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Abstract

Large-scale pre-training tasks like image classification,
captioning, or self-supervised techniques do not incentivize
learning the semantic boundaries of objects. However, re-
cent generative foundation models built using text-based la-
tent diffusion techniques may learn semantic boundaries.
This is because they have to synthesize intricate details
about all objects in an image based on a text description.
Therefore, we present a technique for segmenting real and
Al-generated images using latent diffusion models (LDMs)
trained on internet-scale datasets. First, we show that the
latent space of LDMs (z-space) is a better input representa-
tion compared to other feature representations like RGB im-
ages or CLIP encodings for text-based image segmentation.
By training the segmentation models on the latent z-space,
which creates a compressed representation across several
domains like different forms of art, cartoons, illustrations,
and photographs, we are also able to bridge the domain
gap between real and Al-generated images. We show that
the internal features of LDMs contain rich semantic infor-
mation and present a technique in the form of LD-ZNet
to further boost the performance of text-based segmenta-
tion. Overall, we show up to 6% improvement over standard
baselines for text-to-image segmentation on natural images.
For Al-generated imagery, we show close to 20% improve-
ment compared to state-of-the-art techniques. The project
is available at hitps://koutilya-pnvr.github.io/LD-ZNet/.

1. Introduction

Teaching neural networks to accurately find the bound-
aries of objects is hard and annotation of boundaries at
internet scale is impractical. Also, most self-supervised
or weakly supervised problems do not incentivize learning
boundaries. For example, training on classification or cap-
tioning allows models to learn the most discriminative parts
of the image without focusing on boundaries [42, 60]. Our
insight is that Latent Diffusion Models (LDMs) [38], which
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Figure 1: Coarse segmentation results from an LDM for two dis-
tinct images, demonstrating the encoding of fine-grained object-
level semantic information within the model’s internal features.

can be trained without object level supervision at internet
scale, must attend to object boundaries, and so we hypothe-
size that they can learn features which would be useful for
open world image segmentation. We support this hypothe-
sis by showing that LDMs can improve performance on this
task by up to 6%, compared to standard baselines and these
gains are further amplified when LDM based segmentation
models are applied on Al generated images.

To test the aforementioned hypothesis about the pres-
ence of object-level semantic information inside a pre-
trained LDM, we conduct a simple experiment. We com-
pute the pixel-wise norm between the unconditional and
text-conditional noise estimates from a pretrained LDM as
part of the reverse diffusion process. This computation
identifies the spatial locations that need to be modified for
the noised input to align better with the corresponding text
condition. Hence, the magnitude of the pixel-wise norm
depicts regions that identify the text prompt. As shown in
the Figure 1, the pixel-wise norm represents a coarse seg-
mentation of the subject although the LDM is not trained
on this task. This clearly demonstrates that these large scale
LDMs can not only generate visually pleasing images, but
their internal representations encode fine-grained semantic
information, that can be useful for tasks like segmentation.

Recently, text-based image segmentation has gained
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Figure 2: Overview of the proposed ZNet and LD-ZNet architectures. We propose to use the compressed latent representation z as input
for our segmentation network ZNet. Next, we propose LD-ZNet, which incorporates the latent diffusion features at various intermediate

blocks from the LDM’s denoising UNet, into ZNet.

traction for creating and editing Al generated content (like
Al art, illustrations, cartoons etc.) in image inpainting
workflows ! as it provides a conversational interface. Since
the latent space z [ 1], extracted by a VQGAN is trained
on several domains like art, cartoons, illustrations and real
photographs, we posit that it is a more robust input represen-
tation for text-based segmentation on Al-generated images.
Furthermore, the internal layers of the LDM are responsible
for generating the structure of the image and hence contain
rich semantic information about objects. Soft masks from
these layers have also been used as a latent input in recent
work on image editing [!5, 2]. Since this information is
already present while generating the image, we propose an
architecture in the form of LD-ZNet (shown in Figure 2)
to decode it for obtaining the semantic boundaries of ob-
jects generated in the scene. Not only does our architecture
benefit segmentation of objects in Al generated images, but
it also improves performance over natural images. Overall
our contributions are as follows:

* We propose a text-based segmentation architecture,
ZNet that operates on the compressed latent space of
the LDM (2).

