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UNIFORM A PRIORI BOUNDS
FOR NEUTRAL RENORMALIZATION.

DZMITRY DUDKO AND MIKHAIL LYUBICH

ABSTRACT. We prove uniform a priori bounds for Siegel disks of bounded type
that give a uniform control of oscillations of their boundaries in all scales. As a
consequence, we construct the Mother Hedgehog for any quadratic polynomial
with a neutral periodic point.
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Local dynamics near a neutral fixed point, and a closely related dynamical theory
of circle homeomorphisms, is a classical story going back to Poincaré, Fatou, and
Julia. It followed up in the next two decades with breakthroughs by Denjoy (1932)
and Siegel (1942) on the linearization of circle diffeomorphisms and local maps,
respectively. The local theory received an essentially complete treatment in the
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second half of the last century in the work by Arnold (in the KAM framework),
Herman, Yoccoz, and Perez-Marco.

About at the same time (1980-90s) a global and semi-local theory for neutral
quadratic polynomials fg : z — >z 4 22 with rotation numbers 6 of bounded type
was designed on the basis of the Douady-Ghys surgery. And in the 2000s, in the
framework of the parabolic implosion phenomenon, Inou and Shishikura established
uniform a priori bounds for quadratic polynomials fy with rotation numbers of
high type. This theory found numerous applications, from constructing examples
of Julia sets of positive area Buff-Cheritat (2000s, [BC]), Avila-Lyubich (2010s,
[AL2])) to a complete description, for high type rotation numbers, of the topological
structure of the Mother Hedgehogs that capture the semi-local dynamics of neutral
quadratic polynomials (Shishikura-Yang, Cheraghi (2010s)). (See §1.3 below for a
more detailed historical account.)

In this paper, we will prove uniform a priori bounds for neutral maps fy with
arbitrary rotation numbers. It gives an opening for removing the high-type as-
sumption in the results just mentioned and alluded to. As a first illustration, we
prove that the Mother Hedgehog exists for an arbitrary rotation number.

Our proof is based upon analysis of degenerating Siegel disks of bounded type.
The degeneration principles, in the quadratic-like renormalization context, were
originally designed by Jeremy Kahn [K], with a key analytic tool, the Covering
Lemma, appeared in [KL1]. They serve as an entry point for our paper. One of
the major subtleties of our situation is that Siegel disks of bounded type do not
have uniformly bounded geometry since they may develop long fjords in all scales.
(Otherwise, Cremer points would not have existed.) To deal with this problem, we
design a regularization machinery of filling-in the fjords to gradually turn Siegel
disks into uniform quasidisks.

Let us note in conclusion that our inductive argument goes in the opposite di-
rection compared with the quadratic-like renormalization theory [K, KL2|. Indeed,
we show that high degeneration on a certain level implies even higher degeneration
on a deeper rather than a shallower level.

1.1. Results. Due to the Douady-Ghys surgery, for a Siegel map f = fy of bounded
type, the dynamics on the Siegel disk Z, all the way up to its boundary 97, is qc
conjugate to the rigid rotation by 6, which provides us with the rotation combina-
torial model for f|0Z.

Let p,,/q, be the continued fraction approximants for 6, so for any x € 9Z, fix
are the closest combinatorial returns of orb z back to x. A combinatorial interval
I = I}(z) C 0Z of level n is the combinatorially shortest interval bounded by z
and f9 z. For a combinatorial interval I C 8Z, we let I O I be the enlargement of
I by two attached combinatorial intervals.

Given a combinatorial interval I C 9Z, let us consider the family F5 (1) of curves
v C C~Z connecting I to points of 07 \ I. The external modulus Wgr(]) is the
extremal width (i.e., the inverse of the extremal length) of the family F, (I).

Uniform Bounds Theorem 1.1. There exists an absolute constant K such that
W;'(I) < K for all Siegel quadratic polynomials f = fg of bounded type and all
combinatorial intervals I = I§ ().
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Ficure 1. Different types of Siegel disks: golden-ratio (top-left),
near-Basilica (bottom-left), near-cauliflower (bottom-right), near-
1/4-Rabbit (top-right).

A hull @ C C is a compact connected full set. The Mother Hedgehog [Chi] for
a neutral polynomial fy is an invariant hull containing both the fixed point 0 and
the critical point co(f) == —e*™% /2.

Mother Hedgehog Theorem 1.2. Any neutral quadratic polynomial f = fg, 6 &
Q, has a Mother Hedgehog Hy > ¢co(f) such that f: Hy — Hy is a homeomorphism.

The last theorem is a consequence of the following result:

Quasidisk Approximation Theorem 1.3. There exists an absolute constant
K such that for any Siegel quadratic polynomial f of bounded type there exists a
K-quasidisk Zy D 7f such that f| Zy is injective.

In [IS], Inou and Shishikura constructed a compact renormalization operator for
high type rotation numbers. Theorems 1.1 and 1.3 imply that a compact renormal-
ization operator of a similar nature exists for all rotation numbers.

1.2. Quick outline of the proof. Let us first give an informal description of
Siegel disk degenerations. Let us denote by

0 =[0;a1,a2,...,0n,Qni1,---], an < Mp.

the rotation number of f. Its Siegel disk Z¢ is a Ky-quasidisk by the Douady-Ghys
surgery. If we start increasing a, with the remaining a; fixed, then Z; will be
developing parabolic fjords towards the a-fixed point on the renormalization scale
n, see Figure 2. These fjords can approach « arbitrary close. Cremer points are
obtained by developing fjords in many scales so that in the limit the a-fixed point
is not an interior point of the filled Julia set. In the paper, we will justify that this
“star-like” degeneration is the only possible degeneration of bounded type Siegel
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FIGURE 2. For a rotation number [0;1,...,1,ap+1,1,...], the
Siegel disk develops parabolic fjords on scale n towards the a-fixed
point as a,4+1 — 00. The critical points of f9+! (blue) are beacons
(on the top of) parabolic peninsulas. After adding appropriately

truncated parabolic fjords (orange) to the Siegel disk, the resulting
pseudo-Siegel disk is almost quasi-invariant up to q,1 iterates.

Disks. We will work in the near-degenerate regime where wide rectangles impose
non-crossing constraints on the geometry. (One may call it “1.5-dimensional real
dynamics”.)

In Section 4 we will justify (in the near-degenerate regime) that parabolic fjords
have translational geometry — reminiscent of the Fatou coordinates for near-parabolic
maps. It will follow from Calibration Lemma 9.1 that the critical points of fI~+!
are “beacons” (on the top of) the level-n parabolic peninsulas.

A pseudo-Siegel disk Z™ is constructed by adding to Z all truncated parabolic
fjords on scales > m, see Figure 2. We will show that 7m is qausi-invariant (in
particular, injective) for all f* with i < ¢,,41. Moreover, the pseudo-Siegel disk
2f = 7' is uniformly qc (Theorem 1.3).

Theorem 3.8 establishes certain beau bounds to control the inner geometry of
Z™. The bounds imply, in particular, that the errors do not accumulate under the
regularization

7w-~-w2m+2w2m+lW/Z\mw---w,Z\_lzzf

Furthermore, the outer geometry of the Siegel disk is almost unaffected under Z ~
Z™ — most of the outer harmonic measure of Z sits on tops of peninsulas, see §5.2.
In other words, a random walk in C \ Z starting at oo is unlikely to enter any
truncated parabolic fjord of any level if the truncation is chosen sufficiently deep.
To control the outer geometry and its interaction with the inner geometry of Z m.
we will introduce the following degeneration parameters. For an interval I C o7 m,
we denote by Al C dZ™ the A-rescaling of I in the linearized coordinates of 0Z.
Then Wy (I) is the width of the family of curves connecting I to oz \ (AD).
Similarly, Wy (1) is the width of the outer family of curves (i,e., in @\Z ) connecting
I to dZ™ \ (M). If Wy(I) = K > 1, then iterating Snake Lemma 6.1, we can
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eventually find J with WY (J) = K and |J| < |I|, where “| |” denotes the length in
the linearized coordinates of 0Z. R

If for a combinatorial interval I C 9Z™ on the renormalization level m we have
Wi (I) = K > K for an absolute threshold K > 1, then the Covering Lemma
allows us to spread the associated degeneration around dZ™. Then Snake-Lair
Lemma 8.6 finds a bigger degeneration: there will exist a combinatorial interval
Jy C 8Z"™ for some n > m such that Wi (Js) > 2K and |Js| < |J|. Proceeding by
induction, we obtain a sequence of shrinking intervals .J,, such that W (J,,) > 2"K
contradicting eventually that Z is a Kg-quasidisk. This establishes Theorem 1.1.

Theorem 1.3 is obtained by justifying a universal combinatorial bound for the
truncation depth. Theorem 1.3 allows us to control Hausdorff limits of Z, as
0 approaches any irrational number; the resulting limits are Mother Hedgehogs
(Theorem 1.2).

The paper is organized as follows. In Part 1 we will show that near-rotation
domains and parabolic fjords are coarse gs-equivalent to rotations of the unit disk —
see Proposition 3.3 and Theorems 3.8, 4.1. In Part 2, we will introduce pseudo-Siegel
disks, show that they quasi-behave as uniformly bounded Siegel disks, establish
Snake Lemma 6.1. Corollary 7.3 states that either the regularization 2 s Zm 1
is possible or there is a much bigger degeneration on some scale > m. In Part 3 we
will prove Theorem 8.1 (application of the Covering Lemma followed by Snake-Lair
Lemma 8.6) and Calibration Lemma 9.1; they say that if the outer geometry of zm
is sufficiently degenerate on scale m, then the outer geometry of Z" is even more
degenerate on some scale deeper scale n > m. The main theorems are proven in
Part 4.

For the reader’s convenience, in the beginning of each section, we provide its
detailed outline.

1.3. Historical retrospective and further perspective. As we have already
mentioned, the local theory for neutral holomorphic germs and circle homeomor-
phisms was completed by Arnold, Herman, Yoccoz and Perez-Marco in the second
half of the last century. In particular, Yoccoz showed the Bruno’s linearization
condition is sharp for germs [Yo|, while Perez-Marco introduced a topological ob-
ject, a hedgehog that greatly clarified the local structure of non-linearizable Cremer
maps [PM].

Another line of thought was related to the quasiconformal surgery machinery
introduced to the field by Sullivan, Douady and Hubbard in the early 1980s. By
means of the Douady-Ghys surgery (see [D1]), it led to a precise topological model
for the Julia set of a neutral quadratic polynomial fy : z — €2™ 24 2% with rotation
number 6 of bounded type. In particular, it allowed Petersen to justify the local
connectivity of the corresponding Julia set [Pe].

The Douady-Ghys surgery is based upon real a priori bounds for critical circle
maps proved by Swiatek [Sw] and Herman [H]|. (A priori bounds mean a uniform
geometric control of a system(s) under consideration in all dynamical scales.) The
Swiatek-Herman bounds were promoted to complex a priori bounds by de Faria for
bounded combinatorics [dF] and by Yampolsky in general [Ya2].

Yet another direction was the theory of parabolic implosion designed by Doaudy
and Lavaurs in the 1980s. A remarkable breakthrough in this theory appeared in
the work by Inou and Shishikura in the mid-2000s, providing us with uniform a
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priori bounds for rotation numbers 6 of high type [IS] (see also Cheritat [Che]).
Besides applications mentioned above (to produce Julia sets of positive area [BC,
AL2] and to the description of Mother Hedgehogs [ShY, Ch2]), the Inou-Shishikura
bounds were instrumental in the proof of the Marmi-Moussa-Yoccoz Conjecture
for rotation numbers of high type [ChC] and in the description of the measurable
dynamics on the Julia sets of positive measure in the Inou-Shishikura class [Chl,
ACHh]. Tt also provided an opening to a partial description of the global topological
structure of Cremer Julia sets, which have been viewed as most mysterious objects
in holomorphic dynamics [BBCO].

Another potential implication of our a priori bounds is a construction of a hyper-
bolic full renormalization horseshoe for all rotation numbers simultaneously, unify-
ing the pacman renormalization periodic points [McM, Yal, DLS] with the Inou-
Shishikura horseshoe of high type [IS]. Such a structure would imply various scaling
features of the Mandelbrot set near the main cardioid. (Compare with the scaling
impact of the pacman renormalization periodic points [DLS, DL].)

And last but not least, uniform bounds for the neutral renormalization give
control of the satellite quadratic-like renormalization that is relevant to the MLC
Conjecture and the area problem for Julia sets (see [CS, DL]).

1.4. Main notations and conventions. We state here our main notations and
conventions; see §2 for more details. We denote by

® Opna = {0 = [0;a1,0a2,...] | a; < Mp} the set of bounded (irrational)
rotation numbers;

9(9) — 6271'1’0;

Z the Siegel disk of f = fp for 6 € Oppq, 0<0 < 1;

co,c1 € 0Z the critical point and critical value of f;

more generally: ¢, == (f | 8Z)"(cp);

h: (Z,a) — (D,0) the conformal conjugacy between f and z +— e(8)z;

|I| == |h(I)|r/z the (combinatorial) Euclidean length of an interval I C 0Z;

0, € (—1/2,1/2) the rotation number of f% | Z and ¢,, := |6,| the length

of a level n combinatorial interval [z, f9(x)] C 8Z, where p,/q, ~ 0 are

best approximations;

e x@v :=h"(h(z)+v), where € 0Z, v € R, and h(x) + v € R/Z ~ 9D;

e Wi(I) = W(F\(I)) and WY (I) == W(Fy (I)) the width of the full and
outer families measuring degeneration of Z at an interval I C 97, see §2.3.1;

e “<” denotes a clockwise orientation on 0Z;

e for an interval I C 07 and z,y € I we write z < y rel I if z is on the left
of yin I,i.e. 0Z\ I, x,y are clockwise oriented;

e for a pair of disjoint intervals I, J C 0Z we define | I, J| := ITULUJ, where
L is the complementary interval between I, J so that I < L < J; in most
cases L will be the shortest interval between I and J;

e r Py = (x_l + y_l)_l, z,y > 0 the harmonic sum — see the Grotzsch
inequality (A.3);

e v#[ the concatenation of curves v and 5.

By default, curves are considered up reparametrization and/\are usually parameter-
ized by the unit interval [0,1]. We say a curve v: (0,1) — C\ (AU B) connects A
and B if
lim y(r) =7v(0) € A and lirr%) ¥(1—-71)=~(1) € B.
T—

T7—0
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A Jordan disk is a closed or open topological disk bounded by a Jordan curve.
We write
flx) 2g(x) if f(x) <Cg(x), f(x),g(x)>0

for an absolute constant C' > 0. Similarly:

f@) 2w g(@) if f(z) < Cuglz), f(2).9(z) >0

for a constant C,, > 0 depending on k. The big O( ) notation describes at most
liner dependence on the argument: O(f(z)) < f(x). Similarly, O.(f(x)) =<, f(x)
is at most liner dependence on f(z) with a constant depending on .

We will write “A > B” to assume that A is sufficiently bigger than B. Similarly,
“A >, B” means that A is sufficiently big than B depending on a parameter .

We will often need to truncate laminations F, G, H by removing buffers of certain
sizes. We will use upper indices “new, New, NEW” to denote new truncated families

with the convention
F>O ]:ncw B ]_-Ncw ») FNEW.

Slightly abusing notations, we will often identify a lamination with its support.

A vertical curve of a rectangle R is a curve that becomes vertical after conformal
identification R with a standard Euclidean rectangle.

Acknowledgment. The first author was partially supported by Simons Foun-
dation grant of the IMS, the ERC grant “HOLOGRAM,” and the NSF grant DMS
2055532. The second author has been partly supported by the NSF, the Hagler
and Clay Fellowships, the Institute for Theoretical Studies at ETH (Zurich), and
MSRI (Berkeley).

The results of this paper were announced at the Fields Institute Symposium
celebrating Artur Avila’s Fields medal (November 2019), and during the SCGP
Renormalization program in December 2020 (see the mini-course on
http://scgp.stonybrook.edu/video/results.php?event _id=317).

Part 1. Rotation geometry
2. PREPARATION

We fix a neutral quadratic polynomial f : z — e(f)z + 2° with bounded type
rotation number 6 € (0,1); i.e. the a-fixed point of f has multiplier

e(0) =e*™ € Opna.
2.1. Siegel Disk. Let us denote by Z the Siegel disk of f. Recall that Z is a qc
disk because 0 € Oy,,q. Consider a Riemann map
h: Z—D, h(a)=0

conjugating f | Z to z — e(f)z.
The (combinatorial) length of an interval I C 0Z ~ R/Z is defined by

|I| = |h(I)|[R/Z S (O, 1)
Similarly, the (combinatorial) distance
dist(z,y) = distr/z(h(z), h(y)) € [0,1/2], x,y€0dZ

is defined. It also induces the distance between subsets of 07.
Given t € R/Z and x € 0Z, we set

zBt=h""(e(t)h(z)),
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i.e. x Htis x rotated by angle t. We have
fle)y=aB6, forxzedZ

2.1.1. Closest returns of f|0Z. Let 8 = [0;a1,as,...] be the continued fraction
expansion and consider the sequence of the best approximations of ¢

b

Jan = [0;a1,a2,a3...,a,] ifa; >1
Pn/ln = [O;l,ag,a3,...,a7l+1} if a; = 1

and set qg := 1. Then f9° = f, f9 f92 . . is the sequence of the closest returns of
f10Z;ie.

dist (f'(z),z) > dist (f¥(z),2) = 1,, x€0Z foralli< qy.
For n > 0, we specify 6,, € (—1/2,1/2) so that
fi(x)=2H8B0,, xzecdZ

In particular, 8y = 0 if 6 < 1/2 and 6y = 6 —1 otherwise. By construction, [,, = |0,].
The sequence 6, is alternating: 6,0,11 < 0 — reflecting the fact that € is between
Pn/qn and Ppy1/qny1. Since L, > L1 + Lgo and L, 40 < [,41, we have

(2.1) lhyo < [/2.

2.1.2. Intervals. Consider two points x,y € 0Z. Unless otherwise is stated, we de-
note by [z, y] the shortest closed interval of 9Z between x and y. The corresponding
open interval is denoted by (x,y). Most of the intervals will be closed.

For an interval I C 0Z, we denote by I¢ = 9Z \ I its complement.

We denote by “<” the clockwise order on dD and on 9Z. Given two non-equal
points a,b in an interval I with |I| < 1/2, we say that a is on the left of b, and
write a < b, if I¢, a,b have the clockwise order. This convention is consistent with
drawing intervals on the upper side of 97, see Figures 3, 4. (Note that x — xHe
is a counterclockwise rotation for a small € > 0.)

Given intervals I, J C 907, we define |I,J| C 0Z to be the interval TU L U J,
where L is the complementary interval of I,J (i.e., a component of 07 \ (I U .J))
specified so that I < L < J with respect to the clockwise order. In other words,
|1, J]| is the shortest interval containing I U .J such that I < J in |I,J]|. In most
cases, |I,J]| will be the shortest interval containing I, J.

Given an interval I C 0Z and A > 1, we define

(2.2) M ={zxedZ: dist(z,I)<(\-1)|I]/2}

to be the A-rescaling of I with respect to its center.

2.1.3. Combinatorial intervals. For n > 0, a combinatorial level n interval is an
interval I C 0Z with length [,,. It has the form

I=lz, fY(z)] =[x,xB0, where z € 0Z.
Since the sequence 8, is alternating, we have:

Lemma 2.1. The return time of points in a level n > 0 combinatorial interval
I=lx,2880,] is at least qp11:

(2.3) fl(y)gl for ye(z,xB0,), i<dqn1.
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As a consequence, the commuting pair

(2.4) (fIe L0 (@), 2, [0 | [, f9 2 (2)])

realizes the first return map to [f%(z), f9"*1(z)]. The renormalization theory of
circle maps is often set up using commuting pairs.

2.1.4. Renormalization tilings. Given x € 0Z and n > 0, we denote by J,(x) the
associated renormalization tiling of level n:

qn+1_1 qn—

1
(2.5) U ruem@,e v Fle @),
=0 =0

We also set J,, == Jn(co), where cq is the free critical point in 6Z.

Note that most of the intervals in (2.5) are in the orbit of [f% (z), z] (explaining
the subindex n in J,(z)). Moreover, level n intervals in J,, form an almost tiling,
with gaps being intervals of level n 4 1:

Lemma 2.2. Level n+ 1 combinatorial intervals in (2.5) are disjoint.

Proof. Tt is a well-known statement that easily follows by induction. In Jo, there
is a single level 1 interval and q; > 2 level 0 intervals. The tiling J,4+1 is obtained
from J,, by decomposing every level n interval into level n+ 1 intervals and a single
level n + 2 interval either on the level or on the right depending on the parity of n;
i.e. level n + 2 intervals are disjoint in J,41. (I

For n > m, we say that level n combinatorial intervals are on deeper scale
than level m combinatorial intervals, while level m combinatorial intervals are on
shallower scale than level n combinatorial intervals.

2.1.5. Spreading around a combinatorial interval. Consider a combinatorial level n
interval I. We say that the intervals

{fi()iefo,1,...,q, — 1}}
are obtained by spreading around I. We enumerate these intervals counterclockwise
starting with I = I

(2.6) In=1I, I, =f"(I),...,Iq,—1 = flon (1),  i;€{1,2,...,q, — 1}.

It follows from Lemma 2.2 that either I; is attached to I; 1 or there is a level
n + 1 combinatorial complementary interval between I; and I;;.

2.1.6. Diffeo-tilings. For n > —1, we denote by CP,, = CP,(f) = CP(f%+) the
set of critical points of f9+1. The diffeo-tiling ©,, of level n is the partition of 97
induced by CP,,: every interval in ©,, is the closure of a component of 97 \ CP,,.
For n = —1, the tiling consists of a single “interval” viewed as [cg, co B 1].

For n > 0, every point in CP,, is an endpoint of an interval in J,(c_q,+1); We
see that ©,, is an enlargement of J,(c_q,,,+1). By Lemma 2.2, every interval in
©,, has length either [,, or [,, + [,,41.

Enumerating counterclockwise intervals in ©,, as Py, Pi,..., P, .., we have
f19 1 (Py) ~ Pitip,,,, where the “rotational error” with respect to the combi-
natorial length is small if [, < [,,.

Let us set

(2.7) K = f~4+1(2),
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Every interval of ©,, is between two components, called limbs, of IC,, \ Z.
For T € ®,, we write T' := T N f9+1(T) C T so that fi»+: 7880, — T is a

homeomorphism. If n = —1, then 7" is the longest interval connecting ¢; and cg.
The nest of diffeo-tilings is
(2.8) 2 = [@n]nz—l

It follows from (2.1) that
Lemma 2.3. FEvery interval of ©,, consists of at least 2 intervals of ®,,42. 0.

2.1.7. Fjords. Consider an interval T = [a,b] in ®,, n > —1 and let £ C C\ K,
be the hyperbolic geodesic connecting a and b. Then the connected component
T=%(T) of @\ (Z U ¢) attached to T is called the fjord associated with T.

More generally, a level n fjord is subdomain of ¥(T') bounded by a simple arc
connecting points in T, where T' € ©,,.

Lemma 2.4. If ¥ is a fjord attached to T, then fi"+' | T is injective.
Proof. The lemma follows from the observation that
fint1: C\ K = C\ Z
is a covering map of degree 29"+! and the harmonic measure of T' in (@ \ K, 00)

is < 2741 L % O

2.2. Inner geometry of Z. For disjoint intervals I,.J C 0Z, the inner family
F~(I,J) = Fz(I,J) is the family of all curves in Z connecting I, J; see also §A.1.6.
Its width W™ (I, J) can be explicitly computed:

Lemma 2.5 (Log-Rule). Consider intervals I,J C 0Z. Ifdist(I,J) < min{|I|,|J|},

then
_ min{|7|, |J|}
2. I =< log —————= +1;
otherwise
_ dist(I, J) -t
(2.10 W(I,J) = (1og, 1)
) min {111, 7T}

We will later generalize these estimates to near-rotation domains (Proposition 3.3
and Theorem 3.8) and to parabolic fjords (Theorem 4.1).

Proof. Since Z and D are conformally identified, it is sufficient to prove the lemma
for D. Observe first that for A, B C D
(2.11) W™ (A,B) < W(R(A,B)) <1 if dist(A4, B) < min{|A|,|B|},
where R(A, B) is the geodesic rectangle, see §A.1.12. Indeed, the condition dist(A4, B) =<
min{|A|, |B|} implies that the cross-ratio of 4 endpoints of A, B is comparable to
1. Applying a M&bius transformation, we can assume that all 4 intervals (i.e., A, B
and two complementary intervals between A, B) have comparable lengths, and the
claim follows by compactness.

Suppose dist(I, J) < min{|I|, |J|}. We also assume that || < |.J|, and we present
I and J as concatenations

I =L#h#. . #1, and  Ji#Jo# .. 44T,
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FiGurge 3. Illustration to the Localization Property: the width
F~(I,J)is within F~ (I"V, J"Y) up to O(log A), where 1"V, J"¥
is an innermost subpair.

min{|7], | J]}

where n < log dist(1, J)

+ 1, such that

dist (I, Ji) =< |Ii| < dist(Iy, J).
By the Parallel Law, we obtain:

W10 < S W) <

This proves (2.9). If dist(Z,J) > min{|I|,|J|}, then W~ (I,J) = 1/W~™ (A, B),

where A, B are complementary intervals between I, J; i.e., (2.10) follows from (2.9).

O

Remark 2.6 (Splitting Argument). Note that in the proof of Lemma 2.5 we estab-
lished (2.9) and (2.10) from (2.11) by splitting I and J into an appropriate number
of intervals. We will call it the Splitting Argument — this argument will be used

several times later.

2.2.1. Localization Property. Consider a pair I,J C 0D, where D C C is a closed

Jordan disk. A subpair 1"V c I, J"®¥ C J is called innermost if
I\ IV < I < JPY < J\ JPY in [1,J].
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Fy (D) A

(\)° (M)

FIGURE 4. Parameters measuring degeneration of the Siegel disk:
Wi (I) is the width of the full family of curves connecting I and
[A]° (right), while Wi (1) is the width of outer family (left).

Lemma 2.5 implies the following localization property; see Figure 3. For a pair
1
of intervals I, J with |[I,J]| <1 — Xmin{\[\, |J|}, define I"®Y C I and J"V C J

to be the closest innermost subpair such that
new new 1 :
(%) = 177" =  min|1], | J1}-

Then most of the width of F~ (I, J) is in F~ (I"V, J"V):
W= (I, J)+ W™ (1, J"Y) = O(log \).

2.2.2. Squeezing Property. A counterpart to the localization property is the follow-
ing squeezing property which also follows from Lemma 2.5.

There is a constant C' > 0 such that the following holds. Suppose I,J C 97 is
a pair of intervals such that

W=(I,J) > ClogA, X>2.
Then 1
dist(I,J) < Xmin{m, |J]}.

We will later generalize Localization and Squeezing Properties to pseudo-Siegel
disks, see §5.5.

2.3. Outer geometry Z. In this section we will define Wy (I) = W(FA(D)),

WiH(I) = W(F, (I)) and other quantities to measure degeneration of Z, see Fig-
ure 4.

2.3.1. Full and outer families. Recall (2.2) that AI denotes the rescaling of I C 07
by A with respect to the center of I. Recall also that [AI]® denotes the complement
of A\l in 0Z.

Given disjoint intervals I, J C 0Z and A > 2, we denote by

e F(I,J) the family of curves in C\ (I U.J) connecting I and J;
e W(I,J)=W(F(I,J)) the extremal width of F(I,J);
o Aa(I) = F (L, [M]);
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o W) = WFED):

e F1(I,J) the family of curves in C\ Z connecting I and J;
. W+(I, ) W(f+(I J)) the extremal width of F* (I, J);
o FH(D) = F (L)

W*( ) = W(Jﬁ( )
We call F and F* the full and outer families respectively.

We say that an interval I is

o [K, \-wide if W\(I) > K, and
o [K \|T-wide if Wy (I) > K.

Clearly, for every K > 1 and A > 2, there is K, > 1 such that if Z is a
K-quasidisk, then W(Fy(I)) < K, for every I C 0Z. See §11.1 for a converse
statement.

For a closed Jordan disk D C C and disjoint intervals I, J C 9D, the objects

Fp(L,J), Wp(L,J), Fh(IL.J), WH(I,J), Fp(,J), Wp(I,J)
are defined in the same way as in the Siegel case D = Z (see also §A.1.6). We say
that a rectangle R is based on an interval I C 0D if
(2.12) RcC\itD and O"RCI.

2.3.2. External and diving families. Consider an interval I C 0Z. Recall from (2.7)
that K, = f~91(Z). A curve v in Fy (I) is called

e cxternal rel IC,p, if v minus its endpoints is in C \ K, and
e diving (rel K,,) otherwise;

i.e., diving curves submerge into limbs of /C,,.
We denote by Foi ,, (1, J) and Ff, . (I, J) the subfamilies of Fy (I, J) consisting

div,m
of external and d1V1ng curves respectlvely. As usual, we write

Wiem (L, J) =W (F o(1,J))  and quv,m(I,J):Vv(]-";vm(I,J)).

ext,m

The families Fy

Aext,m

(1), Fy giv.m (1) are defined accordingly.

Lemma 2.7. Consider an interval T = [a,b] € D, in the diffeo-tiling §2.1.6 and
let Ly, Ly be the limbs of IC,,, attached to a,b. Consider intervals I CT and J C 0Z.
We have:

(2.13) WH(ILJT) = Wi (L, J) + Wi, o (1,1) = O(1).

Moreover, there are laminations Gexe C Wiy (I, J), Gaiw C Ff, mLsJ) consist-
ing of at most two rectangles each such that

(2.14)  W(Gext) = Wihim(I,J) —O(1),  W(Ga) = Wi, . (I,J) — O(1).

Moreover, we can assume that Gexy consists of rectangles Rq, Ry C C\ Z with
"R, "R, C I such that every curve in F(R,) intersects L, before intersecting
Ko \ Lo while every curve in F(Ryp) intersects Ly, before intersecting Ko, \ Ly.

If J C T, then Wi ,,(I,J) = O(1) and WH(I,J) = W4, ,.(I,J) + O(1).

div,m
Proof. Present J as a concatenation of intervals J, U J, U J, such that J,,J, C T
while J, C T we allow some of the intervals to be empty. Consider the canon-
ical rectangle R of F*(I,.J), see §A.1.6. Then R splits into a union of genuine
subrectangles R1 U Rs U R3 U R4 U Rs5, where some of them can be empty, such
that
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Ri C FlymI,Jo) and Rs C Fily (1, J.);

every v € F(Rz) intersects L, before intersecting ICpp, \ Lq;

similarly, every v € F(R4) intersects Lj before intersecting K,, \ Ls;
every v € F(R3) C F1(I,J,) is either disjoint from L, U Ly, or it intersects
K \ (Lg U Ly) before intersecting L, U Ly,.

In particular, Ro, Ry C Fif, . (I,.J).

div,m
Since the harmonic measure in (C \ K, 00) of OL,, 0Ly is bigger than the har-
monic measure of T, we have W(R3) = O(1). And by removing O(1) buffers, we
can assume that Re, R4y C C\ Z. By (A.7), we have:

W(R) = W(R1) + W(Rs) + W(Ry) + W(Rs) — O(1).

O

2.3.3. Univalent push-forward. Consider an interval T = [a,b] C D,, in the diffeo-
tiling and let L,, Ly be two limbs of K, attached to a,b. Consider a rectangle
R C C\ Z with "R C T and 0"™'R C 0Z such that every v € F(R) is either
external rel K, or intersects L, before intersecting /C,, \ L,. (Similar, the case of
Ly is considered.)

