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FOR NEUTRAL RENORMALIZATION.
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Abstract. We prove uniform a priori bounds for Siegel disks of bounded type

that give a uniform control of oscillations of their boundaries in all scales. As a
consequence, we construct the Mother Hedgehog for any quadratic polynomial

with a neutral periodic point.
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1. Introduction

Local dynamics near a neutral fixed point, and a closely related dynamical theory
of circle homeomorphisms, is a classical story going back to Poincaré, Fatou, and
Julia. It followed up in the next two decades with breakthroughs by Denjoy (1932)
and Siegel (1942) on the linearization of circle diffeomorphisms and local maps,
respectively. The local theory received an essentially complete treatment in the
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second half of the last century in the work by Arnold (in the KAM framework),
Herman, Yoccoz, and Perez-Marco.

About at the same time (1980–90s) a global and semi-local theory for neutral
quadratic polynomials fθ : z 7→ e2πiθz+z2 with rotation numbers θ of bounded type
was designed on the basis of the Douady-Ghys surgery. And in the 2000s, in the
framework of the parabolic implosion phenomenon, Inou and Shishikura established
uniform a priori bounds for quadratic polynomials fθ with rotation numbers of
high type. This theory found numerous applications, from constructing examples
of Julia sets of positive area Buff-Cheritat (2000s, [BC]), Avila-Lyubich (2010s,
[AL2])) to a complete description, for high type rotation numbers, of the topological
structure of the Mother Hedgehogs that capture the semi-local dynamics of neutral
quadratic polynomials (Shishikura-Yang, Cheraghi (2010s)). (See §1.3 below for a
more detailed historical account.)

In this paper, we will prove uniform a priori bounds for neutral maps fθ with
arbitrary rotation numbers. It gives an opening for removing the high-type as-
sumption in the results just mentioned and alluded to. As a first illustration, we
prove that the Mother Hedgehog exists for an arbitrary rotation number.

Our proof is based upon analysis of degenerating Siegel disks of bounded type.
The degeneration principles, in the quadratic-like renormalization context, were
originally designed by Jeremy Kahn [K], with a key analytic tool, the Covering
Lemma, appeared in [KL1]. They serve as an entry point for our paper. One of
the major subtleties of our situation is that Siegel disks of bounded type do not
have uniformly bounded geometry since they may develop long fjords in all scales.
(Otherwise, Cremer points would not have existed.) To deal with this problem, we
design a regularization machinery of filling-in the fjords to gradually turn Siegel
disks into uniform quasidisks.

Let us note in conclusion that our inductive argument goes in the opposite di-
rection compared with the quadratic-like renormalization theory [K, KL2]. Indeed,
we show that high degeneration on a certain level implies even higher degeneration
on a deeper rather than a shallower level.

1.1. Results. Due to the Douady-Ghys surgery, for a Siegel map f = fθ of bounded
type, the dynamics on the Siegel disk Z, all the way up to its boundary ∂Z, is qc
conjugate to the rigid rotation by θ, which provides us with the rotation combina-
torial model for f | ∂Z.

Let pn/qn be the continued fraction approximants for θ, so for any x ∈ ∂Z, fqnx
are the closest combinatorial returns of orb x back to x. A combinatorial interval
I ≡ Inf (x) ⊂ ∂Z of level n is the combinatorially shortest interval bounded by x

and fqnx. For a combinatorial interval I ⊂ ∂Z, we let Ĩ ⊃ I be the enlargement of
I by two attached combinatorial intervals.

Given a combinatorial interval I ⊂ ∂Z, let us consider the family F+
3 (I) of curves

γ ⊂ Ĉ r Z connecting I to points of ∂Z r Ĩ. The external modulus W+
3 (I) is the

extremal width (i.e., the inverse of the extremal length) of the family F+
λ (I).

Uniform Bounds Theorem 1.1. There exists an absolute constant K such that
W+

3 (I) ≤ K for all Siegel quadratic polynomials f = fθ of bounded type and all
combinatorial intervals I = Inf (x).
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Figure 1. Different types of Siegel disks: golden-ratio (top-left),
near-Basilica (bottom-left), near-cauliflower (bottom-right), near-
1/4-Rabbit (top-right).

A hull Q ⊂ C is a compact connected full set. The Mother Hedgehog [Chi] for
a neutral polynomial fθ is an invariant hull containing both the fixed point 0 and
the critical point c0(f) := −e2πiθ/2.

Mother Hedgehog Theorem 1.2. Any neutral quadratic polynomial f = fθ, θ 6∈
Q, has a Mother Hedgehog Hf 3 c0(f) such that f : Hf → Hf is a homeomorphism.

The last theorem is a consequence of the following result:

Quasidisk Approximation Theorem 1.3. There exists an absolute constant
K such that for any Siegel quadratic polynomial f of bounded type there exists a

K-quasidisk Ẑf ⊃ Zf such that f | Ẑf is injective.

In [IS], Inou and Shishikura constructed a compact renormalization operator for
high type rotation numbers. Theorems 1.1 and 1.3 imply that a compact renormal-
ization operator of a similar nature exists for all rotation numbers.

1.2. Quick outline of the proof. Let us first give an informal description of
Siegel disk degenerations. Let us denote by

θ = [0; a1, a2, . . . , an, an+1, . . . ], an ≤Mθ.

the rotation number of f . Its Siegel disk Zf is a Kθ-quasidisk by the Douady-Ghys
surgery. If we start increasing an with the remaining ai fixed, then Zf will be
developing parabolic fjords towards the α-fixed point on the renormalization scale
n, see Figure 2. These fjords can approach α arbitrary close. Cremer points are
obtained by developing fjords in many scales so that in the limit the α-fixed point
is not an interior point of the filled Julia set. In the paper, we will justify that this
“star-like” degeneration is the only possible degeneration of bounded type Siegel
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α

Figure 2. For a rotation number [0; 1, . . . , 1, an+1, 1, . . . ], the
Siegel disk develops parabolic fjords on scale n towards the α-fixed
point as an+1 →∞. The critical points of fqn+1 (blue) are beacons
(on the top of) parabolic peninsulas. After adding appropriately
truncated parabolic fjords (orange) to the Siegel disk, the resulting
pseudo-Siegel disk is almost quasi-invariant up to qn+1 iterates.

Disks. We will work in the near-degenerate regime where wide rectangles impose
non-crossing constraints on the geometry. (One may call it “1.5-dimensional real
dynamics”.)

In Section 4 we will justify (in the near-degenerate regime) that parabolic fjords
have translational geometry – reminiscent of the Fatou coordinates for near-parabolic
maps. It will follow from Calibration Lemma 9.1 that the critical points of fqn+1

are “beacons” (on the top of) the level-n parabolic peninsulas.

A pseudo-Siegel disk Ẑm is constructed by adding to Z all truncated parabolic

fjords on scales ≥ m, see Figure 2. We will show that Ẑm is qausi-invariant (in
particular, injective) for all f i with i ≤ qm+1. Moreover, the pseudo-Siegel disk

Ẑf = Ẑ−1 is uniformly qc (Theorem 1.3).
Theorem 3.8 establishes certain beau bounds to control the inner geometry of

Ẑm. The bounds imply, in particular, that the errors do not accumulate under the
regularization

Z  · · · Ẑm+2  Ẑm+1  Ẑm  · · · Ẑ−1 = Ẑf

Furthermore, the outer geometry of the Siegel disk is almost unaffected under Z  
Ẑm – most of the outer harmonic measure of Z sits on tops of peninsulas, see §5.2.

In other words, a random walk in Ĉ \ Z starting at ∞ is unlikely to enter any
truncated parabolic fjord of any level if the truncation is chosen sufficiently deep.

To control the outer geometry and its interaction with the inner geometry of Ẑm,

we will introduce the following degeneration parameters. For an interval I ⊂ ∂Ẑm,

we denote by λI ⊂ ∂Ẑm the λ-rescaling of I in the linearized coordinates of ∂Z.

Then Wλ(I) is the width of the family of curves connecting I to ∂Ẑm \ (λI).

