could be expensive. Instead,
we consider the point-wise confidence interval of the ROI
Gaussian process GP 7 trained on D, denoted by

CI,(x) £ [LCB;,(x), UCB f:t(x)} , )

and simply use the width of |CI;(x)| as an efficiently proxy
for evaluating x.

Mitigating the loss of information of GP i At each it-
eration, BALLET conducts superlevel-set estimation and
then runs BO on X using the ROI Gaussian process GP i

trained on D. Note that GP ; could better capture the lo-
cality at the cost of losing partial historical observations
due to the filtering as D C D. The missing historical ob-
servations could result in additional undesired uncertainty
in GP i compared to the global GP GP f,- To avoid such
information loss while taking the advantage of the identified
ROIs, we propose to tighten the confidence interval (equa-
tion 4) by taking the intersection of the confidence intervals
from all ROI GPs trained from each of the previous itera-
tions GP; ., and the corresponding global GPs, GP, i<:.
In this way, the acting superlevel-set confidence interval

would be CI(x) £ {L/CT?ot(x),ITC\Bt(x) , where

i<t reff, gy LCBri(X)

{L/C\Bt(x) £ max, )
UCB,(x) = minigt,fe{f,fg} UCBy;(x)

It is possible that the intersection in equation 5 results in
an empty CI due to the dynamics brought by the learned
kernels. In practice, instead of taking the intersections of all
the historical GPs, we could mitigate the problem by only
taking the intersection of the CIs at step ¢ to get CL;(x) =

[LCB,(x), UCB; (x)]. Here

I;(\:Et (X) £ maxfe{f’fg} LCnyt(X) (6)
UCB,(x) £ min; 7, 7y UCB (%)

3Given any finite discretization D of X, we refer the size of
the search space as the cardinality | D|.
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Algorithm 1 Bayesian Optimization with Adaptive Level-Set Estimation (BALLET)

1: Input:Search space X, initial observation Dy, horizon T';

2: fort =1toT do

3:  Fit the global Gaussian process GPy, ¢: 0y, < argmax, f

—logP [Y; | Xi—1,0y,]

Identify ROIs via superlevel-set estimation Xt + {xeX|UCB fg,t(x) > LCB f27t7nlax}

Fit the ROI Gaussian process GP i

4
5: Partition the historical observation: D, « {(x,y) € D, | x € X;}.
6
7

Hft ¢ argmaxg —logP [Yt ﬂ]jt\Xt ﬂﬁt,e ]

f

Optimize the superlevel-set acquisition function: x;4; - arg max « f(x) (e.g., as defined in equation 7, 8 or 9)

8:  Dyp1 Dy U{(x¢q1,ye41)}
9: QOutput: max gy

xeX

Note when LCB;, < LCBy,; and LCB is monoton-
ically increasing wrt ¢ , it holds that LCBy, t max =
max, ¢ L/C\Bt(x) = max, ¢ LCB(x).

The BALLET-ICI acquisition function We propose
to apply the intersection of the confidence intervals as an
acquisition function for BALLET (BALLET-ICI), namely
— LCBy(x) 9

o p(x) = lﬁt(x)

Our algorithm is presented in Algorithm 1. In the following
subsection, we rigorously justify the use of equation 7 as
our acquisition function, and prove that the cost on the opti-
mization performance using the relaxation from equation 5
to equation 6 could be bounded under certain conditions.

3.2.2. THEORETICAL ANALYSIS

By abuse of notation, we let the maximum confidence inter-
val on a certain set denoted by

CAItymax() = {mgx @t(x), max @t(x)]

CNItymax(-) = {mgx @t(x), max Géﬁt(x)]

The following lemma shows that the interval CAIt,max (X) is
a high confidence interval for f* = max f(x) given a good
xE

discretization of the search space.

Lemmal Assume ¥Vt < T,x € X, f(x) is a sam-
ple from global GPy, ;. * For any 6 € (0,1) and
any finite discretization D of X containing the optimum
x* = argmax,.x f(x) , with B; = 2log(2|D|r:/5)

where Zt21 i =1P [f* € élt,max(D)} >1-0.

“Here rigorously Vt < T, GP f..¢ should share the same prior
with each other, while we periodically retrain the model similar
to the practice of (Tripp et al., 2020) and we reflect it with the
subscript t.

A proper choice of m; satisfying Lemma 1 is m; = ”2’52
The following corollary shows that with high probability,

the global optimum is contained in the interval.