* Next, we study the internal representations at differ-
ent stages of pretrained LDMs and show that they are
useful for text-based image segmentation.

* Finally, we propose a novel approach named LD-ZNet
to incorporate the visual-linguistic latent diffusion fea-
tures from a pretrained LDM and show improvements

Ihttps://github.com/brycedrennan/imaginAlry,
https://github.com/AUTOMATIC111 1/stable-diffusion-webui

across several metrics and domains for text-based im-
age segmentation.

2. Related work

2.1. Text-based image segmentation

Text-based image segmentation is the general task of
segmenting specific regions in an image, based on a text
prompt. This is different from the referring expression
segmentation (RES) task, which aims to extract instance-
level segmentation of different objects through distinctive
referring expressions. While RES helps applications in
robotics that require localization of a single object in an
image, text-based segmentation benefits image editing ap-
plications by being able to also segment 1) “stuff” cate-
gories (clouds/ocean/beach etc.) and 2) multiple instances
of an object category applicable to the text prompt. How-
ever, both these tasks have some shared literature in terms
of approaches. Preliminary works [16, 25, 43, 24, 56] fo-
cused on the multi-modal feature fusion between the lan-
guage and visual representations obtained from recurrent
networks (such as LSTM) and CNNs respectively. The
subsequent set of works [28, 59, 50, 54] included varia-
tions of multi-modal training, attention and cross-attention
networks etc. Recently, [50, 26] used CLIP [34] to ex-
tract visual linguistic features of the image and the ref-
erence text separately. These features were then com-
bined using a transformer based decoder to predict a binary
mask. Alternately, [18, 62], proposed vision-language pre-
training on other text-based visual recognition tasks (ob-
ject detection and phrase grounding) and later finetuned
for the segmentation task. The concurrent works segment-
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anything (SAM) [22] and segment-everything-everywhere-
all-at-once (SEEM) [67] allow interactive segmentation via
point clicks, bounding boxes and text inputs etc. demon-
strating good zero-shot performance. Different from all
these works, we show the significance of using the latent
space and the internal features from a pretrained latent dif-
fusion model [38] for improving the more generic text-
based image segmentation task.

2.2. Text-to-Image synthesis

Text-to-Image synthesis has initially been explored using
GANSs [53, 66, 45, 61, 55, 65] on publicly available image
captioning datasets. Another line of work is by using au-
toregressive models [36, 9, 13] via a two stage approach.
The first stage is a vector quantized autoencoder such as
a VQVAE [48, 37] or a VQGAN [11] with an image re-
construction objective to convert an image into a shorter
sequence of discrete tokens. This low dimensional latent
space enables the training of compute intensive autoregres-
sive models even for high resolution text-to-image synthe-
sis. With the recent advancements in Diffusion Models

(DM) [32, 8], both in unconditional and class conditional
settings, they have started gaining more traction compared
to GANSs. Their success in the text-to-image tasks [40, 35]

made them even more popular. However, the prior diffu-
sion models worked in the high-dimensional image space
that made training and inference computationally intensive.
Subsequently, latent space representations [31, 14, 44, 38]
were proposed for high resolution text-to-image synthesis
to reduce the heavy compute demands. More specifically,
the latent diffusion model (LDM) [38] mitigates this prob-
lem by relying on a perceptually compressed latent space
produced by a powerful autoencoder from the first stage.
Moreover, they employ a convolutional backed UNet [39]
as the denoising architecture, allowing for different sized
latent spaces as input. Recently this architecture is trained
on large scale text-image data [41] from the internet and re-
leased as Stable-diffusion?, which exhibited photo-realistic
image generations. Subsequently, several language guided
image editing applications such as inpainting [5, 27, 52],
text-guided image editing [3, 2] became more popular and
the usage for text-based image segmentation has surged, es-
pecially for Al generated images. We propose a solution for
text-based image segmentation by leveraging the features
which are already present as part of the synthesis process.