Similarly,W+
λ (I) is the width of the outer family of curves (i,e., in Ĉ\Z) connecting

I to ∂Ẑm \ (λI). If Wλ(I) = K � 1, then iterating Snake Lemma 6.1, we can
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eventually find J with W+
λ (J) � K and |J | ≤ |I|, where “| |” denotes the length in

the linearized coordinates of ∂Z.
If for a combinatorial interval I ⊂ ∂Ẑm on the renormalization level m we have

W+
λ (I) = K ≥ K for an absolute threshold K � 1, then the Covering Lemma

allows us to spread the associated degeneration around ∂Ẑm. Then Snake-Lair
Lemma 8.6 finds a bigger degeneration: there will exist a combinatorial interval

J2 ⊂ ∂Ẑn for some n > m such that W+
λ (J2) ≥ 2K and |J2| ≤ |J |. Proceeding by

induction, we obtain a sequence of shrinking intervals Jn such thatW+(Jn) ≥ 2nK
contradicting eventually that Z is a Kθ-quasidisk. This establishes Theorem 1.1.

Theorem 1.3 is obtained by justifying a universal combinatorial bound for the
truncation depth. Theorem 1.3 allows us to control Hausdorff limits of Zfθ as
θ approaches any irrational number; the resulting limits are Mother Hedgehogs
(Theorem 1.2).

The paper is organized as follows. In Part 1 we will show that near-rotation
domains and parabolic fjords are coarse qs-equivalent to rotations of the unit disk –
see Proposition 3.3 and Theorems 3.8, 4.1. In Part 2, we will introduce pseudo-Siegel
disks, show that they quasi-behave as uniformly bounded Siegel disks, establish

Snake Lemma 6.1. Corollary 7.3 states that either the regularization Ẑm  Ẑm−1

is possible or there is a much bigger degeneration on some scale ≥ m. In Part 3 we
will prove Theorem 8.1 (application of the Covering Lemma followed by Snake-Lair

Lemma 8.6) and Calibration Lemma 9.1; they say that if the outer geometry of Ẑm

is sufficiently degenerate on scale m, then the outer geometry of Ẑn is even more
degenerate on some scale deeper scale n > m. The main theorems are proven in
Part 4.

For the reader’s convenience, in the beginning of each section, we provide its
detailed outline.

1.3. Historical retrospective and further perspective. As we have already
mentioned, the local theory for neutral holomorphic germs and circle homeomor-
phisms was completed by Arnold, Herman, Yoccoz and Perez-Marco in the second
half of the last century. In particular, Yoccoz showed the Bruno’s linearization
condition is sharp for germs [Yo], while Perez-Marco introduced a topological ob-
ject, a hedgehog that greatly clarified the local structure of non-linearizable Cremer
maps [PM].

Another line of thought was related to the quasiconformal surgery machinery
introduced to the field by Sullivan, Douady and Hubbard in the early 1980s. By
means of the Douady-Ghys surgery (see [D1]), it led to a precise topological model
for the Julia set of a neutral quadratic polynomial fθ : z 7→ e2πiθz+z2 with rotation
number θ of bounded type. In particular, it allowed Petersen to justify the local
connectivity of the corresponding Julia set [Pe].

The Douady-Ghys surgery is based upon real a priori bounds for critical circle
maps proved by Swiatek [Sw] and Herman [H]. (A priori bounds mean a uniform
geometric control of a system(s) under consideration in all dynamical scales.) The
Swiatek-Herman bounds were promoted to complex a priori bounds by de Faria for
bounded combinatorics [dF] and by Yampolsky in general [Ya2].

Yet another direction was the theory of parabolic implosion designed by Doaudy
and Lavaurs in the 1980s. A remarkable breakthrough in this theory appeared in
the work by Inou and Shishikura in the mid-2000s, providing us with uniform a
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priori bounds for rotation numbers θ of high type [IS] (see also Cheritat [Che]).
Besides applications mentioned above (to produce Julia sets of positive area [BC,
AL2] and to the description of Mother Hedgehogs [ShY, Ch2]), the Inou-Shishikura
bounds were instrumental in the proof of the Marmi-Moussa-Yoccoz Conjecture
for rotation numbers of high type [ChC] and in the description of the measurable
dynamics on the Julia sets of positive measure in the Inou-Shishikura class [Ch1,
ACh]. It also provided an opening to a partial description of the global topological
structure of Cremer Julia sets, which have been viewed as most mysterious objects
in holomorphic dynamics [BBCO].

Another potential implication of our a priori bounds is a construction of a hyper-
bolic full renormalization horseshoe for all rotation numbers simultaneously, unify-
ing the pacman renormalization periodic points [McM, Ya1, DLS] with the Inou-
Shishikura horseshoe of high type [IS]. Such a structure would imply various scaling
features of the Mandelbrot set near the main cardioid. (Compare with the scaling
impact of the pacman renormalization periodic points [DLS, DL].)

And last but not least, uniform bounds for the neutral renormalization give
control of the satellite quadratic-like renormalization that is relevant to the MLC
Conjecture and the area problem for Julia sets (see [CS, DL]).

1.4. Main notations and conventions. We state here our main notations and
conventions; see §2 for more details. We denote by

• Θbnd = {θ = [0; a1, a2, . . . ] | ai ≤ Mθ} the set of bounded (irrational)
rotation numbers;
• e(θ) := e2πiθ;
• Z the Siegel disk of f = fθ for θ ∈ Θbnd, 0 < θ < 1;
• c0, c1 ∈ ∂Z the critical point and critical value of f ;
• more generally: cn := (f | ∂Z)n(c0);
• h : (Z,α)→ (D, 0) the conformal conjugacy between f and z 7→ e(θ)z;
• |I| := |h(I)|R/Z the (combinatorial) Euclidean length of an interval I ⊂ ∂Z;
• θn ∈ (−1/2, 1/2) the rotation number of fqn | Z and `n := |θn| the length

of a level n combinatorial interval [x, fqn(x)] ⊂ ∂Z, where pn/qn ≈ θ are
best approximations;
• x� ν := h−1(h(x) + ν), where x ∈ ∂Z, ν ∈ R, and h(x) + ν ∈ R/Z ' ∂D;
• Wλ(I) := W(Fλ(I)) and W+

λ (I) := W(F+
λ (I)) the width of the full and

outer families measuring degeneration of Z at an interval I ⊂ ∂Z, see §2.3.1;
• “<” denotes a clockwise orientation on ∂Z;
• for an interval I ⊂ ∂Z and x, y ∈ I we write x < y rel I if x is on the left

of y in I, i.e. ∂Z \ I, x, y are clockwise oriented;
• for a pair of disjoint intervals I, J ⊂ ∂Z we define bI, Jc := I ∪L∪J , where
L is the complementary interval between I, J so that I < L < J ; in most
cases L will be the shortest interval between I and J ;
• x ⊕ y = (x−1 + y−1)−1, x, y > 0 the harmonic sum – see the Grötzsch

inequality (A.3);
• γ#β the concatenation of curves γ and β.

By default, curves are considered up reparametrization and are usually parameter-

ized by the unit interval [0, 1]. We say a curve γ : (0, 1)→ Ĉ \ (A ∪ B) connects A
and B if

lim
τ→0

γ(τ) = γ(0) ∈ A and lim
τ→0

γ(1− τ) = γ(1) ∈ B.
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A Jordan disk is a closed or open topological disk bounded by a Jordan curve.
We write

f(x) � g(x) if f(x) ≤ Cg(x), f(x), g(x) > 0

for an absolute constant C > 0. Similarly:

f(x) �κ g(x) if f(x) ≤ Cκg(x), f(x), g(x) > 0

for a constant Cκ > 0 depending on κ. The big O( ) notation describes at most
liner dependence on the argument: O(f(x)) � f(x). Similarly, Oκ(f(x)) �κ f(x)
is at most liner dependence on f(x) with a constant depending on κ.

We will write “A� B” to assume that A is sufficiently bigger than B. Similarly,
“A�κ B” means that A is sufficiently big than B depending on a parameter κ.

We will often need to truncate laminations F ,G,H by removing buffers of certain
sizes. We will use upper indices “new,New,NEW” to denote new truncated families
with the convention

F ⊃ Fnew ⊃ FNew ⊃ FNEW.

Slightly abusing notations, we will often identify a lamination with its support.
A vertical curve of a rectangle R is a curve that becomes vertical after conformal

identification R with a standard Euclidean rectangle.
Acknowledgment. The first author was partially supported by Simons Foun-

dation grant of the IMS, the ERC grant “HOLOGRAM,” and the NSF grant DMS
2055532. The second author has been partly supported by the NSF, the Hagler
and Clay Fellowships, the Institute for Theoretical Studies at ETH (Zurich), and
MSRI (Berkeley).