Remark 2 Rigorously, Vt < T,x € X, the marginal-
ized GP;, and GPy, ¢ shall be the same. Therefore,

Vi< T,x € X, f(x) is a sample from GP ., as well. How-
ever, in practice, it is challenging to spectfy the ideal prior.
We introduce QP into the analysis to reflect the benefits
of learning the hyperparameters for each GP separately in
real-world scenarios.

Corollary 1 With the same conditions as in Lemma I,
]P’[x* ext} >1-4Vt> 1.

For simplification, we use the notation DX = DN X. Tak-
ing the union bound over Lemma 1 and Corollary 1, we
obtain the following result:

Corollary 2 With probability at least 1 — 26, the global
optimum lies in the following interval CIt max(Dx) -

Cl; max(Dx).

Corollary 2 indicates that by narrowing the interval, we
could achieve efficient filtering in BALLET and identify
the near-optimal areas. Define the maximum information
gain about unknown function f after 7" rounds as yfr =
MAaX, - f. |1 I (ya; fa). Also, define

Ar = min_ yyop.
fe{fe.f}

The following results shows that |Cl,(x)| = ITC\Bt(x) -
LCB;(x) serves the purpose of efficiently narrowing the
interval and the resulting range of it is bounded by 7.

Proposition 1 Under the same conditions assumed in
Lemma 1 except for B, = 2log(2|Dx|m¢/0), with acquisi-
tion function |CI;(x)| = UCB(x) — LCB:(x), after at most
T> % iterations, P [\CA‘IT,maX(f)XH < 6} >1—26.
Here Cy = 8/ log(1 + o~ 2).
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The proposition reveals two potential improvements over
the global GP-UCB (Srinivas et al., 2009) on the regret
bound brought by BALLET. First, S takes smaller value
due to the filtering compared to Lemma 1 which is also the
term in the regret bounds of (Srinivas et al., 2009). Second,
A7 could potentially be smaller than the global o7 With
proper kernel learning on ROI. The following corollary
shows the cost of using ﬁﬁt(x) — LCB,(x) as acquisition
function is C3 compared to ITC\Bt(X) — L/C\Bt(x).

Corollary 3 Under the same conditions assumed in
Lemma 1 except for 3, = 2log(2|Dg|m;/d), with ac-
quisition function aj(x) = [CL(z)| = UCBi(x) —
LAC-I/?t(x), after at most T > M iterations,
P ||Clr max(Dg)| < €| > 1 —28. Here C; = 8/ log(1 +

—2 min, <7 (|Cl max(Dg)|)
o and Cy = = 2 .
), 2 |CIT.max(D5()|

The proof of Corollary 3 follows the proof of Proposi-
tion 1 except leveraging the fact min, <7 (|CIy max ( DX)|) —
C5|Clz max(Dg )| at its last step.

3.3. Other BALLET variants

BALLET provides a flexible framework for partitioning-
based BO. In addition to BALLET-ICI, one can run
Thompson sampling on ROI as the acquisition function
(BALLET-RTS), namely

ajqg(x) 2 fi(x) (8)

where ft ~ GP it Another BALLET variant is to directly

run uncertainty sampling with GP jon X (BALLET-RCI,
where RCI is short for “ROI-CI”):

@ rer(¥) 2 [CL(x)| = UCB; ,(x) —LCB; ,(x) (9

Compared with BALLET-RTS and BALLET-RCI, the
intersection of Cls defined in equation 7 in BALLET-ICI
leverages the posterior information of both GP i and GP o
This allows BALLET-ICI to efficiently narrow the con-
fidence interval for f* by explicitly balancing exploration
and exploitation, and achieve a high-probability theoretical
guarantee on its optimization performance. We also discuss
taking the UCB of the intersection of CI’s as the acquisition
function (BALLET-TUCB) in the appendix.