For every vertical curves v: [0,1] — Cin R, let t, < 1 the first intersection of
with L,. We denote by G = { | [0,t,] | v € R} be the corresponding restriction,
and let Rg be the rectangle in C\ int IC,;, with "Ry = "R and 'R’ C K,
be the rectangle bounded by the leftmost and rightmost curves of G, see §A.1.8.
We have

W(R') > W(G) > W(R).
If R is external rel K,,,, then R’ = R. Let R™" be the rectangle obtained from R’
by removing two 1-buffers. By Lemma A.10, for every i < g, 11, the map

(2.15) Fierrew L pi(guew)
is injective. We will refer to (2.15) as the univalent push-forward of R.

2.3.4. F(I't,JT)-families. For a closed Jordan disk D C C, consider two disjoint
intervals I,.J C &D. Let us view C\ (I UJ) as a Riemann surface; with respect
to this Riemann surface both I,J have two sides: the outer sides I, J% and the
inner sides I, J~. Ignoring the endpoints of I, J, a curve v: (0,1) — @\ (ITuJ)
lands at (1) € I if

Y1—61)cC\Z V>0 and lim1 ~v(1) = ~(1).
T—

Similarly, the landing at I~ is defined. Let
e F(I,J") be the family of curves in C \ (I U J) connecting I and J;
e W(IT,JT)=W(F(I',JT)) be the extremal width of F(IT,J*).

The central arc in F, (I, J) is the curve £ € F (I, J) that splits D, viewed as a
rectangle with horizontal sides I, J, into two genuine subrectangles of equal width.
Lemma 2.8 (Trading F(I,J) into F(IT,J")). Consider a closed Jordan disk
D c C and a family F~(I,J) = Fp(I,J) for I,J C 0D. Let A,B C 0D be two
complementary intervals between I and J and let I D I and J > J be thickenings
of I,J so that I,J are disjoint intervals of 0D. Set

C =W~ (A,B) + W (I,I°) + W~ (J, J°).
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FIGURE 5. The curves v_ and 4 specify the intervals I = [ay, by
and J = [c1,dq]. Here I = [a,b] and J = [¢,d].

Let R C F(I,J) be a lamination.
Then there are intervals I,J C 0Z with I C I C I and J C J C J such that
there is a restriction G of a sublamination of R with
.« GCF(IHT);
e W(R|G) =W(R) — O(C), see (A.6);
o G is disjoint from the central arc in F~(I,J).
In particular, by taking R to be the vertical family of F(I,L), see §A.1.6, we
obtain W(It,J1) > W(I,J) — O(C).

Proof. Let G"" be the lamination obtained from G by removing all leaves ¢ satis-
fying one of the following properties:

e / intersects the central arc 8 of F~ (I, J);

e / contains a subarc in F~ (I, I);

e / contains a subarc in F~ (J, J¢).
By assumption, W(G"*") = W(G) — O(C).

Since curves in G"*V do not intersect S8, they possess a left-right order. Denote
by v, v+ the leftmost and rightmost arc in G. We assume that 7_ < v4 < 8 with
respect to the clockwise order around I, see Figure 5. Write I = [a,b],J = [c,d],
where a < b < ¢ < d. Intersecting v_,v, with D", we obtain the intervals
I =lay1,b1],J = [c1,d4] as follows (Figure 5):

o If v_ starts in I, then a1 := a; otherwise a; is the first intersection of v_

with 9D \ I.
o If v, starts in I1, then by := b; otherwise by is the first intersection of v,
with 9D \ I.
e If v_ ends at J*, then d; := d; otherwise d; is the last intersection of y_
with 9D\ J.
e If v, ends at J*, then ¢; := ¢; otherwise ¢; is the last intersection of v,
with D \ J.
By construction, ITclandJcCJ. Restricting G**V to the family ]-"(IA, j), we
obtain a required lamination NV ¢ F(I*, J*1). O

2.3.5. Fr(1,J)-families. Consider a pair I,J C 9D of disjoint intervals, and let
L C 0D be one of the complementary intervals between I and J. We define
e F7(I,J) to be the set of curves v € F(I', JT) such that v is disjoint from
OD\ (IULUJ);
e Wr(I,J) = W(FL(L,J])).
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~
la

b

FIGURE 6. The subcurves of v: 7, (red), v (orange), 7§ (orange),
v (red). Note that -y, and 73 are disjoint.

If I < L < J, then we write:
FoI,J)=F;(I,J) and W°(I,J)=W;(,J).

Lemma 2.9 (Snakes in F°\ F*1). Consider a closed topological disk D, intervals
1,J C 0D, and F7(I,J) as above, if

K=W°(I,J)-=W{(I,J)>1,

then F7(I,J) contains a rectangle R, called a snake, with W(R) = K — O(1) such
that every vertical curve of R intersects L.

Proof. Let R be the canonical rectangle of F7(I,.J), §A.1.6; i.e. the semi-closed
rectangle realizing the width between I, J* in the open topological disk @\Lc. Let
v € F(R) be the unique vertical curve intersecting L such that v C @\int D. Then
7 splits R into two rectangles R°" C F*(I,J) and R™ C Fp(I,J), where the
latter rectangle submerges into D. By Lemma A.2, W(R°™) = F*(I,J) — O(1);
this will imply that W(R™) = K — O(1). O

2.4. Series Decompositions. In this subsection, we will discuss how to take re-
strictions (compare with §A.1.5) of families submerging into topological disks. For
a closed topological disk D consider a lamination R in F7 (I, JJ)\F* (I, J); i.e. every
curve in R intersects L. We assume that I < L < J is the order of intervals in 9D.
Let us introduce a topological decomposition for R.

We will use the inner/outer order on curves in R, see §A.1.7: the innermost
curve in R is the closest curve to (L¢)~ in C\ L¢, where L = 0D \ L.

Let 8:[0,1] — C, B(0) € I, B(1) € J be the outermost curve of R; i.e. all
other curves of R are between § and (L¢)™. Let z = 3(t) € SN L be the first (for
the smallest ¢) intersection between L and §.

Consider a vertical curve v: [0,1] — C in R with v(0) € I and (1) € J. Since
x is the first entry of 8 into |z, J|, we obtain that the first entry of v into |z, J] is
from int D. And since ~ starts and ends at /1 and JT respectively, we can define
(see Figure 6)

e y(az) € OD to be the first intersection of v with |z, J];
e y(a) € 9D to be the last before ay intersection of v with |I,z];
e 7, to be the subcurve of v between I and v(a);
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7% to be the subcurve of v between v(a) and y(as);

~v(b2) € 9D to be the last intersection of v with |I,z];

~(b) € OD to be the first after by intersection of v with |z, J]|,
7 to be the subcurve of v between (by) and ~(b); and

Y to be the subcurve of v between ~(b) and J.

We say that

'ygl C D is the first passage of v under z;

4 is the subcurve of v before yg;

vgl C D is the last passage of v under z;

~p is the subcurve of v after fyg.

Clearly, 7, and -, are disjoint because as, by are between a and b. Also v, U7,
is disjoint from 'yg U ’yl‘f . The curves 'yg , 7;,1 may or may not coincide.

Remark 2.10. Since x is the first intersection of B with L, the curve B is outside
of D before it reaches x. After x, the curve  may have a complicated intersection
pattern with OD. For example, B may pass under x to intersect the left interval of
L\ {z}; but then 8 must go back under x and intersect the right interval of L\ {z}.

Let us specify the following laminations
Fo={wlveR},  F={nlveR}
Lo={vi|veR}, To={1lyeR}

(2.16) =l Uly={1¢|vyeRIU{H|yeR).

Then R consequently overflows fa, T, fb.

Let ¢ be the lowest curve in I" with respect to x; i.e. £ separates I' from L¢ in
D. We denote by J, C L the interval between the left endpoint of ¢ and = and we
denote by I, C L the interval between x and the right endpoint of ¢. Define

(2.17) Fa={y' |+ is the first shortest subcurve of v € F, connecting I+, .J}}
to be the restriction of F, to F(I,J,) — compare to §A.1.5; and
(2.18) F, = {1 | 7 is the first shortest subcurve of v € F, connecting Lh ot}

to be the restriction of .}Eb to F(Ip, J). Since curves in .}Ea W] fb are disjoint from /¢,
we obtain
Fo CF°(1,J,), Fp C F°(Iy, J);
in particular, curves in F,, 7y land at J;", I;’ respectively.
We summarize:

Lemma 2.11. A lamination R C F5(I,J)\ FT(I,J) as above consequently over-
flows the pairwise disjoint laminations

Fo CF°(I,Ja), T CF (Jo,lp), FoCF°(Iy,J).
defined in (2.17), (2.16), (2.18) respectively.
Fa F

1 Ja Iy J
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R![xew

new
Ry

FIGURE 7. Illustration to Snake Lemma 2.12: if a “snake” with
width K > 1 submerges, then either Ry°" or Ry has width

2K — O(log \).

2.5. Snake Lemma. The following lemma allows us to control submergence of
F°(1,J) into Z (see §2.3.5). The Snake Lemma for pseudo-Siegel disks will be

proven as Lemma 6.1.

Snake Lemma 2.12 (See Figure 7).

I,J with I <L < J. Set

Let 1,J C 0Z be a pair of intervals with
|[I,J] < 1/2 and let L .= [I,J]| \ (I UJ) be the complementary interval between

K :=WS(I,J) = WH(I,J).

If K > log A with A > 2, then there are intervals

Jl,ll CL, ‘Jll < by

such that

dist (7, J;) 1 <

dist (I, J)
)\ b

(2.19) Wi (I,.1) @ W5, (I, J) > K — O(log \),

I<h<hi<J
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where Ly, Ly C L are the complementary intervals between I,J, and Iy, J respec-
tively:

Fr.(1,J1) Fr, U1, J)
1 J1 I J

In particular, either Wy (I, J1) or W7, (11, J) has width > 2K — O(log A).
The Snake Lemma is a consequence of the Localization Property §2.2.1 applied
to Series Decomposition §2.4.

Proof. Let R C Fp(I,J)\ FT(I,J) with W(R) = K — O(1) be a rectangle (a
snake) from Lemma 2.9 realizing K. Apply Series Decomposition §2.4 to R, we
obtain that F(R) consequently overflows the laminations

Fo CF°(I,Ja), T CF (Jo,Ip), Fo CF°(Ip,J).
By the Localization Property §2.2.1, J,, I, contain an innermost subpair Ji, I; such
that
1
I Ji| < —{|I J,
TN AEE AR
and up to O(log \)-width the family F~(J,, Iy) is in F~ (J1, [1):
W= (Ja\J1, 1) + W (Ja, I\ 11) = O(log A)
Let R"" be the lamination obtained from R by removing all v € F(R) with
v g Fo(J1, 1) or v € F~(J1,11). Then W(R™™) = K — O(log \).
Applying Series Decomposition §2.4 to R"*", we obtain that T"*V C F~(Jy, I1);

fe. JMY C Jy and IV C I,
m

2.6. Trading F into F.

Corollary 2.13 (Trading W° into W'). Under the assumptions of Lemma 6.1,
there is an interval IV C L such that Wy (I"V) = K.

Proof. Tt follows from (6.2) and K > log A that either Wy (I, J1) or Wi, (I1,J) has

width > 2K — O(log A) > EK Assume that Wy (I,J1) > ZK. Since Fy (J1) D
1 3

Fi (I,.J1), either WY (J;) > gK or W°(I,Jy) —WT(I, 1) > §K; in the latter

case, we can again apply the Snake Lemma and construct intervals I, J5 such that

EN|

We(I, Jy) ® W° (I3, J1) > gK — O(log \), where

FT(I,J5) C Fy(Jo) and  F(l,Ji) C Fy(I2).

Applying induction, we either find an interval I™®V with Wj (Imev) > o
construct an infinite sequence of shrinking intervals IV, J2V, LYY with

K, or

n

3
Py (I3, J2) 2 0K L2 2 mind 122 ),

n

Such an infinite sequence does not exist because Z is a (non-uniform) qc disk. O



20 DZMITRY DUDKO AND MIKHAIL LYUBICH

3. NEAR-ROTATION SYSTEMS

For r > 0, we denote by |z — y|, the Euclidean distance between z,y on the
circle R/r = R/(rZ). We also write |z — y| = |z — y|1, which is consistent with the
combinatorial distance introduce for 0D, 0Z.

Fix u > 0. A p-near-rotation system with rotation number p/q € Q is §q =

(f"U— Ut)ogtgq such that (see Figure 8)

(A) U and U, are closed Jordan disks;
(B) f': U — Uy is conformal for t < g;
(C) OU is a cyclic (clockwise or counterclockwise) concatenation of simple arcs:

(3.1) OU = Lo#L1#Lo# ... #Lq_1;

(D) for every k there is an annuls A with mod(Ax) > p such that
(D1) the bounded component By of C\ Ay compactly contains Ly as well as
all f'(Lg_p) for t < g, and
(D2) Ay, is disjoint from A; for |i — k[q > 1.

In other words, f' maps L; approximately onto Liy4p so that Ly, Lyisp C By;
this “error” is controlled (surrounded) by Aj. Let us write ﬁk = Ap U By, — the
filling-in of Ay; and

q—1
[7 =UU U By.
k=0

We call the L; unit intervals of OU and we call U a p-near-rotation domain.

3.0.1. Motivation and outline. Recall that 6 =~ p,/q, (see §2.1.1) and f rotates
the diffeo-tiling ®,, by approximately p,11/qn+1, see §2.1.6. If [,11 < [,,, then the
“rotational error” is small with respect to the combinatorial metric of 9Z. However,
with respect to the conformal geometry of C, the rotational error will be big due
to parabolic fjords; see Figure 2. To deal with this issue, we will approximate Z by
a d-near-rotation domain Z" with a universal 6 > 0 and add all such Z™ to Z, see
§7.

For S' = 9D, the Euclidean metric on R/Z ~ S' is a unique invariant metric
under all rotations z — e(¢)z. For near-rotation domains we have almost-rotations
1 | U,i < q, where the error is controlled by annuli A; with mod A; > p > 0. Tt is
natural to expect that as p is fixed and g — oo, “almost invariant metrics” on QU
converge to the Euclidean metric on R/Z ~ 9D after a conformal uniformization.
In this section, we will prove a slightly weaker statement: almost invariant metrics
will eventually be universally close to the Euclidean metric, see Theorem 3.8. These
beau bounds will imply that the error does not increase during iterative construction
of pseudo-Siegel disks - - - ~» 2™ ~s Z™ ~s Z™1 s | see Remark 7.2.

Theorem 3.8 is proven using the Shift Argument (Figure 9): if there is an un-
expected wide rectangle, then its appropriate shift will have a substantial cross-
intersection with itself contradicting Non-Crossing Principle §A.2.1. From this, the
estimates in Theorem 3.8 are established in the same way as in Lemma 2.5. The
main subtlety is that shifted curves can sneak through the Bj. We will first estab-
lish estimates on scale > 40/q with an error depending on p (Proposition 3.3), then
we will upgrade them to universal estimates on scale >, 1/q.
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FIGURE 8. Tllustration to near-rotation systems: OU is a finite
concatenation of arcs, and f*(0U) (blue) is approximately OU ro-
tated by ip/q, where the error is controlled by a system of annuli
(right side).

3.1. Standard intervals of OU. A discrete interval

Sc{0,1,2....,q—1}~7/q

with length b is a finite subset {a,a + 1,a+2,...,a+ b — 1} of Z/q consisting of
consecutive numbers. Set

Lg = U L, Bg = U Bs.

seS sSES

By construction, f*(Lg) C Bgipt for t < q, where S+ j = {s+j | s € S}.
For r > 1, we define the rescaling of S with respect to its center as

rS = {n €Z/qg:In—a—(b—-1)/2[, < 7“|S|q/2}.

Let (rS)¢:={0,1,...,9 — 1} \ (rS)° be the complement of rS. Similar to §2.2, we

define:

F~(Lv,Lw) to be the family of curves in U connecting Ly and Lyy;
W_ (Lv, Lw) - W(]:_ (Lv, Lw)),

Fr (Ls) = F (Ls, L(rs)e);

W, (Ls) =W~ (Ls, L(rs)e).

We say that an interval Lg is [K, 7] ™ -wide if W, (Lg) > K.

We call an interval Lg C OU standard. Any interval I C 9U can be approximated
from above or below by a standard interval with an error within L, U L; for some
a,be{0,1,...,9—1}.

3.2. Inner geometry of U. The following lemma is a corollary of Lemma A.8.

Lemma 3.1. Consider a rectangle

RC f(U)cU, o"RcfiOU), i<q
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1 J

MNZ\
= N\ —

\

FIGURE 9. Illustration to Lemma 3.2: since Fao(I) (blue) crosses
its shift Fao(J) (green), Faoo(I) is not wide.

with  9""R C By, 9™'R C Bw,
where V. and W are discrete intervals. After removing two C;L = 1/p-wide buffers

from R, the new rectangle R"" is disjoint from B for every s € Z/q at distance
at least 3 from VU W. g

Lemma 3.2. Set C), = 30+2C), = 30+2/u. There are no [C,,,20]~ -wide intervals
Lg, where 1 < |S|q < q/40.

Proof. Suppose I = Lg is such a [C},20] -wide interval. Let R, "R =T be
the canonical rectangle of F5,(Lg), see §A.1.6. We will construct below a shift R ;
of R so that R, R; have substantial cross-intersection, see Figure 9.

Fix k € N such that S + k has Z/g-distance at least 3 from SU[205]¢. Let j < q
be so that pj = k in Z/q. Define

J:=fI(I)C Bsy, and Ry:=fI(R).
Let R5°™ be the rectangle obtained from R ; by removing 5-buffers. By Lemma A.6
(with n = 1), we can remove from R and R5*" buffers with width less than 5 so

that the new rectangles RNEW and RYEW have disjoint vertical boundaries. Let V
be the minimal discrete interval such that "' RNEW < L. By construction:
(3.2) W (RYEW) > 10 +2/p, 0"'RY*™W C Bgyr, 0"'RYFW C By,
Since RNEW « U with 9"RNEW ¢ 9U, we can choose a vertical boundary compo-
nent 3 € {8”’Z7€NEW,8”’pRNEW} that separate Lgyy from RNEWA B:ie., Lok,
RNEWA 3 are in different components of U \ 3. Suppose 3 starts in L, and ends
at Lb.

By construction, {a,b} has distance at least 3 from [S + k] U [V + k]. Since the
horizontal boundary of RY*W is within Bgj and By 44 (see (3.2)), by Lemma 3.1,
the rectangle RI}IEW has a vertical curve ~ disjoint from B, U By, i.e. -y is disjoint
from U B, U By. This is a contradiction as the endpoints of v are separated by
BUB,UByin U. O
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3.3. Coarse bounds for Near-Rotation domains. We now extend the esti-
mates from Lemma 2.5 to near-rotation domains. Let us rescale the distance on
oU by 1/q:

|I] == %|]|q, dist(1, J) ::%distq(I,J), for I = Ly, J = Lw C 90U,
and we choose any continuous extension of the distance function dist( , ) to all
point in QU. The objects
F (L, J)=Fz(1,J), W (I,J)=W(I,J)
for intervals I, J C OU are defined in §2.3.1.
Proposition 3.3 (Coarse bounds). Consider intervals
I,JcoU such that |I], |J|, dist(I,J) > 40/q.
If dist(I, J) < min{|I|,|J|}, then

_ min{|7|, |J|}
. I =, log ——————= +1;
(3:3) WL ) =, log —p i 5 + 1
otherwise
_ dist(1,.J) !
3.4 W=(I,J) = (1og, 1>
34 (7 = \lo8 g 1y

Corollary 3.4 (9U is a coarse quasi-line). Choose a homeomorphism
h:0U — S* =R/Z, h(L;) =li/q, (i +1)/q).
Let I,J C OU be two intervals with min{|I|, |.J|,dist(I, J)} > 40/q. Then
Wi (1) =, W (h(1), h(J)).

Proof of Proposition 3.3.
Claim 1. Suppose I,J are intervals with
(3.5) min{|I|,|J|} < dist(I,J)  and |I|,|J]|,dist(I,J) > 40/q.
Then W™ (I,J) =<, 1.
Proof. We can approximate I from above by a concatenation of standard intervals
I =L#L#...#I, suchthat F~(I,J)C Lnj Foollk), I\IC LyU Ly,
k=1
where n depends on the constant representing “<” in (3.5). Using Lemma 3.2 and
Parallel Law (A.4), we obtain
(3.6) W (1,7) < Win(Ih) + Wag(I) + -+ + Wiy (1) =, 1.
Let X,Y be the connected components of OU \ (I U J). We have:
min{|X|,|Y|} xdist(X,Y) and |X|,|Y],dist(X,Y) > 40/q.
Repeating the above argument for X,Y, we obtain:
W (L) =W (X,Y) =, 1, ie W (I,J) =, L
Therefore, W™ (I,J) <, 1. O
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The proposition follows from Claim 1 by applying the Splitting Argument, see
Remark 2.6.
O

Remark 3.5. We note that the comparison “<,” in (3.3) and (3.4) depends only
on the constant C,, from Lemma 8.2 — this lemma was used only in (3.6). The
constant C,, depends only on the constant C’//L = 1/p from Lemma 3.1. In §3.4, we
will improve Lemma 3.1 and obtain beau coarse-bounds on scale >, 1/q.

3.4. Beau coarse-bounds for near-rotation domains. Let us start by improv-
ing Lemma 3.1 on scale >, 1/g:

Lemma 3.6. There is a constant T,, > 1 such that the following holds. Consider
a rectangle

RC f(U)cU, 8"Rc fi(ovu), i<q
with 9"°R c By, 9™'R C Bw,

where V. and W are discrete intervals. After removing two 1-buffers from R, the
new rectangle R is disjoint from B, for every s € Z/q with distq(s, VUW) > T,.

Proof. Follows essentially from Proposition 3.3 because Bj is protected by a wide
family 7~ (Lg, Ly ), where G, H are discrete intervals separating s from VUW. A
slight complication is that R is a rectangle in U and not in U.

Suppose T, is sufficiently big. There is a sequence of pairs of discrete intervals
G;, H; C Z/q such that all G;, H; have pairwise distances at least three, |G;| =
|H;| = dist(G;, H;), every pair G;, H; separates s from V U W, and n = n(T},) is
big.

Using Proposition 3.3, we can choose a subfamily F; in F~ (G;, H;) such that
W(F;) <, 1 and such that the F; are pairwise disjoint.

For every g € Gj, the set of vertical curves in R that intersect B, forms a
buffer of R by Lemma A.9; let us choose g; € G; such that the buffer is maximal.
Similarly, we choose h; € H; such that the buffer of curves in R intersecting By, is
maximal. Then for every ¢ and every curve v € F intersecting B, either

(1) + intersects By,; or

(2) ~ intersects Bp,; or

(3) ~y intersects every curve in F;.
The modulus of curves in F satisfying (1), (2), and (3) is <,, 1 because By,, By,
are separated from V U W U {s} by A,,, Ap,. Therefore, the modulus of vertical
curves in R intersecting B, is <,, 1/n. Since n is big, the lemma follows. a

Lemma 3.7. There is a universal constant C' > 0 and a constant T,, > 0 depending
on p such that there are no [C, 5] -wide intervals Lg with |S| > T),.

Proof. Follows from Lemma 3.6 in the same way as Lemma 3.2 follows from Lemma 3.1.
O

Theorem 3.8 (Beau coarse-bounds). Let §q = (f*: U — Ut)0<t<q
rotation domain. There is a constant T}, > 1 depending on p such that the following
holds. Consider intervals

1,J CoZ such that |I|, |J|, dist(Z,J) > T,/q.

be a p-near
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FIGURE 10. A parabolic rectangle R on 7" = [v',w], following
Notations (4.3) and (4.2).

If dist(1, J) < min{|I|, |J|}, then

- min{|7|, |/|}

. I = log ————= +1;
(3.7) W (ILJ) = log Tt S 4
otherwise

_ dist(1, .J) !
(3.8) W—(I,J) < (1og,—|—1> .
min{|Z],[J]}

Proof. Follows from Lemma 3.7 in the same way as Proposition 3.3 follows from
Lemma 3.2 — see Remark 3.5. ([

In Theorem 5.12; we will extend beau coarse-bounds for pseudo-Siegel disks.

4. PARABOLIC FJORDS

In this section we fix an interval T' € ©,,, m > —1 in the diffeo-tiling, see §2.1.6.
We recall that |T| € {ly, lm + bmi1} and T' := T N f9+(T). If m = —1, then
T = [co,co B 1] ~ dZ and T’ is the longest interval between c¢; and cp.

Recall from (2.12) that a rectangle R is based on 7" if R € C\ Z and 9"R C T".
We assume that "R < 9"'R in T’ so that |[OR| C T".

If m > —1, then we set distr(z,y) = dist(x,y). For m = —1 and z,y # ¢o, we
define dist(x,y) to be the length of the interval (z,y) that does not contain cq. In
other words, we view T as (cp, co B 1) with the induced Euclidean metric.

A rectangle based on T” or T is called parabolic if

(4.1) distp (0" OR,0"'R) > 6 min{|0"°R|, [0"'R|} + 3lmi1

i.e. the gap between "R and "' R is bigger than the minimal horizontal side of
R. We say that a parabolic rectangle R is balanced if |0"'R| = [0"1R].
Let us assume that

(4.2) T=v,w], v<w, Opi1<0, T =[ w], wherev =vBb, 1,

ie. fIm+1 | T moves points clockwise towards w, see Figure 10. The case 6,,+1 > 0
is equivalent. For a parabolic rectangle R based on 1" we will often write

(4.3) MR =[a,b], 'R =[c,d], where a<b<c<d.

Following §2.3.2, we say that a parabolic rectangle R is ezternal if int R C @\ICm.
The following result describes wide external families based on T
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Theorem 4.1. If there is a sufficiently wide external parabolic rectangle based on
T (see (4.2)), then T contains a subinterval

Toar =[xyl CT', VvV <z<y<w, dist(z,v) <dist(y,w)

with the following properties.
(I) If R is an external parabolic rectangle based on T with W(R) > 1, then R
contains a balanced parabolic subrectangle

Ruew — R, 8hRnew C Tpar, W(Rnew) _ W(R) _ O(l)
such that x < OMORMY < 9MIRPY <y dist(x, 0" OR™Y) = dist(0™ IRV, y),

Iah,ORnew| |6h,1Rnew|
4.4 RMY) <] =1 .
(44) W )= log dist(9MORrew v) 8 dist (9" ORrew v)
(A1) If I,J C Tpar, x<I<J <y are two intervals with
dist(z, I) < dist(J,y) < [I| < |J| = distp (L, J)

and |I|,|J|,disty(I,J) > lyi1, then

+ min{|7|, |J[}
dist(v, I)
(IIX) If I,J C Tpar, = < I < J <y are two intervals with

(4.5) WH(I,J)—001) =W, .(I,J) < log + 1.

xt,m

1
L1, J)] < 5| Tpul  and - min{|1], [J]} = dist(Z, ) > 3l

and |I|,|J| > Uy, then
+ min{[7], |7}
dist(Z, J)

Theorem 4.3 will be proven in §4.3. We remark that narrow families based on T’
can be estimated by evaluating their dual families using Theorem 4.1.

(4.6) wWH(I,J) - 0(1) = Wi

ext(I7 J) XlOg +1

4.0.1. Outline and Motivation. Theorem 4.1 says that Siegel disks develop fjords
in a controllable way. Roughly, as Figures 2 and 11 illustrate, fjords are vertical
strips towards the « fixed point and wide parabolic rectangles are horizontal. After
conformal uniformization, f9+! | fjord becomes a quasi-rotation of the unit disk;
Theorem 4.1 describes the geometry of this quasi-rotation. During the conformal
uniformalization “fjord — D”, the hyperbolic geodesic ¢, , C O(fjord) connecting
x,y will get the length < dist(v, ) — this explains v in the estimates of Theorem 4.1;
taking this into account, the estimates in Theorem 4.1 are similar to the estimates
in Lemma 2.5.

The central theme of this section is designing “shifts” for rectangles based on
T'; after that, the proof of Theorem 4.1 is similar to Lemma 2.5. Shifts towards v
(pullbacks) are relatively easy: the external condition “R C c \ int KC;p,” is almost
equivalent to “non-winding around the Siegel disk”, hence R can be efficiently
moved towards v using f~%"+1 see §4.1. Shifts towards w (push-forwards) are
more delicate because curves may hit &C,,. Since pullbacks are well-defined, we can
choose the closest to v’ outermost external parabolic rectangle Rou wWith a certain
fixed width; then we set Tpar == [z,y] to be the complementary interval between
"R oue and 9" Rgy:. Thanks to the “protection” by Rout, rectangles based on
[z,y] can be efficiently shifted towards y using f%+1, see §4.2. We note that our
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v w T y

R exp

1 1 1 1
FIGURE 11. Two types of wide rectangles in a parabolic fjord;
compare with Figures 1 and 2. The red (parabolic) rectangle has a
small combinatorial distance towards x and y relative its horizontal

sides, while the orange rectangle has a small distance between its
horizontal sides.

arguments are not local: the global branched structure of f%"+! is essential in the
proofs.

4.1. Pullbacks in fjords. We say that a parabolic rectangle R based on T is
non-winding if every vertical curve in R is homotopic in C\ Z to a curve in T}
i.e. vertical curves in a non-winding parabolic rectangle do not go around oo. For
a non-winding parabolic rectangle R, we will write

7°€::RU5,

where O is the bounded component of C\ (7 U 8”’“1“72); i.e. O is the component
between R and T

Lemma 4.2. Let R be an external parabolic rectangle based on T with W(R) > 1.
Let R™™ be the rectangle obtained from R by removing the outer 1-buffer. Then

RV fAmHH(RMY) are non-winding and f9m+ | R™Y is injective.
Proof. Let T be the fjord attached to T', see §2.1.7. By Lemma A.5, int R**" C

% 4 00; hence R™Y is non-winding. By Lemma 2.4, f97+! | R™¥ is injective. The
image f9m+1(R"Y) is non-winding. |

Lemma 4.3 (Pullbacks). Let R be a parabolic non-winding rectangle on T'. Then
the pullback of R along f9+*: T"B0,,,1 — T" is a parabolic non-winding rectangle
onT.

Proof. For every vertical curve £ € R there is a homotopy 7 in C\ (Z U T'C)
between ¢ and a curve ¢ C T', where T'° = 9Z \ T'. This homotopy 7 lifts
under f9+! into a homotopy between ¢ 5 6,, C T and a curve £1; all such curves
¢y form a parabolic non-winding rectangle Ry which is the pullback of R along
fomtr: T"E0,,00 — T O
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Lemma 4.4. Let R be a parabolic non-winding rectangle based on T'. Then R
contains a parabolic non-winding subrectangle R"Y with

(4.7) OMORICY| < |OMIRMY| and  W(R™Y) > W(R) —
where we assume Notations (4.2) and (4.3).
Proof. Assume that [0"OR™Y| > |9 'R**¥|. Present

IR =nL#L, L <L, |L|=[0"R]|,

and let Ry be the subrectangle of R consisting of vertical curves emerging from I5.
We claim that W(R2) < 2, this implies the lemma.