The results of this paper were announced at the Fields Institute Symposium
celebrating Artur Avila’s Fields medal (November 2019), and during the SCGP
Renormalization program in December 2020 (see the mini-course on
http://scgp.stonybrook.edu/video/results.php?event id=317).

Part 1. Rotation geometry

2. Preparation

We fix a neutral quadratic polynomial f : z 7→ e(θ)z + z2 with bounded type
rotation number θ ∈ (0, 1); i.e. the α-fixed point of f has multiplier

e(θ) = e2πiθ, θ ∈ Θbnd.

2.1. Siegel Disk. Let us denote by Z the Siegel disk of f . Recall that Z is a qc
disk because θ ∈ Θbnd. Consider a Riemann map

h : Z → D, h(α) = 0

conjugating f | Z to z 7→ e(θ)z.
The (combinatorial) length of an interval I ⊂ ∂Z ' R/Z is defined by

|I| := |h(I)|R/Z ∈ (0, 1).

Similarly, the (combinatorial) distance

dist(x, y) := distR/Z(h(x), h(y)) ∈ [0, 1/2], x, y ∈ ∂Z
is defined. It also induces the distance between subsets of ∂Z.

Given t ∈ R/Z and x ∈ ∂Z, we set

x� t = h−1
(
e(t)h(x)

)
,

http://scgp.stonybrook.edu/video/results.php?event_id=317
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i.e. x� t is x rotated by angle t. We have

f(x) = x� θ, for x ∈ ∂Z.

2.1.1. Closest returns of f |∂Z. Let θ = [0; a1, a2, . . . ] be the continued fraction
expansion and consider the sequence of the best approximations of θ

pn/qn :=

{
[0; a1, a2, a3 . . . , an] if a1 > 1

[0; 1, a2, a3, . . . , an+1] if a1 = 1
,

and set q0 := 1. Then fq0 = f, fq1 , fq2 , . . . is the sequence of the closest returns of
f | ∂Z; i.e.

dist
(
f i(x), x

)
> dist

(
fqn(x), x

)
=: ln, x ∈ ∂Z for all i < qn.

For n ≥ 0, we specify θn ∈ (−1/2, 1/2) so that

fqn(x) = x� θn, x ∈ ∂Z.

In particular, θ0 = θ if θ < 1/2 and θ0 = θ−1 otherwise. By construction, ln = |θn|.
The sequence θn is alternating: θnθn+1 < 0 – reflecting the fact that θ is between
pn/qn and pn+1/qn+1. Since ln ≥ ln+1 + ln+2 and ln+2 < ln+1, we have

(2.1) ln+2 < ln/2.

2.1.2. Intervals. Consider two points x, y ∈ ∂Z. Unless otherwise is stated, we de-
note by [x, y] the shortest closed interval of ∂Z between x and y. The corresponding
open interval is denoted by (x, y). Most of the intervals will be closed.

For an interval I ⊂ ∂Z, we denote by Ic = ∂Z \ I its complement.
We denote by “<” the clockwise order on ∂D and on ∂Z. Given two non-equal

points a, b in an interval I with |I| < 1/2, we say that a is on the left of b, and
write a < b, if Ic, a, b have the clockwise order. This convention is consistent with
drawing intervals on the upper side of ∂Z, see Figures 3, 4. (Note that x 7→ x� ε
is a counterclockwise rotation for a small ε > 0.)

Given intervals I, J ⊂ ∂Z, we define bI, Jc ⊂ ∂Z to be the interval I ∪ L ∪ J ,
where L is the complementary interval of I, J (i.e., a component of ∂Z \ (I ∪ J))
specified so that I < L < J with respect to the clockwise order. In other words,
bI, Jc is the shortest interval containing I ∪ J such that I < J in bI, Jc. In most
cases, bI, Jc will be the shortest interval containing I, J .

Given an interval I ⊂ ∂Z and λ ≥ 1, we define

(2.2) λI := {x ∈ ∂Z : dist(x, I) ≤ (λ− 1)|I|/2}

to be the λ-rescaling of I with respect to its center.

2.1.3. Combinatorial intervals. For n ≥ 0, a combinatorial level n interval is an
interval I ⊂ ∂Z with length ln. It has the form

I = [x, fqn(x)] = [x, x� θn] where x ∈ ∂Z.

Since the sequence θn is alternating, we have:

Lemma 2.1. The return time of points in a level n ≥ 0 combinatorial interval
I = [x, x� θn] is at least qn+1:

(2.3) f i(y) 6∈ I for y ∈ (x, x� θn), i < qn+1.

�
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As a consequence, the commuting pair

(2.4)
(
fqn+1 | [fqn(x), x], fqn | [x, fqn+1(x)]

)
realizes the first return map to [fqn(x), fqn+1(x)]. The renormalization theory of
circle maps is often set up using commuting pairs.

2.1.4. Renormalization tilings. Given x ∈ ∂Z and n ≥ 0, we denote by Jn(x) the
associated renormalization tiling of level n:

(2.5)

qn+1−1⋃
i=0

f i[fqn(x), x] ∪
qn−1⋃
i=0

f i[x, fqn+1(x)].

We also set Jn := Jn(c0), where c0 is the free critical point in ∂Z.
Note that most of the intervals in (2.5) are in the orbit of [f qn(x), x] (explaining

the subindex n in Jn(x)). Moreover, level n intervals in Jn form an almost tiling,
with gaps being intervals of level n+ 1:

Lemma 2.2. Level n+ 1 combinatorial intervals in (2.5) are disjoint.

Proof. It is a well-known statement that easily follows by induction. In J0, there
is a single level 1 interval and q1 ≥ 2 level 0 intervals. The tiling Jn+1 is obtained
from Jn by decomposing every level n interval into level n+1 intervals and a single
level n+ 2 interval either on the level or on the right depending on the parity of n;
i.e. level n+ 2 intervals are disjoint in Jn+1. �

For n > m, we say that level n combinatorial intervals are on deeper scale
than level m combinatorial intervals, while level m combinatorial intervals are on
shallower scale than level n combinatorial intervals.

2.1.5. Spreading around a combinatorial interval. Consider a combinatorial level n
interval I. We say that the intervals

{f i(I) | i ∈ {0, 1, . . . , qn − 1}}
are obtained by spreading around I. We enumerate these intervals counterclockwise
starting with I = I0

(2.6) I0 = I, I1 = f i1(I), . . . , Iqn−1 = f iqn−1−1(I), ij ∈ {1, 2, . . . , qn − 1}.
It follows from Lemma 2.2 that either Ii is attached to Ii+1 or there is a level

n+ 1 combinatorial complementary interval between Ii and Ii+1.

2.1.6. Diffeo-tilings. For n ≥ −1, we denote by CPn = CPn(f) = CP(fqn+1) the
set of critical points of fqn+1 . The diffeo-tiling Dn of level n is the partition of ∂Z
induced by CPn: every interval in Dn is the closure of a component of ∂Z \ CPn.
For n = −1, the tiling consists of a single “interval” viewed as [c0, c0 � 1].

For n ≥ 0, every point in CPn is an endpoint of an interval in Jn(c−qn+1); we
see that Dn is an enlargement of Jn(c−qn+1+1). By Lemma 2.2, every interval in
Dn has length either ln or ln + ln+1.

Enumerating counterclockwise intervals in Dn as P0, P1, . . . , Pqn+1
, we have

f iqn+1(Pk) ≈ Pk+ipn+1
, where the “rotational error” with respect to the combi-

natorial length is small if ln+1 � ln.
Let us set

(2.7) Kn := f−qn+1(Z),
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Every interval of Dn is between two components, called limbs, of Kn \ Z.
For T ∈ Dn, we write T ′ := T ∩ fqn+1(T ) ⊂ T so that fqn+1 : T ′ � θn → T ′ is a

homeomorphism. If n = −1, then T ′ is the longest interval connecting c1 and c0.
The nest of diffeo-tilings is

(2.8) D := [Dn]n≥−1

It follows from (2.1) that

Lemma 2.3. Every interval of Dn consists of at least 2 intervals of Dn+2. �.

2.1.7. Fjords. Consider an interval T = [a, b] in Dn, n ≥ −1 and let ` ⊂ Ĉ \ Kn
be the hyperbolic geodesic connecting a and b. Then the connected component

T = T(T ) of Ĉ \ (Z ∪ `) attached to T is called the fjord associated with T .
More generally, a level n fjord is subdomain of T(T ) bounded by a simple arc

connecting points in T , where T ∈ Dn.