4. Experiment

Experimental setup We compare three baseline algo-
rithms in our experiments against BALLET-ICI, BAL-
LET-RCI, and BALLET-RTS. The Deep-Kernel-based
Bayesian Optimization initialized with a pre-trained Au-
toEncoder (DKBO-AE) applies the deep kernel where a

pre-trained AutoEncoder ° initializes the neural network
q (Zhang et al., 2022). The neural network consists
of three hidden layers with 1000, 500, and 50 neurons,
and ReLU non-linearity respectively. The output layer
is one-dimensional. We use squared exponential kernel
or linear kernel as the base kernel, i.e. ksg(x,x) =
o2 exp(—%) or kpLinear (X, X') = 02 ypar (X1 x), for
the deep kernel, and Thompson Sampling (Chapelle & Li,
2011) for the acquisition function . Two other partition-
based BO algorithms LA-MCTS (Wang et al., 2020) and
TuRBO (Eriksson et al., 2019) serve as the baselines. Note
that DKBO-AE is used as the subroutine for LA-MCTS,
TuRBO-DK, and BALLET-RTS. The neural network ar-
chitecture, base kernel and acquisition function are the same.
BALLET-RCI and BALLET-ICI also share the same deep
kernel except for applying different acquisition functions.
The comparison between BALLET-RTS and DKBO-AE
serves as the ablation study of the proposed partitioning
method. The comparison between BALLET-RCI and
BALLET-ICI also serves as the ablation study of taking
the intersection of CI as defined in equation 6.

One crucial problem in practice is tuning the hyperparam-
eters. For each of the algorithms, the same 10 randomly
picked points serve as the warm-up set. We take the default
hyperparameters from the open-sourced LA-MCTS ¢ and
TuRBO ’ implementation. Note that we choose TuRBO-1
implementation for TuRBO where there is one trust region
through the optimization, as previous work has shown its
robust performance in various tasks (Eriksson et al., 2019).
For BALLET-ICI, we set ¢ in Lemma 1 to be 0.2. In addi-
tion, we find that using the Btl /% in Lemma 1 to identify the
ROI could be over-conservative in that it can not filter many
areas and let BALLET-ICI regress to DKBO-AE with two
similar GPs. Through the experiments, we fix Btl 2202
only when identifying ROIs as in line 4 of Algorithm 1.
For all the tested algorithms, the base kernels are squared
exponential kernels except for Nanophotonics and Water
Converter where we applied linear kernels as the base ker-
nel. We defer the detailed study of parameter choices in
BALLET-ICI to the appendix.

Datasets [D-Toy. We create a synthetic dataset 1D-Toy
of one dimension to illustrate the process of BALLET-
ICT as is shown in section 3. The function is defined on
x € [—1,1] as f(x) = sin(64|x|*) — (x — 0.2)2. This toy
function consists of two high-frequency areas on both sides
and a low-frequency area in the middle. The neural network
is pre-trained on 100 data points.

HDBO-200D. We create a synthetic dataset Sum-200D of
200 dimensions. Each dimension is independently sampled

5The AutoEncoder is trained with random unlabelled samples.
6https ://github.com/facebookresearch/LaMCTS
7https ://botorch.org/tutorials/turbo_1
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Figure 2: The confidence interval of f* defined in Corollary 2. The results from each task are collected from at least 10
independent trials. The error bar demonstrates the standard error. As /3 varies on different iterations and different search
space sizes, we fix 3; = 2 for comparable illustration. The x-axis denotes the number of iterations, and the y-axis denotes

the width of the confidence interval.

from a standard normal distribution to maximize the un-
certainty on that dimension and examine the algorithm’s
capability to solve the medium-dimensional problem. We
want to maximize the label f(x) Zfiq e® which bears
an additive structure and of non-linearity. The neural net-
work is pre-trained on 100 data points.

Water Converter Configuration-32D. This UCI dataset we
use consists of positions and absorbed power outputs of
wave energy converters (WECs) from the southern coast
of Sydney. The applied converter model is a fully sub-
merged three-tether converter called CETO. 16 WECs 2D-
coordinates are placed and optimized in a size-constrained
environment. Note its values are at the order of O(10°).

Nanophotonics Structure Design-5D. We wish to optimize
a weighted figure of merit quantifying the fitness of the
transmission spectrum for hyperspectral imaging as assessed
by a numerical solver (Song et al., 2018). This problem has
a 5-dimensional input corresponding to the physical design
dimensions of a potential filter. Although the input is not
high-dimensional, the function represents a discrete solution
of Maxwell’s equations and has a complex value landscape.

GB1-118D. We use a protein dataset in which the objective
is to maximize stability fitness predictions for the Guanine
nucleotide-binding protein GB1 given different sequence
mutations in a target region of 4 residues (Wu et al., 2019).
Specifically, we use the ESM embedding generated by a
transformer protein language model (Rives et al., 2021).