2.3. Semantics in generative models

Semantics in generative models such as GANs have been
studied for binary segmentation [49, 29] as well as multi-
class segmentation [64, 46, 33] where the intermediate fea-
tures have been shown to contain semantic information for

Zhttps://github.com/CompVis/stable-diffusion

Figure 3: Reconstructions from the first stage of the LDM. Given
an input image, the latent representation z generated by the en-
coder, can be used to reconstruct images that are perceptually in-
distinguishable from the inputs. The high quality of these recon-
structions suggests that the latent representation z, preserves most
of the semantic information present in the input images.

these tasks. Moreover, [23] highlighted the practical advan-
tages of these representations, such as out-of-distribution
robustness. However, prior generative models (GANS efc.)
as representation learners have received less attention com-
pared to alternative unsupervised methods [4], because of
the training difficulties on complex, diverse and large scale
datasets. Diffusion models [32], on the other hand are an-
other class of powerful generative models that recently out-
performed GANs on image synthesis [8] and are able to
train on large datasets such as Imagenet [7] or LAION [41].
In [1], the authors demonstrated that the internal features
of a pre-trained diffusion model were effective at the se-
mantic segmentation task. However, this type of analysis
[64, 1] has mostly been done in limited settings like few
shot learning [12] or limited domains like faces [19], horses
[57] or cars [57]. Different from these works, we analyze
the visual-linguistic semantic information present in the in-
ternal features of a text-to-image LDM [38] for text based
image segmentation, which is an open world visual recog-
nition task. Furthermore, we leverage these LDM features
and show performance improvements when training with
full datasets instead of few-shot settings.

3. LDMs for Text-Based Segmentation

The text-to-image latent diffusion architecture intro-
duced in [38] consists of two stages: 1) An auto-encoder
based VQGAN [ 1] that extracts a compressed latent rep-
resentation (z) for a given image 2) A diffusion UNet that
is trained to denoise the noisy z created in the forward dif-
fusion process, conditioned on the text features. These text
features are obtained from a pretrained frozen CLIP text en-
coder [34] and is conditioned at multiple layers of the UNet
via cross-attention.

In this paper, we show performance improvements on the
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text-based segmentation task in two steps. Firstly, we ana-
lyze the compressed latent space (z) from the first-stage and
propose an approach named ZNet that uses z as the visual
input to estimate segmentation mask when conditioned on
a text prompt. Secondly, we study the internal representa-
tions from the second stage of the stable-diffusion LDM for
visual-linguistic semantic information and propose a way
to utilize them inside ZNet for further improvements in the
segmentation task. We name this approach as LD-ZNet.

3.1. ZNet: Leveraging Latent Space Features

We observe that the latent space (z) from the first-stage
of the LDM is a compressed representation of the image
that preserves semantic information, as depicted in Figure
3. The VQGAN in the first-stage achieves such semantic-
preserving compression with the help of large scale training
data as well as a combination of losses - perceptual loss
[63], a patch-based [17] adversarial objective [10, 11, 58],
and a KL-regularization loss.

In our experiments, we observe that this compressed la-
tent representation z is more robust compared to the original
image in terms of their association with the text prompts.
We believe this is because z is a % X % x 4 dimensional
feature with 48 x fewer elements compared to the original
image, while preserving the semantic information. Several
prior works [47, 21, 6], show that compression techniques
like PCA, which create information preserving lower di-
mensional representations generalize better. Therefore, we
propose using the z representation along with the frozen
CLIP text features [34] as an input to our segmentation net-
work. Furthermore, because the VQGAN is trained across
several domains like art, cartoons, illustrations, portraits,
etc., it learns a robust and compact representation which
generalizes better across domains, as can be seen in our ex-
periments on Al generated images. We call this approach
ZNet. The architecture of ZNet is shown in the bottom box
of Figure 2, and is the same as the denoising UNet mod-
ule of the LDM. We therefore initialize it with pretrained
weights of the second-stage of the LDM.