Lemma 2.4. If T is a fjord attached to T , then fqn+1 | T is injective.

Proof. The lemma follows from the observation that

fqn+1 : Ĉ \ Km → Ĉ \ Z

is a covering map of degree 2qn+1 and the harmonic measure of T in (Ĉ \ Km,∞)

is ≤ 2−qn+1 ≤ 1

2
. �

2.2. Inner geometry of Z. For disjoint intervals I, J ⊂ ∂Z, the inner family
F−(I, J) = FZ(I, J) is the family of all curves in Z connecting I, J ; see also §A.1.6.

Its width W−(I, J) can be explicitly computed:

Lemma 2.5 (Log-Rule). Consider intervals I, J ⊂ ∂Z. If dist(I, J) ≤ min{|I|, |J |},
then

(2.9) W−(I, J) � log
min{|I|, |J |}

dist(I, J)
+ 1;

otherwise

(2.10) W−(I, J) �
(

log
dist(I, J)

min{|I|, |J |}
+ 1

)−1

.

We will later generalize these estimates to near-rotation domains (Proposition 3.3
and Theorem 3.8) and to parabolic fjords (Theorem 4.1).

Proof. Since Z and D are conformally identified, it is sufficient to prove the lemma
for D. Observe first that for A,B ⊂ ∂D
(2.11) W−(A,B) � W(R(A,B)) � 1 if dist(A,B) � min{|A|, |B|},
whereR(A,B) is the geodesic rectangle, see §A.1.12. Indeed, the condition dist(A,B) �
min{|A|, |B|} implies that the cross-ratio of 4 endpoints of A,B is comparable to
1. Applying a Möbius transformation, we can assume that all 4 intervals (i.e., A,B
and two complementary intervals between A,B) have comparable lengths, and the
claim follows by compactness.

Suppose dist(I, J) ≤ min{|I|, |J |}. We also assume that |I| ≤ |J |, and we present
I and J as concatenations

I = I1#I2# . . .#In and J1#J2# . . .#Jn,
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JI JnewInew

Figure 3. Illustration to the Localization Property: the width
F−(I, J) is within F−(Inew, Jnew) up toO(log λ), where Inew, Jnew

is an innermost subpair.

where n � log
min{|I|, |J |}

dist(I, J)
+ 1, such that

dist(Ik, Jk) � |Ik| � dist(Ik, J).

By the Parallel Law, we obtain:

W−(I, J) ≤
n∑
k=1

W(Ik, J) � n,

W−(I, J) ≥
n∑
k=1

W(R(Ik, Jk)) � n.

This proves (2.9). If dist(I, J) ≥ min{|I|, |J |}, then W−(I, J) = 1/W−(A,B),
where A,B are complementary intervals between I, J ; i.e., (2.10) follows from (2.9).

�

Remark 2.6 (Splitting Argument). Note that in the proof of Lemma 2.5 we estab-
lished (2.9) and (2.10) from (2.11) by splitting I and J into an appropriate number
of intervals. We will call it the Splitting Argument – this argument will be used
several times later.

2.2.1. Localization Property. Consider a pair I, J ⊂ ∂D, where D ⊂ C is a closed
Jordan disk. A subpair Inew ⊂ I, Jnew ⊂ J is called innermost if

I \ Inew < Inew < Jnew < J \ Jnew in bI, Jc.
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F+
λ (I)

I

(λI)c

Fλ(I)

I

(λI)c

Figure 4. Parameters measuring degeneration of the Siegel disk:
Wλ(I) is the width of the full family of curves connecting I and
[λI]c (right), while W+

λ (I) is the width of outer family (left).

Lemma 2.5 implies the following localization property; see Figure 3. For a pair

of intervals I, J with |bI, Jc| ≤ 1 − 1

λ
min{|I|, |J |}, define Inew ⊂ I and Jnew ⊂ J

to be the closest innermost subpair such that

|Inew| = |Jnew| = 1

λ
min{|I|, |J |}.

Then most of the width of F−(I, J) is in F−(Inew, Jnew):

W−(Inew, J) +W−(I, Jnew) = O(log λ).

2.2.2. Squeezing Property. A counterpart to the localization property is the follow-
ing squeezing property which also follows from Lemma 2.5.

There is a constant C > 0 such that the following holds. Suppose I, J ⊂ ∂Z is
a pair of intervals such that

W−(I, J) ≥ C log λ, λ > 2.

Then

dist(I, J) ≤ 1

λ
min{|I|, |J |}.

We will later generalize Localization and Squeezing Properties to pseudo-Siegel
disks, see §5.5.

2.3. Outer geometry Z. In this section we will define Wλ(I) = W(Fλ(I)),
W+
λ (I) = W(F+

λ (I)) and other quantities to measure degeneration of Z, see Fig-
ure 4.

2.3.1. Full and outer families. Recall (2.2) that λI denotes the rescaling of I ⊂ ∂Z
by λ with respect to the center of I. Recall also that [λI ]c denotes the complement
of λI in ∂Z.

Given disjoint intervals I, J ⊂ ∂Z and λ ≥ 2, we denote by

• F(I, J) the family of curves in Ĉ \ (I ∪ J) connecting I and J ;
• W(I, J) =W(F(I, J)) the extremal width of F(I, J);
• Fλ(I) := F (I, [λI]c);
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• Wλ(I) =W(Fλ(I));
• F+(I, J) the family of curves in C \ Z connecting I and J ;
• W+(I, J) =W(F+(I, J)) the extremal width of F+(I, J);
• F+

λ (I) := F+ (I, [λI]c);

• W+
λ (I) =W(F+

λ (I)).

We call F and F+ the full and outer families respectively.
We say that an interval I is

• [K,λ]-wide if Wλ(I) ≥ K, and
• [K,λ]+-wide if W+

λ (I) ≥ K.

Clearly, for every K > 1 and λ ≥ 2, there is Kλ > 1 such that if Z is a
K-quasidisk, then W(Fλ(I)) ≤ Kλ for every I ⊂ ∂Z. See §11.1 for a converse
statement.

For a closed Jordan disk D ⊂ C and disjoint intervals I, J ⊂ ∂D, the objects

F−D (I, J), W−D(I, J), F+
D(I, J), W+

D(I, J), FD(I, J), WD(I, J)

are defined in the same way as in the Siegel case D = Z (see also §A.1.6). We say
that a rectangle R is based on an interval I ⊂ ∂D if

(2.12) R ⊂ Ĉ \ intD and ∂hR ⊂ I.

2.3.2. External and diving families. Consider an interval I ⊂ ∂Z. Recall from (2.7)
that Km := f−qm+1(Z). A curve γ in F+

λ (I) is called

• external rel Km if γ minus its endpoints is in Ĉ \ Km, and
• diving (rel Km) otherwise;

i.e., diving curves submerge into limbs of Km.
We denote by F+

ext,m(I, J) and F+
div,m(I, J) the subfamilies of F+

λ (I, J) consisting
of external and diving curves respectively. As usual, we write

W+
ext,m(I, J) =W

(
F+

ext,m(I, J)
)

and W+
div,m(I, J) =W

(
F+

div,m(I, J)
)
.

The families F+
λ,ext,m(I),F+

λ,div,m(I) are defined accordingly.

Lemma 2.7. Consider an interval T = [a, b] ∈ Dm in the diffeo-tiling §2.1.6 and
let La, Lb be the limbs of Km attached to a, b. Consider intervals I ⊂ T and J ⊂ ∂Z.
We have:

(2.13) W+(I, J) =W+
ext,m(I, J) +W+

div,m(I, J)−O(1).

Moreover, there are laminations Gext ⊂ W+
ext,m(I, J), Gdiv ⊂ F+

div,m(I, J) consist-
ing of at most two rectangles each such that

(2.14) W(Gext) =W+
ext,m(I, J)−O(1), W(Gdiv) =W+

div,m(I, J)−O(1).

Moreover, we can assume that Gext consists of rectangles Ra,Rb ⊂ C \ Z with
∂h,0Ra, ∂h,0Rb ⊂ I such that every curve in F(Ra) intersects La before intersecting
Km \ La while every curve in F(Rb) intersects Lb before intersecting Km \ Lb.

If J ⊂ T c, then W+
ext,m(I, J) = O(1) and W+(I, J) =W+

div,m(I, J) +O(1).