Rosetta Protein Design-86D. We use another protein engi-
neering dataset describing a set of antigen/antibody binding

calculations. These calculations, executed using supercom-
puting resources, estimate the change in binding free energy
at the interface between each of 71769 modified antibod-
ies and the SARS-CoV-2 spike protein, as compared to the
single reference antibody from which they are derived. Esti-
mations of binding free energy (AAG) are calculated using
protein-structure-based Rosetta Flex simulation software
(Das & Baker, 2008; Barlow et al., 2018). These calcu-
lations took several CPU hours each and were produced
during an antibody design process (Desautels et al., 2020;
2022). Inputs are described with an 80-dimensional feature
vector that, relative to the reference sequence, describes
changes in the interface between the antibody and the corre-
sponding target region on the SARS-CoV-2 spike. This is a
particularly relevant problem setting when trying to rapidly
choose antibody candidates to respond to a new disease in a
timely fashion.

Confidence Intervals As shown in figure 2, the CIs of f*
through the optimization of BALLET-ICI do not constantly
narrow. Instead, on Nanophotonics the width generally
remains the same through the 90 iterations, indicating the
challenge of fitting these datasets with limited data points
and therefore optimizing it with the underfitted GPs.

The intersection CI is consistently narrower than the other
two, where there is no consistent superiority against each
other. Though on HDBO the ROI curve is above the global
curve, the resulting intersection CI still improves upon
global CI, indicating that the maximizer of I?(?Et and Ijéﬁt
are different for global GP and ROI GP.
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Figure 3: Simulation results. The results from each task are collected from at least 10 independent trials. The error bar
demonstrates the standard error. The x-axis denotes the number of iterations, and the y-axis denotes the simple regret. The
simple regrets for the 10 initial randomly picked warm-up datasets are clipped. (G), (R), and (R+G) means the global model
only, the ROI model only, and the ROI model combined with the global model correspondingly.

The dynamics of kernel learning results in empty intersec-
tions on Rosetta, where occasionally the width of CI for f*
turns out to be zero, showing the potential problem in taking
the intersection of all historical ClIs. Future improvement on
BALLET-ICI could be better aligning the CI of both ROI
and global GPs through different iterations to allow taking
the intersection of all historical CIs as in Proposition 1.

The intersection curve converges faster to non-zero values
on both HDBO and GB1 showing the benefits of taking the
intersection of global CI and ROI CI as it better captures
the localities with ROI GP while not losing information of
global GP. However, the width of CI could not directly serve
as the indicator for the optimization performance. On GB1,
the intersection curve is uniformly better than both the ROI
and global CI, while in figure 3, BALLET-ICI does not
outperform DKBO-AE, BALLET-RTS, or BALLET-ROI-
UCB as the CI for f* is still larger than 3.3.

Optimization Performance The experiment results in
figure 3 demonstrate the robust performance of BALLET-
ICI which consistently matches or outperforms the best
baseline. In contrast, LA-MCTS consistently matches or
outperforms TuRBO-DK, but lags behind DKBO-AE on
the 1D Toy which indicates its potential inefficiency in the
tasks of high-frequency areas hindering its partitioning of
the search space. Note that we also find that using SVM
to generalize the partition on Y; to X in LA-MCTS occa-
sionally fails possibly due to the intrinsic complexity of
the partition learned on Y; demanding methods of greater

capability, while the level-set partition of BALLET-ICI
is regularized by the smoothness of the global Gaussian
process GPy,. We reject the failed LA-MCTS trials.

TuRBO-DK matches BALLET-ICI performance on GB1
and but loses to DKBO-AE on all other cases. By con-
struction, 1D Toy and HDBO-200D could have a large
amount of distant local maximum, while TuURBO-DK relies
on the locality of the observation to identify the trust regions.
TuRBO-DK could be potentially trapped in the local maxi-
mum and the performance degrades in the scenario where
the multiple modules are distant from each other while the
gap between sub-optimal and optimal observation is signifi-
cant. In contrast, BALLET-ICI is capable of identifying
multiple regions of interest with the level-set partitioning
without specifying the desired number of regions.