The claim follows from the Shift Argument §A.3. Let k be the smallest integer
such that k > |I|/l;,+1. Pulling back Ro under fam+1k we obtain a rectangle RY
linked with Ro, see (A.9): "Ry < ™R} < "' R,. Lemma A.11 completes the
proof. O

Lemma 4.5. Let R be a parabolic non-winding rectangle based on T" with W(R) >
2. Assume Notations (4.2) and (4.3). Then |0"°R| > 1 and, moreover,

|8h O I
log ——i+——
dist(v, 0"OR)

i.e., dist(v, 0™OR) is small compared to |0"°R| if W(R) is big.

Proof. Follows from the Shift Argument §A.3 and Lemma 4.3. If |0"°R| < 1,
then the pullback Ry of R under f97+! would be linked to R — impossible because
W(R) > 2.

By Lemma 4.4, there is a parabolic subrectangle R"" C R satisfying (4.7); thus
|9MOREY| < distps (OMORPEY, 9 IRYYY 4 [,,,.1. Let k > 1 be the integer part
of dist(v, 0 "R™™)/l,,+1. Decompose d"OR™Y into the concatenation of closed
intervals

(4.8) +1=W(R),

Il#.[g##]n, v'§11§12§~~§[n<w
such that
|| = kbng1, |To] = 2Klpnyt, ooy [Tnot| = 2" kb1, 1] < 27Kl 1.

We claim that n > W(R"")/2 — this will imply the lemma.

Let R be the subrectangle of R"" consisting of vertical curves connecting Iy
and 0™'R™Y. Then R; is linked to its pullback R, under fq"L“Qt , see (A.9):
MOR, < MR, < 9™'R,. By Lemma A.11, W(R;) < 2 for every t. By the
Parallel Law §A.1.4, n > W(R"Y)/2 > W(R)/2 + 1. O

The following lemma is a counterpart to Lemma 4.2.

Lemma 4.6. Let R be a parabolic non-winding rectangle based onT'. IfW(R) > 2,
then after removing the outermost 2-buffer from R, we obtain an external parabolic

L] L] L]
rectangle R with f9m+! (Rncw) C R. In particular, f9++ | R*Y is injective.

Proof. As before, we assume Notations (4.2) and (4.3). Consider the pullback R4
of R under f9m+! (see Lemma 4.3); clearly, int(R;) C C\ int KC,;,. We claim that
after removing the outermost 2-buffer from R, the new rectangle R™Y is within

R1 This would imply the lemma because f9m+1 | R1 is injective.
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Denote by X the outermost 1-buffer of R, and denote by ) the outermost 1-
buffer of R \ X. We have R = X UY UR"™. Let X1 C Ry be the pullback of
X under f9m+1. Since the distance between 9"°R and "X is bigger than [,
(see (4.1)), we have

ah,O)(l < ah,Oy U ah,ORneW < ah,le;

thus at most 1-wide part of Y U R"Y can cross X, see §A.2.1. Hence R"V C
Ri.

O

Combined with Lemma 4.4, we obtain:

Corollary 4.7. If R is a parabolic non-winding rectangle on T’ with W(R) > 5,
then |0"OR|, 10" R| > 1. O

4.2. Push-forwards in fjords. As before, we assume Notations (4.2), (4.3).

Let us select a simple arc § C C\ Z connecting a point in 6(0) € dZ \ (v, w) to
(1) = oo such that § is disjoint from 92 \ §(0). Then A :=C \ (Z U6) is an open
topological disk.

For a rectangle R based on T, we will define below the push-forward Ry of
R under f%7+1% agsuming that dist(@h’lR, w) > klypt1. The result Ry will be a
lamination in A.

Let us orient all vertical curves in R from "R to d"'R:

(4.9) v(0) € 'R, ~v(1) € "R for [y:[0,1] = C\ Z] € R.

Let A_j, be the component of f~9+1%(A) attached to [v,w B kf,, 1] C T.

For a vertical curve £: [0,1] — Cin R, let tt > 0 be the first moment such that
E(ti) € 0A_j. We define

=] [0,ty] for LeR}, Ry = fimR(RL).

In other words, R}, is the restriction (see §A.1.5) of R to A_j and Ry is the
appropriate conformal image of R},. We say that the curve £ | [0,;] in R}, and its
image f9m+% (¢ | [O,ti]) in Ry, is of

o Typelift =1,

e Type ITif ¢, < 1 but fIm+** o ((t}) € T}

e Type III otherwise.
We denote by Ri, Ril , Ril I the sublaminations of Ry consisting of Type I, II,
ITI curves respectively. Similarly are defined the sublaminations R}, R, R
of R'*. Since R overflows R}, we have

(4.10) W(R) > W(RL) = W(Rx).

Lemma 4.8. In C \ Z, the lamination RL separates R4, from Ri and {v,w};
i.e., R U {v,w} and RL are in different components of C\ (Z U~) for every
v E Ril, see Figure 12.

Proof. Consider the preimage T_j, := f~9+'*(T)NOA_j of T under fim+1%: A_, — A.
Observe that T_j contains v but not w. The point v splits T_j into two intervals
T, and T%,, we assume that 7%, C T while 7", is disjoint from 9Z. Then

e R} is the sublamination of R}, landing at 7%,

e R} is the sublamination of R}, landing at T°,,
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I11

FIGURE 12. Types I (red), II (orange), and III (blue) curves in
Ri.

e R} is the sublamination of R}, landing at A _; \ T_y.

The lemma now follows from the observation that in A_j, the lamination R}’
separates Ry from R/ and w B 6,,41k. O

Let X be an external parabolic rectangle based on T" with W(X) > 10. Let
P C T' be the complementary interval between 9"°X and "1 X. We say that P
is protected by X.

Lemma 4.9 (Push-forwards). Let P be an interval protected by an external para-
bolic rectangle X as above. If R is a parabolic rectangle based on P such that

ORBil,n C P foral i€{0,1,2,...,k},

then after removing the 1-outermost buffer, the rectangle R*" has univalent push-
forwards:

(4.11) fqmﬂi(R“eW)c)'( forall i€{0,1,2,...,k}.

Proof. Let us choose ¢ to be disjoint from X and let X™°" be the rectangle obtained
by removing the outermost 5-buffer from X. By Lemmas 4.2 and 4.6, f%"+! is

injective on X"V and:
(4.12) famtt <X“CW> cX hence int X"V C A_y.

Note that W(X"®") > 5. Let us prove by induction that
(4.13) W (RE) > W(R) —4/5.

1
for all 4 < k. This will imply (4.11) because at most g—wide family of R! can cross

the protection X"V,
It follows from (4.12) that

(414) R, 2{f*(y) | ve€R! and -« is disjoint from OA_; \ T'}.

If W(R!) > W(R) —3/5, then at most 1/5 curves in R! can cross the protection
A" and hit OA_; \ T. We obtain that W(R., ;) > W(R) — 4/5.
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Assume now that
W(RI) < W(R) —3/5 hence  W(RI) + W(RIT) > 3/5,

by (4.10). Since RHT crosses A", we obtain W(RI) < 1/5 and W(R!T) > 2/5.
At most 1/5 curves in RY UR!! can cross X" and hit JA_; \ T; and all such
curves must be in R — they are outermost by Lemma 4.8. We obtain that all

curves in R} are inside X" and W(R., ;) > W(R)). O
4.3. Proof of Theorem 4.1.

Lemma 4.10. Let R be a parabolic non-winding rectangle based on T' with W(R) >
50. Then R contains a parabolic non-winding balanced geodesic rectangle R™" with
W(R™W) > W(R) — 25.

Proof. We assume Notations (4.2) and (4.3). Let R"™" be the rectangle obtained
from R by removing the outermost 18-buffer X. Then Lemma 4.9 (push-forwards)

is applicable in R*W.

Choose the maximal intervals I C 9"%R™Y and J c 9™'R™Y so that the
geodesic rectangle R(I,J) is in R"Y. By Lemma A.5, R(I,J) contains most of
the width of R*"Y: we have W(R(I,J)) > W(R) — 20.

Assume that |I] > |J|. As in the proof of Lemma 4.4, we present

I=05L+#I, Iy<Is, 1] = |J].

Let k be the smallest integer such that k > |I1|/l,,+1. Since the geodesic rectangle
R(Is,J) is linked to its pullback under f9m+1* we have W(R(I,J)) < 2; hence
W(R(I1,J)) > W(R) — 25.

Assume that |I] < |J|. We present

J = Jo#tJ1, Jo <y, |J1] = [1].

Let k be the smallest integer such that & > |Ji|/l,41. After removing the out-
ermost 1-buffer from the geodesic rectangle R(I, J2), we obtain a rectangle linked
to its push-forward under f9+1* (Lemma 4.9). We have W(R(I, J5)) < 3; hence
W(R(L,J1)) > W(R) — 25. O

Proof of Theorem 4.1. For z € T' with distr(v',z) < |T'|/10, define myo € T' so
that distz (v, m10) = 10distz (v, m).
Let Z be a sufficiently wide external parabolic rectangle based on T’ with
"0z < "'z in T'. By removing O(1) buffers from Z we can assume that
|0"0Z| < |0"! Z| (Lemma 4.4) and that |[v/, 8™ Z]| is small compare to dist7 (9"° 2, 8" Z)
(Lemma 4.8). Therefore, we can define the shortest interval

(415) S:=[',m] CT', |S]>lmy1 suchthat WS, . (S, [mio, w]) > 500.

By Lemmas 4.2 and 4.10, we can select two disjoint parabolic balanced non-winding
geodesic rectangles based on T satisfying

X,V C Flym(S [mi,w])), X CY*\Y with W(X)>400, W(P) > 10.
We set, see Figure 13:
Toar = [7,9] = [0"X]| CT',  and  Tpar = [2,y] = Tpar \ "X,
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[ XS]
=

Y

ISIX
S\
<) ¢

FIGURE 13. Intervals Tpar = [z, y] and T = [z, 7).

where Z < z < y < § in T’. Since Y protects T, par, Wide rectangles based on fpar
can be push-forward. By Lemma 4.5, [0"°X| > dist(v', 8™°X) hence

(4.16) disty/ (v, z) < disty/ (2,2)  for all z € Tpuy.

Claim 1. For an interval I C Ty, with
dist(I,{z,9}) = |I| and  dist(I,{Z,3}), |I| > lnt1
we have Wy (I) < 1.
Proof. By splitting I into finitely many intervals (depending on the constant repre-

senting “*"), it is sufficient to assume that dist(Z, {Z,§}) > |I|+lmt1 or |I]| = 1.
Write I = [a,b] with # < a < b < §. Let us present F, (I) as F_ U F, UF’ where

e F' consists of curves crossing X;
L]
e F_ consists of curves in X connecting I and [Z,a] N (31);

e F. consists of curves in X’ connecting I and [b, §] N (31)°.

Clearly, W(F') < 1/10. We will estimate the width of F_, | using the Shift Ar-
gument. Let R_ C F_ and R4 C F4 be the canonical rectangles; i.e. W(R_) =
W(F_) and W(R4) = W(F4). Let k be the smallest integer such that k& >
[I|/tns1. Then R, is linked to its pullback under f~*9m+* implying that W(R,) <
2. Since Tpm is protected by Y, the rectangle R™" obtained by removing the out-

ermost 1-buffer from R_ is linked to its push-forward under f¥9=+! (Lemma 4.9);
this implies W(R—) < 3. O

Claim 2. IfI,J C Tpar, I < J are two intervals with
1
§|LI, J)| < |Tpar|,  min{|I|,|J|} < dist(Z,J), |I|,|J]|, dist(I,J) > lpm41,

then WH(I,J) < 1.

Proof. Assume |I| < |J|. Let L C Tpa be the complementary interval between
1,J. Applying Claim 1, and subdividing if necessary I and L into finitely many
intervals we obtain

WHI,J)<1 and  (WT(I,J) " = WH(L,|1,J]9) < 1.
Therefore, W (I,J) < 1. O

Statement (III) of Theorem 4.1 follows from Claims 1 and 2 using the Splitting
Argument, see Remark 2.6.

Claim 3. IfI,J C Tpar, I < J are two intervals with
(4.17) disty (2, 1) =< distp (J,§) < |[I| < |J| X distp (1, J)
and |I],|J|,disty: (I, J) > lyt1. Then WH(I,J) < 1.
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Proof. The property W~ (I, J) =< 1 follows from Claim 1 by splitting, if necessary,
I into finitely many intervals.

Denote by L C Tpar the complementary interval between I and J. Let us show
that that the dual family G = F1(L, |1, J]) satisfies W(G) =< 1; this will imply the
claim. Denote by N C [Z, 7] the interval between Z and |I,J| and by M C [z, 7]
the interval between |I,J]| and §. As in the proof of Claim 1, we decompose G as
G'UG_ UG, where

e G’ consists of curves crossing X';
L]
e G_ consists of curves in X' connecting N and L;

[ )
e G, consists of curves in A’ connecting L and M.

Let R_ C G_ and R4 C G4 be the canonical rectangles; i.e. W(R_) = W(G_)
and W(R4+) = W(G4). Set

7 = min{disty (Z, I), |I|, ||, distp: (J, §) } — lmt1;

if 7 < L1, then replace 7 := [,41. We decompose N and M into finitely many
intervals U; N; and U; M; so that |N;|, |M;| < 7 for all i. The number of intervals
depends on the constants representing “<” and “<” in (4.17).

Denote by R_; C R_ the subrectangle consisting of vertical curves landing at
Nj;. Similarly, R4 ; C R4 is the subrectangle consisting of vertical curves landing
at M;. Define k to be smallest integer such that kl,,,11 > 7. Then R_ ; is linked to
its push-forward under f*+! (Lemma 4.9); i.e. W(R_;) < 3. And R ; is linked
to its pullback under f*m+1; ie. W(R, ;) < 2. O

Statement (II) of Theorem 4.1 follows from Claims 1 and 3 using the Splitting
Argument, see Remark 2.6.

Claim 4. Consider s € N such that dist7 (y, §) < slpt1 < dist(g, w)—ly41. Define
Zs = f°ly,g] and note that Zs is between Zy = [y, §] and w. Then

(4.18) Wi (Zs, (T U [/, 2]) > 100.

Proof. See Figure 14 for illustration. Let X be the push-forward of X under f9m+1%
as in §4.2. Then W(X;) > W(X) > 400. Since most of the curves in X do not
cross X, we obtain W (Z,, (T")° U [v/,x]) > 399. The width of external curves in
FH(Zs, (T U [v',z]) landing at S is at most 100 because, otherwise, [v/,x] C S
would not be the shortest interval satisfying (4.15). This implies

WH(Zs, (T)) + Wi, (Zs, [V, x]) > 299.

By Lemma 2.7, W,
imply (4.18).

If Wi ([v,v'],Zs) > 150, then F. ([v,v'], Zs) contains an external parabolic
rectangle R with W(R) > 150; applying Lemma 4.2 we obtain a non-winding
parabolic rectangle Ry = f1+1(R*") in F.\ ([v,0']|BOmyi1, Zs11) with W(Rz) >

149. Since most curves in Ro are external (Lemma 4.6), we obtain a contradiction
with the property that S is the shortest interval satisfying (4.15).

(Zs,T¢) < 5. We claim that wi

ext

([v,0'], Zs) < 150; this will

O

We will later need the following fact:
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X
=
v @] % Z4

FIGURE 14. Laminations X are push-forwards of the rectangle X

Corollary 4.11. For every A > 1, the following holds. If disty (y,w) > disty (v, x),

then there is an interval J C [y, w] such that
dist7 (y, w)
F v () mA

W)\,dlv,m( )—)\ diStT(U,LC)

Proof. We will use notations of Claim 4. Set k to be the minimal integer bigger
than distz (y, §)/ln+1. Since disty (y, w) > disty (v, x), we can find

. distT/(y,w)

J:: LZS7ZS+k]J DZSI—ISS+ku"'|—ISs+]k ¥l =\ m
so that (AJ)° D (T")°U[v’, x]. By (4.18) and the Parallel Law, we have WIdiv’m(J) >
90;. 0

Let us prove Statement (I). By Lemmas 4.5 and 4.10, R contains a balanced
non-winding geodesic subrectangle R with

W(R1) =W(R)-0(1) and 9"°x < 9"OR,.

Consider J := |0R;] \ "R,. Using Claim 4 and its notations, J contains neither
Zoy nor Zs for s satisfying Claim 4. We deduce that J C LahXJ. By removing a
2-buffer, we obtain that the new rectangle R1" is disjoint from X'.

It follows from Claim 1 that R7°" contains a balanced geodesic subrectangle R
such that W(Rz) > W(RTY) and

diSt(;E, ah’ORQ) = diSt(ah’lR%y) = |8h-,0R2| - \8h’17€2|
Statement (II) is now applicable for R. 0

4.4. Submergence Rule. Let us underline the following fact, see Figure 15. Sup-
pose that we have a wide parabolic rectangle N, W(N) =< K > 1 based on
Tpar = [z,y]. We note that N is non-winding after removing O(1)-buffer. As-
sume that a parabolic rectangle R with W(R) = 1 is protected by A i.e. R is
based on the interval between d"°N and 8"'A. Then by Theorem 4.1

h,0 h,1
|9"OR| MR

4.1 -— -—
(4.19) 8 dist(v, x)’ dist(v,x) —
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v x Y w
————c &
N, WN) =<K
a
R, W(R) =1
b

FIGURE 15. Submergence Rule. Suppose a buffer N has width

= K > 1. If a parabolic rectangle R has width > 1, then
dist(a, b)
0o — 7).
& dist(v,z) —

4.5. Central rectangles. We say that a parabolic rectangle R based on T” is
central if

distr (v, [0"R'])
diStT( LahRIJ y w)

i.e. if the distances from "R to v and w are essentially the same.

0.9 <

< 1.1

Lemma 4.12 (Central subrectangles). Consider a parabolic non-winding rectangle
R based on T" with W(R) >, 1. Then

e cither R contains a parabolic non-winding central balanced geodesic subrect-
angle R*Y with W(R"™) > W(R)/2;
e or there is an interval
IcT, >y such that  log Wy (I) = W(R).
Proof. Write K = W(R) >, 1. Let R"™" be the rectangle obtained from R by
removing the outermost K /3 buffer . By Theorem 4.1, I, we have
0" 0"
Og - . /. abh 0OA? Og N L 7/ ab 0OAN
disty (v, 9MON) disty (v, 9"ON)

Since W(R"Y) = 2K/3, using Part II, we can select intervals I C MOR™Y and

J € ™R such that the geodesic rectangle RNV .= R(I,J) C C \ Z between
1,J is in R™" and satisfies:

[I|=|J|, disty (z,I)=disty(J,y), and W(RNY) > K/2.
Assume that RNV is not central. Then

distp (y,w) = distT/(J,w) — distpr (LC, I) > 0.1 diStT/(J, y) >~ |8h’0/\f|.

div,m

(4.20) 1 - K.
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Using (4.20), we have:

diStT/ (y,w) . |8h’0./\f|

1
©8 dist(v,z) — T dist(v,x) —

Corollary 4.11 now implies the existence of a required interval I with log Wj div,m (I) =
W(R). O

Part 2. Pseudo-Siegel disks and Snakes
5. PSEUDO-SIEGEL DISKS

A pseudo-Siegel disk Z™ is obtained from Z by filling-in deep parts of parabolic
fjords of levels > m. We will show in Theorem 11.1 that Z~' can be constructed
to be a uniform quasidisk. Consider a sufficiently small § > 0.

Definition 5.1. A J§-pseudo-Siegel disk Z™ of level m is a disk inductively con-
structed as follows:
° 2"27f01rn>>07
e cither 2" = Z”H'l,
e or Z™ = Z™1 U Z™ where is Z™ is a 8 /2-near rotation domain (see §3),
called the core of Em, satisfying the compatibility conditions with Zm+1
stated in §5.1.

If Zm #+ 2’”“, then we call Z™ = ZM 1y Z™ a reqularization of ZmF1 at level
m. Given Z™, all its levels of regularization m; are enumerated as

e > My > MMy > My > 0 2> M.

We say that m;y1 is the level before m; while m;_; is the level after m,;.

5.0.1. Outline and Motivation. Pseudo-Siegel disks are inductively constructed as
Zm=Zmtlyzm =Zy...uZmyZmi-ry... U 2™y Zm,

where Z™ is obtained from Z™! = Z™* by smoothing its boundary on level m.
The boundary 0Z™ is a cyclic concatenation cg#Bo#c1#51# ..., where oy are
“channels” through peninsulas of 7™+ and B; are “dams” in parabolic fjords of
2"“'1, see Figure 16. We require that there is a system of annuli around «y, 5;
making Z™ a near-rotation domain §3.

We will require in Assumption 5 that dams are sufficiently deep in fjords so that
the outer geometries of Z and Z™ are close: if the endpoints of intervals I, J C 07
are in upper parts peninsulas, then W} (I, .J) = (liE)ng (™, Jm), where I, J™
are the “projections” of I, J onto Em, see details in §5.2. Here ¢ is uniformly small
independently of the number of regularizations.

We define the combinatorial distance on 9Z™ to be induced from 82:

(5.1) distyzn (1, y) = distoz(z,y) for x,y€dZ™NIZ.

With respect to this metric, the inner geometry of Z™ has a description similar
to Z — see estimates in Theorem 5.12. The estimates depend on §; however on
scale > [,,, the estimates are uniform. Lemma 5.15 relates the inner geometry of
peninsulas of Z™ with the inner geometry of Z™t Asa consequence, Localization
and Squeezing Lemmas 5.16, 5.17 hold for A compare with §2.2.1, §2.2.2. The
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constant § > 0 will be fixed in Section 7 so that the regularization Zmtl o Zm
can be iterated if Z has deep parabolic fjords of level m.

5.0.2. Regular intervals. A regular point of 0Z™ is a point in 0ZmNoZ. A reqular
interval I C &Z™ is an interval with regular endpoints. An interval I C 9Z is
regular rel Z™ if the endpoints of I are in 0Z™NoZ.

The projection of a regular interval I C dZ™ onto OZ is the interval I C 0Z
with the same endpoints and the same orientation as I. All regular points of I are
in I°. We define the combinatorial length of I by |I| := |I°®|. Similarly is defined
the projection I* of a regular interval I C 0Z™ onto dZ* for k > m.

For an interval I C 0Z, the projection I™ onto 0Z™ is the shortest regular
interval whose projection onto 0Z contains I. Similarly is defined the projection of
an interval I C 9Z™ onto OZ"™ for n < m. An interval I C 87 is regular rel Zm if
and only if I = (I"™)*®

As for 0Z, given I,J C 82’”, we set |I,J] :=TULUJ , where L C dZ™ is the
complementary interval between I and J so that I, L, J are clockwise oriented.

5.1. Compatibility between Z™+1 and Z™. In this subsection, we inductively
define Z™ = Z™+ty zm completing Definition 5.1.

We say <y is an external arc of a closed topological disk D if «y is a simple arc in
C \ int D such that yNAD consists of two endpoints of . Similarly, an internal arc
of D is a simple arc £ C D such that £N dD consists of two endpoints of £.

5.1.1. Channels and Dams. Recall from §2.1.6 that ©,, denotes the diffeo-tiling of
level m > —1. Let us enumerate intervals in ®,, clockwise as T; = [a;, a;41]; i-e.

0Z = To#T# .. . #1y,,.,-1
is the level m tessellation of 97 into diffeo-intervals. Then f9"+! maps the T; almost
into Tj_,..,. We also recall that T} = T; N f9+1(T;) (with a slight adjustment for
m = —1). Let us denote by Ti’mﬂ, TZ-mH the projections of T/, T; onto Z™"!. By
Assumptions 1, T;, T} are regular rel Z", n > m:

Assumption 1 (Channels and dams). The clockwise tessellation (3.1) of 0Z™ into
unit intervals

0Z™ = Lo#Li# ... #Lq, 1
satisfies L; = «a; #0;, where (see Figure 16):
o a; = al" is an internal arc of Zm+t connecting
yi—1 € T and  x; € T,
e 3, = pBI" is an external arc of Zm+t connecting x;,y; € Ti’mﬂ,
e x; is on the left of y; in T)™ .
Moreover, z;,y; € CPpy1\ CPpy,.

We say that «; is a level m channel and (; is a level m dam. A

We will require in Assumption 7 that the o}, 8" are pairwise disjoint except
possibly at endpoints and that the o;" are disjoint from the o} for all n > m.
Components of Z™\ Z™+1 = z™\ Z™+! and of Z™\ 2™ = Z™1\ Z™ will be
called fjords and peninsulas, see §5.1.5.
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a_1

peninsula peninsula

surrounded by
82\m+1 Ua_q

surrounded by

a_q aq
® ®
r_1 Yo
fjord fjord
surrounded by Z\m_H surrounded by
82m+1 U 571 8/Z\m+1 U 60
T = a1, a) Ty = [ao, a1

FiGUuRE 16. The channels «;, the dams f;, the collars
A (ap), A% (ap), and buffers S™* S of a pseudo-Siegel disk
Z™*1 (The inner boundary of A™" is omitted.)

5.1.2. Collars and S-buffers.

Assumption 2 (Collars). There are closed collars around o; and B;
Aloy) = A™ (i) UA™™ (o) and  A(B;) = A™(B;) U A™™(8;),
mn AU (o) = §OUt AInn () Hinn AU () = gt Ainn (g,
with
mod A™ (), mod A°"(e;), mod A™(B;), mod A°U(B;) > 8
such that for alli and oll k € {0,+1,...,qmy+1} we have

o A(t_pyp, .,) encloses f*(a;);
o A(Qitkp,.,,) encloses the unique fE-Uift of oy starting and ending at dZ;
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o A(Bi—kp,,..) encloses fk(ﬁi);
® A(Bitkp,..) encloses the unique fE-lift of B; starting and ending at OZ.

In other words, A(«;) and A(3;) control the difference between Z™ and its image
under f* for |k| < q,,11. The inner colors A™ will be used later in this section to
describe the inner geometry of Z™. The outer colors A°™ will be used on several
occasions; for instance, to “tame snakes,” see Lemmas 6.3, 6.4.

Assumption 3 (Intersection Pattern). For all o*, 8", the simple closed curves
aoutAout (a;n), 61nnAout( ) aoutAlnn( m), ainnAinn (a;n)7
80utAout (Bzm)’ amnAout (Bzm) — aoutAlrm(BZm)’ ainnAinn (ﬁ;m)

intersect 0Z™ at exactly 4 points and these intersection points are in CP,,11\CP,,
Moreover, all 12 intersection points in

PBT) = 077 1 (0P A (B7) U 0™ A (67 U 9 A (57
are within T;. The 6 most left points of P(B") N'T; are within

P(ozm) — 32m (6outAout( ) 61nnAout( ) alnnAlnn( m)) ,
the 6 most right points of P(B{") NT; are within P(ojy ).

Let us denote by A(a"), A™ (o), A(B™), A (8™) the disks obtained by filling-
in A(a), A (o), A(B™), AM(BM). Tt follows from the Assumption 3 that
A gmn have the following intersection properties with 02 Zm+,

Alo;)N0Z™r =5, US,., A(B)NnozZm™ ! =5, US,,,
A () N o7t = Smn U S‘nn A3 N ozt = S;f;n U S;m,
where
. S;fn C S, are sub-intervals of T containing x;,
. S;I;n C Sy, are sub-intervals of TZ-/erl containing y;,
e all 5;,,5,, are pairwise disjoint. A

We say that S,, Sy, are S-buffers of level m and we say that SE“, S;j;“ are Snn-
buffers of level m. Note that oZmt1 may also contain many S- and S™-buffers of
deeper levels We also write:

(5.2) ginn(gmy .— ginn(gmyn 0Z™ = (S;nn ugmu S;n“) \int(fm),

(5.3) S (o) = A (o) OZ™ = (s;;;fl U s;;;n) \ int(Z™),
and similar with S(8"), S(af").

K2

Lemma 5.2. The disk Z™ (see Assumption 1) is a §/2-near rotation domain (see
Section 3) with respect to

Ay = A(L;) = A (o) DA™ (B;);
see §A.1.11 for the definition of ‘CJ17.

Proof. By Assumption 2, the annulus A; controls the difference between fk(Li)
and L;_gp,, ., It follows from Assumptions 3 and 7 that A; intersects only A;_;

and A;y;. Since mod(A™ (ay)), mod(A™(5;)) > &, we have mod(4;) > §/2 by
Lemma A.3. g
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Assumption 4 (Combinatorial space). Each of the 15 intervals in T; \ (P(8]") U
{zi,y:}) has length at least 20011 .

4
Moreover, the subinterval [z;,y;] C T;" ' has length at least g\Tim“\. A

In particular, most of Tim‘|r1 is “reclaimed” during the regularization.

5.1.3. Extra geometry constrains.
Assumption 5 (Conformal separation). For all i we have
W(Swwsyi)7 W(Syi’S$i+1) S 1/5
A

Recall from (2.12) that a rectangle R is based on T/t if R C C \ int Z™* and
"R T/, A rectangle R based on T;™ "' is
e parabolic if distpm+1(0"OR, ™' R) > 6 min{|0""R|, (0" R|} + 3Lyt
e balanced if |0"'R| = |0"'R|;
e non-winding if, in addition, every vertical curve in R is homotopic in
C\int Z™ to a subcurve of T;™ "

Consider a sufficiently big A > 1 — it will be fixed in §5.2, see Remark 5.11.

Assumption 6 (Extra outer protection). For every dam (] there is a balanced
parabolic non-winding rectangle X" = X (8") based on Tt such that W(X™) >
A and A(B™)\ Z™ T is in the bounded component of C\ (Z™ T U &™), A

In particular, 5; is deep in the fjord associated with T, see 2.1.7. We assume that
omOxm < 8h’A1Xi” in Tj; ie. |A"] € T;" . We denote by [X*|™ the projection of
| X ] onto 0Z™.

5.1.4. Minimal position of the collars. A collection I' = (v;) of external arcs of a

topological disk D is in minimal position rel D if every two arcs v,y have the

minimal intersection number up to homotopy in (C \ D,dD). This means that

|ve Nye] <1 and |y, Ny| = 1 if and only if the endpoints of vy are linked rel 0D

to the endpoints of ~;. Similarly, the minimal position for internal arcs is defined.
By Assumption 3, every simple closed curve

aoutAout (a;_n), ainnAout (a;n), ainnAinn (O[I—n),
6outAout (5:”’), ainnAout (B:n)7 ainnAinn (Bln)

is a cyclic concatenation of 2 external and 2 internal arcs of Z™. We denote by e,

and I']), the set of external and internal arcs of the above boundaries of collars.

m

Assumption 7. The set I, U{a™}; is in minimal position rel 9Z™. The set

U recu{sryu{omoar, omtary,
’an
s in minimal position rel 0Z.
Moreover, all landing points of curves in T UT™ U{al™, B },0{0°X™, 0Vt X}

mn

are within CP, 41\ CPyy,. A

In particular, the A7* geometrically separate dams of all levels.
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5.1.5. Fjords and Peninsulas. A connected component of Z™\ 2™+ = zm\ Zm+1
is called a level m fjord while a connected component of Z™ \ Z™ = Z™+1\ Z™
is called a level m peninsula. Every peninsula B has a unique channel " on its
boundary; we will often write 8 = PB(af"). The coast of P is

0P = 0P\ af™.

The boundary dZ™ is a concatenation of dams B and coasts of peninsulas.
Consider a peninsula B(aj) of Z", where n > m. By construction (Assump-

tion 1), P contains a unique point z € CP,,. There are three possibilities:

o 9P (as well as ) is in the interior of Z™;

° 0P CIZ™:

e one of the components of 9“B \ {z} is in int Z™ while the other component

is in 9Z™.