Proof. Present J as a concatenation of intervals Jx ∪ Jy ∪ Jz such that Jx, Jz ⊂ T
while Jy ⊂ T c; we allow some of the intervals to be empty. Consider the canon-
ical rectangle R of F+(I, J), see §A.1.6. Then R splits into a union of genuine
subrectangles R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5, where some of them can be empty, such
that



14 DZMITRY DUDKO AND MIKHAIL LYUBICH

• R1 ⊂ F+
ext,m(I, Jx) and R5 ⊂ F+

ext,m(I, Jz);
• every γ ∈ F(R2) intersects La before intersecting Km \ La;
• similarly, every γ ∈ F(R4) intersects Lb before intersecting Km \ Lb;
• every γ ∈ F(R3) ⊂ F+(I, Jy) is either disjoint from La∪Lb or it intersects
Km \ (La ∪ Lb) before intersecting La ∪ Lb.

In particular, R2,R4 ⊂ F+
div,m(I, J).

Since the harmonic measure in (Ĉ \ Km,∞) of ∂La, ∂Lb is bigger than the har-
monic measure of T , we have W(R3) = O(1). And by removing O(1) buffers, we
can assume that R2,R4 ⊂ C \ Z. By (A.7), we have:

W(R) =W(R1) +W(R2) +W(R4) +W(R5)−O(1).

�

2.3.3. Univalent push-forward. Consider an interval T = [a, b] ⊂ Dm in the diffeo-
tiling and let La, Lb be two limbs of Km attached to a, b. Consider a rectangle
R ⊂ C \ Z with ∂h,0R ⊂ T and ∂h,1R ⊂ ∂Z such that every γ ∈ F(R) is either
external rel Km or intersects La before intersecting Km \ La. (Similar, the case of
Lb is considered.)

For every vertical curves γ : [0, 1]→ C in R, let tγ ≤ 1 the first intersection of γ
with La. We denote by G = {γ | [0, tγ ] | γ ∈ R} be the corresponding restriction,

and let R0 be the rectangle in C \ intKm with ∂h,0R0 = ∂h,0R and ∂h,1R′ ⊂ ∂Km
be the rectangle bounded by the leftmost and rightmost curves of G, see §A.1.8.
We have

W(R′) ≥ W(G) ≥ W(R).

If R is external rel Km, then R′ = R. Let Rnew be the rectangle obtained from R′
by removing two 1-buffers. By Lemma A.10, for every i ≤ qm+1, the map

(2.15) f i : Rnew 1:1−→ f i(Rnew)

is injective. We will refer to (2.15) as the univalent push-forward of R.

2.3.4. F(I+, J+)-families. For a closed Jordan disk D ⊂ C, consider two disjoint

intervals I, J ⊂ ∂D. Let us view Ĉ \ (I ∪ J) as a Riemann surface; with respect
to this Riemann surface both I, J have two sides: the outer sides I+, J+ and the

inner sides I−, J−. Ignoring the endpoints of I, J , a curve γ : (0, 1) → Ĉ \ (I ∪ J)
lands at γ(1) ∈ I+ if

γ[1− ε, 1) ⊂ Ĉ \ Z ∀ε > 0 and lim
τ→1

γ(τ) = γ(1).

Similarly, the landing at I− is defined. Let

• F(I+, J+) be the family of curves in Ĉ \ (I ∪ J) connecting I+ and J+;
• W(I+, J+) =W(F(I+, J+)) be the extremal width of F(I+, J+).

The central arc in F−D (I, J) is the curve ` ∈ F−D (I, J) that splits D, viewed as a
rectangle with horizontal sides I, J , into two genuine subrectangles of equal width.

Lemma 2.8 (Trading F(I, J) into F(I+, J+)). Consider a closed Jordan disk
D ⊂ C and a family F−(I, J) = F−D (I, J) for I, J ⊂ ∂D. Let A,B ⊂ ∂D be two

complementary intervals between I and J and let Ĩ ⊃ I and J̃ ⊃ J be thickenings

of I, J so that Ĩ , J̃ are disjoint intervals of ∂D. Set

C :=W−(A,B) +W−(I, Ĩc) +W−(J, J̃c).
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γ+γ−

I

β

J Jb b1aa1 cc1d d1

Figure 5. The curves γ− and γ+ specify the intervals Î = [a1, b1]

and Ĵ = [c1, d1]. Here I = [a, b] and J = [c, d].

Let R ⊂ F(I, J) be a lamination.

Then there are intervals Î , Ĵ ⊂ ∂Z with I ⊂ Î ⊂ Ĩ and J ⊂ Ĵ ⊂ J̃ such that
there is a restriction G of a sublamination of R with

• G ⊂ F
(
Î+, Ĵ+

)
;

• W(R|G) =W(R)−O(C), see (A.6);
• G is disjoint from the central arc in F−(I, J).

In particular, by taking R to be the vertical family of F(I, L), see §A.1.6, we

obtain W(Î+, Ĵ+) ≥ W(I, J)−O(C).

Proof. Let Gnew be the lamination obtained from G by removing all leaves ` satis-
fying one of the following properties:

• ` intersects the central arc β of F−(I, J);

• ` contains a subarc in F−(I, Ĩc);

• ` contains a subarc in F−(J, J̃c).

By assumption, W(Gnew) =W(G)−O(C).
Since curves in Gnew do not intersect β, they possess a left-right order. Denote

by γ−, γ+ the leftmost and rightmost arc in G. We assume that γ− < γ+ < β with
respect to the clockwise order around I, see Figure 5. Write I = [a, b], J = [c, d],
where a < b < c < d. Intersecting γ−, γ+ with ∂D+, we obtain the intervals

Î = [a1, b1], Ĵ = [c1, d1] as follows (Figure 5):

• If γ− starts in I+, then a1 := a; otherwise a1 is the first intersection of γ−
with ∂D \ I.
• If γ+ starts in I+, then b1 := b; otherwise b1 is the first intersection of γ+

with ∂D \ I.
• If γ− ends at J+, then d1 := d; otherwise d1 is the last intersection of γ−

with ∂D \ J .
• If γ+ ends at J+, then c1 := c; otherwise c1 is the last intersection of γ+

with ∂D \ J .

By construction, Î ⊂ I and Ĵ ⊂ J . Restricting Gnew to the family F(Î , Ĵ), we

obtain a required lamination GNew ⊂ F(Î+, Ĵ+). �

2.3.5. F◦L(I, J)-families. Consider a pair I, J ⊂ ∂D of disjoint intervals, and let
L ⊂ ∂D be one of the complementary intervals between I and J . We define

• F◦L(I, J) to be the set of curves γ ∈ F(I+, J+) such that γ is disjoint from
∂D \ (I ∪ L ∪ J);
• W◦L(I, J) :=W (F◦L(I, J)).
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JI

β

γa

γdb

γb

x

γda

Figure 6. The subcurves of γ: γa (red), γda (orange), γdb (orange),
γb (red). Note that γa and γb are disjoint.

If I < L < J , then we write:

F◦(I, J) := F◦L(I, J) and W◦(I, J) :=W◦L(I, J).

Lemma 2.9 (Snakes in F◦ \ F+). Consider a closed topological disk D, intervals
I, J ⊂ ∂D, and F◦L(I, J) as above, if

K =W◦(I, J)−W+
L (I, J)� 1,

then F◦L(I, J) contains a rectangle R, called a snake, with W(R) = K −O(1) such
that every vertical curve of R intersects L.

Proof. Let R be the canonical rectangle of F◦L(I, J), §A.1.6; i.e. the semi-closed

rectangle realizing the width between I+, J+ in the open topological disk Ĉ\Lc. Let

γ ∈ F(R) be the unique vertical curve intersecting L such that γ ⊂ Ĉ\ intD. Then
γ splits R into two rectangles Rout ⊂ F+(I, J) and Rinn ⊂ F◦L(I, J), where the
latter rectangle submerges into D. By Lemma A.2, W(Rout) = F+(I, J) − O(1);
this will imply that W(Rinn) = K −O(1). �

2.4. Series Decompositions. In this subsection, we will discuss how to take re-
strictions (compare with §A.1.5) of families submerging into topological disks. For
a closed topological disk D consider a lamination R in F◦L(I, J)\F+(I, J); i.e. every
curve in R intersects L. We assume that I < L < J is the order of intervals in ∂D.
Let us introduce a topological decomposition for R.