On 1D-Toy dataset which is composed of the low-value
high-frequency areas and the high-value low-frequency area,
BALLET-ICI significantly outperforms the baselines and
reaches the near-optimal area within 30 iterations. Due to
the complexity of the low-value areas that make up a large
portion of the objective, the GPs underfit especially at the
earlys stage where access to observation is limited as is
shown in figure 1. At this phase, the DKBO-AE stably out-
performs BALLET-ICI potentially without the distraction
from the under-fitting ROI GP. While on HDBO datasets
which by construction bears relative uniform smoothness,
the partition-based algorithms other than TuURBO-DK all
enjoy similar benefits at the beginning stage.
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Methods DKBO-AE LA-MCTS TuRBO BALLET-RTS BALLET-RCI BALLET-ICI
BO Model Global Local Local Local Local Global + Local
Acquisition 2 — —
Function fot ~ GPry fe~ GPf,t UCBfﬂt(X)_LCBf,t(X) UCB;(x) — LCB¢(x)
Average 3.67 3.33 5.83 2.00 3.50 2.33
Ranking

Table 1: Comparison of different methods tested in the experiments. The BO model row shows the model on which the
acquisition function is defined. LA-MCTS relies on global Monte-Carlo tree search, and both TuURBO and BALLET-RTS
rely on a global GP to identify the ROI/Trust Region, despite being tagged as ‘local’ for the BO model. The acquisition
functions for DKBO-AE, LA-MCTS, TuRBO and BALLET-RTS are Thompson sampling on different GPs. The acquisition
functions for BALLET-RCI and BALLET-ICI are defined in equation 9 and equation 7, respectively. The average ranking
corresponds to the ultimate simple regrets shown in figure 3. We highlight the rankings of the proposed methods.

On Nanophotonics, Water-Converter and Rosetta, BAL-
LET-ICI matches or outperforms the baselines including
BALLET-RCI, while losing to BALLET-RCI and BAL-
LET-RTS on GB1. This ablation study indicates the neces-
sity of taking the intersection of CI in most scenarios, while
revealing that more aggressive filtering of BALLET-RCI
could sometime be beneficial. BALLET-RTS matches
BALLET on HDBO, Nanophotonics, Water-Converter and
Rosetta, reflecting that the ROI GP could be as informative
as the combination of the global and ROI GP in some cases.
The fact that BALLET-RTS uniformly outperforms LA-
MCTS and TuRBO-DK on all the experiments requires fur-
ther study on integrating Thompson sampling into a BAL-
LET-style framework with a similar theoretical guarantee.

We summarize the different methods tested in the experi-
ments with table 1. The comparison between BALLET-
RTS with both LA-MCTS and TuRBO shows the effec-
tiveness of identifying the ROI on a point-basis on the
given discretization with confidence intervals of a global GP.
The comparison between BALLET-RCI and BALLET-
ICI highlights the benefits on integrating information from
global model into optimization on ROI especially when
using the confidence interval as acquisition function.

5. Conclusion

We propose a novel framework for adaptively learning re-
gions of interest for Bayesian optimization. Our model
maintains two Gaussian processes: One global model for
identifying the ROIs as (adaptive) superlevel-sets; the other
surrogate model for acquiring data in these high-confidence
ROIs. We proposed to take the width of the intersection of
the point-wise confidence intervals of both GPs as the ac-
quisition function to achieve a theoretical guarantee on both
the convergence rate of the filtering and optimization pro-
cess. We demonstrate our algorithm in promising real-world

experiment design scenarios, including protein engineer-
ing and material science. Our results show that BALLET
compares favorably against state-of-the-art BO approaches
under similar settings—especially in high-dimensional and
structured tasks with non-stationary dynamics—while hav-
ing fewer hyperparameters to fine-tune.

More generally, we propose the principled framework com-
bining the power of a coarse global model for filtering low-
interest areas and a fine-grained local model for focused
optimization, supported by theoretical insights. We show
the potential of the framework by integrating Thompson
sampling, and the extensions to other acquisition functions
that are not based on confidence intervals are also of interest
for future work. We demonstrate the practical issues of
taking the intersection of all historical CIs and discuss the
cost of only taking the intersection of Cls at each time step.
This raises the demand for future studies on addressing the
dynamics of (deep) kernel learning.
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A. Proofs
A.1. Proof of Lemma 1 and Corollary 1
Proof: Similar to lemma 5.1 of (Srinivas et al., 2009), with probability at least 1 — 8, Vx € D,Vt > 1,Yf € {f,, I

1F(x) = tpem1 (] < B 201421 (x)

Note that we also take the union bound on f € { f,, f1.

ThenVt > 1,Yf € {f,. f},
P(f* < UCB 4(x") < UCB mu) = 10

ACCOI’ding to equation 5, Vt > ].
<’ max [J(: t(a:)) I _6

Symmetrically, Vx € D,Vt > 1,Vf € {fg)f}’
P(f*> f(x) >LCBs(x)) >1—-19¢

Then Vt > 1,
P (UCBy, ¢(x) > f* > LCBy, tmax) = 1 — 6

according to the definition of X, P (x* € Xt) >1-9.