3.2. LD-ZNet: Leveraging Diffusion Features

Given a text prompt and a timestep ¢, the second-stage
of the LDM is trained to denoise z; - a noisy version of the
latent representation z obtained via forward diffusion pro-
cess for ¢ timesteps. A UNet architecture is used whose
encoder/decoder elements are shown in Figure 2 (top right).
A typical encoder/decoder block contains a residual layer
followed by a spatial-attention module that internally has
self-attention and then cross-attention with the text features.
We analyze the semantic information in the internal visual-
linguistic representations developed at different blocks of
encoder and decoder right after these spatial-attention mod-
ules. We also propose a way to utilize these latent diffusion
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Figure 4: Semantic information present in the LDM features at
various blocks and timesteps for the referring image segmentation
task. AP is measured on a small validation subset of the PhraseCut
dataset.

features using cross-attention into the ZNet segmentation
network and we call the final model as LD-ZNet.

3.2.1 Visual-Linguistic Information in LDM Features

We evaluate the semantic information present in the pre-
trained LDM at various blocks and timesteps for the text-
based image segmentation task. In this experiment, we
consider the latent diffusion features right after the spatial-
attention layers 1-16 spanning across all the encoder and
decoder blocks present in the UNet. At each block, we
analyze the features for every 100" timestep in the range
[100,1000]. We use a small subset of the training and val-
idation sets from the Phrasecut dataset and train a simple
decoder on top of these features to predict the associated bi-
nary mask. Specifically, given an image I and timestep ¢,
we first extract its latent representation z from the first stage
of LDM and add noise from the forward diffusion to obtain
z¢ for a timestep ¢. Next we extract the frozen CLIP text
features for the text prompt and input both of them into the
denoising UNet of the LDM to extract the internal visual-
linguistic features at all the blocks for that timestep. We use
these representations to train the corresponding decoders
until convergence. Finally, we evaluate the AP metric on
a small subset of the validation dataset. The performance
of features from different blocks and timesteps is shown in
Figure 4.

Similar to [I], we observe that the middle blocks
{6,7,8,9,10} of the UNet contain more semantic informa-
tion compared to either the early blocks of the encoder or
the later blocks of the decoder. We also observe that the
timesteps 300-500 contain the maximum visual-linguistic
semantic information compared to other timesteps, for these
middle blocks. This is in contrast to the findings of [1]
that report the timesteps {50, 150, 250} to contain the
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most useful information when evaluated on an uncondi-
tional DDPM model for the few shot semantic segmenta-
tion task for horses [57] and faces[19]. We believe that the
reason for this difference is because, in our case, the image
synthesis is guided by text, leading to the emergence of se-
mantic information earlier in the reverse diffusion process
(t=1000—0), in contrast to unconditional image synthesis.

3.2.2 LD-ZNet Architecture

We propose using the aforementioned visual-linguistic rep-
resentations at multiple spatial-attention modules of the pre-
trained LDM into the ZNet as shown in Figure 2. These la-
tent diffusion features are injected into the ZNet via a cross-
attention mechanism at the corresponding spatial-attention
modules as shown in Figure 5. This allows for an interaction
between the visual-linguistic representations from the ZNet
and the LDM. Specifically, we pass the latent diffusion fea-
tures through an attention pool layer that not only acts as a
learnable layer to match the range of the features participat-
ing in the cross-attention, but also adds a positional encod-
ing to the pixels in the LDM representations. The outputs
from the attention pool are now positional-encoded visual-
linguistic representations that enable the proposed cross-
attention mechanism to attend to the corresponding pixels
from the ZNet features. ZNet when augmented with these
latent diffusion features from the LDM (through cross-
attention) is referred to as LD-ZNet.