In the last case, z is an endpoint of a dam Bf C 7™ of generation k < n (by
Assumption 7).

5.1.6. S (Z™) C S(Z™) C SYN(Z™). Let us write
s zmy = sty s =Usen, sezm) =),
n,J n,J n,J

where the unions are taken over all n > m and j.
By construction: CP,, c §Z2™ \ S*'(Z™) and, moreover:

Lemma 5.3. FEvery connected component of Swen(/Z\m) is | X}"] for somen >m, j.
Similarly, every connected component of S(Zm) is S(B) for some BI'.
Similarly, every connected component of S™(Z™) is S™(B%) for some . O

_We say that an interval I C 0Z™ is well-grounded if its endpoints are in
dZ™\ S¥ell(Z™). An interval I C 0Z is well-grounded rel Z™ if I is regular
and its projection I™ C 90Z™ is well-grounded.

5.1.7. U(Zm) C X(ém). Let us denote by U(al) := A(a}) \ A(a}) and U(B8") =
ﬁ(ﬂf) \ A(B]") the topological disks surrounded by A(«]') and A(B]"). Let us write
u(zr)=2z"ulJ W uuEn) =2z uJue,

where the equality follows from Assumption 3. Since the A(a}'), A(8]") control the
difference between Z™ and the induced image under f*, |k| < ¢,,11 (Assumption 2),
the map (f | Z)*: Z © extends uniquely to

(5.4)  fRZm Eh (/.27 < u(zm), where |k| < g1
Let us also set
(5.5) X(Z™) = Filling-in of | | Jxr U Z™

n,J

By construction, X(?m) contains all A(a]') and A(S5}).
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5.1.8. Pullbacks of Z™. Let stab(Z™) € N>¢ be the smallest number such that the
distance between 8}"/'\,’]-7”5 and the endpoints of T;™* is at least (stab(Z™)+1)ln, 41

for every level of regularization mg > m and every j. Then pullbacks of Z™ are
well defined up to stab(Z™)q,,+1 iterates:

Lemma 5.4. For every t < stab(z\m)qm+1 all the o, B, A(al'), A(B!), X(B)
have univalent lifts along f': Z — Z: the resulting lifts 'y By Al ),
A(B'—), X(Bi_;) form a (8,4) pseudo-Siegel disk Z\Tt such that f': ZTt — 2™ s
conformal.

Proof. Since the X" are non-winding, they have univalent lifts for all ¢ < stab(? ™Y qnt1
~ compare with Lemma 4.3. Since the X" separate A(3")\ Z"*' from CP,
(Assumption 6) and since A(al)\ Z"t' C A(B!) U A(BP), the filled-in collars

A(al), A(B?) also have univalent lifts and the statement follows. O

K2

5.1.9. Geodesic pseudo-Siegel disks. We say Z™is a geodesic pseudo-Siegel disk if
. U o, U{BrY U{ov0x", 0" X"}, consists of hyperbolic geodesics of

n>m
C\ Z;

o I'l' U{ai"}; consists of hyperbolic geodesics of int 7"t for every regular-
ization level n > m; and

e stab(Z™) > 10.

Consider a parabolic non-winding rectangle R based on 7T, C 9Z. By Lemma 4.3,
R has a univalent pullback along f"+1: T" 8 0,,41 — T for j € {0,1,...,qms1 — 1}.
Let R_; be the lift of R along f7: Z ©. We set

Gm41—1

Orb_q7n+1+1 R = U 7?'_J7
Jj=0

i.e., orb_q,..,+1 R is the set of rectangles obtained by spreading around R using
pullbacks.
We say that a regularization Z™ = Z™ 1 U Z™* is within ortb_,, 11 R if

Il U{BT 1 u{0™° X", 01 X"} C orb_g,, 41 R

Remark 5.5. If Z™ is geodesic, then stab(Zm) > 10 implies that

(56) U F10zF(CP,) | ns™(Zm) = 0.

7] <2qm+1

Therefore, if the endpoints of an interval J C 0Z are in CP,,, then f'(J) is well-
grounded rel zm for all i < 2qum41-

For instance, let [ C 0Z be a combinatorial level-m interval such that one of the
endpoints of I is in CP,,. Let Iy, s < qm+1 be the intervals obtained by spreading
around I = Iy, see §2.1.5. Then all Iy are well-grounded el zm.

5.2. Outer geometry of Z™. In this subsection, we will show that Z and zm
have comparable outer geometries with respect to grounded intervals.
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5.2.1. Removing small components from a rectangle. Fix a big A > 1 and some
7 > 1. Consider a rectangle R C C. Let D;,7 € I be a finite set of open Jordan
disks in R with pairwise disjoint closures satisfying the following properties:

(A) every D; is a attached to a unique side T; of R: the intersection dD; N IR is
a closed arc within Tj;
(B) there is a rectangle
VicR, 9"V;=0¥indRCTi, WDi)=A
protecting D; in the following sense: OR\T; and D; are in different components
of R \ yi.
Let us denote by T;°? C OR the opposite side to T;; i.e. T; UT; PP is either "R
or "R. We will also consider the following relaxations of (B):
(B,) if T; is a vertical side of R, then there is a rectangle
VicR, 0"YV;=0¥nNoRCT;, W)=t
protecting D; in the following sense: T;"" and D; are in different components
of R \ :)Ji.
(By) if T; is a horizontal side of R, then there is a rectangle
ViCR, 0"V, =0Y;Nn0R CIR\T®®, W) >A
protecting D;: T; PP and D; are in different components of R \ ;.
(B},) if T; is a horizontal side of R, then there is a rectangle

ViCR, 9"Vi=0YiNOR CIR\T™, WD) >A;
protecting D;: T;"" and D; are in different components of R \ );, where:
A;>7 for 1€S and A;>A for i¢gS.

(Here S is an index set.)
Set
R =int R\ U D;
iel
and view R as a rectangle with the same vertices as R and with the same labeling
of sides; i.e. "R and "R’ have an infinite intersection. In other words, R’ is
obtained from R by slightly moving its boundaries towards the interior; the motion
is geometrically controlled by rectangles ;. If we view R as an outer rectangle in
C (i.e., oo € int R), then R’ is obtained from R by filling in fjords, see Figure 17.

Lemma 5.6. For every € > 0 and A >, 1 the following holds. For R and R’
satisfying the above (A) and (B) we have:

W(R')
5.7 l-e< <l+e.
(5.7) € WR) +e€
Proof. Let us conformally replace R with a Euclidean rectangle, see §A.1.1; i.e. we
assume that R = [0,2] x [0,1]. Since every D, is separated from three sides of

R by a wide rectangle );, we obtain that D, has a Euclidean diameter less than
dmin{x, 1}, where § — 0 as A — oco. Therefore, the width of R’ is estimated from
below and above by the width of [§,2 — ] x [0,1] and of [0,z] x [§,1 — §]. This
implies (5.7). O

Lemma 5.7. For every € > 0 and A >, 1 the following holds.
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FIGURE 17. The (outer) rectangle R’ is obtained from R by fill-
ing fjords. If all the fjords are protected by wide rectangles Y;
(orange), i.e., fjords have narrow entrances, then W(R) is close to
W(R').

e if R and R’ satisfy (A) and (B, ), then:
(5.8) W(R) — O-(1) < W(R')
e if R and R’ satisfy (A) and (By,), then:
(5.9) W(R') < (1+e)W(R)
e if R and R’ satisfy (A) and (By,), then:
(5.10) W(R') < (1 +e)W(R) + O-(|S]).

Proof. Asin the proof of Lemma 5.6, we assume that R = [0, 2] x [0, 1] is a Euclidean
rectangle. We also assume that z = W(R) > 1 — the only relevant case.

Assume R, R’ satisfy (A) and (B,,). If T} is vertical, then diam D; < C for some
C, > 0. Therefore, W(R') is estimated from below by the width of [C,,z — C;] X
[0,1] and (5.8) follows.

Assume R, R’ satisfy (A) and (Bp). If T; is horizontal, then diam D; < ca,
where ca — 0 as A — oco. Therefore, W(R') is estimated from above by the width
of

R =10, 2] X [ca, 1 — cal

and (5.9) follows.
Assume R, R’ satisfy (A) and (Bj,). Consider the vertical foliation F’ of R'.

The width of curves in ' landing at U D; is O,(]S|). The width of the remaining

i€S
curves in F' is bounded by W(R"") because every remaining curve contains a
subcurve in R™Y connecting 9"R"Y. This implies (5.10). O

5.2.2. Well grounded intervals. Recall from §5.1.6 that a regular interval I™ C oz™
is well-grounded if its endpoints are not in S™"(Z™). Recall also that A is a
parameter from Assumption 6.

8’1,1R ah,]R/
p— — — — — . .- .I .I .- .- .-

C\R o C\R ]
BN | I | . . . I\ :l :l :l :l :| :|

811,()R ah,OR/
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Lemma 5.8. For every e > 0 and A >, 1 the following holds. For every pseudo-

Siegel disk 2™ and every pair of well-grounded intervals I™, J™ C 827", we have:
wi (1m,Jm)
lme<—2mt "t C oy,
Wi (I,J)
where I,J are the projections of I, J™ onto 0Z. Similarly, if u% u}m are the
outer harmonic measures of Z, Z™ rel oo, then
+ m
pz,, (1)
l-—e<Z——<l+e
py (1)

Proof. Let us enumerate all components of int zm \ Z as D;, i € I"™. Every
component D; is bounded by Z and a level n;, > m dam f;"*. By Assumption 6,
there is a wide rectangle

XM oc C\int(ZmHY),  ohar c ozt with O W(X) > A
separating the endpoints of ;' from the endpoints of I, J.

We denote by X' the rectangle obtained from X" by adding all bounded com-
ponents of C\ (ZU"X"*); i.e. we adjust the horizontal boundary of X" by adding

fjords so that "X C §Z.
Lemma 5.9. If A >5 1, then W(X}") > A/2 (independently of the number of
reqularizations).

Pmof We proceed by induction on n: we assume that the statement is verified for
all X"l with n; > n+ 1, and we will prove it for all Xm with n; = n.

Consider a rectangle X" and recall that X 7 is obtained from & by adding fjords
of level > n. Every such fjord is separated from int X* by a dam 6;-” with n; > n.

Consider the protection X " from Assumption 6. By construction X; o /{’ ™ and
hence )*( " oc )*( 7. By the induction assumption, W( ) > A2 >>5 1. Applying
Lemma 5.6 for the rectangles R = X 7 R’ = X" and protections {X '}, we obtain
that their widths are close; in particular, W(/{f?) > WX /2 > b)2. O

Lemma 5.8 now follows from Lemmas 5.6 and 5.9 by viewing C \ Z as a rectangle
with horizontal sides I, J. (]

5.2.3. Grounded intervals. A regular interval I"™ C Z™ is grounded if its endpoints
are not in S™(Z™). An interval I C 0Z is grounded rel Z™ if its projection
1™ C 9Z™ is grounded.

Lemma 5.10. For every e >0 and A 5. 1 the following holds. If
I,Jcoz  with dist(I,J) > 3min{|I|,|J|}

is a pair of grounded rel zm intervals, then

(5.11) W (L, J) = Os(1) < W (I, J™) < (L+ )W (1, J) + Os(1),

where I™, J™ C d0Z™ are the projections of I, J onto zm.
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Proof. We view @\Z as a rectangle R with horizontal sides I, J and we view @\Z m
as a rectangle R’ with horizontal sides I’, J'.

Consider a dam B/". By Assumption 3, A™*(5}") \2”+1 consists of 2 rectangles;
let the rectangle

AP C C\int 2", 9P AP = AP n ozt

be the closure of the connected component of A™(57) \ Z"t1 separating (i.e.,
protecting) ;' from CP,,. Since mod(A(5;')) > 6 we have W(A}) > 6.

As in the proof of Lemma 5.8, we define A" to be the rectangle obtained from
A? by adding all fjords between Z and 0" A?. Since 9" AT consists of a pair of
well-grounded intervals of 0Z™, the argument in Lemma 5.8 is applicable to A7

and shows that W (;lf) >W(AY)/(1+€) > 68/2 =7 because A >5 1.

Since A satisfy (B,) for R, R’, the first inequality in (5.11) follows from (5.8).
Below we will remove O(1) buffers from R, R’ so that the new rectangles R**", R™*™
satisfy (5.10) with |S| < 3.

Assume that |[I| < |J|. Let k be the level of I: the unique number satisfying
g[k > |I| > —lp41, where — is from Assumption 4. Consider dams 5] C I" U J".

We distinguish the following three cases.
Assume n > k. Since

dist(I", J") 2 3min{[I"|,|J"[} = 3[I"] > 2lepr > |[9" A7 ],

*
|0" X! is disjoint from either I™ or J™; i.e. X7 satisfy (Bj,) for R, R’.
Assume n = k. Then 5] C J™ because |5]'| > |I| by Assumption 4. There are

*
at most two level n = k dams g' such that the associated rectangles X'} intersect
*
I™. Such exceptional dams are protected A;', and we add these dams into S. The

*
remaining dams ;' are protected by X7
Assume n < k. Again ' C J". For every f;', we recognize disjoint genuine
subrectangles ;"™ X" € AT such that dist(9" X", 9hx™™) > |I| and

W(Ximinn), W(Ximout) Z A/?), La}inn,innJ c LahXin)OUtJ )

. * .
If I™ is disjoint from all 3" X" for n < k, then X" satisfy (Bj) and the lemma
follows from (5.10). Suppose that n is minimal so that for a dam 3;" the interval
I" intersects 9" X"™™"; note that the dam 37 is unique. Then

h,0 pn,out n,out
0" X, <I" < X;

and for every t > n, B; # 7, the rectangle X" separates I" from ﬂ;. By remov-
ing a Os(1)-buffer from R, R’ we can assume that the new rectangles R"*", R
do not cross X"°""; the new rectangles are disjoint from all Bi # B with t > k.
We add S} to S and apply (5.10). ]

5.2.4. Restrictions of rectangles. Consider a rectangles R C C \ Z and assume
that there is a connected graph G C R containing all vertices of R such that
G C C\int X(Z™), see (5.5). Then the restriction R"™ of R to the complement

of Z™ is the connected component of R \ int zm containing G. We view R™ as a
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rectangle with the same vertex set and the same orientation of sides as R. Observe
that every connected component of R \ R™ is separated from G by a restriction of

some F (2*( ). Therefore, Lemmas 5.9 and 5.6 imply that
W(R)
W(R™)

(5.12) l-e< <l+eg,

for a small € > 0, where A >, 1.

Remark 5.11 (Fixing A). From now on we assume that A > 1 is fized so that €
in Lemmas 5.8 and 5.10 and in (5.12) is small.

5.3. The geometry on shallow scales. On scale > [,,,, the geometry of 7m is
controlled by its core Z™:

Theorem 5.12. Consider two reqular intervals
I,JcCoazm such that — |1|, |J|, dist(I,J) > 1/dm41.
If dist(I, J) < min{|I|, |J|}, then

_ min{[/],[J]}

.1 I =5 log ——————= +1;
(5 3) W (7J) é Og dlSt(I,J) + I
otherwise

~ dist(7, J) !

5.14 W-(I,J) <s <log,+1> .

(519 () wmin {111, 71}

Moreover, there is a constant Ts > 1 such that if |I|, |J|, dist(I,J) > Ts/qm+1,
then (5.13) and (5.14) are independent of §: if dist(I, J) < min{|I|, |J|}, then

_ min{|7|, |J|}

1 1,J) = log U2 b 19lr g,
(5.15) W™(I,J) < log Gy b
otherwise

- dist(Z, .J) -1
(5.16 W(I,J) = (1og,+1> .
) win (], |71}

We refer to (5.15) and (5.16) as beau coarse-bounds, compare with Theorem 3.8.

Proof. For a channel o;; C 9Z™, let us denote by Wy, 5(a;) the width of curves
starting at «; and ending at 0Z™ \ (B;—1#;#05;). Similarly, ng,3(ﬁi) is the
width of curves starting at ; and ending at 0Z™ \ («; #8;#it1)-

Claim 1. For all channels and dams of 0Z™, we have:
Wanalo) =5l Wy (B) =5 L.
Proof. We have ng’g(ai) <s 1 because A™ (;) separates «; from 0Z™\(B;—1#a; #5;).
Similarly, W 5(8i) <6 1. Since
1
(ngg,(ai)) =Wym(Bi-1,8i) < Wym 3(Bi-1) 25 1,

where W,.,.(8i—1, ;) is the width of curves connecting §;—; and f;, we obtain
Wm 3(ai) <s 1. Similarly, ng(ﬂi) =5 1. O

Claim 2. If min{|I],[J]} =< dist(,]), then W _(I,J) =s 1.
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Proof. Let us define the projection I° of I onto Z™ to be the minimal concatena-
tion
QFH L1 # i1 # - - #BrH o1

(starting and ending with a channel) such that every component of I\ I° is in
the peninsula whose channel is in 7°. Similarly, J° is defined. Since dist(I,J) >
1/qm+1, the intervals I° and J° are separated by at least one dam (follows from
Assumption 4) and we still have min{|I°|,|J°|} =< dist(I°, J°) with respect to the
distance of 0Z™.

The case min{|I|, |J|}, dist(Z,J) < 1/qm+1 follows from Claim 1 by spiting in-
tervals into finitely many channels and dams. Let us assume that |I], |J|, dist({,J) >
50/ qm+1-

By Lemma A.9 that the set of curves in F = .FZ:m(L J) entering a peninsula
with a channel in 2™\ (I° U J°) is a buffer of 7> (I, J). By removing two Os(1)-
buffers from ]—Em (I,J), we obtain that curves in the new family F"°¥ do not enter
any peninsula whose channel is in 0Z™ \ (I° U J°) — such channels are separated
from I° U J° by a definite annulus. Let FN°V be the restriction of F"°¥ to the
family F,.(I°,J°) (see §A.1.5); i.e., FN°" consists of the first shortest subcurves
v of v € F**¥ such that 4" connects I° and J°. We have:

W5, (1, J) = O5(1) < W(F™) SW(FN) < W (1°,7°) < 1

by Proposition 3.3; i.e. W (I,J) <5 1. If A, B are the components of 827”\([, J),
then the above argument shows Wém (A, B) =5 1. Therefore, W%m (I,J)=<s1. O

The case dist(I, J) < min{|I|,|J|} follows from Claim 2 by applying the Splitting
Argument (Remark 2.6). By the same reason, the second part of the theorem follows
from the following claim:

Claim 3. There is a constant Ts > 50 such that if
|, |J|, dist(I,J) > Ts/qQm+1 and min{|I|, |J|} xs dist(I, J),
then W= (I,J) =< 1.

Proof. Assume Ty > 50 is sufficiently big and let us consider I° and J° as in the
proof of Claim 2. Let us enlarge I°, J° by adding \/f; unit intervals on both sides
of I°,J°; the new intervals I°, J° still satisfy min{|I°,|J°|} = dist(I°, J°).

We claim that by removing two 1-buffers from F (I,J) we obtain the fam-
ily F7°V so that curves in F"¥ do not enter any peninsula with a channel in
dZ™\ (I° U J°). Indeed, consider a channel ay, € AZ™ \ (I° U J°), and let A, B C
dZ™ be intervals of length /T attached to ay. Since we already established (5.13),
W2, (A, B) =5 log V/Ts > 1; removing a Og(1)-buffer from F,(A, B), we obtain
a family of curves Ry such that W(Ry) > 1 and Ry separates «ay from I° U J°.
The set of vertical curves in F- (I,J) that intersect « form a buffer of R by
Lemma A.9; this buffer has width less than 1 by W(R}) > 1.

As in the proof of Claim 2, we now define FNV to be the restriction of FmeV
to the family F,.(I°,J°) (see §A.1.5); i.e., F " consists of the first shortest
subcurves 7' of v € F™V such that 7/ connects I° and J°. We have:

Wz (1,J) = O(1) S W(F'™) <W(FNY) < Wy (1°,J°) < 1
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-1
by Theorem 3.8; i.e. W5, (I,J) < 1. And similarly, (ng (1, J)) =W, (A,B) =
1, where A, B are the components of oz™ \ (1, J). O

O

5.3.1. Hyperbolic geodesics in Z™. Let us extend continuously the distance function
dist, 5. (, ) specified in (5.1) to all points of 9Z™. Given two sets X, Y intersecting

82’”, we define the 8Z™-distance between X,Y tobedist,z,, (X N 82’", Yn 827") .

Lemma 5.13. There is an M = M(8) > 1 such that the following properties hold
for every hyperbolic geodesic v C zm connecting x,y € YA
(1) If the dZ™-distance from {x,y} to A™(BP) is at least ML, then v is
disjoint A™(81).
(A1) Similarly, if the Z™-distance from {x,y} to A™™ (o) is at least M1,,, then
v is disjoint A™™ (o).
Let v = (f%).(v) C U(Zm) be the image of v under (5.4), and assume that the
endpoints of v, are in Uy i, Uy — the components of

(5.17) {A(a?)\ A(af), ABP)\ABY) [ni},  see §5.1.7,

(1) If a component U’ of (5.17) has Z™-distance at least M1, to Uy UU, ,
then vy is disjoint from U’.

Proof. Choose a sufficiently big M = M (8) and assume that A™(37) has distance
at least Ml,,4+1 to {z,y}. By Theorem 5.12, there is a sufficiently wide geodesic
rectangle R C Z™ with "R C 8Z™ such that "R separates A(87) N OZ™ from
{z,y} in oZ™. By removing 1/4 buffers from R, we obtain a rectangle R"*" that
separates A™ (87 from ~. This proves (I) and (II) is similar.

Property (ITT) follow from (I) and (IT) by applying f~*. O

5.4. The innez geometry of peninsulas. For a level n > m peninsula B3 of z"
with 9%B C 0Z™ and intervals I,J C 9°P, we denote by Fy (1, J) the family of
curves in B connecting I and J. We write Wy, (1, J) :== W(Fy (1, J)).

By a grounded pair of intervals I, J C YA ™ we mean a pair of disjoint grounded
intervals §5.2.3.

Lemma 5.14. Let I,J C 0Z™ be a grounded pair of intervals, and assume that I
is within a level k > m peninsula B of Z™. Set J"*V = JNOP. Then I“B C 0Z™
and

(5.18) Wy (L, J") = W, (1,J°) = O5(1) = W3, (I,.]) — Os(1).

Zk+1
If " £ 0, then I, J°Y is a grounded pair of Z* 1.

Proof. Since the endpoints of I are grounded, 9° is non in any S™ buffer of level
< k; this implies that 9“P C 0Z™. Let ay be the channel of PB. If J*V = 0§,
then every curve in F~ (I,J) crosses A™(ay,) before intersecting ay; i.e. all parts
of (5.18) are equal to Os(1) and the lemma follows.

If J*Y £ @, then J"V is a grounded interval of Z*+1 because the endpoints of
« are not in any S™-buffers of level > k 4 1. Since I C 9°F \ S (), the width
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of curves in 7 (I,J) that are not in B is Os(1) because every such curve crosses
A™ (o). This implies the lemma. O

The following lemma combined with Theorem 5.12 allows us to inductively cal-
culate the width between grounded intervals.

Lemma 5.15. Let I,J C 0Z™ be a grounded pair with ||I,.J| < 1/2. Assume that
both I,J intersect a level m peninsula B = P(ai"). Set

" = IN0%R, I’ = I\(B uI™Y)  J*V = Jno*B, J = J\(J"VUBM).
Then:

WanlLd) =W (I ) Wa (I, ) +05(1)
=W, (L T)+ W, (I, J%) 4+ 0s(1)

Proof. The intervals I"*" and J"*" are grounded intervals of Z™+1 because the
endpoints y;_1,x; of " are not in any S™"-buffer of level > m + 1. We need to
show that the width of the set F’ of curves in Fon 1 ) intersecting o is Os(1).

Let A be the set of curves in 7' that are in A" (o). Note that W(F'\A) = Os(1)
because every curve in F' \ A crosses A™"(a]").
Assume A # (). This is only possible if
moU(S™ (y_)NOZ™) T and  (S™(2)NOZ™)UBT C J
because I, J are grounded. Therefore, every curve in A has a subcurve connecting
Syt and S;°". By Assumption 5, we obtain W(A) = Os(1). O

1

5.5. Localization and Squeezing lemmas. We are now ready to establish Lo-
calization and Squeezing Properties for 02", compare with §2.2.1 and §2.2.2.
See §2.2.1 for the notion of an innermost subpair.

Localization Lemma 5.16. For every A > 1 the following holds. If I,J C YA
is a grounded pair with ||I,J]|] < 1 — %min{|[|, |J|}, then there is an innermost
subpair

OV with IV C T, JMY C T
satisfying

1] 77 < 5 mind(T], 171}

such that, up to Os(log \), the width of F~(I,J) is contained in F~ (1", J"¥):
(5.19) WT(INIT™Y, J)+ W™ (I, J\ J*7) = Os(log A).

Moreover, we can assume that max{|I"°"|, |J"V|} < 2min{|I"V|, |J"V|}. The
subpair 1"V, J"Y s grounded rel Z™, where n > m is the deepest level such that
Inew Jnew C aZ\n

SqueezingALemma 5.17. There is a constant Cs such that the following holds.
If I,J C 0Z™ is a grounded pair of intervals with ||I,J|| < 1/2 such that

W™(I,J) > Cslog A, A>2,

1
then dist(I, J) < X min{|I|,|J|}.
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Proof of Lemmas 5.16 and 5.17. By splitting I, J into shorter grounded intervals,
we can assume that ||, J]]| < 1/2.

Let L C |I,J]| be the shortest complementary interval between I and J. The
case dist(1, J) = |L| > [, follows from Theorem 5.12: we can find points a, b € CP,,
so that the right interval 1"V of I\ {a} and the left interval J"V of J\ {b} satisfy
the conclusion of Lemma 5.16. (The intervals "%, J"°¥ are grounded because the
set CP,, is away from S™"-buffers.)

Let m; > m be the smallest regularization level such that ||, |J] > ly,;. If m <
m, then by Lemma 5.14, up to Os(1) the width of Fom (I,J)isin Fom; (I7eY ) Jgrewy;

set [y = 1"V, J; = J"V C 0Z™ N oZ™mi. It m = mj, set Iy =1, Jp :=J. Note
that L is still the shortest complementary interval between I, J;.

The case dist([1,J1) = |L| > l,,,, follows again from Theorem 5.12. Otherwise,
as in Lemma 5.15, we recognize subintervals I7, [}V C I; and JP°V,J; C J;. Up
to Os(1), the family F_,. (I1,J1) is F ., (I1, J1) UF . 0 (1177, J7%). Applying
Theorem 5.12 to F,, (I7,J7), we either conclude the lemma if min{|I}|,|J]|} >

Zm;
A|L| or we reduce the problem to the pair Iy = I{°V, Jy = JPV with a new
A2 < A/2 because |I3],|J2] < 2, /5 by Assumption 4. Proceeding by induction,
we conclude the lemma with at most logy A steps. (I

5.6. Grounded subintervals. As before, we exteild continuously the distance
function distz,, specified in (5.1) to all points of 0Z™. Then F, (1) and Wy (I)
are well defined for all intervals I C 9Z™.

Given an interval J C 0Z, we define:

o JORND 7 he the biggest grounded interval in J; and

e J&4 5 J be the smallest grounded interval containing J.
We allow J&4 = () or JERND — g7

Lemma 5.18 (X vs X&™Y). Consider a family F(I,.J), where I,.J C 0Z™. Let
A, B C 0Z™ be two complementary intervals to I, J.

(i) Ifdist(I,.J) > Ly, then for every interval X C OZ™, there are at most Os(1)
curves in F(I,.J) intersecting X \ X&™9,

(ii) If |I|,|J], |A| > ln, then for every interval X C A, there are at most Og(1)
curves in F(I,J) intersecting X \ X&™9,

Proof. Consider Case (i). Every component (out of at most 2) of X \ X&™4 is
within $™7(3) for a dam B C L. Since |Al,|B| > I, the color A°™(f) is disjoint
(and hence separate S™%(3)) from either I or .J. The lemma now follows from
mod A°"(3) > 4.

Case (ii) follows from a similar argument. Every component of X \ X&™¢ is
within S (). Since |I|,]J|,|A| > L, the annulus A°**(3) separates S™ () from
either I or J. g

5.7. Pseudo-bubbles. A bubble Z, is the closure of a connected component of
f~™(Z)\ Z. The generation of Z, is the minimal k such that f*(Z,) = Z; i.e.
f¥: Zy — Z is the first landing. Given a pseudo-Siegel disk Z™, the pseudo-bubble

i~

Zy is the closure of the connected component of f*k(int Zm) containing int Z,.

In other words, Zg is obtained from Z, by adding the lifts of all reclaimed fjords
(components of Z™ \ Z) along f*: Z, — Z.
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Channels, dams, collars A™, A°"* extra protections X7 are defined for Z; as
pullbacks of the corresponding objects along f*: Z¢ — Z™. For instance, X(zg)
is the pullback of X(Z™), see (5.5), under f*. The length of an interval I C 0Z,
is the length of its image f*(I) C 8Z™. All results of this section are valid for
pseudo-bubbles. In particular, the results concerning the inner geometry of zm
(such as Theorem 5.12, Lemmas 5.16 and 5.17) are obtained by identifying Zz with
7™ via f¥. The results concerning the outer geometry of Z\[ (see §5.2) are obtained
by repeating the arguments.

6. SNAKES

Consider the family F7(I,J) = F] 5, (I,J) as in §2.5. Our principal result of

the section is the following generalization of Lemma 2.12:

Snake Lemma 6.1. Let I,J C oZ™ be a pair of grounded intervals, and let L be
a complementary interval between I,J. Normalize I < L < J and set

K =Wy(I,J)—=WT*(I,J).
Assume that [N| > 1., where N = 9Z™\ (I UL U J) is the second complementary

interval between I and J.
If K >4 log A with A > 2, then there are grounded intervals

dist(I, .J dist(I1, J

6.1) J,LicL, |h]< y | < % I<Ji<Ii<J
such that
(6.2) WZG(I,JQEBWE})(ILJ) > K — Os(log M),
where Ly, Ly, C L are the intervals between I, J; and Iy, J respectively:

Fr, (1, 1) Fr, (11, J)

I Ji I J

Note that (6.2) implies
(6.3) max{W; (I,J1),W;, (I1,J)} > 2K — Os(log \).

Corollary 6.2. Under the assumption of Lemma 6.1, there is an interval I™V C
L® C 07 grounded rel Z™ such that W;'(Inew) = K, where L® is the projection of
L onto 0Z.

6.0.1. Outline and motivation of the section. The proof of Lemma 6.1 repeats the
argument of Lemma 2.12 (the Snake Lemma for Z) with an additional input from
Lemma 6.4. More precisely, the Series Decomposition §2.4 yields families 77 (1, J;)
and F7, (I1,J) shown on the figure in Lemma 6.1. By Localization Lemma 5.16,
we can assume that |Jy],|/1| are small compared with dist(Z, J;), dist(I1, J) respec-
tively. And by Lemma 6.4, we can assume that Ji,[; are grounded rel 2’“; ie.,
Snake Lemma 6.1 can be iterated. R

This allows to trade families entering int Z™ into outer families (Corollary 6.2).

Indeed, assuming that Wy (I,.J1) > 2K — Os(log ), either Wz'a (I,J1) > K/3 or
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3
repeating the Snake Lemma we find Iy, .Jo with Wy (Is, J2) > §K enlarging the

family. Since Z™Mis a non-uniformly qc disk, the process eventually stops.