We will use the inner/outer order on curves in R, see §A.1.7: the innermost

curve in R is the closest curve to (Lc)− in Ĉ \ Lc, where Lc = ∂D \ L.

Let β : [0, 1] → Ĉ, β(0) ∈ I, β(1) ∈ J be the outermost curve of R; i.e. all
other curves of R are between β and (Lc)−. Let x = β(t) ∈ β ∩ L be the first (for
the smallest t) intersection between L and β.

Consider a vertical curve γ : [0, 1] → C in R with γ(0) ∈ I and γ(1) ∈ J . Since
x is the first entry of β into bx, Jc, we obtain that the first entry of γ into bx, Jc is
from intD. And since γ starts and ends at I+ and J+ respectively, we can define
(see Figure 6)

• γ(a2) ∈ ∂D to be the first intersection of γ with bx, Jc;
• γ(a) ∈ ∂D to be the last before a2 intersection of γ with bI, xc;
• γa to be the subcurve of γ between I and γ(a);
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• γda to be the subcurve of γ between γ(a) and γ(a2);
• γ(b2) ∈ ∂D to be the last intersection of γ with bI, xc;
• γ(b) ∈ ∂D to be the first after b2 intersection of γ with bx, Jc,
• γdb to be the subcurve of γ between γ(b2) and γ(b); and
• γb to be the subcurve of γ between γ(b) and J .

We say that

• γda ⊂ D is the first passage of γ under x;
• γa is the subcurve of γ before γda ;
• γdb ⊂ D is the last passage of γ under x;
• γb is the subcurve of γ after γdb .

Clearly, γa and γb are disjoint because a2, b2 are between a and b. Also γa ∪ γb
is disjoint from γda ∪ γdb . The curves γda , γ

d
b may or may not coincide.

Remark 2.10. Since x is the first intersection of β with L, the curve β is outside
of D before it reaches x. After x, the curve β may have a complicated intersection
pattern with ∂D. For example, β may pass under x to intersect the left interval of
L\{x}; but then β must go back under x and intersect the right interval of L\{x}.

Let us specify the following laminations

F̃a := {γa | γ ∈ R}, F̃b := {γb | γ ∈ R},

Γa := {γda | γ ∈ R}, Γb := {γdb | γ ∈ R},

(2.16) Γ := Γa ∪ Γb = {γda | γ ∈ R} ∪ {γdb | γ ∈ R}.

Then R consequently overflows F̃a,Γ, F̃b.
Let ` be the lowest curve in Γ with respect to x; i.e. ` separates Γ from Lc in

D. We denote by Ja ⊂ L the interval between the left endpoint of ` and x and we
denote by Ib ⊂ L the interval between x and the right endpoint of `. Define

(2.17) Fa = {γ′ | γ′ is the first shortest subcurve of γ ∈ F̃a connecting I+, J+
a }

to be the restriction of F̃a to F(I, Ja) – compare to §A.1.5; and

(2.18) Fb = {γ′ | γ′ is the first shortest subcurve of γ ∈ F̃b connecting I+
b , J

+}

to be the restriction of F̃b to F(Ib, J). Since curves in F̃a t F̃b are disjoint from `,
we obtain

Fa ⊂ F◦(I, Ja), Fb ⊂ F◦(Ib, J);

in particular, curves in Fa,Fb land at J+
a , I

+
b respectively.

We summarize:

Lemma 2.11. A lamination R ⊂ F◦L(I, J) \ F+(I, J) as above consequently over-
flows the pairwise disjoint laminations

Fa ⊂ F◦(I, Ja), Γ ⊂ F−(Ja, Ib), Fb ⊂ F◦(Ib, J).

defined in (2.17), (2.16), (2.18) respectively.

I JJa Ib

x

Γ

Fa Fb
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JI J1 I1

Rnew
`

Rnew
ρ

γργ`

γ′

x

Figure 7. Illustration to Snake Lemma 2.12: if a “snake” with
width K � 1 submerges, then either Rnew

` or Rnew
ρ has width

2K −O(log λ).

�

2.5. Snake Lemma. The following lemma allows us to control submergence of
F◦(I, J) into Z (see §2.3.5). The Snake Lemma for pseudo-Siegel disks will be
proven as Lemma 6.1.

Snake Lemma 2.12 (See Figure 7). Let I, J ⊂ ∂Z be a pair of intervals with
bI, Jc < 1/2 and let L := bI, Jc \ (I ∪ J) be the complementary interval between
I, J with I < L < J . Set

K :=W◦L(I, J)−W+(I, J).

If K � log λ with λ > 2, then there are intervals

J1, I1 ⊂ L, |J1| <
dist(I, J1)

λ
, |I1| <

dist(I1, J)

λ
, I < J1 < I1 < J

such that

(2.19) W◦La(I, J1)⊕W◦Lb(I1, J) ≥ K −O(log λ),
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where La, Lb ⊂ L are the complementary intervals between I, J1 and I1, J respec-
tively:

I JJ1 I1

F◦La(I, J1) F◦Lb(I1, J)

In particular, either W◦La(I, J1) or W◦Lb(I1, J) has width ≥ 2K −O(log λ).
The Snake Lemma is a consequence of the Localization Property §2.2.1 applied

to Series Decomposition §2.4.

Proof. Let R ⊂ F◦L(I, J) \ F+(I, J) with W(R) = K − O(1) be a rectangle (a
snake) from Lemma 2.9 realizing K. Apply Series Decomposition §2.4 to R, we
obtain that F(R) consequently overflows the laminations

Fa ⊂ F◦(I, Ja), Γ ⊂ F−(Ja, Ib), Fb ⊂ F◦(Ib, J).

By the Localization Property §2.2.1, Ja, Ib contain an innermost subpair J1, I1 such
that

|I1|, |J1| ≤
1

2λ
{|Ia|, |Jb|}

and up to O(log λ)-width the family F−(Ja, Ib) is in F−(J1, I1):

W−(Ja \ J1, Ib) +W−(Ja, Ib \ I1) = O(log λ)

Let Rnew be the lamination obtained from R by removing all γ ∈ F(R) with
γda 6∈ F−(J1, I1) or γdb 6∈ F−(J1, I1). Then W(Rnew) = K −O(log λ).

Applying Series Decomposition §2.4 to Rnew, we obtain that Γnew ⊂ F−(J1, I1);
i.e. Jnew

a ⊂ J1 and Inew
b ⊂ I1.

�

2.6. Trading F into F+.

Corollary 2.13 (Trading W◦ into W+). Under the assumptions of Lemma 6.1,
there is an interval Inew ⊂ L such that W+

λ (Inew) � K.

Proof. It follows from (6.2) and K � log λ that eitherW◦La(I, J1) orW◦Lb(I1, J) has

width ≥ 2K − O(log λ) ≥ 7

4
K. Assume that W◦La(I, J1) ≥ 7

4
K. Since F+

λ (J1) ⊃

F+
La

(I, J1), either W+
λ (J1) ≥ 1

5
K or W◦(I, J1) − W+(I, J1) ≥ 3

2
K; in the latter

case, we can again apply the Snake Lemma and construct intervals I2, J2 such that

W◦(I, J2)⊕W◦(I2, J1) ≥ 3

2
K −O(log λ), where

F+(I, J2) ⊂ F+
λ (J2) and F+(I2, J1) ⊂ F+

λ (I2).

Applying induction, we either find an interval Inew with W+
λ (Inew) ≥ 3n

2n5
K, or

construct an infinite sequence of shrinking intervals Inew
n , Jnew

n , Lnew
n with

F◦Lnew
n

(Inew
n , Jnew

n ) ≥ 3n

2n
K |Lnew

n | ≥ min{|Inew
n |, |Jnew

n |}.

Such an infinite sequence does not exist because Z is a (non-uniform) qc disk. �
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3. Near-Rotation Systems

For r > 0, we denote by |x − y|r the Euclidean distance between x, y on the
circle R/r = R/(rZ). We also write |x− y| = |x− y|1, which is consistent with the
combinatorial distance introduce for ∂D, ∂Z.