AISO, aCCOI'ding to equation 5, Vi > 1
1 ’ > aX I/\(“t > — (i
( xeX (:I:)>

A.2. Proof of Proposition 1

The following two lemmas shows that the width of the interval is bounded by the maximum of « 7

Lemma 2 Under the same conditions assumed in Lemma | except for B, = 2log(2|D N X|m;/8), with acquisition
function o j(x) = [CL(x)|, Vt = 1,Vf € {fq, [} let x"" = argmax, _px [Cli(x)| we have max, 5z UCBy(x) —
max_ . 5% LCB(x) < pCIBtl/Qof,t,l(x). Here pc; < pucp < 2.

Proof: ¥t > 1,Yf € {f,, f}

max UCB,(x) — max LCB,(x) < UCB,(x') — LCB,(x)
xeDNX xeDNX

<28%05,-1(x)

< arg max |Cl, (x)|
xeDnX

= 2ﬂtl/20f’t,1 (X”)
(Il

The followings finish the proof of Proposition 1.

.. . ~ S R T 1/2 2
Proof: By lemma 5.4 of Srinivas et al. (2009), with 5; = 21og(2|D N X|7/6),Vf € {fg, [}, D 1126, “of1-1(x¢))? <
C1 By, . Taking the union bound of Lemma 1 and Corollary 2, with probability at least 1 — 26, Vf € {fg, f 1,

T 2 T
Z( max_UCB,(x) — max_ LCBt<x>) < (pa, B g1 (x0)?
—1 \xeDnX xeDnX 1

< pifclﬁT’Yf,Tﬂl
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According to equation 5, max_ 5% ITC\Bt(X) —Max, . prk L/CTSt(x) is monotonically decreasing. By Cauchy-Schwaz,
with probability at least 1 — 26, Vf € {f,, f},

2
pifClﬁTfyf,T/él > Z( max UCBt( ) — max L/C\Bt(x))

— xeDnX xeDNX

~+

v
’ﬂ\

Z max UCBt( ) — max LCBt( ))?
Y xeDnX xeDnX

2
>T ( max UCBrp(x) — max LCBT( ))
xeDnX xeDnX

Assume with probability at least 1 — 24,

2
( max UCBr(x) — max LCBT(X)> < p2 C1BrAT /AT < €
xeDnX xeDNX 4

Hence, with the smallest 7" satisfying T" >
O

pi ABTWTC& — —_—
s P [max, . pg UCBr(x) — max,.c pog LCBr(x) < | > 123,

B. Discussions

Smoothness improvement on ROI In near-optimal areas, the smoothness of the objective should be no worse than the
smoothness in the larger (global) area. (Srinivas et al., 2009) discussed the role of smoothness in reducing ~. As indicated
by Proposition 1, the benefits to optimization of a smoother kernel learned on ROI instead of the kernel learned on the globe
could be reflected in the reduced 7 in the regret bound compared to 7y, without the filtering of BALLET.

C. Supplemental Experimental Results

In this section, we include an extended empirical study of BALLET, compared against a broader collection of baseline
algorithms with varying hyperparameters. Specifically, we show the results for the following algorithms:

BALLET-ICI-RBF: BALLET-ICI with RBF (squared-exponential) base kernel k(x,x’) = exp (—d(’;’lix;)z).

BALLET-ICI-Lin: BALLET-ICI with linear base kernel k(x, x') = 02 + x - x’ (with prior N (0, 03) on the bias).
* DKBO-AE-RBF. DKBO-AE with RBF base kernel (Zhang et al., 2022).

DKBO-AE-Lin. DKBO-AE with linear base kernel.

LA-MCTS. The Latent Action Monte Carlo Tree Search algorithm (LA-MCTS) of Wang et al. (2020).

L]

* TuRBO-m. The Trust region Bayesian optimization (TURBO) algorithm of Eriksson et al. (2019), where m specifies
the variant of TURBO that maintains m local models in parallel.

As shown in table 2, BALLET-ICI (with different choices of base kernels) consistently outperforms other baselines on
all datasets but Nanophotonics. On Nanophotonics, while there is a small gap between BALLET-ICI and LA-MCTS,
LA-MCTS is relatively unstable with a larger variance (SE). This is consistent with the results reported in figure 3.