For applications, we will need several variations of the Snake Lemma. In §6.4
we state the Snake Lemma “with toll barriers”: if F7(I,.J) contains a lamination
R submerging into L at least n times, then 2K in (6.3) can be replaced by nk.
In §6.13 we state the Sneaking Lemma when F°(I,J) “sneaks” through a wide
outer rectangle R, see Figure 19 for illustration. Both versions will be used in
Snake-Lair Lemma 8.6 to amplify the width of degeneration.

6.1. Proof of Snake Lemma 6.1. We will prove the Snake Lemma in §6.1.2 af-
ter introducing an auxiliary subfamily F7(I,J) C F7(I,J). The family F7(I,J)
consists of curves omitting dams (and some space around them) that have an end-
point in L. We will show that Wi (I,J) — Wi (I,J) = Os(1) and that at most
Os(1)-curves in Fj(I,.J) intersects X \ X&™4 for every interval X C L.

6.1.1. F*-family. Let us fix an interval L C dZ™. For a dam o = i C Z™ with
laN L] > 1 (i.e., at least one of the endpoints of « is in L), define
o o =qif | LE| = 2;
e a*L" to be the connected component of A" (a)\ L¢ intersecting int Z™ if
|an L¢| =1 (i.e., this connected component is attached to (L¢)7).
We define

(LC)* = filling in of |[L°U U o
lanLe|>1

We remark that if [,,,, , < |L| < l,,, where the m; are level of regularizations, then
zm \ (LC)* is within the level m; peninsula containing L on its boundary.

Finally, we define F7(I,J) to be the the set of curves in F7 (I, J) that are in
C\int(L)*.
Lemma 6.3 (Trading F° into F*). Under the assumption of Lemma 6.1, the family
Fr(I,J)\ F*(I,J) contains a rectangle R such that

W(R) = WE(L J) - W+(Ia J) - 05(1)

Proof. Write K == W5 (I,J) — W*(I,J). By Lemma 2.9, F7(I,J) contains a
rectangle R submerging into Z™ with W(R) = K—0O(1). Let R™" be the rectangle
obtained by removing the 1/4 innermost buffer (attached to (L¢)7) from R. We
claim that R ¢ C\ (Lc)*.

Assume first that |o N L°| = 2. Since o = o*" is attached to (L)~ vertical
curves in R intersecting « form a buffer of R, see Lemma A.9. Since curves in this
buffer cross A™" after entering int zm through L, the width of the buffer is < 1/§.

Assume now that |@NL¢| = 1. We claim that A°**(«) is disjoint from either I or
J. The claim will imply that the width of the buffer formed by curves intersecting
oL (these curves form a buffer of R by Lemma A.9) is < 1/8 because a*L" is
separated from either I or J by A°"(«).

Proof of the claim. Write @ = o = [yn—1,%y] as in Figure 16 and assume that
Yn_1 € LS the opposite case is analogous.
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Suppose first that x,, € int Z". Then the unique point z in 0“B(a]') NCP,, is an
endpoint of a dam 8% C 7™ for k < n, see §5.1.5. Therefore, A°™*(al") N o7™
Sinn - Since I,.J are grounded, S™™ (and hence A°"*(al)) is disjoint from either T
or J.

Suppose now that x,, € L. Since L is grounded, it also contains 5] — the dam
after aj'. We obtain that §;' separates S, from J while N separates S,, , from

J because |N| > I,. Therefore, A°"*(a?) separates A () from .J. O
U

Lemma 6.4 (X vs X&), Consider a family F;(I,J) from Lemma 6.3. Then
for every interval X C L, there are at most Os(1) curves in Fi(I,J) intersecting
X \ Xgrnd‘

Combined with Lemma 6.3, there are at most Os(1) curves in F°(I, J) intersecting
X \ Xgrnd.

Proof. Let us start the proof with the following two properties.

Claim 1. Let a be a channel such that either both endpoints of « are in L or one
of the endpoints of o is in L and the second endpoint is in int Z™. Then at most
Os(1) curves in Fi(I,J) intersect A" ().

Proof of the claim. Assume first that both endpoints of « are in L. Then we have
0°B(a) C L. Since L is grounded, it also contains two dams attached to «. There-
fore, A°U* (@) is disjoint from I U J. The claim now follows from mod A°"*(«) > 4.

Assume that one of the endpoints of « is in int Z. Then the unique point z in
2°PB(a’) N CP,, is an endpoint of a dam g* ¢ 0Z™ for k < n, see §5.1.5. We have
A (@) NOZ™ C S and A°™ () separates A™ (av) from I, J. O

Claim 2. Let 8 C L be a dam. Then at most Os(1) curves in Fi(I,J) intersect
Slnn (ﬂ).

Proof of the claim. Since L is grounded, A™"(j3) separates 3 from I U.J; thus at
most Og (1) curves in F5 (I, J) intersect 3. Write 8 = B7; then S™(8) C S™(a?)U
S"™ (g 1). By Lemma 6.3 and Claim 2, at most Os(1) curves in F7 (I, J) intersect
Shn () u STt (el ). O

The lemma now follows from Claim 2 because every component (out of at most
2) of X \ X&™9 is within S™ () for a dam 8 C L. O

6.1.2. Proof of Snake Lemma 6.1. Let R C Fj(I,J)\ F° = (I,J) with W(R) =
K — Os(1) be a rectangle (a snake) from Lemma 6.3 realizing K. Applying Se-
ries Decomposition §2.4 to R, we obtain that F(R) consequently overflows the
laminations

(6.4) Fa CF(L,Ja), T CF (Joydv), FoCF°(I,J),

where J,, I, C L. Let J&™M9, Ifmd be the biggest grounded intervals in J,, Iy,
see §5.6. By Lemma 6.4, the width of vertical curves in R intersecting (J, \ J(%md) U
(I, \ I, frnd) is Os(1); removing these curves from R and their restrictions from the
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laminations in (6.4), we obtain that the new rectangle R"", W(R"¥) > K —0Os(1)
such that F(R"Y) consequently overflows

(6.5) Fyo C FO(I,JE™), T C Fo(JEmd I5™),  Fpev < Fo(Ip, ).

a

By Localization and Squeezing Lemmas 5.16, 5.17, J&™9, Ifmd contains an in-
nermost pair Jp, I; such that

1 n n
(L7 Il < o A1 1)

and up to Os(log A\)-width the family F~(J,, Ip) is in F~ (J1,11):
(6.6) W= (Ja\ T, L) + W™ (Ja, I\ 1) =Os(logA).

Let RN®Y be the lamination obtained from R™" by removing all v € F(R) with
&g F=(Ji, 1) or v ¢ F~(J1,I1). Then WRNY) = K — Os(log \).

Applying the Series Decomposition §2.4 to RN, we obtain that RNV conse-
quently overflows

(67) ]:(Il\Iew C ]_-O(I7 J(IZ\IeW)’ I-\New C ]_-—(JCIL\Iew7Ig\lew>7 ]_-é\lew c ]:O(Ill;IeW,J),

where JN € Jy, TNV € Iy and [JNY, INOY| C [Jy, T, Set Jp = (JNew)ER

and Iy = (I})\Iew)gmd. By Lemma 6.4, the width of curves in RN®" intersecting
JNeW N\ Jp or IN®V\ I is at most Os(1). Removing these curves from RN" and

their restrictions from the laminations in (6.7), we obtain that the new RNEW
consequently overflows

(6.8) FNEW © Fo(I,J), TNEW € F(Jo, 1), FYEW ¢ Fo(Iy,J),
where | Ja, Iz] C |J1,I1]. Therefore, (6.6) and (6.8) imply the lemma.

Remark 6.5. Let us summarize the steps in the proof of Lemma 6.1:

) first we apply Series Decomposition §2.4 to F(R), see (6.4);
) then we apply Lemma 6.4 to obtain grounded intervals J&™9, If;md, see (6.5);

) then we reapply the Series Decomposition §2.4, see (6.7);

(a
(b

. . rnd rnd |
((;) then we apply Localization Lemma 5.16 to J&™¢, IF™M;
(e) finally, we reapply Lemma 6.4 to obtain required (6.8).

In Steps (b), (c), (e) we remove at most Ogs(log A) curves from R.
6.1.3. Submerging laminations. We can refine the Snake Lemma as follows:

Lemma 6.6. Under the assumptions of Lemma 6.1, consider a lamination R C

Fy (L, )\FH(I,J) with W(R) 5 log \. Then there are intervals Jy, I satisfying

(6.1) and there are laminations R, C Fr,(I,J1), Ry C Fr,(I1,J) such that
W(Ra) @ W(Ry) =2 W(R) — Os(log A),

and such that R, Ry are restrictions of sublaminations of R.

Proof. By Lemma 6.3, we can remove Og(1) buffers from R so that the new lam-
ination R*Y is in F7 (I, J). We apply the argument of §6.1.2 to R"*" until (6.8),
and then we set R, = FNEW and Ry = Fo oW, (]

Remark 6.7. The condition |N| > [,,, in Snake Lemmas 6.1 6.6 can be omitted if
the lamination R in Lemma 6.6 has the following property:
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(X) for every interval X C 8Z;, there are at most Os(1) wertical curves in R
intersecting X \ X&™9,
In the proof, Property (X) substitutes Lemma 6.4.

6.2. Trading W into W™. In thus subsection we will prove Corollary 6.2 as well
as several of its variations.

Proof of Corollary 6.2. Snake Lemma 6.1 implies (6.3). Assume that W7 (1, J;) >
2K — Os(log A); the second case is analogous.

1
If WH(I,Jy) > §K’ then we set I"°Y = J; to be the projections of J; onto 0Z.
By Lemma 5.10 we have
WY (1Y) > W (1%, J7) > WS (I, 1) — O5(1) = K.

5
If Wzra (I,J1) < gK, then applying Snake Lemma 6.1 again, we find I, Jo C L
with 3 1
WEQ(IQ,JQ) > §K and min{\]2|, |J2|} < Xdist(lg, J2>

1 1
The case Wt (I, J5) > gK is treated as above. If W (I, Jp) < gK, then
applying Snake Lemma 6.1 again, we find I3, J3 C L with

2
3 1
WZB (13, J3) > (2) K and min{|Ig|, |J3‘} < X diSt(Ig, Jg),

ie, Wi (In,Jn) > (3/2)”K growth exponentially fast. Since Z™isa non-uniformly

1
qc disk, the process eventually stops: we obtain W (I,,, J,,) > §K for some n and

1
grounded intervals I,,, J,, with min{|L,|, |Jn|} < 3 dist(I, J,). Lemma 5.10 allows
to replace I, J, with their projections onto 0Z. ([l

6.2.1. Scale > 1,,. Trading W into W7 is more straightforward if intervals have
length > [,,, thanks to Lemma 5.18.

Lemma 6.8. Let I,L C 07 be disjoint intervals such that
1
[I| > G, dist(I, L) > max{l,+1, |I|/A},  |L| > 3 |L¢] < Al

K=W(,L)-WH(I,L) >s 1, where A > 3.
Then there is an interval I C L°\ I C 0Z grounded rel Z™ such that

1
|1neW|<X|I| and WY (™) - K.

Proof. Let R be the vertical family of F(I, L), see §A.1.6. By Lemma 5.18, Prop-
erty (X) in Remark 6.7 holds for R.

Let I,L be slight enlargements of 8™, L& such that every interval in I\
Iemd, E\Lgmd has length e

o~ ~

with I c T c T and L C L C L such that there is a restriction G C f(er, E+) of a
sublamination of R satisfying

« W(R|G) = W(I, L) - O(C) = K — Os(log \);
e G is disjoint from the central arc in F~ (I, L).

|I|. Applying Lemma 2.8, we construct intervals f, L
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Here C' = Os(log A) by Lemmas 5.16 and 5.18.

Let A, B be the complementary intervals to f, E, and let I,, I, be two intervals
(possibly empty) in T \ I. Similarly, let L,, L, be two intervals (possibly empty) in
L\ L. Since W(I, L) — W*(I, L) = K, there are two possibilities:

(I) either G contains a lamination H in F*(I,,L) U F*(I,,L) UF* (I, L,) U
FH(I, Ly) with W(R[H) > K/3, see §A.1.9;

(IT) or G contains a lamination H intersecting A U B with W(R|H) > K/3,
where A, B are two intervals of 2™ \ (fU E)

Case (I) follows from Lemma 5.10 and Property (X) by defining 1™V to be the
projection of either I8, or Ifmd, or L& or L%md onto 0Z.

Consider Case (II). Let 74 be the lamination of curves in #H intersecting A
before intersecting B. Similar, Hp C H consists of curves intersecting B before
A. We have H = Ha U Hp. Below we assume that W(H4) > K/6; the case
W(Hp) > K/6 is analogous.

Since H 4 is disjoint from the central arc in F~ (I, J), we can restrict H4 to the
lamination P in Fj (:f, Lu B); i.e., P consists of the first shortest subcurve ' of
~ € H 4 such that 4" connects Tt to (jU B)+.

Because of Property (X), Snake Lemma 6.1 is applicable to P, see Remark 6.7.
Therefore, there are grounded intervals J; C A, L, such that W7 (f emd 1) = K
for and |J;| < Adist(Jy, 1¥%). Corollary 6.2 applied to F7.(I,J1) = K finishes
the proof. 0

6.3. Rectangles crossing pseudo-bubbles. Consider a rectangle R and a closed
topological disk D such that 8"R c C \ D. Assume that all vertical curves in R
intersect D. We denote by z,y C &D the first intersections of 8"*R, d""*R with D;
and let I = [z,y] C 0D be an interval with endpoints x,y. We say that R crosses
D through I if for every v € F(R)

e the first intersection of v with D is in I; and
e the last intersection of v with D isin I¢ = 9D \ I.

Lemma 6.9. Assume that a rectangle R, W(R) = K crosses a pseudo-bubble Z\g
(see §5.7) through I C 8Z,. Assume also that either O"'R or 'R is disjoint
from X(Eg), see (5.5). Then one of the following holds for every \ > 2.
(I) There is a grounded interval B C [(1+ A" )]\ I C 8Zy and there is
a sublamination Q C F(R) with W(Q) = K — Os(log\) such that the
restriction (see §A.1.5) Q of Q to the family from 8D to "R starts in B.
(II) There is a grounded interval B C [(1+X"?)I] \ I C 8Z; and there is a
lamination Q C F* (B, [(AB)‘] gmd) such that W(Q) = K — Os(log \) and
such that Q is a restriction (see §A.1.5) of a sublaminatrion of R.

Proof. Since either 9"°R or ™! R is disjoint from X(Zg)7 we have

(X) for every interval X C 8Z,, there are at most Os(1) vertical curves in R
intersecting X \ X&™md,

(This is Property (X) of Remark 6.7.) Write

grnd :| grnd

T=[(1+1)1] and N = [0Z,\ (1+ A7)
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Let 7"V be the lamination obtained from F(R) by removing all v € F(R) that
have a subarc in Z, connecting I and I¢. By Property (X), the width of removed
curves is bounded by F~(18™4, N), and by Squeezing Lemma 5.17, F~ (I#™4 N) =
Os(log A). Therefore, W(F"V) > K — Os(log A).
Following notations of §2.4, for every v € F*°V, let
e i C Zy be the last subarc of v connecting I to I\ I; and
e v, be the subarc of v after .

We set
Ty = {7 |y € F*} and Fp:={y|vye€Fv},

where W(R\}N‘b) > K — Os(log \) following conventions of §A.1.9. Let 1™ C T be
the subinterval bounded by the leftmost and rightmost endpoints of curves in I'y.
And let Fp be the restriction (see §A.1.5) of Fp, to the family of curves from ™%

to O™1R. Since I, is a lamination, every curve in JF, starts in [fnew \ I}

If a sufficient part of 7 is outside of Z, then we obtain Case (I) of the lemma
(we apply Property (X) to construct a grounded interval B C 1"V \ I).

Assume converse. Then using Property (X) we find a grounded interval J C
1"V \ I and a sublamination H of F, with W(R|H) = K — Os(log \) such that
curves in H start in J* and every v € H intersects 97, \ J.

Let Hy be the suAblamination of H consisting of v € H such that the first inter-
section of v with 8Z, \ J is in [(AJ)]¥™. And we set Hy == H \ H1.

If W(R|H1) > W(R|Hz), then the Case (II) of the lemma is obtained by re-
stricting H; to the family F* (J, [(AT)] gmd).

Assume that W(R|H1) < W(R|Hz). Let J,, Jp be the connected components of
(AJ)yeEmd\ gemd with J, < J < J, in A\J. Let

e 7, be the set of curves in Hs intersecting J, before intersecting (J,)¢; and
e H; be the set of curves in Hs intersecting Jj, before intersecting (Jp)€.
By Property (X), at most Os(1) curves in R intersect (AJ) \ (AJ)®™d before
intersecting (AJ)&™4 U (M\J)¢. Therefore, either W(R|H,) = K — Os(log\) or
W(R|Hp) = K — Os(log M\). Below we will assume that W(R|H;) = K — Os(log \);
the case of H, is analogous.

Let p € Hp be the curve with the rightmost starting point in J, let z be the first
intersection of p with Jy, and let J' C J, be the subinterval of J, between J and z.
Following notations of §2.4, for every v € Hy, let

e v% C Z; be the first subarc of 5 connecting J’ to (J U J')¢; and
e 7, be the subarc of v before 'yff.
We set
To={vg[veH} and P:={y |7€Hs},
where W(R|ﬁ) = K — Os(log \). Let N C J' be the subinterval bounded by the
leftmost starting point of curves in T', and z. We now apply Steps (b), (c), (d), (e)

(see Remark 6.5) of §6.1.2, where Property (X) substitutes Lemma 6.4, to localize
N and to contract a lamination

1
QC F(JN), |N|< gy dist(J.N),  W(R|Q) = K — O5(log\).
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Applying iteratively Lemma 6.6 and repeating the argument of Corollary 6.2, we
can replace Q with a required @"°V in the complement of int Z,. O

6.4. Snakes with barriers. Consider a grounded pair I,J C Z™ with |J| > 1/2.
Let A, B be two complementary intervals between I and J. We assume that the
intervals are clockwise oriented as A < I < B < J. R
Let £1,4s,...,¢, be pairwise disjoint simple arcs in C\ Z™ such that every ¢;
connects a; € A and b; € B with the orientation a; < a;_1 < b;_1 < b; for every
i > 1. We say that {1, ..., ¢, are barriers for a lamination R C F(I,J) if no curves
n

in R intersect U 4;.
i=1
We say that a curve v € R

o skips under [a;,a;—1] if 702 ™ contains a subcurve connecting two different
components of A\ [a;,a;—1];

o skips under [b;_1,b;] if yNZ™ contains a subcurve connecting two different
components of B\ [b;_1, b;];

o skips under [a;, a;—1]U[bi—1, b;] if v skips under [a;, a;—1] or under [b;_1, b;].

Definition 6.10 (Toll barriers). Let R C F(I,J) be a lamination with barriers
ly,..., ¢, as above, where I,J C Z™ is a grounded pair with |J| > 1/2. Then

by, ..., ¢, are toll barriers for R if for all 4, no curves in R skip under [a;,a;—1] U
[bi—1,bs].

Lemma 6.11. For every A\, x > 1 the following holds. Assume that {1, ..., L, are
barriers for a lamination R C F(I,J), where I,J C 0Z is a grounded pair with
|J| > 1/2. Assume moreover, that

141 18]
117 |1
where A, B are the complementary intervals between I and J as above.
Then either
o dist, s, (a;,a;1) < |I|/A or distyz,, (b, bi—1) < |I|/\ for some i with re-

1/x < and  |A[,|B| > 2l,,

spect to any extension of distyz,.( , ) from regular to all points;
o or after removing Oy p 5(log A)-curves from R, we obtain a lamination
RYY for which £1, ..., L, are toll barriers.

Let us say that a curve v € R skip under [a;+1, a;] U [bs, biy1] if v intersects the
interval {z | b;11 < 2z < a;41} D J before intersecting [a;41,a;] U [b;, bit1].

Proof. If the width of curves skipping under [a;41,a;] or under [b;, b;1] is at least
C >5 logA, then Squeezing Lemma 5.17 applied to A\ [aiv1,as]“FNP or to
B\[b;, bi1] NP implies that either dist, 3, (a;, a;—1) < |I|/X or dist, .. (b, bi—1) <
7]/ holds. O

Snake Lemma 6.12 (with toll barriers). Suppose that a lamination R C F(I,J)

hasn > 3 toll barriers, where I, J C Z™ is a grounded pair with |J| > 1/2. Assume

also that |A|, |B| > 2l,,, where A, B are the complementary intervals between I, .J.
Then for every X\ > 1 there is an interval T C 0Z grounded rel Z™ such that

WH(T) = nW(R) = Os n(log A).
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FIGURE 18. An example of a lamination (orange) with two toll
barriers (black).

We will give a proof of Lemma 6.12 after introducing the Series Decomposition
for R.

6.4.1. Series Decomposition for laminations with tall barriers. The construction
below is an adaptation of Series Decomposition §2.4. We assume that I = [ag, bo]
and J = [by11,Gny1] so that apiq < ap, < -+ <ap < by < --+ < bpyr. Consider a
curve v: [0,1] = C in R. For i € {2,3...,n}, we will define below:

° Wff the first passage of v under {a;, b;};

o v the last passage of v under {a;_1,b;_1} before vff;
e ; the subcurve of v between 'yffl and vg I

Then we will specify the laminations F; and T';.
Definition of ”yidf, ’yflil, ;. Set:

o y(t;) € Z™ to be the first intersection of ~v with [a;41,a;] U [bs, bit1];

o ~(t;) € 9Z™ to be the last before t; intersection of v with [a;, a; 1] U
[bifla bi];

e 74 to be the subcurve 7 | [t;, #];

o y(7i—1) € 0Z™ to be the last intersection of v with [a;—1,a;—2]U[bi—2, b;—1]
before t;;

o y(Ti_1) € 0Z™ to be the first after 7,_; intersection of ~ with [a;, a;—1] U
[bi—1,bi];

e v to be the subcurve v | [1;_1, 7;_1];

e 7; is the subcurve of v between 'yflil and %df .

By construction, ~;
e is disjoint from ¢_; U ¢;;
e can only submerge into int zm thorough [a;, a;—1] U [b;—1,b;]; and
e can not travel between [a;, a;—1] and [b;—1, ;] within zm.

Laminations I', =T',, ULy, and F; = F,, U Fp,. Set

Fi= {vi|vyeR} and T;:= {fyff,yf” | fyR} .
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Every curve § € TI'; is either under a; or under b; depending on whether [
connects [a;, a;—1] to [a;+1,a;] or [bi—1,b;] to [b;, bir1]. Let T'y,, Ty, be the sublami-
nations of I'; consisting of curves that are below a; and b; respectively. One of the
I'y,,I'p, can be empty.

Similarly, we decompose F; = ]-N'al U ]-N'a as follows:

° .Fa consists of curves ; € f such that Wdf el,,; and

e F,, consists of curves ; € € F; such that ydf €Ty,

For every a; and b; set B,, and B, to be the lowest curves in I',, and I',, and
specify the following intervals:

Ja; to be between the right endpoint of 5,, and aj,
1,, to be between the left endpoint of 5,, and a;,
Jp, to be between the left endpoint of 55, and b;,
Iy, to be between the right endpoint of 5, and b;.
If Ty, (vesp I'y,) is empty, then J,,, Iy, (resp Jy,,Ip,) are trivial.
By construction every curve in .}’?z = fai U ]?bj connects I, , Uy, | to J,, UJds,
and is disjoint from barriers ¢;_1,¢; and arcs Ba, ., Bb;_y s Bass Bb; -
We define

(6'9) faz c ]:O( ai» I_Iai717JbiJ) and ‘Fb'i C ‘FO(I_Jai7Ibi—1J7Jb'i)

to be the restrictions of fa”fbi to the associated families; i.e.:

e F,, consists of the first shortest subcurves in j-:a connecting |I4,_,, Js, ]

and Jg,;
e Fp, consists of the first shortest subcurves in F3, connecting |Jq,, Ip,_, |
and Jbi.
Series Decomposition. We obtain that R consistently overflows
(6.10) Ty =Ty, Uy, Fo=Fo, UFby, ooy Fn="Fa, UFp,, I'n=T, UTs,

6.4.2. Proof of Lemma 6.12. Follows by repeating the steps in the proof of Lemma 6.1,
see §6.1.2 and Remark 6.5.

Consider Series Decomposition 6.10. We recall that every F; satisfies (6.9).

By Lemma 5.18, at most Os(n) curves in R intersect

CJ (([ai \ 1gmd) U (Ibi \Ilimd) U (Ja, \ JE™) U (Jbi \ Jbgimd)) ;

i=2
removing all such curves from R, we can assume that I,,, I,, Ja,, Jy, are grounded
(by replacing them with 789, T8 gmd , Jemd, ngd)
By Localization and Squeezmg Lemmas 5.16, 5.17 applied to
F- (Iam Jaz) ) Fai and ]:7(11)1,7 Jbz) ) Fbi?
Lo, Ja, and Iy, Jp, have innermost subpairs 1,7, J3*" and I, J;'°" such that, up
to Os(log A), the width of 7~ (14, Ja,), F~ (I, Jp,) is contained in F~ (I, ),
F~ (L, Jp?™) and such that [ 177, JV | [ Jp°, Ip°Y | are at least 5A times smaller
than I, Ja,, Ip,, Jb, respectively. Removing all curves in R intersecting
(1 V) U (0 V) U (0 V) U (0 ),
and then reapplying Series Decomposition 6.10, we obtain that the new J,, and Jp,
have small length compare to their distances to I,, and I, respectively.



62 DZMITRY DUDKO AND MIKHAIL LYUBICH

F(I1,7)

A N

FIGURE 19. Two patterns for F(I,J) to sneak through R.

Since R consequently overflows the F;, there is an 7 such that
W(F;) = W(Fa,) + W(Fp,) = nW(R) — Os n(log A).
The lemma now follows by applying Lemma 6.8 to either F,, or Fp, — they sat-
isfy (6.9) and the A-separation. O

6.5. Sneaking Lemma.

Sneaking Lemma 6.13. Let 7™ be a § pseudo-Siegel disk. For all t,x,A > 2
there is a k(t) > 2 such that the following holds.
Suppose
LJCoZm, |11 >hn, |AL|B|> 2L, |J]>1/2
is a grounded pair and denote by A, B two complementary intervals between I and
Jiie, AUB=98Zm\ (IUJ). Suppose also that
Al |B|
/X< T S X
11" 1]
If
e W(I,J) =K >, x5 1; and
e WH(A,B) > k(t)K,
then there is a [tK, \|T-wide interval T C 0Z with |T| < |I| such that T is grounded
rel Z™.

Proof. Let us denote by R the canonical rectangle of F1 (A, B). The idea of the
proof is illustrated on Figure 19: either the family (I, .J) submerges many times
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Ry Ry_1 Ry, Ry 1 Rt

Iy o I I, Ija Ijyo

FicUre 20. Illustration to Lemma 6.14: rectangles Ry do not
exist because, otherwise, they would block each other.

in A or B, or a substantial part of F (A, B) is focused; i.e. it starts or terminates
in a sufficiently small interval.
Let us select in R a disjoint union of rectangles

RiURU---URy, with W(R,)=@+1)K, and m=~k(t)/(t+1).

We assume that A; and B; is the base and the roof of R; respectively, and that
they have the following orientation:

A <Ap 1<+ <A <Bi<---< Bp;

in particular, R,;41 is above R;.

By Lemma A.6, we can forget O,,(1)- curves in F(I,.J) and we can choose a
vertical curve §; in the inner O,, (1)-buffer of every R; such that the remaining part
L of F(I,J) is disjoint from every ;. We assume that §; connects a; € A; with
b; € B;. We denote by R}*" the rectangle obtained from R; by removing an inner
O(1)-buffer so that the horizontal sides of R}°" are within [a;11,a;] U [b;, bit1]-

We obtain that ; are barriers for £ as in §6.4 and that R}V is between §;41
and 3;. By Lemma 6.11, we have two possibilities (depending whether a sufficiently
wide part of £ skips under [a; 1, a;] U [bs, bit1]):

Case I: [a;11,0a;] or [b;,b;1+1] is smaller than |I|/\. Then either Fy[a;t1,a;] or
Falbit1, b;] contains R}Y. The statement follows from Lemmas 5.10 and 5.18 by
setting T to be the projection of either [a; 1,a;]8™% or [b;, biy1]8™? on OZ.

Case II: we can remove O} 5, (1)-part from £ so that 1, ..., By, are toll barriers
for the remaining £"°". The statement now follows from Snake Lemma 6.12 (with
toll barriers). O

6.6. Families that block each other. We will need the following simple fact.

Lemma 6.14. Let 2™ be a pseudo-Siegel disk. There is no sequence of pairwise
disjoint intervals

Lo=1Io,Iy,....I,_y COZ™,  W'(I, L§) > 3
enumerated either counterclockwise or clockwise such that Iy_1 U I U Ix41 C L.

Proof. Suppose converse. Let Fj be the canonical rectangle of F* (I, L{) in C \

int(Z™). By removing 1-buffers on each side of Fj, we obtain closed rectangles
Ry C Ft(Iy, L) such that the Ry are disjoint and have width at least 1. This is
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impossible because Ry block each other, see Figure 20. Indeed, let us choose

[y:[0,1] = C\int(Z™)] € | | Ri
i=1
so that dist,z,, (7(1),7(0)) is the minimal possible. Assuming v € R}, and using
Iy 1 Ulpyq C Ly, we find an £ € Ry_y U Ry with smaller dist,z,, (£(1),£(0)). O

7. WELDING OF Z™*! AND PARABOLIC FJORDS

Let Z™ be a d-pseudo-Siegel disk. For an interval J™ ! = [z,y] C 82’”“, let
[, Y] 541 and [z, y]@\gmﬂ be the closed hyperbolic geodesics of int Z™! and of
C\ Z™*! connecting x and y. Define Oym+1 D J™ 1 to be the closed topological
disk bounded by [z,y] 5,41 U [, y]6\27n+1 =: 90 ym+1, see Figure 21.

Consider T € D,,,, m > —1 and let 7" be as in §2.1.6; i.e. T' := T' N f9+1(T)
for m > 0 with an appropriate adjustment for m = —1. Assume that there is a
sufficiently wide non-winding parabolic rectangle based on 7”. By Theorem 4.1, all
such wide rectangles are essentially based on Ty, C T". Theorem 4.1 also describes
the outer geometry of Z above Toar on scale > [41.

Welding Lemma 7.1. Consider a concatenation of intervals J = N#IH#M C Tpar

1
with |J| < §|Tpar|, where Tpay s from Theorem 4.1, such that the endpoints of
N, I, M are within CP,,11. Assume that

(7.1) IN| = |I] = |M].

Then there is a constant € > 0 depending only on “<” in (7.1) such that the follow-
ing holds for all \ > 2. If Z™% is a §-pseudo-Siegel disk and if v := |I|/lmy1 >0 1,
then either

(7.2) mod (O ym+1 \ I™1) > €

holds, where I, J™ L are the projections of I,J onto 82"”1, or there is an
interval S C 0Z with |S| < 41 such that S is grounded rel Z™ ' and

(7.3) log WY (S) = logv.

Remark 7.2. We emphasize that “e and =7 in (7.2) and (7.3) are independent
of 8. Only the scale on which the Welding Lemma works (i.e., how big is v) de-
pends on 8. This independence of & follows from beau coarse-bounds for Zm+1
(Theorem 5.12) that are based on beau coarse-bounds for near rotation domains
(Theorem 3.8). The independence of & implies that the error does not increase
during the regularization ... ZmHl s M s 2 s see Corollary 7.5.