Fix µ > 0. A µ-near-rotation system with rotation number p/q ∈ Q is Fq =(
f t : U → Ut

)
0≤t≤q such that (see Figure 8)

(A) U and U t are closed Jordan disks;
(B) f t : U → Ut is conformal for t ≤ q;
(C) ∂U is a cyclic (clockwise or counterclockwise) concatenation of simple arcs:

(3.1) ∂U = L0#L1#L2# . . .#Lq−1;

(D) for every k there is an annuls Ak with mod(Ak) ≥ µ such that
(D1) the bounded component Bk of C \ Ak compactly contains Lk as well as

all f t(Lk−pt) for t ≤ q, and
(D2) Ak is disjoint from Ai for |i− k|q > 1.

In other words, f t maps Lk approximately onto Lk+tp so that Lk, Lk+tp ⊂ Bk;

this “error” is controlled (surrounded) by Ak. Let us write Ãk = Ak ∪ Bk – the
filling-in of Ak; and

Ũ := U ∪
q−1⋃
k=0

Bk.

We call the Li unit intervals of ∂U and we call U a µ-near-rotation domain.

3.0.1. Motivation and outline. Recall that θ ≈ pn/qn (see §2.1.1) and f rotates
the diffeo-tiling Dn by approximately pn+1/qn+1, see §2.1.6. If ln+1 � ln, then the
“rotational error” is small with respect to the combinatorial metric of ∂Z. However,
with respect to the conformal geometry of C, the rotational error will be big due
to parabolic fjords; see Figure 2. To deal with this issue, we will approximate Z by
a δ-near-rotation domain Zn with a universal δ > 0 and add all such Zm to Z, see
§7.

For S1 = ∂D, the Euclidean metric on R/Z ' S1 is a unique invariant metric
under all rotations z 7→ e(φ)z. For near-rotation domains we have almost-rotations
f i | U, i ≤ q, where the error is controlled by annuli Ai with modAi ≥ µ > 0. It is
natural to expect that as µ is fixed and q→∞, “almost invariant metrics” on ∂U
converge to the Euclidean metric on R/Z ' ∂D after a conformal uniformization.
In this section, we will prove a slightly weaker statement: almost invariant metrics
will eventually be universally close to the Euclidean metric, see Theorem 3.8. These
beau bounds will imply that the error does not increase during iterative construction

of pseudo-Siegel disks · · · Ẑm+1  Ẑm  Ẑm−1  . . . , see Remark 7.2.
Theorem 3.8 is proven using the Shift Argument (Figure 9): if there is an un-

expected wide rectangle, then its appropriate shift will have a substantial cross-
intersection with itself contradicting Non-Crossing Principle §A.2.1. From this, the
estimates in Theorem 3.8 are established in the same way as in Lemma 2.5. The
main subtlety is that shifted curves can sneak through the Bk. We will first estab-
lish estimates on scale ≥ 40/q with an error depending on µ (Proposition 3.3), then
we will upgrade them to universal estimates on scale �µ 1/q.
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U

f i(∂U)

U

Figure 8. Illustration to near-rotation systems: ∂U is a finite
concatenation of arcs, and f i(∂U) (blue) is approximately ∂U ro-
tated by ip/q, where the error is controlled by a system of annuli
(right side).

3.1. Standard intervals of ∂U . A discrete interval

S ⊂ {0, 1, 2 . . . , q− 1} ' Z/q

with length b is a finite subset {a, a + 1, a + 2, . . . , a + b − 1} of Z/q consisting of
consecutive numbers. Set

LS :=
⋃
s∈S

Ls, BS :=
⋃
s∈S

Bs.

By construction, f t(LS) ⊂ BS+pt for t ≤ q, where S + j = {s+ j | s ∈ S}.
For r > 1, we define the rescaling of S with respect to its center as

rS :=
{
n ∈ Z/q : |n− a− (b− 1)/2|q ≤ r|S|q/2

}
.

Let (rS)c := {0, 1, . . . , q− 1} \ (rS)c be the complement of rS. Similar to §2.2, we
define:

• F−(LV , LW ) to be the family of curves in U connecting LV and LW ;
• W−(LV , LW ) =W(F−(LV , LW ));
• F−r (LS) = F−(LS , L(rS)c);

• W−r (LS) =W−(LS , L(rS)c).

We say that an interval LS is [K, r]−-wide if Wr(LS) ≥ K.
We call an interval LS ⊂ ∂U standard. Any interval I ⊂ ∂U can be approximated

from above or below by a standard interval with an error within La ∪ Lb for some
a, b ∈ {0, 1, . . . , q− 1}.

3.2. Inner geometry of U . The following lemma is a corollary of Lemma A.8.

Lemma 3.1. Consider a rectangle

R ⊂ f i(U) ⊂ Ũ , ∂hR ⊂ f i(∂U), i ≤ q
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I J

Figure 9. Illustration to Lemma 3.2: since F20(I) (blue) crosses
its shift F20(J) (green), F20(I) is not wide.

with ∂h,0R ⊂ BV , ∂h,1R ⊂ BW ,
where V and W are discrete intervals. After removing two C ′µ := 1/µ-wide buffers
from R, the new rectangle Rnew is disjoint from Bs for every s ∈ Z/q at distance
at least 3 from V ∪W . �

Lemma 3.2. Set Cµ := 30+2C ′µ = 30+2/µ. There are no [Cµ, 20]−-wide intervals
LS, where 1 ≤ |S|q ≤ q/40.

Proof. Suppose I = LS is such a [Cµ, 20]−-wide interval. Let R, ∂h,0R = I be
the canonical rectangle of F−20(LS), see §A.1.6. We will construct below a shift RJ
of R so that R,RJ have substantial cross-intersection, see Figure 9.

Fix k ∈ N such that S+ k has Z/q-distance at least 3 from S ∪ [20S]c. Let j < q
be so that pj = k in Z/q. Define

J := f j(I) ⊂ BS+k and RJ := f j(R).

LetRnew
J be the rectangle obtained fromRJ by removing 5-buffers. By Lemma A.6

(with n = 1), we can remove from R and Rnew
J buffers with width less than 5 so

that the new rectangles RNEW and RNEW
J have disjoint vertical boundaries. Let V

be the minimal discrete interval such that ∂h,1RNEW ⊂ LV . By construction:

(3.2) W
(
RNEW
J

)
≥ 10 + 2/µ, ∂h,0RNEW

J ⊂ BS+k, ∂h,1RNEW
J ⊂ BV+k,

f j
(
RNEW

)
⊃ Rnew

J ⊃ RNEW
J .

Since RNEW ⊂ U with ∂hRNEW ⊂ ∂U , we can choose a vertical boundary compo-
nent β ∈ {∂v,`RNEW, ∂v,ρRNEW} that separate LS+k from RNEW \ β; i.e., LS+k,
RNEW \ β are in different components of U \ β. Suppose β starts in La and ends
at Lb.

By construction, {a, b} has distance at least 3 from [S + k] ∪ [V + k]. Since the
horizontal boundary of RNEW

J is within BS+k and BV+k (see (3.2)), by Lemma 3.1,
the rectangle RNEW

J has a vertical curve γ disjoint from Ba ∪ Bb, i.e. γ is disjoint
from β ∪ Ba ∪ Bb. This is a contradiction as the endpoints of γ are separated by

β ∪Ba ∪Bb in Ũ . �
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3.3. Coarse bounds for Near-Rotation domains. We now extend the esti-
mates from Lemma 2.5 to near-rotation domains. Let us rescale the distance on
∂U by 1/q:

|I| := 1

q
|I|q, dist(I, J) :=

1

q
distq(I, J), for I = LV , J = LW ⊂ ∂U,

and we choose any continuous extension of the distance function dist( , ) to all
point in ∂U . The objects

F−(I, J) = F−
U

(I, J), W−(I, J) =W−
U

(I, J)

for intervals I, J ⊂ ∂U are defined in §2.3.1.

Proposition 3.3 (Coarse bounds). Consider intervals

I, J ⊂ ∂U such that |I|, |J |, dist(I, J) ≥ 40/q.

If dist(I, J) ≤ min{|I|, |J |}, then

(3.3) W−(I, J) �µ log
min{|I|, |J |}

dist(I, J)
+ 1;

otherwise

(3.4) W−(I, J) �µ
(

log
dist(I, J)

min{|I|, |J |}
+ 1

)−1

.

Corollary 3.4 (∂U is a coarse quasi-line). Choose a homeomorphism

h : ∂U → S1 = R/Z, h(Li) = [i/q, (i+ 1)/q].

Let I, J ⊂ ∂U be two intervals with min{|I|, |J |, dist(I, J)} ≥ 40/q. Then

W−U (I, J) �µ W−D (h(I), h(J)).