Following the semantic analysis of latent diffusion fea-
tures (Sec. 3.2.1), we incorporate the internal features from
blocks {6,7,8,9,10} of the LDM into the corresponding
blocks of ZNet, in order to make use of the maximum se-
mantic and diverse visual-linguistic information from the
LDM. For AI generated images, these blocks are anyways
responsible to generate the final image and using LD-ZNet,
we are able to tap into this information which can be used
for segmenting objects in the scene.

4. Experiments

Implementation details: In this paper, we use the
stable-diffusion v1.4 checkpoint as our LDM that internally
uses the frozen ViT-L/14 CLIP text encoder [34]. We im-
plement the above described ZNet and LD-ZNet in pytorch
inside the stable-diffusion library. We also initialize our net-
works with the weights from the LDM wherever possible,
while initializing the remaining parameters from a normal
distribution. We train ZNet and LD-ZNet on 8 NVIDIA
A100 gpus with a batch size of 4 using the Adam optimizer
and a base learning rate of 5e~7 per mini-batch sample, per
gpu. For all our experiments, we keep the text encoder
frozen and use an image resolution of 384 for a fair com-
parison with the previous works.

Datasets: We use Phrasecut [51], which is currently the
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Figure 5: We propose to incorporate the visual-linguistic repre-
sentations from LDM obtained at the spatial-attention modules
via a cross-attention mechanism into the corresponding spatial-
attention modules of the ZNet through an attention pool layer.

largest dataset for the text-based image segmentation task,
with nearly 340K phrases along with corresponding seg-
mentation masks that not only permit annotations for stuff
classes but also accommodate multiple instances. Follow-
ing [34], we randomly augment the phrases from a fixed
set of prefixes. For the images, we randomly crop a square
around the object of interest with maximum area, ensuring
that the object remains at least partially visible. We avoid
negative samples to remove ambiguity in the LDM features
for non-existent objects.

We create a dataset consisting of Al-generated images
which we name AIGI dataset, to showcase the usefulness of
our approach for text-based segmentation on a different do-
main. We use 100 Al-generated images from lexica.art and
manually annotated multiple regions for 214 text-prompts
relevant to these images.

We also use the popular referring expression segmenta-
tion datasets namely RefCOCO [20], RefCOCO+ [20] and
G-Ref [30] to demonstrate the generalization abilities of
ZNet and LD-ZNet. In RefCOCO, each image contains two
or more objects and each expression has an average length
of 3.6 words. RefCOCO+ is derived from RefCOCO by
excluding certain absolute-location words and focuses on
purely appearance based descriptions. For example it uses
“the man in the yellow polka-dotted shirt” rather than “the
second man from the left” which makes it more challeng-
ing. Unlike RefCOCO and RefCOCO+, the average length
of sentences in G-Ref is 8.4 words, which have more words
about locations and appearances. While we adopt the UNC
partition for RefCOCO and RefCOCO+ in this paper, we
use the UMD partition for G-Ref.

Metrics: We follow the evaluation methodology of [26]
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Method | mloU | IoUpg | AP |
MDETR [18] 53.7 - -
GLIPv2-T [62] 59.4 - -

RMI [51] 21.1 425 -

Mask-RCNN Top [51] 39.4 474 -
HulaNet [51] 41.3 50.8 -
CLIPSeg (PC+) [26] 434 | 547 | 1767
CLIPSeg (PC, D=128) [26] || 48.2 56.5 | 78.2

RGBNet 46.7 562 | 772
ZNet (Ours) 51.3 59.0 | 78.7
LD-ZNet (Ours) 52.7 60.0 78.9

Table 1: Text-based image segmentation performance on the
PhraseCut testset. The performance of ZNet and LD-ZNet is high-
lighted in gray. Both these models outperform the baseline RGB-
Net on all the metrics.

(a) Input  (b) GT mask (c) RGBNet (d) ZNet (e) LD-ZNet

Figure 6: Qualitative comparison on the PhraseCut test set. Each
row contains an input image with a text prompt as an input, with
the goal being to segment the image regions corresponding to the
reference text. The text prompts are “hanging clock” and “castle”
for the top and bottom rows. We show improvements using ZNet
and LD-ZNet compared to the RGBNet.

and report best foreground IoU (/oU ¢ ) for the foreground
pixels, the best mean IoU of all pixels (mloU), and the Av-
erage Precision (AP).