Recall from §5.1.9 that a regularization 7™ = Zzm Uzt is within orb_gq,. 1 +1 R
if all relevant objects are within the backward orbit of a rectangle R. The following
result is our primary tool of constructing pseudo-Siegel disks.

Corollary 7.3. There is a sufficiently small & > 0 with the following properties.
Consider T € @,, and let T’ be as above. Let R be a non-winding parabolic rec-
tangle based on T' with W(R) >s 1. Let 7™ e a geodesic d-pseudo-Siegel disk,
see §5.1.9. Then:
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[z, y]@\ZmH
O(]771+1

T a b Y VAR

[ZC, y]2m+1

FicURe 21. The open disk Ojym+1 is bounded by hyper-
bolic geodesics in the interior and exterior of Zmtt If
mod (O ym+1 \ I™1) is small, then there is a wide lamination R
submerging many times into ZmHL,

(1) either there is a geodesic &-pseudo-Siegel disk Z™ = Z™ U Z™1 with its
level-m regularization within orb_q, ., 41 R;
(2) or there is an interval

IcT, |I|>lus1  such that log Wj\r’div’m(l) = W(R);

(3) or there is a grounded rel Z™ interval

IcoZ  with |I|<ly41  such that logWi(I) = W(R).

We refer to Cases (2) and (3) as ezponential boosts.
Remark 7.4. Calibration Lemma 9.1 will reduce Case (2) to Case (3).

Remark 7.5. Starting with (the next) Section 3, we fiz a sufficiently small § > 0
so that Corollary 7.3 is applicable.

7.0.1. Outline and Motivation. Note that we already have a control of
e the outer geometry of Z on scale > [, 11 above Thay — Theorem 4.1;

e the outer geometry of Z™F1 on scale > L1 above Tg’;jl — because the

outer geometries of Z and Z™! are close (Lemma 5.8);

e the inner geometry of 2™+ with the estimates depending on § — see (5.13)
and (5.14) in Theorem 5.12;

e the inner geometry of Z™+1 with the estimates independent of § on scale
>5 bnt1, see (5.15) and (5.16) in Theorem 5.12.

e + m+1 m+1 — m—+1 m—+1 :
Therefore, the families 72 (N UM™Y and F o (N 1 M™ ) have width

= 1. Since these families (after a slight adjustment) separate I™*! from 0O jm+1,
most of the curves in the vertical family G := F(Ojm+1 \ I™ ") intersect M™ 1 U N™F!
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(assuming W(G) > 1). Moreover, we should expect that a typical curve in G sub-
merges < v times into N U M because we have control of the inner and outer
geometries on scale > [, 1. Combined with Lemma 6.8, this would have implied
the existence of an interval S with Wi (S) = v. Our proof gives a somewhat weaker
estimate log WY (S) = logv (i.e. (7.3)) that is sufficient for our purposes.

The main step in Corollary 7.3 is construction of annuli A(«]"), A(8;") around
channel and dams. The annuli are of the form illustrated on Figure 29: A =
O, UYUO,\ X. Rectangles Y*, X are constructed using Theorems 4.1 and 5.12.
To assemble all such rectangles in a chain around 7™ we need the property that
R contains central subrectangles. If this is not the case, then Lemma 4.12 implies
Case (2) of the corollary. If R contains central subrectangles, then applying the
Welding Lemma to construct Oy, O,, we obtain either Case (1) or Case (3) of the
corollary.

7.1. Proof of the Welding Lemma. Since the endpoints of M, N are within

CP,,+1, these intervals are well-grounded rel Zmt By Lemma 5.8, we have
Wk (NP M™TY) < 1. Since |[N|, 1], | M| 6 lny1, wehave W5 (N™FL prm+t) <

Zm+1 Zm+1

1 by Theorem 5.12, Equations (5.15) and (5.16).
Let R, W(R) = K = 1/¢ be the vertical lamination of the annulus O ym41 \ I™ 1.
Let us assume that K > 1. Let us write

Fr~;G ifboth FxG and F=G+O(() hold.

To simplify notations, we will omit below the upper index “m + 1”7 for intervals.
All intervals will be in 9Z™*!. Let us write

N =[z,a], I=][ab], M=[by] €0Z™"', N<I<MinT.

Let Ny and M; be middle 1/3 well-grounded subintervals of N and M:
dist(z, N1) =i, |N1| =i, dist(N1,a) < vlng1/3,
dist(b, My) =~y,,,, |Mi| =i, dist(My,y) < vi,1/3.

m+1
m+1

Claim 1. At least 0.99K curves in R intersect N1 U My before intersecting
| Ny, My €U O°™0y, see Figure 22.

Proof. Consider the outer and inner geodesic rectangles (see §A.1.12)
F.cC\zm, F.czm, oOF. =d"F_ =N, 'F.=0""F_ =M

between Ny and M;. Since |M;| =< |Ny| =< dist(M7, N1) >s vlp41, Theorems 4.1
and 5.12 imply that W(F_) < W(Fy) < 1. Since F_ U Fy separate I from 00, ,,
most of the curves in R must intersect N7 U M; before intersecting | N7 U My ¢ U
0°" 0. O

Let X,Y C 02" be a pair of intervals and let A be one of the complementary
intervals to X, Y. We denote by Fa(X,Y) the subfamily of 7(X,Y) consisting of
curves that are disjoint from 9Z™ 1\ (X UAUY).

Let L, be the shortest complementary interval between N; and I, and let L,
be the shortest complementary interval between I and M;. Claim 1 implies that
either

Wi, (N1, I) > 049K  or Wy, (I, M) > 0.49K.
Setting Iy := I and I, L to be either Ny, L, or My, Ly, we obtain Fr, (I, Iy) >
0.49K. Note that |Lq| =~ |I;]. We can now proceed by induction:

m+1
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FIGURE 22. Since the families F and F_ separate I from 00
(compare with Figure 21), most of the curves in the family R
intersect N1 U M.

Claim 2. There is a sequence of grounded intervals

I, L, I, L] =< vl /3%, kxlogy, |Ii] =< lni
such that for every Iy there is a j(t) € {0,1,...,t — 1} with

Wr, (It L)) > 0.49 - 1.9'K,, \Le| =1, 0 1] < Vg /3%,
where Ly 1s the shortest complementary interval between Iy and Ijy. Moreover,
(7.4) Wi, (I, i) = Wi (I, L)) > 0.48-1.9°K  fort <k

and dist(Ix—1, Ix) > 0.6 1| > 4lpy1.
Proof. Assume that I; is constructed for ¢t > 1. Set
Iiy C Ly with [Tep1| =, dist(leq1, Ip) =, dist(Deq1, L)

to be a middle 1/3-subinterval of L;, see Figure 23. Let us show that either
(7.5) Wi, (Iig1, 1) > 049 - 1.9 K or Wy, (Iiy1, L)) > 049 - 1.9 K,

where L, and L; are the shortest complementary intervals between Iy1,I; and
Iiy1,1). This would finish the construction of I with j(t 4+ 1) € {t,j(¢)}.

Consider a grounded interval X C 8Z™*" attached to I; so that I =1, | X]|
and I; is between X and I;y; in T. As in Claim 1, consider the outer and inner
geodesic rectangles

FocC\zm, F.czm, OOF, =0"F_ =X, 9'F o =""F_ =14
between X and I;11. By Theorems 4.1 and 5.12:

[ ] lf |It+1‘ >>5 1, then W(.F_) = W(f+) = 1,

o otherwise W(F_) =<5 1 < W(F,).
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FIGURE 23. The interval I;;; is a middle 1/3 interval between
I' and I;(t). Since F_ and F, separate I' and L), most of the
curves in F(Iy, Ij(t)) must intersect I} .

In the first case, after removing O(1) curves, the family Fr,(I;, ;) overflows
consequently Fr, (It41,1;) and then Fr,(Ii11, ;). The Equation (7.5) follows.

In the second case, we have t >s 1 because v >s 1. Therefore, we can still
remove Os(1) < Wr,(It, Ij)) curves from Fp,(It, Ij)); the remaining family
overflows consequently Fr, (Ity1,1;) and then Fr, (lt41,Ij+)). The Equation (7.5)
follows.

Note that we also established (7.4) for ¢. The induction can be proceed until
‘It| > 20[m+1~

O

The Welding Lemma now follows from Lemma 6.8 applied to (7.4) with ¢ =
k—1. O

7.2. Proof of Corollary 7.3. Write K := W(R) and let R*" be the rectangle
obtained from R by removing the outermost K/2 buffer. If R""Y is not central,
then Lemma 4.12 implies Case (2) of the corollary.

Assume that R"™Y is central and write T = [ag, a1] with ag < IMORIEY <
IR Y < . By Theorem 4.1,
dist(ag, O"OR W) dist (0™ IRV ay)

[m+1 [m+1

because the removed outermost buffer from R has width K/2. As in §5.1.9, let
R for j < qm+1 be the pullback of R™" along f?:Z ©. Then every R is
based on a certain T; = [a;, ai+1] € Dm, ¢ = t(j), where T; are enumerated from
left-to-right. We write Rj7) = R2}".

Similarly, by spreading around R \ R"®", we construct a wide rectangle B;,
W(B;) < K based on T; such that B; separates RI'*™ from K, \ Z.

Fix a big S > 1 independent of (and much smaller than) K. We can select
intervals X; C 9"ORIY and Y; C 9"1RIY such that
(A) the endpoints of X;,Y; are in CP,,41;
(B) all X; are obtained by spreading around Xy and, similar, all Y; are obtained

by spreading around Yjp;

(C) 0.99 < X _ [ Xo| 1.01;

(7.6) log log =K

)

i Y
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(E) SdiSt(Y;', ai+1) < |1/z| < (S + 1) diSt()/i, ai+1);
(F) the geodesic rectangle G; C C\ Z between X;, Y; splits R}“Y into two rectangles
with width < K.

Here, to achieve (D) and (E) we use the property that R™" is central. Property (F)
is achieved by combining Theorem 4.1 with (C), (D) (E). By construction (i.e.,
by (7.6) and Theorem 4.1), we also have

(F) log |Xi],log |Yi] = K.

By (C), (D), (E) and Theorem 4.1, we have W(G;) < log S > 1.

Let X1 ¥™+1 be the projections of X;, Y; onto 9Z™+!. Similar, let G™*! be
the restriction of G; onto C \ int Z™+1 By (5.12), WG < log S > 1.

Let #; C Z™+! be the geodesic rectangles between Y™t and X"t By (C), (D), (E),
(F), and Theorem 5.12, we have W(#H,;) =< log S > 1. Below we will construct rel-
evant objects for Z™ to satisfy §5.1.9.

7.2.1. Channels o; and dams B;, see Figure 16. Let us select points x; € X; N
CPrg1, ¥i € Yi N CPyyyq such that the hyperbolic geodesics a; = [yi—1, %] 5
and 3; = [z, yi]@\z split every H,; and meH into two subrectangles of width < log S
respectively. Moreover, we can choose genuine subrectangles QZZH, QZ};H, g;”jl in

g;”“ and genuine subrectangles H; o, Hip, Hs,c in H; such that

e all subrectangles have width =< log S;

° gg;jl is between QZZH and g;j”;“ and contains (3; in the middle, i.e. j;
splits QZZH into two subrectangles of width =< log .S,

o dist(9"GTt, "G, dist(9" G/, 0" G ) > Ly

e H;; is between H; , and H; . and contains cy; in the middle, i.e. o; splits
H;p into two subrectangles of width =< log S

o dist(9"H,p, 0" Hia), dist(0"Hip, 0" Hie) > lyia.

Following (5.4), we denote by f*(a;), f¥(8;) either the f*-images of oy, 8; if
k > 0 or the lifts under f~* starting and ending at 8Z if k < 0, where |k| < g1
Similarly, f*(G,), f¥(H,) are defined.

Consider f¥(3;) for |k| < qs1. Then f¥(B;) is in the appropriate G; because
at most O(1) curves in fk (Qi7b) can cross G q,Gj.c. Since the By with W(B;) < K
separate the RI®Y from K, \ Z, we obtain that f¥(3;) is in the ¢ = e(K) hyperbolic
neighborhood of the geodesic of C \ Z connecting the endpoints of f¥(8;), where
e(K) — 0as K — oo. Therefore, f¥(8;) is in g;”“ because components of gj\g;”“
are separated by the X", see Assumption 6.

Similarly, f¥(a;) N Z™+1 is in the appropriate H; because fF (H;y) is disjoint
from 0"H;, U O"H; . by Lemma 5.13, (IIT), and hence at most O(1) curves in
fE (7—[”,) can cross Hjgq, Hj .. By Lemma 5.13, (III), fE(a;) can intersect only

components of f¥ (2”‘"‘1) \ Z™F1 that are close to the endpoints of E(e). We
conclude that the orbits fF(a;), f¥(8;) with |k| < qm41 are within U (Gt u

H") and Assumption 1 follows.
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7.2.2. Collars A(a;), A(Bi). By (F), we can choose well-grounded enlargements of
intervals

Xi=Xi0CXi1CXipCXi3C X4 COOR™,

Yi=Yi0CYi1 CYip CYigCVigCO'R
such that for every ¢ € {1,2,3,4} and every 4
o X, \ X, 1 consists of a pair of intervals Xft with X:t < X1 < Xy
such that | X | =g | X, | =g dist(X;%,, a;) <5 dist(X,, a:) <5 |Xi;
o Y; .\ Y1 consists of a pair of intervals Ylit with Yl_75 <Y1 < Yﬁ; such
that [V, | <s [V;5] =s dist(Y 7, ais1) <s dist(Y;}, aiv1) <s |Yil-
Taking the projection of the new intervals onto 0Z™ 1 and using Theorems 4.1
and 5.12, we obtain that
o the geodesic rectangles g;t and G, of@\Z\m'*'1 between (Xift)m“7 (Yiﬁ)"’"‘1
and between (Xift)mﬂ, (Yi’_t)mJr1 have width =<g 1;
e the geodesic rectangles ’H;Tt and H; , of Z™ 1 between (Yifu)m'ﬂ, (X;’rt)m+1
and between (Yijl,t)m“, (Xift)"”r1 have width =<g 1.

Applying Welding Lemma 7.1, we obtain either Case (3) of the corollary, or:
(7.7) mod(Oxmis \ X771), mod(Oymis \ Y1) > e = £(S).
We now construct collars
A (ay), A (o), AT(B), A(B,)

as annuli bounded by hyperbolic geodesics of C \ Z and of Z™+1 such that their
outer boundaries pass through the endpoints of

m—+1 m+1 m—+1 m+1 m—+1 m—+1 m—+1 m—+1
}/;_172 U Xi,2 ’ }/;_174 U Xi,4 Xi,2 U Yvi,2 Xi,4 U }/;74

) )

while their inner boundaries pass through the endpoints of
}/;Ti":(l) U Xi’TrLO-Fl’ }/;TLL;,-’% U Xi77rL2+1a X%+1 U Y;‘tg+17 X7;7,7L2+1 U YZVQL-ﬁ-l

respectively. The moduli of the collars are bounded by Lemma A.4 (see also Fig-
ure 29) by 6 = d(S5) because we have bounds on the width of gft,")'-lft and the
moduli bounds (7.7).

This verifies Assumptions 2 and 3. Assumption 4 follows from (7.6). Assump-
tion 5 follows from Theorems 4.1 and 5.12.

Extra protections X" for Assumption 6 can be selected as subrectangles of R;%.

Assumption 7 and conditions in §5.1.9 hold by construction.
|

Part 3. Covering and Calibration lemmas
8. COVERING AND LAIR LEMMAS
In the section, we will prove the following theorem that can be characterized by

the principle “if the life is bad now, then it will be worse tomorrow” !:

1Cornpare with Kahn’s principle: “If the life is bad now, then it was even worse yesterday.”
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Amplification Theorem 8.1. There are increasing functions
A, K fOT’ t>1
such that the following holds. Suppose that there is a combinatorial interval

ICcdZ  suchthat Wy (I) = K>K¢ and |I] <|0o|/(2A¢).

Consider a geodesic pseudo-Siegel disk Zm, where m is the level of I. Then there
is a grounded rel Z™ interval

JCoZ  suchthat WYX (J) >tK and [J]| <|I|.

8.0.1. Motivation and outline. Recall from §2.1.4 that a forward orbit of a combi-
natorial interval up to the first return almost tiles 9Z. If a combinatorial interval
I C 0Z witnesses a big degeneration, say that I is [K, A\|T-wide with K > 1, then,
using the Covering Lemma, we spread this degeneration around 0Z and obtain an
almost tiling I, of 0Z so that, roughly Ij is [CK, \]-wide for an absolute C' > 0.
(Covering Lemma 8.5 has two possibilities; we are omitting the “local” Case (1) in
this outline.) The constant C is independent of \; the A influences only the degen-
eration threshold K¢ >y 1. In short, Snake-Lair Lemma 8.6 states that if A >¢ ¢ 1,
then A “beats” C and produces a [tK, \]"-wide interval J on a deeper scale. More
precisely, since wide families F(I) combinatorially block each other, they must
submerge under each other resulting in long snakes. Then Snake Lemmas 6.12 and
6.13 are applicable.

A key technical issue is that the new wide interval J may be far from being
combinatorial. Namely, the resulting wide family Fy (J) can be within a wide
non-winding parabolic rectangle — such rectangles exist and are described by Theo-
rem 4.1. To deal with this issue, we apply the Covering and Snake-Lair Lemmas to
the pseudo-Siegel disk Z™ instead of Z. Pseudo-Siegel disks are almost invariant up
to ~ q,4+1 iterates §5.1.8 — this is sufficient to spread the degeneration around using
the Covering Lemma. Lemma 5.10 allows us to trade W+ wide families between Z
and Z™.

In Section 10 (see §10.0.1, (a)), we will inductively construct (from the deep to
shallow scales) Z™ so that it absorbs “most” of the non-winding parabolic rectan-
gles. Then the Calibration Lemma will replace J with a combinatorial interval on
a deeper scale.

8.1. Applying the Covering Lemma. As in §5.0.2, we will denote by I™ the
projection of a regular interval I C 0Z onto 0Z™.

Lemma 8.2. For every & > 1 and X > 10, there is Ky, > 1 and Cy;, (independent
of A) such that the following holds. Suppose that there is a combinatorial interval
IcdZ  suchthat WY (I)=K>Kx., ] <0/2x+4), m=Level(l)

and such that one of the endpoints of I is in CP,,. Let 2™ be a geodesic pseudo-
Siegel disk (see §5.1.9), and

I,c0z, I,=f"(I), s€{0,1,...,qmi1—1}
be the intervals obtained by spreading around I = Iy (as in §2.1.5). Then every
interval I is well-grounded rel Zm and its projection 1" C 0Z™ is
(1) either [kK,10]-wide;
(2) or [Cx K, N-wide.
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Proof. Since one of the endpoints of I is in CP,,, all intervals Iy, s < 41 are
well grounded, see the Remark 5.5.

We will start the proof by introducing appropriate branched covering restric-
tions of the f% with uniformly bounded degrees. Then we will apply the Covering
Lemma. The condition “|I| < |6y|/(2X + 4)” will be used in removing slits.

8.1.1. Projections onto Z™. Let us first approximate 101 and A/ with well-grounded
intervals. Choose intervals L and T" whose endpoints are in CP,,, such that

100/ cTcl12] and McCLc(A+2)I.
Applying f* to T and L we obtain the intervals T, and L, respectively satisfying
10l cTs c 12y and A, C Ly C (A +2)1.
Then Ty, Ls are well-grounded rel 2’”, see (5.6).

8.1.2. Cowering structure around f' | I. Observe first that I C 0Z contains at
most one critical point of f% because the map f: I — I, realizes the first landing
of points in I onto I, see Lemma 2.1.

Since |[I| < |6o]/(2A +4) < 1/2, the interval (Ls)¢ = 0Z \ Ly has length greater
than 1/2. Consider a simple arc v, C C\ Z connecting (L) to oo; we will specify
vs in §8.1.5. Then

(8.1) V= C\ (3 U (L))

is an open topological disk. Define U_; to be the pullback of V along f'
obtain a branched covering

(8.2) foiU_s = V.

I. We

Lemma 8.3. The degree of (8.2) is at most 432
Proof. Let us present (8.2) as the composition of branched coverings
U.=Xx,Lx, L Lox, =v

Observe that X;NZ is the interior of the interval f7(L). The map f: X; — X411
has degree 2 if and only if f(L) contains ¢ in its interior. Since f': I — I, is
the first landing, there are at most 2(\ + 2) moments ¢ € {0,1,...,4s} such that
(A+2)fH(I) D fY(L) > co. The lemma follows. O

]

8.1.3. Covering structure around f' | I"™. Consider the projection L™ C 0Z™ of
L. Similar to §8.1.2, we choose a simple arc v C C\ Z™ connecting
(L™)°*=0Z"\L" and oo.
By Lemma 5.4, Z™ has the conformal pullback f : ZTS — Z™ such that ZTS is
also a pseudo-Siegel disk. We denote by 1" ~° the projection of I onto 27_"5. Then
I™ = f%(I"™ %) is the projection of I onto Z™.
Similar to (8.2), we define the branched covering

(8.3) fiz U v = (70 (E)°)

where U™, is the pullback of V™ along f%: I™ ™% — ™,
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Lemma 8.4. The degree of (8.2) is at most 4 2. O

Proof. All critical values of f% are in 9Z N dZ™ and we can repeat the argument
of Lemma 8.3. (]

8.1.4. Covering Lemma. The Covering Lemma was proven in [KL1]; for our con-
venience we will state it in terms of the width W(A) instead of mod(A4) = 1/W(A)
for an annulus A. We will also state the Collar Assumption (1) as one of the
alternatives.

Lemma 8.5 (Covering Lemma). Fiz somex > 1. LetU DA’ D AandV D B' > B
be two nests of Jordan disks. Let
f:(UN A — (V,B',B)

be a branched covering between the respective disks, and let D = deg(U — V),
d = deg(A" — B'). Then there is a K1 > 0 (depending on k and D) such that the
following holds. If
W(U\A) > Ky,
then either
(1) W(B'\ B) > kW(U \ A), or
(2) W(V\ B) > (2kd?) " WU\ A).

Consider (8.3) and recall that I™~° to be the projection of I onto ZTS. We
denote by T," C dZ™ the projection of Ts. Set
B =1
A to be the connected component of f~*(I™) containing 1™ ~*;
B =C\ (v u(T)°);

A’ to be the connected component of f~*(B’) containing 1™ ~*.

By Lemma 8.4 applied to the case A = 12, the degree of f: A’ — B’ is at most
d == 4'2. Clearly,

W(U™ \ A) > W;IT (I~ > W (I)—0(1) = K — O(1).

s

Applying the Covering Lemma to
i UL N A) > (VL B B)

with Kk = 3k, we obtain that either

e W(B'\ B) > 3kK; or

e W(V\ B) > CK otherwise.
8.1.5. Removing ys. It remains to remove 5 from

VT =C\(y"u(L?)) and B =C\ (U (TM))

without decreasing much W(B'\ B) and W(V \ B).
__ Consider the outer harmonic measure of 9Z™ — it is the harmonic measure of
C\ 0Z™ relative oo. If the outer harmonic measure of L7* is less than 2/3, then we
can choose 77" so that the width of curves in V'™ connecting B and 7, is O(1). We
obtain

Wio(I") 2 W(B"\ B) = O(1),  Wi(I") = W(V\ B) — O(1)

and the lemma follows.
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Consider the remaining case when the outer harmonic measure of L7 is bigger
than 2/3. Let 2:" be the pullback of Z™ under f; ie. 2:” is the pseudo-Siegel
disk so that f: Z" — Z™ is conformal. Let I'™ L'™ C OZ™ be the preimages
of I7") LT under f: 2:” — Zm. By Lemma 5.8, the outer harmonic measures of
L' c 821” and L7 C dZ™ are very close to the outer harmonic measures of
L' L, C 8Z, where L’ is the projection of L™ onto Z. Since L', L are disjoint,
the outer harmonic measure of L' C (“)2:” is less than 2/3. Repeating the above
argument for I'™, we obtain that either

o '™ is [2kK,10]-wide; or

o ' is [Cx K, \-wide
relative 21” . Applying f which has the global degree 2, we obtain (see (A.8)) that
either

o I" is [kK, 10]-wide; or

o 1" is [CLK /2, A¢]-wide.

8.2. Lair of snakes. For our convenience, we enumerate intervals clockwise in the
following lemma.

Snake-Lair Lemma 8.6. For ecvery t > 2 there are kK, \,K >s 1 such that the
following holds. Suppose that Z™ is a pseudo-Siegel disk with l,, < X/4. Let
Lnyi=1Io,I1,...., I, COZ™,  |Ii| =y, dist(Ix, Trs1) < by

be a sequence of well-grounded intervals enumerated clockwise such that every I is
one of the following two types

(1) either I is [k K, 10]-wide,

(2) or I, is [Cx K, A]-wide,
where K > K and Cy is a constant (from Lemma 8.2) independent of . Then
there is a [tK, 3\ -wide interval J C Z grounded rel Z™ with |J| < |I).

Proof. The first three claims below show that families of Type (2) appear with
certain frequency. The last three claims amplify their width (by the snake lemmas).
We assume that K > A > &k > t. The first claim follows immediately from
Lemma 6.8.

Claim 1. Lemma 8.6 holds if there is a Type (1) interval I; such that
Wio(L;) — Wi (1;) > KK /2.

We assume from now on that for every Type (1) interval I; we have
(8.4) Wi (1) > kK/2.

Let us enlarge every I; into a well-grounded interval E c ozm by adding to
I; the interval between I; and I;y; if I; and I;;; are disjoint. Since the distances
between the I; and I;41 are < [,,41 (see §2.1.4), we have |I;| < 2L,,.

Claim 2. There is a sub-sequence
(85) EaE#’lM"?E—O—}\/ZO CaZ\mﬂ |‘ﬂ S 2[m

such that every interval fj in (8.5) is not [3, A/4]" wide.
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Proof. Suppose converse. Then (IAk) has a sub-sequence (Ly) with Ly = fg(k) such
that £(k) < £(k + 1) < £(k) + X/20 and such that every Ly, is [3, A/4]"-wide. This
is impossible by Lemma 6.14 (such families would block each other). O

Claim 3. There is k depending on t and & but not on A such that Lemma 8.6
holds if (8.5) has k consecutive Type (1) intervals in (8.5).

Proof. Suppose that (8.5) has a consecutive sequence of Type (1) intervals I, Io41,...,1p
with b — a = k — 1. Consider the intervals

b c
A
Lol wd 1= () (4Ij)

and observe that W (I,L) = O(b — a) by Claim 2. Since the Fi(;), Fib(Ij+1)
have small overlaps (they block each other), there is a rectangle

RCF=F(I) UF(Ias1) U UFH(L,)  with W(R) = (b— a)kK.

Let J,, Jy be two intervals forming L \ I, ;. We assume that J, < I, < Jp < L.
Since at most O(b—a) curves in R land at L, we can select a subrectangle Ry in R
with W(R) = (b — a)kK = kxK such that, without loss of generality, R, is lands
at J,.

By removing O(1)-buffer, we can assume that Ry skips over I, C (101,). Since
Type (1) intervals block each other, Ry goes above a Type (2) interval I, C J,.
The claim now follows by applying Sneaking Lemma 6.13 to Ro and F(I,,). g

We may now assume that among k consecutive intervals in Sequence (8.5) there is
at least one Type (2) interval. Let us enumerate Type (2) intervals in Sequence (8.5)
as

Lig, Ligy .o Ly, i <ij41 <5 +k,
where s > A/(22k). B
Let us enlarge I;, to well grounded intervals I;, D I;, such that
. fit ends where I;, , starts; and
e I;, and I;, have length between A/4+ 1 and A/4 + 3.
It follows from Claim 2 that most of the curves in Fy (Et) do not bypass EO UES:

Claim 4. Write L = LI: I:gJ Then for every i € {1,...,s — 1}, we have

09
wt(I,,, L) = O(k) for1<t<s—1.
(I

Choose a big T > 1 (but still much smaller than K; the T depends on t, g from
Claims 5, 6). We consider the following fundamental arc diagram @&:

e the vertices of & are the intervals EJ for je{1,2,...,s—1}.

e there is an edge between Tia and I;, if and only if

la—b>2 and WY, .L,)>T.

Claim 5. There is a constant v = v(t) depending on t and k but not on A such
that Lemma 8.6 holds if & has a vertex with degree t.
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1, fbl ,Ivbffg E’f Tog g Iy

FiGURE 24. Tllustration to the argument in Claim 5.

Proof. For our convenience, we replace v with 2v and we also introduce a big con-
stant g with t > g > 1.

Assume that I, is a vertex of ® with degree at least 2v. Without loss of gener-
ality, we assume that t neighbors of I, in & are on the right of I,; we enumerate
these neighbors as INbl,sz, e ,Ith, see Figure 24. We will show below that either
there is an fbf such that Fx (I, ) submerges many times in the I, , or the family
Ft (fm Lfbyfbtj) has width >¢ K. In the former case, we will apply the Snake
Lemma with toll barriers. In the latter case, we will use the Sneaking Lemma.

Consider fbf, where f € {g,g+1,...,vt — g}, see Figure 24. Observe that the
width of curves in Fx(Iy,) omitting E,f_g U fIvag U I, is at most Ox(1) because

~7:+(Iaalbf,g)a F+(Ia7[bf+g)7 ]:_(Ibffg7lbf+g)

have = 1 width. We orient curves in ]-'A(fbf) from fbf towards ()\fbf)c.
1
Case (A). Suppose there is an f € {g,g+1,...,t —g} such that a §C,€K part

of Fx(Iy,), call it F, intersects fbf_g U fo+g before intersecting fa By the Small
Overlapping Principle §A.2.2, there are pairwise disjoint simple closed arcs

(e Fr(Io,Ipyy)  for 1<|j—f|<g

such that at most O (1) curves in F intersect U ;. Removing Ox (1) curves
1<|i—fI<g
in F we obtain a lamination F"*" C F whose curves are disjoint from any ¢;.
Suppose ¢; lands at x; € fbj. Since dist(xj,xj42) > by, we can remove Ox(1)-
curves from F"°V so that every curve in the new family FNV intersects

Lmbf—Qj—27xbf—2jJ U |.xbf+2j’:L.bf-*-2j-*-2J

before intersecting [z, _,, ,,Tb,,;,,]° For |j| < g/2, define the arc 8 C £y_o; U
fau£ r+2; to be the concatenation of £;_5;, followed by the subarc of fa, and followed

by £y12;. Note that 3} is a simple arc connecting Tf_gj and ff+2j. Moreover, (3]

is disjoint from f3j, away from I,. Let us slightly move the arcs 6; away from I,
so that the new arcs 3; are pairwise disjoint and so that at most O(1) curves in
FNeW intersect any of Bj. We denote by F NEW the family obtained from FNe¥
by removing curves intersecting at least one ;. Case (A) now follows from Snake
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1
Lemma 6.12 applied to FNEW  W(FNEW) > §K — Ox(1) with toll barriers f;,
i<sg/2 -
Case (B). If Case (A) never occurs, then C,K/2-wide part of F* (I, 1y,) is
disjoint from F*(I,,1y,,,). Applying the Parallel Law A.1.4, we obtain that

F=Ft (fm LE2>E)kJ> has width > éC’RK >¢ K.
We now apply Sneaking Lemma 6.13 to F and F(Ip, ). O

Claim 6. Suppose that the degree of every vertez in & is bounded by v from Claim 5.
For every g > 1, if X > 1, then the following holds. There is an interval I, such
that Fx(Is) contains a lamination F, W(F) > Cx K —Ox(1) that has toll barriers
Ui, 0, ... L.