Hyperpameter choice We further provide results on BALLET’s performance with varying 3 when filtering. Figure 4
shows the simple regret of BALLET-ICI on the Nanophotonics dataset. We observe that—although our regret bounds in
section 3.2 rely on specific choices of 63 /2 for filtering — the empirical results are robust within a range of small values.
Also, using the B; = 6.2 as the analytic results in Proposition 1 failed to match the performance of the fixed 3, 1/2 <1,
showing its over-conservative problem.
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1-D toy HDBO Nanophotonics  WaterConverter GB1 Rosetta
T =140 T =40 T =90 T =90 T =90 T =90
BALLET-ICI-RBF 0.03 £0.01 85.9047.29 76.65+9.55 33664.62 £ 0.00 4.81+0.15 3.86+0.49

BALLET-ICI-LIN ~ 0.10+0.03 110.81 £7.93  34.49+4.39 20084.66 + 2928.84 (.33 £0.28 5.11+0.18
DKBO-AE-RBF 0.05+0.02 90.75 £16.01  89.49+ 3.44 28591.49 £ 2560.23 5.02+0.41 4.89 £0.16

DKBO-AE-LIN 0.07+0.01 92.84 £ 6.22 82.94 £4.50 33664.63 £+ 0 6.44 +£0.19 4.12£0.46
LA-MCTS 0.10 £ 0.04 95.47 £ 4.84 30.79 £10.28 26814.43 &+ 1593.76 5.59 £ 0.40 5.09 £ 0.32
TURBO-1 0.314+0.00 136.80 £0.00  96.58 = 0.00 33664.69 = 0.00 5.34 £ 0.52 6.67 = 0.00
TURBO-2 0.07 £ 0.06 105.51 £5.47  50.60 + 15.46 28450.65 £+ 1691.96 4.95+0.45 5.75 £ 0.32
TuRBO-4 0.04 £0.03 93.74 £10.25  63.60 & 3.48 32800.93 £ 3148.98 5.72+£0.72 5.46 +0.22

Table 2: Simple regret (Mean £ SE) at the T™ jteration on the 6 datasets described in section 4. Here, T' aligns with the
optimization horizon reported in figure 3 for each dataset. The top results are highlighted in bold.
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— pi=08 — Bi=20 — B}=62
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Figure 4: Effect of scaling parameter /3 on the Nanophotonics dataset. For B;/ % < 4, the values are fixed through the

optimization, while ﬁ;/ 2=6.2 corresponds to the results of varying ﬁtl /% asin Proposition 1.

D. Additional Results
D.1. TRUVAR Results

We do not include TRUVAR by (Bogunovic et al., 2016) in the main paper for the following reasons. (1) TRUVAR is
not a partition-based BO method that aims at resolving the heteroscedasticity in BO by learning local models; (2) It is
prohibitive to run for large candidate sets as TRUVAR’s acquisition function requires estimating the posterior variance
reduction for all the remaining candidates. We observe on the 1D-toy dataset the simple regret is 0.121 + 0.033 by TRUVAR
v.s. 0.0031 + 0.011 by BALLET-ICIL.

D.2. Exact-GP results

We Compare Exact-GP results on 1-D Toy, Nanophotonics, and Water converter configuration datasets with DKBO-AE
as an ablation study of deep kernel learning. The choice of kernels and hypereparameters are identical to the deep kernel
discussed in section 4 except for removing the latent space mapping and kernel interpolation. As is shown in figure 5,
Exact-GP is consistently outperformed by DKBO-AE and BALLET-ICI.

D.3. RCI results

We compare DKBO-AE-RCI directly with DKBO-AE as the direct ablation study of the proposed acquisition function. The
choice of kernels and hypereparameters are identical to the deep kernel discussed in section 4. The acquisition function
UCBfg’t(x) — LCBy, ¢, which is similar to equation 9, is maximized over X instead of X.
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Exact-GP (G) DKBO-AE (G) —— BALLET-ICI (R+G) BALLET-RTS (R) BALLET-RCI (R)
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Figure 5: Simulation results on each task are shown here. The error bar demonstrates the standard error. The x-axis denotes the number
of iterations, and the y-axis denotes the simple regret. The simple regrets for the 10 initial randomly picked warm-up datasets are
clipped. (G), (R), and (R+G) means the global model only, the ROI model only, and the ROI model combined with the global model
correspondingly.