5. Results
5.1. Image Segmentation Using Text Prompts

On the PhraseCut dataset, we compare the performance
of previous approaches with our ZNet and LD-ZNet for the
text-based image segmentation task (Table 1). In order to
showcase the performance improvement of our proposed
networks, we create a baseline named RGBNet with the
same architecture as ZNet except we use the original im-
ages as the input instead of its latent space z. For RGBNet,
we use additional learnable convolutional layers to map the
original image to match the input resolution of ZNet. From
Table 1, we observe that our ZNet and LD-ZNet signifi-
cantly outperform RGBNet. Specifically, the performance
improvement from using the latent representation z over the
original images is clear (i.e. ZNet vs RGBNet baseline).
Performance further improves upon incorporating the LDM
visual-linguistic representations (LD-ZNet) - by 6% overall

Method mloU | AP
MDETR [18] 534 | 63.8
CLIPSeg (PC+) [26] 56.4 | 79.0
SEEM [67] 57.4 | 70.0
RGBNet 63.4 | 84.1
ZNet (Ours) 68.4 | 85.0
LD-ZNet (Ours) 74.1 | 89.6

Table 2: Generalization of the proposed LD-ZNet on our AIGI
dataset when compared with other state-of-the-art text-based seg-
mentation methods.

on the m/oU metric compared to RGBNet. We also high-
light this qualitatively in Figure 6. In the figure, we show the
original image and the GT mask along with outputs from the
RGBNet baseline followed by ZNet and LD-ZNet, where
both ZNet and LD-ZNet help improve results consistently.
For example in the top row, RGBNet detects light fixtures
for the “hanging clock” prompt, and although ZNet does not
have as strong activations for these incorrect detections, it is
LD-ZNet that correctly segments the “clock”. Similarly in
the bottom row, while RGBNet completely got the “castle”
wrong, ZNet correctly has activations on the right buildings,
but with lower confidence. However, LD-ZNet improves it
further.

We outperform in all the metrics when compared to
previous works, other than MDETR [18] and GLIPv2
[62]. Notably, these works are pre-trained on detection and
phrase grounding for predicting bounding boxes on huge
corpus of text-image pairs across various publicly available
datasets with bounding box annotations and are later fine-
tuned on the Phrasecut dataset for the segmentation task.
However, our work is orthogonally focused towards explor-
ing and utilizing LDMs and its internal features for improv-
ing the text-based segmentation performance. Note that
object detection datasets have a good overlap with the vi-
sual content in PhraseCut, however, they are not represen-
tative of the diversity in images available on the internet.
For example, while they could learn common concepts like
sky, ocean, chair, table and their synonyms, methods like
MDETR would not understand concepts like Mikey Mouse,
Pikachu etc., which we will show in Section 6.

5.2. Generalization to AI Generated Images

With the growing popularity of Al generated images,
text-based image segmentation is extensively being used by
content creators in their daily workflows. Many public li-
braries * widely employ methods such as CLIPSeg [26] for
performing segmentation in Al-generated images. So we
study the generalization ability of our proposed segmenta-
tion approach on Al-generated images. To this extent, we

3https://github.com/brycedrennan/imaginAlry,
https://github.com/AUTOMATIC111 1/stable-diffusion-webui
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Input MDETR [18] CLIPSeg [26] SEEM [67]

LD-ZNet

Figure 7: Qualitative comparison on the Al-generated images for
text-based segmentation. The text prompts are “Mickey mouse”,
“Goblin”, “Ramen” and “animals” respectively.