Proof. Consider the dual graph &":

e vertices of " are faces of &,
e edges of " are orthogonal to edges of &.

We denote by X the outermost vertex of &" corresponding to the unbounded face.
Since A > 1, it is easy to check that either:

(1) there is a simple path in &Y of length 3tg starting at X, or
(2) there is a face Y of & (a vertex of ") containing at least 3g vertices of &.

In the first case, we can choose edges gi,i < g of & such that each Zi, connects
I,, and I, with

(86) ai+1 +1<a;, a; +1<s<b —1, b; <bi+1 —1.

Since -F+(fa”j;;,;) > T, Small Overlapping Principle §A.2.2 implies that Fy(Is)
contains a lamination F with W(F) > C,K — Ox(1) that is disjoint from pairwise
disjoint curves ¢; € F*(I,,I;). Since at most Ox(1) curves in F can pass under

Iy, 41 or Ip,+1 (Squeezing Lemma 5.17), we can remove Ox(1) curves from F such
that ¢; are toll barriers for the new lamination F*V with W(F?*V) > C\, K —Ox(1).

Consider the second case. We can choose intervals Is,f,wlbi i < g on the
boundary of the face Y such that (8.6) holds. Since Y is a face of the arc diagram

&, most curves (up to Ox(1)-width) in Fx(Is) intersect I,, U T, before intersecting
Iai+1

that at most Ox(1) curves in Fx([,) intersect Uﬁi. Since at most Ox (1) curves in

K2

U Iy,,,. Therefore, we can select pairwise disjoint arcs £; € Ft (L,E)) such

.7-')‘([2) can pass under Zzi+1 or E;i+17 the family .7-')‘(.75) contains a lamination F
with W(F) > C,. K — Ox(1) such that ¢; are toll barriers for F. O

The lemma now follows from Snake Lemma 6.12 applied to F and toll barriers
0,0, ... L. O

Proof of Theorem 8.1. Consider a [K, A¢]" combinatorial interval I C §Z of level
m as in the statement of Theorem 8.1. There are two level m combinatorial intervals
1,, I such that I C I, U I, and at least one of the endpoints of I, and of I is in
CP,,. Then either I, or I, is [K/2, As/2]"-wide. The theorem now follows from
Lemmas 8.2 and 8.6. O



78 DZMITRY DUDKO AND MIKHAIL LYUBICH

8.3. Bounded type regime. Recall that we are considering eventually golden-
mean rotation numbers § = [0; a1, as,...] with a,, = 1 for n > ny.

Corollary 8.7. There are absolute constant K, n > 2 such that for every 8 we have

Wi (1) <K for every interval I C 0Z with |I| < lyax{ng.n}-

Proof. 1t is sufficient to prove Wy (I) < K for some X > 3 and K; the case A = 3
follows by spiting I and increasing K. For a sufficiently big t > 1, let A = A¢

and K = K¢ be the constants from Theorem 8.1. Set n to be the integer part of
0
21og,(2A) 4+ 2; then [, < % by (2.1).
t

Assume converse: W;\"(I) = K > K for some I with [I| < lphax{nsn}- Then
I contains a combinatorial subinterval I’ with |I'| < |I| such that Wy (I') = K.
Applying Theorem 8.1 with Z™ = Z, we find an interval Iy with W(I3) = tK > K
and |I3] < |I|. Continuing the process, we obtain a sequence of interval Ij, with
I1,| < |[Ix—1| such that Wy (I);) — +oo. This is impossible. O

9. THE CALIBRATION LEMMA

Recall from §2.3.2 that the diving family ]-';fdiv,m (I) C Fy (I) consists of curves
intersecting (or diving into) K,, \ Z.

Calibration Lemma 9.1. There is an absolute constant x > 1 such that the
following holds for every A > 10. Let Z™" be a geodesic pseudo-Siegel disk and
consider an interval T C 0Z in the diffeo-tiling ©,,. If there are intervals

ICT, LCOZ suchthat Iy <|I| <Ly, dist(, L) > Alpyq
and Wihom(I, L) = xK >x 1,
then

(I) either there is a [K, \]"-wide level-(m + 1) combinatorial interval,

(IT) or there is a [x'° K, \T-wide interval I' C dZ, |I'| < L1 grounded rel
zmt,

In applications, we will often take L = AI.

9.0.1. Outline and Motivation. The Calibration Lemma allows us to trade W)tdiv—
wide intervals into Wj—wide combinatorial intervals. In Section 10 (see §10.0.1,
(a)), we will construct a pseudo-Siegel disk Z™*! to absorb most of the external
families. Therefore, the Calibration Lemma can be inductively applied if Case (II)
happens.

The main idea of the proof is illustrated on Figure 26. If Case (I) does not
happen, then we should expect a wide rectangle P that essentially overflows its two
conformal pullbacks P_,P,; this leads to the “1 <1& 1 = 0.5" contradiction. To
construct such a wide rectangle P, we will first spread the family F /\+ div’m([ ) around
D, (using univalent push-forwards §2.3.3). Next we will find a wide rectangle P
between two neighboring intervals of ©,,. Finally either the argument illustrated
on Figure 26 is applicable, or the roof of P is shorter than [,, 1 — this leads to Case

(11).

9.1. Proof of Calibration Lemma 9.1. We split the proof into several subsec-
tions. We assume that x > 1 is sufficiently big.
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ao I aq

T_1=la_1,a0)

— I (Mp) B Oy T =Ty = |ag, a1]

FIGURE 25. Various intervals on 0Z and 0Z;.

9.1.1. Bubbles Z;. We enumerate intervals in ©,, as T;, Ty = T from left-to-right.
Denote by a; the common endpoint of T;_; and T;. We recall from §2.1.6 that a;
is a critical point of generation ¢; < ¢,,4+1. Thus there is a bubble Z; attached to
a;, see Figure 25, with the first landing f': Z; — Z.

Let us pullback the diffeo-tiling ©,, to a partition of 9Z; under

f79m o fAm . 0Z — 0Z; (equivalently, under f~" o f': 97 — 0Z;).

We specify the following elements of the new partition:
e N, is the preimage of T; B 0,,11 = f%* (T;41) under f9 | 0Z;;
e M; is the preimage of T;_1 B 0,11 = f9 (T;) under 9 | 0Z;.
The point a; is the common endpoint of M;, N;. o
By the following properties N;, M; are intervals of IC,,, = f~9m+1(Z).

Claim 1. The interiors of M;, N;y+1 contain no branched points of f~9m+1(07).

Proof. By definition, the interiors of the T; contain no critical points of f9m+t,
Therefore, the interiors of the f%=+!(T;) contain no critical values of f9=+1. Ap-
plying f~9™+1 we obtain a required claim for the M;, N;. O

9.1.2. Rectangle R;. By Lemma 2.7, most of the width of ]-";;V’m(l, L?) is within

two rectangles; thus we can select a rectangle R C .F;V’m(l , L°) satisfying

W(G) = xK/2 - 0(1).
We orient the vertical curves in R from I to L°. By shrinking I, we can assume that
"R = I. For an interval J C I, we denote by R; C R the genuine subrectangle

consisting of vertical curves of R starting at .J.
Assuming that (I) does not hold, we obtain

(A) For every combinatorial subinterval J C I with |J| = [, 41, we have

W(R,) < K.



80 DZMITRY DUDKO AND MIKHAIL LYUBICH

In particular, [I| > xln+1/3 > 1. Let us present I as a concatenation
I=1,Ulyul, with I, <Iy <1
such that W(R;,) = W(Ry,) = 6K. In particular, |I,], |Ip] > 60,41 by (A).
We set
Ro =Ry, where W(Gy)=xK/2—-O(K).

Since Ry is obtained from R by removing sufficiently wide buffers, we can spread
around R using the univalent push-forward (2.15). We denote by R; the resulting
image of Ry in T;. As for R, we denote by R, ; the subrectangle of R; consisting
of curves starting at J c 9"'R,.

Claim 2 ((A) holds for all R;). For every level m + 1 combinatorial interval J C
OMOR,, we have W(R; ;) < K + O(1).

Proof. Assume that W(R; j) > K + C for C > 1. Pushing R, ; forward under
(2.15) towards Tp we obtain the violation of (A) for R. O

9.1.3. Almost invariance of R;. For every R; s, let us denote by R} ; the lift of
Ri.s under fIm+! starting at J B 8p,41.

Claim 3. Every J C "R, contains a subinterval J** C J such that
W(Riv‘]neW) = W(R’L7J) - O(K)

and such that R; juew vertically overflows R; ;.
Moreover, at most O(K) curves of R; land at T; B 0,11 .

Proof. Let R; jnew be the rectangle obtained from R; j by removing two 3K-buffers.
Then the length of each of the intervals in J\ J"®¥ is at least 2l,, 41 by (A), and at
most O(1) curves in R snew can cross the buffers of R} ; starting at (J B 6my1) \
JUV,

Similarly, up to O(K), curves of R ; are in R; jnew. Since R mew isin Ff, . we
obtain that, up to O(K), curves of R} ; intersect 0Z; U0Z; 1. Taking J = IMOR,
and applying f9™t', we obtain the second claim. ([

Claim 4 (A rectangle between Ts and Tsy1). There is an Rs such that, up to
removing O(K) buffers, the roof of R is in (Ts—1 U Tst1) B Opy1.
Moreover, up to removing O(K) buffers from Rs, we can assume that

dist(ah’le, {as—1,as12}) > 5lpy.

Proof. Let us show that, up to removing O(K) buffers, there is a rectangle R
such that 0™'R, C [0""Rs_1,0""Rei1] \ (Ts BO,,11). This will imply the claim
because 8h’ORj has distance > 50,1 to {aj,a;41}, see §9.1.2.

Assuming converse and using Claim 3 (the second part), we can choose in every
R; a wide rectangle S; whose roof is outside of Lah’ORi_l,ﬁh’O’RiHJ. This is a
contraction by Lemma 6.14. ]

9.1.4. Proof of Calibration Lemma. We now fix a rectangle R from Claim 4. We
assume that most of the curves (up to O(K)) in R land at Ts41; the case of T4
is similar. By removing O(K) buffers from R, we obtain the new R1*" with

9.1) ORIV T, MRV C Toyy dist(0M TRV, agpo) > Sl
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ah.()xp ah,,lp
Ficure 26. Illustration to Claim 5. If P essen-
tially  overflows its  univalent pullbacks  Pg, then

W(P_) @ W(Py) > W(P) — O(x"K).

Let P,P; be the restrictions (see §5.2.4) of R2°™ onto Z™*1 and fq"”“(Z\mH)
respectively. Subrectangles P; of P are defined in the same way as subrectangles
Ri,] for Ri.

Claim 5 (See Figure 26). There is an interval J C 0™°P well-grounded rel Zmtt
with W(Py) > x"°K such that |0 P;| < l,41/5.

Proof. Let P_ and P, be the lifts of P; under f%+! such that P_ starts in 7" "' @
Om+1 while ’P+Alands T:f{l H 0,11, where T;”H,T;fﬁl are the projections of
Ts,Ts41 onto 07 m+1 - Assume a required interval J does not exist. Combining this
assumption with Claim 2, we can remove O(x"?K) buffers from P such that P"°

consequently overflows P_ and Py. This contradicts the Grotzsch inequality:
xK — O(x"?K) =W(P) — O(x"K) < W(P_) @ W(P;) = 0.5x K.

By removing O(K)-buffers from Py, we can assume that J is well-grounded. O

Let 25+1 be the pseudo-bubble (see §5.7) around Z,41 such that f9%"+! maps
2&,“ onto fam+1 (2’”“). We denote by Ngﬁl the projection of Ng;1 onto 82\5“.

Consider an interval J from Claim 5. Write X := 9"1P} where | X| < l,,41/5,
and let X* C N/T! be the lift of X under f9m+'. We denote by P}, 0"'Pj = X*
the full lift of Py ; under f9m+1.

By Claim 3, we can remove O(K) buffers from P; so that the new rectangle
Py overflows PJ. Let us denote by V' C X the subinterval of X* between the
first intersections of 9”“PIY, 9VPPUY with X*. Set

e Fi to be the restriction (see §A.1.5) of F(PIY) to F(O™MOPIY, V),
e F, to be the restriction of F(P3°%) to F(V,d™0Prv).

In other words:
Fi={nlveFPy™)} and  Fi={n|yeF(Py)}

where v, and vy, are the shortest subarcs of v connecting 9™ °P1°%_ V and V, om0 Pyew
respectively. We remark that v, lands at V' while v, starts in V.

Claim 6. We have W(Fz) > t'"K.
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Proof. By the Grétzsch inequality W(P7) @W(Fa) > W(F1)dW(Fz) > W(P5Y),

we have:

W(P)) & W(Fz) = XK @ W(Fy) 2 W(P}™) = x"K - O(K),

1 1 1
XK W(F2) T XK - O(K)’
1.8 f2
X °K 1.7
> K
W(Fz) > O(K) =
because x > 1. O

Consider the rectangle G bounded by the leftmost and rightmost curves of Fo:
G, MG VT, 9MGCOMIPIY, W(G) = W(FR) = x"TK.
Applying Lemma 6.9 to G, we obtain an interval B C [(1+A"2)V]\V C 8Z,41

together with a lamination
Qc C\intZy1, W(Q) =x"K

from B to either [(AB)‘] gnd 0Z441 (Case (II)) or to 8™ PIY (Case (I)). In

new

both cases, Q is disjoint from int Z™ as a restriction of a sublamination of P}
Write N;’_ﬁl = [as41,bs41], Wwhere asyq1 € OZ, see Figure 25. Observe that

(9.2) diSt825+1 (B, bs+1) > Al diSt625+1ua2m+1 (B’ ahalpgeW) > [m+1/5'

Indeed, the first inequality follows from (9.1) because f9"+!(bs11) = as42. The
second inequality follows from the observation that if X™*, |X™*| < [,,41/5 is close to
as+1, then X will be close to asy1 B 0p,41.

For every v € Q, let 7' be the first subarc of v connecting B to 9K,,. By §2.3.3
and (9.2), f9+! injectively maps most of the {7 | v € Q} into a sublamination

of .F(BQ, [()\Bg)c}gmd), where By = fim+1(B) C 9f%m+1(Z™*1) is a grounded
interval. By Lemma 5.10, the projection B3 of Bs onto 0Z satisfies

W)\(Bg) = X1.7K > X1.5K;
which is Case (II) of the Calibration Lemma.

Part 4. Conclusions
10. PROOF OF THE MAIN RESULT
Recall that we are considering eventually golden-mean rotation numbers:
(10.1) 0 =[0;ai,az2,...] with a,=1 forall n >ny.
In this section we will establish the following results:

Theorem 10.1. There is an absolute constant K > 1 such that Wi (I) < K for
every combinatorial interval I C 0Z and every 0 satisfying (10.1).

Theorem 10.2. There are absolute constants N > 1 and K > 1 such that for
every 0 satisfying (10.1), there is a sequence of geodesic pseudo-Siegel disks (§5.1.9)

~

Zro—7, 7w, 7wt L 7 =7
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satisfying the following properties. If I C 0Z is a regular interval rel Z™ with
[m-‘rl < |I| < [mz then

(10.2) either  |I| > 1,,/2 or [7| < N1
and Wi (I) < K.

10.0.1. OQutline and motivation. Let us note that Theorem 10.1 implies Theorem 1.1.
Indeed, for every 8 = [0; a1, as,as,...], |a;] < My of bounded type, define the ap-
proximating sequence

0, =[0;a1,a2,...,a,,1,1,1,...] = 6.

Since Zp, — Zp as qc disks (with dilatation depending on Mpy), the estimate
Wgr (I) < K in Theorem 10.1 also holds for Zy, where K > 1 is independent
of Mg.

We will prove Theorem 10.1 by induction from deep to shallow levels as follows.
We will show that there are A > 1 and K > 1 such that the following properties
hold for every level m:

(a) Existence of a geodesic pseudo-Siegel disk Z™ so that

W ext.m (1) = O(VK)

Aext,m
for every interval I grounded rel 7™ with lnt1 < || < L.

(In other words, we construct Z™ in (a) so that it absorbs all but O(VK)-external
rel m families: if W;ext,m(f) > VK for an interval I C 9Z, then most of the T

together with most of the family 7, (I) submerges into 2”’)

,ext,m

(b) Wi (I) < (2x)K for every grounded rel Z™ interval m with |I| < I,, where x
is the constant from Calibration Lemma 9.1.
(c) W5 (I) <K for every combinatorial interval I of level > m.

The proof of the induction step is illustrated in Figure 27:
o If a pseudo-Siegel disk Z can not be constructed to satisfy Statement (a),
i.e. to absorb all but O(\/K)—external rel m families, then by the exponential

boost in Corollary 7.3 there will be a degeneration of order VK> (2x)K
on levels > m + 1, where a > 1 is fixed.
e If Statement (b) is violated, then it follows from Fy (I) = }";:div,m (I)u ]—';ext’m(f)

that either Z™ was not properly constructed, i.e. the violation of State-
ment (a) with [, > |[I| > [,,41, or there is a diving degeneration of order
> (1.5x)K.

e If there is a diving degeneration of scale > (1.5x)K with [, > |I| > l;,41,
then by Calibration Lemma 9.1, either Statement (c) or Statement (b) is
violated on levels > m + 1.

o If Statement (c) is violated, then by Amplification Theorem 8.1, State-
ment (b) is violated with |I] < [,,.

After the induction, there might still be finitely many renormalization levels
where Amplification Theorem 8.1 is not applicable because of the condition |I| <
|60|/(2A¢). The number of such levels is bounded in terms of A; the estimates for
these levels are established by increasing K.

Let us stress that regularizations on different levels do not interact much. Corol-
lary 7.3, Theorem 8.1, and Calibration Lemma 9.1 are stated in terms of the outer
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not (a):
for mth regularization
W extem (D) > VK
I is grounded

Corollary 7.3

(regularization,

W;,div,m(l) > (Lsy)K N exp boost)
1 is grounded IR \\ m+1/2~m+1
o .
F= N
]:;\r,div,m U ]:;\r,cxt,m \‘
not (c): not (b):
WX () >K WX (1) > (20K

Calibration Lemma 9.1
m+1/2~m+1

I is combinatorial I is grounded

Amplification Theorem 8.1
m~m+1/2

FIGURE 27. Statements (a), (b), and (c) are proved by contradic-
tion: if one of the statements is violated on levels m or m + 1/2,
then there will be even bigger violation on deeper scales. Here
“m” indicates level m combinatorial intervals, “m +1/2” indicates
intervals with [, > |[I| > [541, and “m + 1”7 indicates intervals
with || < [, 4+1. The dashed arrows illustrate the decomposition

f;\r(I) = ‘F;div,m(I) U f)text,m(‘[)‘

geometry of the Siegel disk Z with only indirect references to Z™. Lemma 5.10
implies that the outer geometries of Z™ and Z are close rel grounded intervals inde-
pendently of the number of regularizations. Our estimates for the inner geometry
of Z™ are also independent of the number of regularizations — see the discussion
in §3.0.1 and in §5.0.1.

To prove Theorem 10.2, we will show that external families can not be unex-
pectedly narrow (Lemma 10.5); otherwise, the dual family will be very wide —
contradicting the estimates established for Theorem 10.1. Combined with the Par-
allel Law, this will imply the existence of the combinatorial threshold N. We will
refer to N in Theorem 10.2 as the high-type condition. This a near-degenerate
analogy of the high-type condition in the Inou-Shishikura theory [IS].
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10.1. Proof of Theorem 10.1. We choose constants A, K and a parameter t from
Theorem 8.1 such that

x<t, A=2X, Ki<K,

where x > 1 is the constant in Calibration Lemma 9.1 and A¢, K¢ are from The-
orem 8.1. Theorem 10.1 on levels > ny follows from Corollary 8.7. Let s = sy be
the smallest so that [ < [0g]/(2X + 4).

Lemma 10.3 (Induction). There is a sequence of geodesic pseudo-Siegel disks

Zne — Z7 Zl’lg*l, Zl’lg*Q’ VAl

with the following properties:

(A) If Z does not have an external level-m parabolic rectangle of width VK, then
7m = 2”’“; otherwise Z™ is the reqularization 0]”27"+1 constructed by Corol-
lary 7.3. Moreover, W)tcxt,m(‘]) < 2VK 4+ O(1) for every interval J C dZ
grounded rel 7™ with b1 < |J| < L.

(B) For every interval J C 0Z grounded rel Z™ with Ly < [J| < Ly, we have
Wi (J) < 2xK.

(C) For every level-m combinatorial interval I C 0Z, we have Wy (I) < K.

Proof. We proceed by induction from deep to shallow scales. The base case m = ny
follows from Corollary 8.7. Let us assume that the lemma is true for levels > m.
In particular, Z™F1 is constructed. Let us verify the lemma for m.

Suppose that Z has a level-m external parabolic rectangle R with W(R) >
VK. Assume that R is based on T € D,,, and let 7" be as in §2.1.6. We replace
R with an outermost external rel C \ K, geodesic rectangle Ryew based on T
with W(Rpew) > VK — O(1). In particular, Ryew is non-winding. Let us apply
Corollary 7.3 to Rpew. We claim that Case (1) of Corollary 7.3 occurs.

Proof of the Claim. Assume Case (3) of Corollary 7.3 occurs. We obtain an interval
I € 8Z grounded rel Z™*! with |I| < ;41 such that log W5 (I) = VK. Since
K > x > 1, we have

W;\F(I) > oK > 2xK, where a > 1 represents “=”

contradicting the induction assumption that Statement (B) holds on levels > m+1.
Calibration Lemma 9.1 reduces Case (2) of Corollary 8.7 to Case (3). O

By construction, VK + O(1) bounds the width of level-m external parabolic
rectangles R such that "R is a pair of grounded rel Z™ intervals — wider rectangles
are absorbed by zm. By splitting J into at most 2 intervals, we obtain the estimate
W;\r7ext7m(<]) < 2vVK + O(1). This proves Statement (A).

Let us verify Statement (B). Assuming otherwise and using W;f extom () <

2VK +O(1) (Statement (A)), we obtain W;"div’m(J) > 1.5xK. Applying Calibra-
tion Lemma 9.1, there would exist
e cither a combinatorial [1.5K, A]"-wide level-(m + 1) combinatorial interval
— contradicting Statement (C) on level m + 1,
e or a [L.5x' K, A\|*-wide interval I’ C 8Z grounded rel Z™*! with |I'| <
l;nt1 — contradicting Statement (B) on levels > m + 1.
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It remain to verify Statement (C). Let us assume converse: Wi (I) > K for
a combinatorial level m interval I C 0Z. Applying Theorem 8.1, we obtain a
[tK,A]* wide interval J grounded rel Z™ with length < [,. This contradicts
Statement (B). O

Since [, 42 < [,,/2, see (2.1), we have:
lon < lo/2" =100]/2" < |6o|/(2A+4) if n >logy(2) +4).
We obtain that sy < s = 2log,(2\ +4). Set K; == (2x)'K.

Lemma 10.4 (A few shallow levels). The sequence of geodesic pseudo-Siegel disks
in Lemma 10.8 can be continued with a sequence of geodesic pseudo-Siegel disks

259_17 259_2, 2“9_3, e 771 = Z\fe, sp <s
with the following properties for m < sy:

(A) If Z does not have an external level-m parabolic rectangle of width v/ (2x)s~™ 1K,
then Z™ = Z™ % otherwise Z™ is the reqularization of Z™ constructed by

Corollary 7.3. Moreover, W;text,m((]) < 24/(2x)se 1K + O(1) for every
interval J C 0Z grounded rel 7™ with g1 < || < Ly

(B) For every interval J C 0Z grounded rel Z™ with lyy1 < [J]| < I, we have
Wi (J) < (2x)* K.

Proof. Statements (A) and (B) are proven in the same way as the corresponding

statements in Lemma 10.3 where Statement (C) of Lemma 10.3 replaced with a
weaker Statement (B) of Lemma 10.4. O

10.1.1. Proof of Theorem 10.1. We have shown in Lemmas 10.3 and 10.4 that there
are absolute A > 1, K >, 1 such that Wi (I) < K for every combinatorial
interval I. We need to show that Wy (I) < K, for some Ko.

Assume [ is a level m combinatorial interval. For simplicity, let us round up A to
the smallest integer number. Choose the minimal n > m such that [,,, /I, > 2XA+ 1.
We can decompose I as a concatenation

IT=1 Ul 1 U... I 1UlgULU---UlIy

so that for k # 0 the interval Iy is level-n combinatorial while Iy is a grounded rel
Z" interval. By construction, Then

Fi()c|JFrI;, 0% and  FT(I, (31)°) C Fif (Ix) for k # 0.
J
For k # 0, we have Wy (I;) < K. If W™ (Iy, (31)¢) >k 1, then applying Calibration
Lemma 9.1 to F (I, (31)¢), we obtain an interval J grounded rel Z" with |J| < I,,

such that W;(J) >k 1 — contradicting the estimates in Lemmas 10.3 and 10.4.
Therefore, Ws(I) is bounded in terms of A and K. O

10.2. Proof of Theorem 10.2. Consider a renormalization level m > —1 with
ln/lmt1 > 1, and let T = [v,w] be an interval in the diffeo-tiling ®,,. As in §4,
we assume that v < w in T and that 7" = [v',w] is T'N f9+1(T) (with necessary
adjustments for m = —1).

For k < logy[lm/(20L,,41)] we define vy, wy € T to be the points at distance
10(2F — 1)0,,,11 from v" and w respectively with v, < wy, in T". We set

TF = [op,wp] €T, XM= [op,veq1], Y= [wpygr, wi]
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iLe. T =T and
T]C — Xk)+1 U TkJJrI U }/’k?‘i’l7 |Xk7+1| — |Y’€+1‘ — 2]{310[m+1

Lemma 10.5. For a constant K in Theorem 10.1 and every above well-defined
pair X* Y* with k > 1, we have

+
Wext ,m

(X" Y*) =k 1.
Proof. Assume converse; then we have the following estimate of the dual family:
Wi (TF, 0K, \TF 1) = K >k 1.

Up to O(1), the family F,¢ (T*, 0K, \ TF71) is within two rectangles R, R, in
C\ int Kp,. Applying Lemma A.10, we can push-forward f,JCrm (T*,0KC,, \ TF 1)
almost univalently under f9+: €\ Ky1 — C\ Z; we obtain that

W%(Tk B0, (The1BOmni1)¢) > K —0().
Below we recognize three types of the curves in
F=F (T BOpi1, (Tho1B60m41)°)

and prove that the width of each type curve family can be bounded in terms of K.

Curves diving into KC,,,\ Z. If the width of such curves is sufficiently big, then ap-
plying Calibration Lemma 9.1 to such curves, we obtain a sufficiently wide interval
on deeper scale contradicting the estimates in Lemmas 10.3 and 10.4.

Curves landing at [v,v']. Since [v,v'] is combinatorial, the width of such curves
is bounded by K.

External curves landing at T' N (T,_1 B 0,,41)°. Note that T/ N (T_1 B Opy1)°
consists of two intervals of length < 2’“[m+1. Since the distance between

T/ n (Tk,1 H 9m+1)c and Tk H 9m+1
is < 2"1,, 11, the width of curves of this last type is O(1) by Theorem 4.1. O

Let us now choose a sufficiently big N >k 1. Write M = log, N/10.. If
ln/lmt1 > N/2, then

Who (X'uX?u-- o uXMyYluy?u. o uYM)y sk M > K

ext,m

by Lemma 10.5. Therefore, F.\

ext,m

(XTuX?U---uXxM Yyluy?2u- - .uYM) contains
a parabolic external level m rectangle of width VK and the regularization happens
within the orbit of such rectangle. This implies (10.2).

The combinatorial threshold (10.2) implies that for every interval I C 9Z regular
rel Z™ with lm > |I] > Lna1, there is a grounded rel Z™ interval I ernd C 1 such that
I'\ Igna is within 2N level m + 1 combinatorial intervals. Therefore, the condition
“grounded rel Z™” in Lemmas 10.3 and 10.4 can be replaced with “regular rel Zm»

by possibly increasing K.
11. MOTHER HEDGEHOGS AND UNIFORM QUASI-CONFORMALITY OF 2
Recall that we are considering eventually golden-mean rotations numbers 6, (10.1).

Theorem 11.1. There is an absolute constant K > 1 such that the pseudo-Siegel
disk Zy = Z7Y in Theorem 10.2 is K-qc.
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Recall that a hull @ C C is a compact connected full set. The Mother Hedge-
hog [Chi] for a neutral polynomial fy is an invariant hull containing both the fixed
point 0 and the critical point ¢q(f).

Theorem 11.2. Any neutral quadratic polynomial f = fo, 0 € Q, has a Mother
Hedgehog Hy > co(f) such that f: Hf — Hy is a homeomorphism.

11.0.1. Outline of the section. Since Z = Z7' is obtained from a qc disk Z by
adding finitely many fjords bounded by hyperbolic geodesws in C \ Z, the resulting
pseudo-Siegel disk Zis a qc disk. To show that 7 is uniformly K-qc, we will
introduce a nest of tilings on dZ as follows:

(11.1) T(Z) = Projection z(D) U U T(B"),
gmcazm
where:
e Projectionz(®) is the projection onto Z the nest of diffeo-tilings ® =

[@n]nz,l (2.8), where intervals completely submerged into 7 are removed;
o 7(B™) = [Tn(B")]n>m+1 is an appropriate nest of tilings on dams, see §11.3.

The combinatorial threshold N will imply that T(Z ) has 2N-bounded combina-
torics: each level-n interval consists of at most 2IN intervals of level n + 1. Using
Theorem 10.1, we will show that T(Z ) has uniformly bounded outer geometry:
neighboring intervals in ’7'"(2 ) have comparable outer harmonic measures. And
using Theorem 5.12, we will show that 7’(2 ) has uniformly bounded inner geom-
etry. This will conclude that 7 is uniformly K-qc as a result of quasisymmetric
welding, see Lemma 11.3.

Let us comment on the construction of the 7(5"). Every dam 3" connects two
points in CP,, 11, call them z and y. For every n > m + 1, we can consider four
level-n intervals of ®,, adjacent to x,y; we call these intervals the nth foundation
of B". Our estimates imply that intervals in the nth and (n + 1)th foundations
have comparable outer harmonic measures. This fact allows us to introduce a nest
of tilings T(8]") = [Tn(B")]n>m+1 comparable with the foundations of " on all
levels > m+ 1. We view (" as a sole interval in T,,11(8]"). Since every dam ;" is
protected by a wide rectangle X/ (Assumption 6), different dams are geometrically
faraway and their nests of tilings do not interact much in (11.1).