As is shown figure 5, BALLET-ICI outperforms the baselines except on GB1, indicating the advantage of leveraging both
global and local information together. BALLET-RCI performs the best and DKBO-AE-RCI outperforms BALLET-ICI
on GB1. This shows the benefits of identifying the ROI and optimizes on it, and the harm a potential discrepancy between
the global model and the ROI model could be to the optimization.

D.4. Larger Horizon for Protein Datasets

We provide additional large-scale empirical results on the Rosetta-86D and GB1-119D pre-collected protein design datasets.
The results are collected from 10 independent 300-iteration trials for each experiment.

We summarize the simple regrets of these two additional experiments in table 3 and table 4. We highlight the best results
and report the p-value against all other methods in the parenthes. The results are shown in three columns: (1) using deep
kernel only, (2) applying the acquisition function within the identified ROI, and (3) using the intersection of confidence
intervals from both global and ROI models as the acquisition function. The average running times for a single trial of the
right-most (fastest within the row) results are provided for each row.

The results demonstrate that using the BALLET framework with each acquisition function leads to improvements over the
DKBO-AE version. Additionally, comparing BALLET-Intersection and BALLET-ROI reveals the benefits of using the
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DK-AE BALLET-ROI BALLET-Intersection Avg Run Time (sec)
TS 4.5840.16 (1.15e-03) 3.73+0.17 nan 1010.7
UCB 4.7840.22 (1.05e-03) 4.60£0.33 (1.89e-02) 4.444-0.31 (3.50e-02) 723.2
EI 5.02+0.34 (2.11e-03) 4.48+0.13 (1.45e-03) nan 789.2
CI 4.6140.16 (9.98¢-04) 4.7240.35 (1.20e-02) 4.214+0.40 (1.51e-01) 667.7
LA-MCTS 5.60+0.32 (5.84e-05) nan nan 2521.7
TuRBO-DK  6.30+0.50 (9.64e-05) nan nan 1205.4

Table 3: Performance comparison on GB1.

DK-AE BALLET-ROI BALLET-Intersection Avg Run Time (sec)
TS 3.9540.18 (3.84e-04) 3.51+0.40 (1.97¢-02) nan 126.1
UCB 3.5540.30 (8.25¢-03) 2.434+0.42 (3.99¢-01) 2.4340.42 (3.99¢-01) 93.9
EI 3.38+0.38 (2.90e-02) 3.014+0.39 (1.01e-01) nan 91.1
CI 3.56+0.38 (1.43e-02) 4.31+0.35 (5.38¢-04) 2.28+0.35 82.5
LA-MCTS 3.0240.46 (1.19¢-01) nan nan 1028.1
TuRBO-DK  3.80£0.32 (3.32e-03) nan nan 433.1

Table 4: Performance comparison on Rosetta.

intersection of confidence intervals. The filtering ratio curve shown in figure 6, combined with these results, suggests that
the proposed BALLET-ICI method accelerates the optimization process by shrinking the ROI more rapidly.

E. Discussions
E.1. Computational Cost

In deep kernel learning, which is shown to bear strong empirical performance in regression and optimization (e.g.(Wilson
et al., 2016; Wistuba & Grabocka, 2021)), the learning cost is O(n) for n training points, and the prediction cost is O(1) per
test point and is more efficient than the exact GP in terms of computational cost. Compared to the significant experiment
cost in the real-world application BALLET is proposed for (e.g., cosmological design, protein study), the computational
cost is negligible. Meanwhile, the runtime of other partition-based algorithms depends on the hyperparameters of the
partitioning heuristics, e.g., K-means iterations in LA-MCTS, the number and size of trust regions in TuRBO.

E.2. Limitation and Future Work

We summarize the following limitations throughout the paper.

* The analysis only applies to given discretization, while sampling and related work focus on the issue;

It Doesn’t help to learn an ROI GP when the objective has global uniformity. The global kernel itself forms a good
surrogate GP.

* The analysis should be able to extend to more acquisition functions.

e Lack of analysis on top of the (deep) kernel learning. Though different from applying an exact GP through the
optimization process, deep kernel learning has shown strong performance in regression and optimization tasks. The
gap between DK-based BO and exact GP-based BO remains to be filled.
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Figure 6: Simulation results on each task are shown here. The error bar demonstrates the standard error. The x-axis denotes the number
of iterations, and the y-axis denotes the filtering ratio. The ratio for the 10 initial randomly picked warm-up datasets are clipped. (G), (R),
and (R+G) means the global model only, the ROI model only, and the ROI model combined with the global model correspondingly.
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