first prepare a dataset of 100 Al-generated images from lex-
ica.art and manually annotate them using 214 text-prompts.
We name this dataset AIGI and release it on our project
website * for future research. Next, we evaluate our ap-
proaches ZNet and LD-ZNet along with our RGBNet base-
line and other text-based segmentation methods - CLIPSeg
(PC+) [26], MDETR [18] and SEEM [67]. Glipv2 and the
SAM model [22] with textual input were not publicly avail-
able for us to evaluate at the time of this submission. All
these methods are trained on the Phrasecut dataset except
for SEEM and we measure the IoU metric as shown in Ta-
ble 2. It can be seen that RGBNet outperforms CLIPSeg,
MDETR and SEEM because its built on the UNet archi-
tecture initialized from the LDM weights that contains se-
mantic information for good generalization. Our methods
ZNet and LD-ZNet further improve the generalization to
these Al-generated images by more than 20% compared to
MDETR. This is largely due to the robust z-space of the
LDM that resulted from a VQGAN pre-training on a variety

“https://koutilya-pnvr.github.io/LD-ZNet/

Method RefCOCO | RefCOCO+ G-Ref
IoU | AP | IoU | AP | IoU | AP

CLIPSeg (PC+) [26] || 30.1 | 14.1 | 30.3 | 15.5 | 33.8 | 23.7
RGBNet 36.3 | 15.7 | 37.1 16.7‘41.9 27.8

ZNet (Ours) 40.1 | 16.8 | 409 | 17.8 47.1 | 29.2
LD-ZNet (Ours) 41.0 | 17.2 | 425 | 18.6 47.8 | 30.8

Table 3: Generalization of our proposed approaches to different
types of expressions from other datasets. Z-Net and LD-ZNet out-
perform both the RGBNet baseline and CLIPSeg on the general-
ization across all datasets.

Diffusion features via mloU | IoUps | AP
LD-ZNet with concatenation 50.2 59.0 78.1
LD-ZNet with cross-attention 52.7 60.0 78.9

Table 4: Incorporating LDM features into ZNet via cross-attention
(LD-ZNet) leverages the visual-linguistic information present in
them, compared to concatenation, leading to better performance
on the text-based image segmentation task.

of domains like art, cartoons, illustrations etc. Furthermore,
the latent diffusion features that contain useful semantic in-
formation for the synthesis task, also help in segmenting the
Al-generated images. We show the qualitative comparison
of these methods in Figure 7 for four Al-generated images
from our dataset. While CLIPSeg can estimate most distinc-
tive regions such as face of the Mickey mouse or rough lo-
cations of Goblin, Ramen and animals, MDETR and SEEM
incorrectly segment them because these concepts are un-
known to them and because of the domain gap between
their training data and AIGI images respectively. In both
such cases, our proposed LD-ZNet estimates accurate seg-
mentation. More qualitative results for LD-ZNet on images
from the AIGI dataset are shown in Figure 9.

5.3. Generalization to Referring Expressions

Reference expression segmentation task is aimed for
robot-localization kind of applications, where segmenting
at instance-level is performed through distinctive referring
expression. Many works such as [54, 50] also train the text
encoder to learn the complex positional references in the
text. However, we are focused on generic text-based seg-
mentation that has support for stuff categories as well as
for multiple instances. We study the generalization abil-
ity of the proposed approach - using LDM features, to this
complex task. Specifically, we use the models trained on
the PhraseCut dataset and evaluate them on the RefCOCO
[20], RefCOCO+ [20] and G-Ref [30] datasets whose com-
plex referring expressions are for single-instance localiza-
tion and segmentation. We also evaluated the generaliza-
tion of CLIPSeg (PC+) [26] model that was trained on an
extended version of the PhraseCut dataset (PC+), to further
demonstrate the generalization capability of our methods.
Table 3 summarizes the performance for our models along
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Figure 8: LD-ZNet text-based image segmentation results for a real image and a cartoon on diverse set of things and stuff classes. High
quality segmentation across multiple classes suggests that LD-ZNet has a good understanding of the overall scene.

“Hoodie” “Oowl” “Pikachu” “Godzilla”

i

“Trump” “Joker” “Eiffel”

Figure 9: More qualitative results of LD-ZNet from AIGI dataset.

with the RGBNet baseline. We observe a similar trend
in performance improvements across RGBNet < ZNet <
LD-ZNet. These experiments demonstrate that the LDM
features enhance the generalization power of the LD-ZNet
model even on complex referring expressions.