Theorem 11.2 follows from Theorem 11.1 by taking Hausdorff limits of bounded-
type Siegel disks:

Proof of Theorem 11.2 using Theorem 11.1. For every 8 € R\ Z, consider a se-
quence of eventually golden-mean rotation numbers 6,, converging to 6. Let Zy, C

be the Siegel disk and a K-qc pseudo-Siegel disk of fy, . By passing to a
subsequence we can assume that the Zs, have a Hausdorff limit Hy, = Hp and
the Zg have a qc limit Z@ We obtain that Hy is fy invariant, ¢y, € Hyg C Zj,
and fy: Zg — fo (Zg) is a homeomorphism. Therefore, fy | Hp is a homeomor-
phism. O
11.1. Nests of tilings. We will use notations similar to [L2, §15.1]. Consider a
closed qc disk D C C. Let T = (7,)n>m be a system of finite partitions of 0D into

finitely many closed intervals such that 7,41 is a refinement of 7,,. We say that T
is a nest of tilings if
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e the maximal diameter of intervals in 7, tends to 0 as n — oo, and
e every interval in 7, for n > m decomposes into at least two intervals of
Tn+2-
Similarly, a nest of tilings is defined for a closed qc arc. (In the second condition,
we require 7,42 instead of 7,41 because of Lemma 2.3.)
We say that a nest of tilings 7 has M -bounded combinatorics if every interval of
T, consists of at most M > 1 intervals of T, ;1.
For an interval I € Ty, let Iy, I, € T, be two its neighboring intervals. We denote
by [3I]¢ the closure of 0D \ ([, UIUI,). We set

BI°=T\({IUILUl,),
and we define:
e 7, (1) to be the family of curves in D connecting I and [3]];
. }";7-(]) to be the family of curves in C\ D connecting I and [31])°;
o Wi (I) = W(Fi+(I)).
We say that a nest of tilings 7 has essentially C-bounded outer geometry if for
every I € T we have Wy (I) < C. If moreover, T has M-bounded combinatorics,

then we say that 7 has (C, M)-bounded outer geometry. Similarly, bounded and
essentially bounded inner geometries are defined.

Lemma 11.3. For every pair C, M, there is a Ko ar > 1 such that the following
holds. Let D be a closed qc disk and T be a nest of tilings of 0D. If T has (C, M)-
bounded inner and outer geometries, then D is a Kc v qc disk.

Proof. Assume that 7 = [T"],,>_1. Then there are at least 4 intervals in 73. Let us
choose base points u € int D and v € c \ D such that the inner and outer harmonic
measure of every I € T3 with respect to u and v is less than 1/3.

Consider conformal maps h_: (int D,u) — (D,0) and h: (C\ D,v) — (D,0)
and define

To=hoo(Ta)  and T = ha (T2

to be the induced partitions on S! = 9D. The assumptions on the harmonic
measures and the width imply that the diameter of every I € 7, U7, is comparable
to the diameters of two neighboring intervals in the same tiling — see the estimates
in Lemma 2.5. Therefore, hoh~! is quasisymmetric with the dilatation bounded in
terms C' and M. The curve 9D is a K¢, a-qc circle as the result of a gc welding. O

11.2. Estimates for ©,. Let us for the rest of this section view K in Theo-
rems 10.1 and 10.2 as K = O(1). In particular, the main estimate in Theorem 10.1
takes form W5 (I) < K = O(1) for every combinatorial interval I C 0Z. We will
need the following estimates:

Lemma 11.4. For every diffeo-tiling §2.1.6 ©,, consisting of at least 4 intervals
and every interval I; € ®,, the following holds. Write L; == I;_1 UI; Ulj1, and
let I;", L7 be the projections of I;, L onto 0Z™. Then

(D) Wip, (Ij) =Wy (1, L§) < 1;
(ID) Wy 5 (1;) =W (fg,ﬁm(lj)) = Wa (1", L) <1

(where @z denotes the projection of ., onto 27");
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FIGURE 28. Intervals If;, I, Ji;, Jy; form the foundation of 3;".

(III) for an interval V' € Dpyypn such that V C I; and V is attached to one of the
endpoints of I;, we have W; (V, LC) =, 1

Proof. It follows from Lemmas 10.3 and 10.4 by splitting /; as in §10.1.1 that
ng@m(lj) > 1. Since this holds for all the I}, we obtain Statement (I).

Lemma 6.8 reduces Statement (II) to Lemmas 10.3, 10.4.

Choose a point w € C \ Z such that the intervals Ij—1,1j, 111, L have compa-
rable harmonic measures in C \7 with respect to w. Let Vi, € D40, Vo = I; be
a sequence of nested intervals so that V,, is attached to one of the endpoints of I;.
We claim that V,, and V;,_; have comparable harmonic measures in (@\7, w); this
will imply Statement (III).

Proof of the claim. If L4y X lyyn—1, then the claim follows from Statement (I).
Assume that Ly yn—1 > lpin. Let V) C V,—1 \ Vi, be the interval in .,

attached to another endpoint of V,,_;. It follows from WT (X', Y') = 1 (in

Lemma 10.5) and Statement (I) that W*(V,,, V') =< 1. This implies the claim. O

O

For an interval I; C D,,, let R . (I;) be the geodesic rectangle (see A.1.12)
in E \ Z between Ij—l and Ij+1; i.e., 8h’ORjual([j) = 151, 8h’1R3'ual(Ij) = Ij+1,
and the vertical sides of R . (I;) = I;_1 are the hyperbolic geodesics of C\Z. It
follows from Lemma 11.4, (I) that

(11.2) W (Ria(l;) < 1.

11.3. Nest of tiling of dams. Consider a dam 8" C 82, and assume that it
connects x and y. We recall from Assumption 7 that z,y € CP,,41. Let us
denote by V = V(87) 3 oo the unbounded component of €\ (Z U ) and by
U =U(B") # oo the bounded component of ([AI\ (Z U B™). For every n > m + 1,
we specify, see Figure 28:

I to be the interval in @, (see §2.1.6) adjacent to x such that Iy C 9V,
I to be the interval in ®,, adjacent to x such that Iy C 9U,

Ji; to be the interval in ®,, adjacent to y such that Jj; C 9V,

Jir to be the interval in ©,, adjacent to y such that Jj; C 9U.

We will refer to If;, Iy, Ji7, Ji; € D, as the nth foundation of 3i".
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We say that intervals Ay, As, ..., A, C 0S' with pairwise disjoint interiors are
harmonically comparable with respect to D if Wp (I,J) =< 1 for every pair of non-
adjacent intervals

I,J € {A;,j < s} U{connected components of S* \ U Al
j=1

In other words, all the A; as well as all their complementary intervals have compa-
rable inner harmonic measures with respect to a certain point in D. Similarly, the
harmonic comparison is defined for intervals of Z rel C\ Z. The following lemma
is a consequence of Lemma 11.4, Estimates (I) and (III).
Lemma 11.5. For every 8" and every n > m + 1, we have:
. I}}TH, I‘TH, Jg’“, J‘T“ are harmonically comparable with respect toA([A:\if,
o I I}, (I 2 U I 2)¢ are harmonically comparable with respect to C\ Z,
o Ji, Jv, (Jf,_2 U J{}_Q)c are harmonically comparable with respect to C\ Z.
O

Lemma 11.6. There is an absolute C > 0 such that for every 3" there is a nest of
tilings T (B;") = (Tn)n>m+1 with 10-bounded combinatorics such that the following
properties hold.

For V.=V (8") as above and every interval I € T, U{Iy,Ji}, n>m+1, let

) I‘_/,I_Y be two neighboring intervals of I in
To(B) U {intervals of ©,, that are in OV };
. R:{ua]y(lj) be the geodesic rectangle (similar to (11.2)) in V between IV, I_‘:;
For U =U(8") and every interval I € T, U{I{,Jii}, n>m+1, let
) IH,I_E be two neighboring intervals of I in
To(B") U {intervals of ©,, that are in OU };
o Fy (1) be the family of curves in U connecting I to OU \ (IYvurul?).
Then
(A) W(R oy (1)) < 1;
B) Wiy (1) =W(F; (1) < 1.
Proof. Consider
St={z: |s/=1}cC and X=S'U[-1,1]cCC.

And let us consider a conformal map h: C \ Z — D mapping = and y to —1 and 1
respectively. Since 8" is a hyperbolic geodesic, we have

h(B™) =[-1,1] and h(ZUB™) = X.

Let h.(D,) be the pushforward of the diffeo-tiling ®,,,n > m onto S* by h. By
Lemma 11.4, any two neighboring intervals in h,(®,,) have comparable diameters
(uniformly over n). And by Lemma 11.5, the following diameters are comparable:

o of A1), h(Iy ), A(J5 ), h(JHY);
o of h(I}), h(I), h(IFT), h(I3H) for n > m + 1;
o of h(J), h(J), h(JETY), h(JPHY) for n > m + 1.
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For n > m + 1, let £} be the hyperbolic geodesic of D connecting the endpoints
of h(I; UIL), and let x7 be the intersection of £7 with [—1,1] C X. We define
I"=[-1,27] C [-1,1].

Similarly, let ¢'; be the hyperbolic geodesic of D connecting the endpoints of
h(J; U Jy), and let '} be the intersection of ¢} with [—1,1] C X. We define
J" = [2%,1] C [-1,1]. By construction, the following diameters are comparable:

o of 1™, L (I, AT, h(Jg ), AP,
o of I, I" Y h(I), h(I), h(IFHh), (I3 for n > m + 1;
o of J", J" M h(JE), h(JP), h(JETY), R(J3T) for n > m + 1.

We can now easily extend {I", J"},>m+1 to a tiling of [—1,1] and then pull it

back under h to a required tiling of 5;". O

11.4. Nest of tilings on 0Z. For m > 0, consider the diffeo-tiling ©,, of 0Z.
Since level n < m dams land at CP,,; (Assumption 7), every interval T € D, is
either regular rel Z or is inside a reclaimed fjord of generation n < m. We denote
by D!, the set of regular rel Z intervals in ©,,. And we defined ’)an to be the set
of projections of intervals in D/, onto 7. We define

(11.3) T(Z)=[3,], . ,ulJTB".
B'I’l
The following proposition combined with Lemma 11.3 implies Theorem 11.1.

Proposition 11.7. There is an absolute C > 1 such that for every eventually
golden-mean rotation number the nest of tilings T(Z) has (2N, C)-bounded inner
and outer geometries.

Proof. By construction, T (Z A) has 2N bounded combinatorics. Consider an interval
X € T™(Z). We need to show that W;ET Z)(X) = O(1), where W;:T( 7) are defined
in §11.1. We write

e X°*®:= X if X is within a dam 8", m < n;

e X* to be the projection of X onto 97 if X is an interval in oz".

Set either
e R := Rji_ual,v(X.) as in Lemma 11.6 if X € [T, U {Iy}, Jy}](B;") for some
dam S;";

e or, otherwise, R :== R . (X*®) as in (11.2).
In both cases, we have W(R) < 1. Let R" be the restriction (as in §5.2.4) of R
onto C \ Z". By (5.12), we have W(R™) =< 1. Since the curves in FI_ . (X) cross

3,7(2)
R"™, we obtain

Wi 7 (X) = 0(1).

To show )/V‘3 - Z)(X ) = O(1), we will use the monotonicity of the width under

the embeddings Z", U upsr) c Z = Z~'. Consider several cases.
Assume first that X C 92" and X is not a neighbor of any dam g

Then W3 T Z)( ) W;@TL(ZWL)(

projection of ©,, onto z".

iom < n.
) = O(1) by Theorem 5.12, where @" is the
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In the remaining case, we have X* € T, U{I;, J{;}, n > m+1 as in Lemma 11.6
for a dam 8. If X is in the interior of 8", then W (X) < W5 (X) = O(1) by

3,T(2)
Lemma 11.6, (B) because ‘F?,_T(Z) (X) overflows Fy;(X); i.e. because U(5]") C Z.

Assume finally that X touches one of the endpoints of 5;*. If X C BI", then
]:37T(2)(X) overflows
Fou(X)UF 5, (I(BM]") U Fy 5, ([J5(5M]")

(see Lemma 11.4, (II); here [ ]™ denotes the projection onto 2"), otherwise X €

{I%, Jy 3] (67") and .7:?:7,(2) (X) overflows

Famy (U Fy (I (BM]") U Fsw ([J5(87]") -

Lemma 11.4, (IT) and Lemma 11.6, (B) complete the proof. O

APPENDIX A. DEGENERATION OF RIEMANN SURFACES

Consider a compact Riemann surface S € C with boundary. We assume that
0S8 consists of finitely many components. In this subsection, we will recall basic
tools to detect degenerations of S, see [A, L2, KL1] for details. The discussion
can be adjusted for open Riemann surfaces in C by considering their Caratheodory
boundaries.

A.1. Rectangles and Laminations. Given two disjoint intervals I, J C 35S on
the boundary of a Riemann surface, we denote by

e Fgs(I,J) the family of curves in S connecting I and J:
(A1) Fs(I,J) ={y:[0,1] = S [+(0) e I, ~(1) € J};

e We(I,J) = W(Fs(I,J)) the extremal width between I, J — the modulus
of the family Fs(I,J).
We will often write F~(I,J) = Fs(I,J) and W~ (I,J) = Wg(I,J) when the
surface S is fixed.

A.1.1. Rectangles. A Euclidean rectangle is a rectangle E, = [0,z] x [0,1] C C,
where:

(0,0), (x,0), (x,1),(0,1) are four vertices of Ey,

O"E, = [0,z] x {0,1} is the horizontal boundary of E,,

OMOE, = [0,z] x {0} is the base of E,,

O E, == [0,z] x {1} is the roof of E,,

0"E, = {0,z} x [0,1] is the vertical boundary of E,,

O"'E, = {0} x [0,1], 9"PE, = {z} x [0,1] is the left and right vertical

boundaries of F,;

F(Ey) = {{t} x [0,1] | t € [0,x]} is the vertical foliation of E,,

o FUNE,) = {y:[0,1] = E, | 4(0) € 0"°E,, v(1) € 0"™'E,} is the full
family of curves in E,;

e W(E,) = W(F(E,)) = W(F"Y(E,)) = z is the width of E,,

e mod(E,) =1/W(E,) = 1/x the extremal length of E,.
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By a (topological) rectangle in C we mean a closed Jordan disk R together with a
conformal map h: R — E, into the standard rectangle F,. The vertical foliation
F(R), the full family F™(R), the base 'R, the roof "R, the vertices of
R, and other objects are defined by pulling back the corresponding objects of F,.
Equivalently, a rectangle R C C is a closed Jordan disk together with four marked
vertices on OR and a chosen base between two vertices.

A genuine subrectangle of E, is any rectangle of the form E’ = [z1, 5] x [0, 1],
where 0 < z7 < zo < z; it is identified with the standard Euclidean rectangle
[0,20 — 1] X [0,1] via z — z—21. A genuine subrectangle of a topological rectangle
is defined accordingly.

A subrectangle of a rectangle R is a topological rectangle Ry C R such that
"Ry € R and 9"'Ry € R. By monotonicity: W(Rz) < W(R).

Assume that W(E,) > 2. The left and right 1-buffers of E, are defined

B{:=1[0,1] x[0,1] and Bf:= [z —1,z] x[0,1]
respectively. We say that the rectangle
B =1,z —1] x [0,1] = E, \ (B{ UBY)
is obtained from E, by removing 1-buffers. If W(E,) < 2, then we set E}°V = ().
Similarly, buffers of any width are defined.

A1.2. Annuli. A closed annulus A of modulus 1/x is a Riemann surface obtained
from E, by gluing its vertical boundaries:

A= Ey/ovtB,50y)~(@y)coveB,| vy » YW(A) =2, mod(A):=1/x.

Its interior int(A) is an open annulus with modulus x. The induced image of the
vertical foliation F(E,) is the vertical foliation F(A) of A. The width of F(A) is
equal to the width of all the curves in A connecting its boundaries 8"°A, 9"1A —
the induced images of the horizontal boundaries E,, M E,.

A.1.3. Monotonicity and Gritzsch inequality. We say a family of curves S overflows
a family G if every curve v € S contains a subcurve 7/ € G. We also say that

e a family of curves F overflows a rectangle R if F overflows FM(R);
e arectangle Rq overflows another rectangle R if F(R1) overflows F f““(Rg).

If F overflows a family or a rectangle G, then G is wider than F:
(A.2) W(F) < W(G).

If F overflows both Gi,Gs, and Gy, G, are disjointly supported, then the Grotzsch
inequality states:

(A.3) W(F) <W(G1) @ W(Ga),

where z @y = (z7! +47)~! is the harmonic sum.

A.1.4. Parallel Law. For any families of curves Gy, Gy, we have:
(A.4) W(G1UG2) <W(G1) +W(G2).

If G1,Go are disjointly supported, then

(A.5) W(G1UG2) = W(G1) + W(Ga).
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A.1.5. Restriction of families. Consider a family of curves G connecting X and Y.
And suppose

XOX, YOV, XnY=40
are enlargements. Then every curve

[y:0,1] = Cleg

has a unique first shortest subcurve 4/ C v connecting X and Y: there is a minimal
t1 > 0 for which there is a t5 > ¢; such that

7((t1,t2)) cC\ ()N( U )7), and  v(t1) € )?, ~(t2) € }7;

we set v = | [t1,t2]. Define G"*" to be the family consisting of 4’ for all v € G.
Since G overflows G"°", we have (see §A.1.3):

WG ™) = W(G).

Note that if G is a lamination, then so is G"°7.

Consider now the following generalization. For a lamination G and disjoint sets
X1, Xs, ..., X, suppose that the following holds. Every curve v € G intersects all
the X; and it intersects X; before intersecting any X;; for j > 0. Then every v € G
contains disjoint subcurves v1,7vo, ..., Ym—1 Where -; is the first shortest subcurve
between X, and X;,. Setting G, to be the set of v; over all v € G, we obtain that
G overflows consequently G; and, by §A.1.3:

W(G) <W(G1) @+ ®W(Gr—1).

Note that G; are disjoint laminations.

A.1.6. Canonical rectangles. Consider a closed Jordan disk D C C together with
disjoint intervals I, J C D. We denote by F~(I,J), F(I,J),F(I,J) the families
of curves in D, C \ int D, C \ (I UJ) connecting I, J. The widths of these families
are denoted by W~ (I, J), W' (I, J), W(I, J).

We can view D as a rectangle R with "R = I U J. We call R the canonical
rectangle of F~ (I, J); we have W(R) = W~ (I,.J). Similarly, viewing C \ int D as a
rectangle Ry with "Ry = I'UJ, we obtain the canonical rectangle Ry of F*+ (I, J);
we have W} (I,.J) = W(Rz2).

Observe that A = C \ (U J) is an open annulus; its Caratheodory boundary
consists of I UI" and J~UJ™T, where I, J~ are the sides of I, J from int D while
It J* are the sides of I, J from C\ D. The vertical family H of F(I, J) consists of
vertical curves of A together with their landing points. We have W(H) = W(I, J).

A.1.7. Innermost and outermost curves. It will be convenient for us to use the
following inner-outer order on vertical curves in rectangles. Consider a rectangle

R C C, with 9"R c D,

where D is a closed Jordan disk, such that R is disjoint from a complementary
interval N C D between 8RR, "' R. Let N~ and Nt be two sides of N from
the inside and outside of D. Consider a set of vertical curves {¢;}; C F(R). The
innermost curve of {¢;}; is the curve f;,, separating N~ from all remaining ¢; in
C \ ("R U N). The outermost curve of {£;}; is the curve o, separating N* from
all remaining ¢; in C \ (9"R U N).
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A.1.8. Laminations. By a lamination £ we mean a family of pairwise disjoint sim-
ple rectifiable arcs such that supp £ is measurable. A sublamination of L is any
collection H of arcs from G such that supp H is measurable.

Laminations naturally appear as restrictions of rectangles — see §A.1.5. Note
that a restriction of a rectangle is usually not a rectangle as discussed in [KL1,
§2.3]. For convenience, a lamination G can often be replaced by a rectangle R
bounded by the left- and rightmost curves of G; then W(R) > W(G).

All laminations in our paper will appear from rectangles using basic operations
like restrictions and finite unions.

A.1.9. Restrictions of sublaminations. Consider a lamination or a rectangle R, and
let S be a sublamination of R (or of F(R)). Assume that S overflows a lamination
S. Then we write

(A.6) W(R|S) = W(S) (note that W(R|S) < W(R)).
A.1.10. Splitting Rectangles.

Lemma A.1. Consider a Jordan disk D and let I,J C 0D be a pair of disjoint
intervals. Consider an arc ¢ in the canonical rectangle of Fr, (I, J), §A.1.6. Suppose
£ splits I and J into I, I and Jy, Jo enumerated so that the pairs I, J; and I, Jo
are on the same side of . We denote by D1 and Dy connected components of D\ ¢
containing I, J1 and Iz, Jo on its boundaries respectively. Then

Wp (I, J1) + Wp (12, J2) =2 < Wy, (11, J1) + Wp, (12, J2) =
=Wp,J) <Wp (11, J1) + Wy (12, J2).

Proof. The last inequality is immediate. Let
e R be the canonical rectangle of 7 (I, J);
® Ri, Ry be the canonical rectangles of Fp, (I, Jl),}"Bz (I, Jo);
° ﬁl, R5 be the canonical rectangles of Fp (I, J1), Fp (12, J2).
Since £ splits R into R1,Ro, we have

Wp, (11, J1) + Wp, (I2, J2) = W(R1) + W(R2) = W(R) = Wp (I, J).
By removing 1-buffers from 7%1, ﬁg, we obtain new disjoint rectangles ﬁj‘ew, fégeW;
since RY™ LU R5°Y C R, we have
W(RI™) + W(RE™) < W(R).
U

Lemma A.2. Under the assumptions of Lemma A.1, let Gy be the family of curves
i D connecting I to J such that every curve in Gy intersects D1. Then

Wp, (I1,J1) <W(G1) < Wp (11, J1) +2
Proof. As in the proof of Lemma A.1, let R be the canonical rectangle of F5 (I, J)

and R4 be the canonical rectangle of ]:51 (I1, J1). Since Ry is a genuine subrectangle
of R, we can consider the genuine subrectangle R} of R specified by

RiCRS and W(R])=W(R1)+1;

i.e. Ry is Rf minus its one 1-buffer B. The width of curves in G; crossing B is less
than 1; the remaining curves of G; are in Rf O
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a d
\ o
Oy X o,
[
b C

FIGURE 29. Assume a rectangle ) is a union YTUXUY™ such
that W) < W(Y™7) < mod(Oy \ [a,b]) < mod(O, \ [¢,d]) < 1.
Then mod(O, UY U O, \ X) = 1, see Lemma A 4.

A.1.11. Enclosed annuli. Let A, B C C be two closed annuli surrounding open disks
U and V respectively. Assume that

e U UV is an open topological disk;
e AUUUBUYV is a closed topological disk.

Then the enclosed annulus is
AOB = (AUUUBUV)\ (UUV).
Lemma A.3. If mod(A), mod(B) > 2¢, then mod(AOB) > .

Proof. Let 7: [0,1] — AOB be a vertical curve of the annulus ACJB. Assume first
that v(0) € 9™ A. Then for some t € (0,1] we have v(t) € 9°**A; i.e. 7 crosses
A. Similarly, if v(0) € 9™ B, then v crosses B. By the Parallel Law §A.1.4,
W(AOB) < W(A) +W(B) < 1/e. O

Let us consider the following construction which will be used in §7. Suppose, see
Figure 29:

e arectangle ) is a union of its genuine subrectangles Y, X, )~ with disjoint
interiors, where X is between Y* and VT,

e closed disks Oy, 0, contain "°Y = [a,b] and 9™'Y = ¢, d] respectively;

e O,UYUQO, is a closed topological disk.

Lemma A.4. For Oy, Y=Y TUXuUu), O, as above, if

W) = W) = mod(O; \ [a,b]) = mod(O, \ [e,d]) < 1,
then mod(O,UYUO,\ X) = 1.
Proof. Consider a vertical curve 7 of the annulus O, UY U O, \ X.
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e If  intersects [a, b], then 7 crosses the annulus Oy \ [a, b].
e If y intersects [c, d], then v crosses the annulus O, \ [c, d].
e If v is disjoint from [a,b] U [c,d], then v crosses either Y* or Y.

By the Parallel Law §A.1.4, mod(O,UYUO, \ X) > 1. O

A.1.12. Geodesic Rectangles. Let D be a closed Jordan disk, and consider two
closed disjoint intervals I,J C dD. The geodesic rectangle R(I,J) in D is a rec-
tangle such that

ORI, T) =1, OM'R(I,J)=J,
and the vertical sides of R(I,J) are the hyperbolic geodesics of D.

Lemma A.5. Let R with W(R) > 1 be a rectangle in D with "°R = I and
IR = J. Let R™™ be the rectangle obtained from R by removing two 1/2-buffers
on each side. Write O"OR™Y = "V C I and OWIR™Y = J"Y C J. Then

R DRIV, JW) and RV C R(I,J),
where R(IY, J*Y), R(I,J) are geodesic rectangles as above.

In particular, R can be replaced with a geodesic subrectangle R(I"°V, J"*V) so that
W(R) _ W[R(IHCW7 Jncw)] S 1

Proof. We can assume that R' = D = E,, where E, is a Euclidean rectangle,
see §A.1.1. Then the lemma follows by appropriately applying the following claim:
the hyperbolic geodesic v C E, connecting (0,0) and (0, 1) is within E; /5 — the left
1/2-buffer of E,.

To prove the claim about «, consider the right half-plan Cso := {z | Rez > 0}.
Then the hyperbolic geodesic ¥ C Csq connecting (0,0) and (0, 1) is the semicircle
orthogonal to the imaginary line; i.e. 5 C Ey/5. Since B, C Cso, we also obtain
that v C E1/2~ Il

It follows from Lemma A.5 that if J C 0D is a concatenation of subintervals
Ji#J> and I C 9D, then

(A7) W (I,0) =W (I,J1) + W (I, J2) — O(1).

A.2. Small overlapping of wide families. Many arguments in the near-degenerate
regime are based on the principle that wide families have a relatively small overlap.

A.2.1. Non-Crossing Principle. Consider a closed Jordan disk D and let

Ri,Re C D, 9O"R{,0"RyCcOD, 0"RiNIRy=10

be two rectangles. If W(R1), W(Rz2) > 1, then Ry, Ra do not cross-intersect: there
are vertical curves ;1 € F(R1) and 72 € F(R2) with 44 N2 = 0. Indeed, assuming
otherwise, we obtain

1/W(R1) = mod(Ry) > W(R2)

by monotonicity of the external length.
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A.2.2. Vertical boundaries. The following lemma is a slight generalization of [KL1,
Lemma 2.14].

Lemma A.6. For every € > 0 the following holds. Consider rectangles
ga RlaRQa"'aRnC@y W(g), W(Rq) > 8n + 2¢

such that the R; are pairwise disjoint. Then after removing buffers of width at
most 4n + e, we can assume that the new rectangles G*Y RV, Ry, ..., Ry
have disjoint vertical boundaries.

Proof. We need the following fact:

Lemma A.7 ([KL1, Lemma 2.13]). Consider two laminations A,G such that A is
a sublamination of the vertical foliation of a rectangle. If W(A) > k and W(G) >

1
Kk > 1, then there is a curve £ € G that intersects less than —W(A) of curves in A.
K

Let G4+, R4, be the buffers of width 4n+¢ in G, R,,. Applying Lemma A.7, we
can select vertical curves v_ , € R_ » Y+,n € R4 n so that each v ,, intersects less

1 1
than ZW(Q, Ugy) = Q—W(gi) curves in G_ U G,. Therefore, there are curves
n n

B- € G_, B4+ € G4 that are disjoint from all the vy ,,. We set B+,7v+ n to be the
vertical boundaries of G"%, RI™, Ry, ..., Ry". g

A.2.3. Crossing an annulus. Let A C C be an annulus and G be a family of curves
such that every its curve starts in the unbounded component U of C \ A. Then at
most 1/ mod A curves in G intersect the bounded component O of C\ A. Indeed,
every curve v € G intersecting O contains a subcurve 4’ connecting the inner and
outer boundaries of A. The width of such ~ is at most 1/ mod A.

Lemma A.8. Let D C C be a closed Jordan disk and A, = mod A be a closed
topological annulus such that the bounded component O of C\ A intersects OD.
Then for every rectangle

RCD  suchthat "R C D\ (AUO),
after removing two 1/u-buffers from R, the new rectangle R**Y is disjoint from O.
We will need the following topological property:
Lemma A.9. Let D C C be a closed Jordan disk together with a rectangle
RCD, 0"RcCoD.

Let O C C\ "R be a connected set intersecting 0D \ O"R. If R intersects O, then
the set of wvertical curves in R intersecting O forms either one or two buffers of
R. If, moreover, O intersects exactly one component of 0D \ "R, then the set of
vertical curves in R intersecting O forms a buffer of R.

Proof. If v1,72 € F(R) are two curves disjoint from O, then all vertical curves of
R between ; and 7, are also disjoint from O — otherwise O would be enclosed by
"R U~1 U~s. Therefore, the set of vertical curves intersecting O form one or two
buffers.

Assume there are two buffers. Then there will be a vertical curve v € F(R)\0"R
that is disjoint from O. Since O is disjoint from v U d"R and since O intersects
both 8"*R,d”"PR, the set O intersects both components of dD \ IR. g
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Proof of Lemma A.8. At most 1/u vertical curves in R can cross A and all such
curves form one or two buffers of R by Lemma A.9. d

A.2.4. Push-forwards. Suppose f: S; — Sy is a branched covering between Rie-
mann surfaces of degree d. Let G be a family of curves in S;j. Then, see [KL1,
Lemma 4.3]:

(A9 WG] = TW).

Covering Lemma [KL1] (stated as Lemma 8.5) allows one to push-forward width
of curves more efficiently.

Lemma A.10. Suppose g: A — B is a covering between either two closed annuli
or between punctured disks. Let R C A, "R C A be a rectangle in A such that g
maps "R injectively onto g(ah’oR). Then after removing two 1-buffers from R,
the map g is injective on the new rectangle R™".

Proof. Write D := degg. Since g is a normal covering, g has a group of deck
transformations; we denote by Rg = R, R1,...,Rp—1 the orbit of R under the
group of deck transformations. Since d"°R; are disjoint, all RI™ are disjoint.
(The last claim can be easily checked by lifting the R; to the universal cover.)
Therefore, g | Rg®Y is injective. O

A.3. Shift Argument. If a rectangle R has a conformal shift R; cross-intersecting
R, then W(R) < 1, see Figure 30. Often, a weaker condition is sufficient: IMOR is
disjoint from d"R;. Let us provide details. Consider a rectangle

RcCC\Z suchthat O"RcCaZ

that has a conformal pullback or push-forward
Ri=fI(R)ELR,  RicC\Z "R, cCoz

for t € Z. Assume next that there is an interval T C 0Z containing |0"R| U |[OR?]
such that
MR <R, IRy <Ry in T
and f* maps "R, 0™ R, |0"R | onto "Ry, 0™ Ry, |0"R,|. We say that R, R,
are linked if
(A.9) either 9"'Ry < "R <9™'Ry or "R <R, <™'R
' or MRy <R < ™Ry or IR <R, <R

holds.

Lemma A.11. If R is linked to its conformal pullback or push-forward R, as
above, then W(R) < 2.

Proof. Assume that "Ry < 3"OR < 81 R, holds; the other cases are analogous.
Assume that W(R) > 2. Let R"™" be the rectangle obtained from R by removing
two 1-buffers on each side. Set RV = f{(R"™Y) C R;. Since 8"'R"Y c "R
is disjoint from "RV C 9" Ry, the new rectangles R, RV are disjoint. Since
£t maps OMORMCY 9RIRDCY | 9PRPCY | onto OMORLCY, 9 IREY | 9MRECY | and all
the intervals are in T, we obtain

IRy < "R < MRy <R in Ty

ie, R"™Y,Ri°Y intersect, compare with Figure 30. This is a contradiction. O
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ah.()R 8]1,1R

FI1GURE 30. If a rectangle R cross-intersects its conformal image,
then W(R) < 1.
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