5.4. Inference Time

During inference, our proposed LD-ZNet relies on the
LDM to extract the internal features for just a single time
step (as opposed to around 50 reverse diffusion time steps
for the text-to-image synthesis task). We then use these
LDM features for further cross-attention into LD-ZNet via
the attention pool layer to extract the final mask. Therefore,
using the diffusion model increases the overall run time by
only a small amount. For the stable-diffusion model, in-

ference takes 2.57s for 50 timesteps to synthesize an image
(roughly 51ms per timestep), whereas the average inference
times for RGBNet, ZNet and LD-ZNet are only 62ms, 55ms
and 101ms, respectively, per image on the AIGI dataset with
an RTX A6000 gpu. SEEM [67] takes 293ms for the same
task. Since we use an architecture similar to UNet (from the
second stage of the LDM), as our segmentation network, the
proposed LD-ZNet has 925M trainable parameters.

5.5. Cross-attention vs Concat for LDM features

In LD-ZNet, we inject LDM features into the ZNet
model using cross-attention (Figure 5). In order to under-
stand the importance of the cross-attention layer, we also
train and evaluate another model where the LDM features
are concatenated with the features of the ZNet right before
the spatial-attention layer. The results are summarized in
Table 4 and it shows that concatenating the LDM features
yields inferior results compared to the proposed method.
This is because of the attention pool layer which serves
as a learnable layer and also encodes positional informa-
tion into the LDM features for setting up the cross-attention.
Moreover, the cross-attention layer learns how feature pix-
els from the ZNet attend to feature pixels from the LDM,
thereby leveraging context and correlations from the entire
image. With concatenation however, we only fuse the corre-
sponding features of LDM and ZNet which is sub-optimal.

6. Discussion

In this section we present more qualitative results to
demonstrate several interesting aspects of our proposed
technique when applied towards downstream segmentation
tasks. In Figs. 7 to 10, we visualize results of text-based im-
age segmentation on a diverse set of images, which include
Al generated images, illustrations and generic photographs.
In Figure 8, we show that when LD-ZNet is applied on the
same image with various text prompts, it is able to correctly
segment the object and stuff classes being referred to in both
examples. This capability is crucial for open-world segmen-
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RGBNet

LD-ZNet

Figure 10: More qualitative examples where RGBNet fails to lo-
calize “Guitar”, “Panda” from animation images (top row), fa-
mous celebrities “Scarlett Johansson”, “Kate Middleton” (sec-
ond row) and objects such as “Lamp”, “Trees” from illustrations
(bottom row). LD-ZNet benefits from using z combined with the
internal LDM features to correctly segment these text prompts.

tation and overall understanding of the scene. The results
also highlights that the algorithm works remarkably well
on other domains like cartoons/illustrations. It is notewor-
thy that LD-ZNet can perform accurate segmentation for
text prompts which include cartoons (Pikachu, Godzilla),
celebrities (Donald Trump, Spiderman), famous landmarks
(Eiffel Tower), as seen in Figure 9. Finally, Figure 10 shows
the advantages of leveraging semantic information present
in the latent diffusion features. Compared to our baseline
RGBNet, the proposed LD-ZNet generates better segmen-
tation maps across animations, celebrity images and illus-
trations.

7. Conclusion

We presented a novel approach for text-based image seg-
mentation using large scale latent diffusion models. By
training the segmentation models on the latent z-space, we
were able to improve the generalization of segmentation
models to new domains, like Al generated images. We also
showed that this z-space is a better representation for text-
to-image tasks in natural images. By utilizing the internal
features of the LDM at appropriate time-steps, we were able
to tap into the semantic information hidden inside the im-
age synthesis pipeline using a cross-attention mechanism,
which further improved the segmentation performance both
on natural and AI generated images. This was experimen-
tally validated on several publicly available datasets and on
a new dataset of Al generated images, which we will make
publicly available.
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