�

Proof of Proposition 3.3.

Claim 1. Suppose I, J are intervals with

(3.5) min{|I|, |J |} � dist(I, J) and |I|, |J |, dist(I, J) ≥ 40/q.

Then W−(I, J) �µ 1.

Proof. We can approximate I from above by a concatenation of standard intervals

Ĩ = I1#I2# . . .#In such that F−(I, J) ⊂
n⋃
k=1

F−20(Ik), Ĩ \ I ⊂ La ∪ Lb,

where n depends on the constant representing “�” in (3.5). Using Lemma 3.2 and
Parallel Law (A.4), we obtain

(3.6) W−(I, J) ≤ W−20(I1) +W−20(I2) + · · ·+W−20(In) �µ 1.

Let X,Y be the connected components of ∂U \ (I ∪ J). We have:

min{|X|, |Y |} � dist(X,Y ) and |X|, |Y |, dist(X,Y ) ≥ 40/q.

Repeating the above argument for X,Y , we obtain:(
W−(I, J)

)−1
=W−(X,Y ) �µ 1, i.e. W−(I, J) �µ 1.

Therefore, W−(I, J) �µ 1. �
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The proposition follows from Claim 1 by applying the Splitting Argument, see
Remark 2.6.

�

Remark 3.5. We note that the comparison “�µ” in (3.3) and (3.4) depends only
on the constant Cµ from Lemma 3.2 – this lemma was used only in (3.6). The
constant Cµ depends only on the constant C ′µ = 1/µ from Lemma 3.1. In §3.4, we
will improve Lemma 3.1 and obtain beau coarse-bounds on scale �µ 1/q.

3.4. Beau coarse-bounds for near-rotation domains. Let us start by improv-
ing Lemma 3.1 on scale �µ 1/q:

Lemma 3.6. There is a constant Tµ > 1 such that the following holds. Consider
a rectangle

R ⊂ f i(U) ⊂ Ũ , ∂hR ⊂ f i(∂U), i ≤ q

with ∂h,0R ⊂ BV , ∂h,1R ⊂ BW ,
where V and W are discrete intervals. After removing two 1-buffers from R, the
new rectangle Rnew is disjoint from Bs for every s ∈ Z/q with distq(s, V ∪W ) ≥ Tµ.

Proof. Follows essentially from Proposition 3.3 because Bs is protected by a wide
family F−(LG, LH), where G,H are discrete intervals separating s from V ∪W . A

slight complication is that R is a rectangle in Ũ and not in U .
Suppose Tµ is sufficiently big. There is a sequence of pairs of discrete intervals

Gi, Hi ⊂ Z/q such that all Gi, Hi have pairwise distances at least three, |Gi| =
|Hi| = dist(Gi, Hi), every pair Gi, Hi separates s from V ∪W , and n = n(Tµ) is
big.

Using Proposition 3.3, we can choose a subfamily Fi in F−(Gi, Hi) such that
W(Fi) �µ 1 and such that the Fi are pairwise disjoint.

For every g ∈ Gi, the set of vertical curves in R that intersect Bg forms a
buffer of R by Lemma A.9; let us choose gi ∈ Gi such that the buffer is maximal.
Similarly, we choose hi ∈ Hi such that the buffer of curves in R intersecting Bhi is
maximal. Then for every i and every curve γ ∈ F intersecting Bs either

(1) γ intersects Bgi ; or
(2) γ intersects Bhi ; or
(3) γ intersects every curve in Fi.

The modulus of curves in F satisfying (1), (2), and (3) is �µ 1 because Bgi , Bhi
are separated from V ∪W ∪ {s} by Agi , Ahi . Therefore, the modulus of vertical
curves in R intersecting Bs is �µ 1/n. Since n is big, the lemma follows. �

Lemma 3.7. There is a universal constant C > 0 and a constant Tµ > 0 depending
on µ such that there are no [C, 5]−-wide intervals LS with |S| ≥ Tµ.

Proof. Follows from Lemma 3.6 in the same way as Lemma 3.2 follows from Lemma 3.1.
�

Theorem 3.8 (Beau coarse-bounds). Let Fq =
(
f t : U → Ut

)
0≤t≤q be a µ-near

rotation domain. There is a constant Tµ > 1 depending on µ such that the following
holds. Consider intervals

I, J ⊂ ∂Z such that |I|, |J |, dist(I, J) ≥ Tµ/q.
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∂h,0R ∂h,1Rv v′ wa b dc

R

fqm+1

Figure 10. A parabolic rectangle R on T ′ = [v′, w], following
Notations (4.3) and (4.2).

If dist(I, J) ≤ min{|I|, |J |}, then

(3.7) W−(I, J) � log
min{|I|, |J |}

dist(I, J)
+ 1;

otherwise

(3.8) W−(I, J) �
(

log
dist(I, J)

min{|I|, |J |}
+ 1

)−1

.

Proof. Follows from Lemma 3.7 in the same way as Proposition 3.3 follows from
Lemma 3.2 – see Remark 3.5. �

In Theorem 5.12, we will extend beau coarse-bounds for pseudo-Siegel disks.

4. Parabolic fjords

In this section we fix an interval T ∈ Dm, m ≥ −1 in the diffeo-tiling, see §2.1.6.
We recall that |T | ∈ {`m, `m + `m+1} and T ′ := T ∩ fqm+1(T ). If m = −1, then
T = [c0, c0 � 1] ' ∂Z and T ′ is the longest interval between c1 and c0.

Recall from (2.12) that a rectangle R is based on T ′ if R ⊂ Ĉ\Z and ∂hR ⊂ T ′.
We assume that ∂h,0R < ∂h,1R in T ′ so that b∂Rc ⊂ T ′.

If m > −1, then we set distT (x, y) := dist(x, y). For m = −1 and x, y 6= c0, we
define distT (x, y) to be the length of the interval (x, y) that does not contain c0. In
other words, we view T as (c0, c0 � 1) with the induced Euclidean metric.

A rectangle based on T ′ or T is called parabolic if

(4.1) distT (∂h,0R, ∂h,1R) ≥ 6 min{|∂h,0R|, |∂h,1R|}+ 3lm+1

i.e. the gap between ∂h,0R and ∂h,1R is bigger than the minimal horizontal side of
R. We say that a parabolic rectangle R is balanced if |∂h,0R| = |∂h,1R|.

Let us assume that

(4.2) T = [v, w], v < w, θm+1 < 0, T ′ = [v′, w], where v′ = v � θm+1,

i.e. fqm+1 | T moves points clockwise towards w, see Figure 10. The case θm+1 > 0
is equivalent. For a parabolic rectangle R based on T ′ we will often write

(4.3) ∂h,0R = [a, b], ∂h,1R = [c, d], where a < b < c < d.

Following §2.3.2, we say that a parabolic rectangleR is external if intR ⊂ Ĉ\Km.
The following result describes wide external families based on T :
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Theorem 4.1. If there is a sufficiently wide external parabolic rectangle based on
T (see (4.2)), then T contains a subinterval

Tpar = [x, y] ⊂ T ′, v′ < x < y < w, dist(x, v) ≤ dist(y, w)

with the following properties.
(I) If R is an external parabolic rectangle based on T with W(R) � 1, then R

contains a balanced parabolic subrectangle

Rnew ⊂ R, ∂hRnew ⊂ Tpar, W(Rnew) =W(R)−O(1)

such that x < ∂h,0Rnew < ∂h,1Rnew < y, dist(x, ∂h,0Rnew) = dist(∂h,1Rnew, y),

(4.4) W(Rnew) � log
|∂h,0Rnew|

dist(∂h,0Rnew, v)
= log

|∂h,1Rnew|
dist(∂h,0Rnew, v)

.

(II) If I, J ⊂ Tpar, x < I < J < y are two intervals with

dist(x, I) � dist(J, y) � |I| � |J | � distT (I, J)

and |I|, |J |, distT (I, J) ≥ lm+1, then

(4.5) W+(I, J)−O(1) =W+
ext,m(I, J) � log+ min{|I|, |J |}

dist(v, I)
+ 1.

(III) If I, J ⊂ Tpar, x < I < J < y are two intervals with

|bI, Jc| < 1

2
|Tpar| and min{|I|, |J |} � dist(I, J) > 3lm+1

and |I|, |J | ≥ lm+1, then

(4.6) W+(I, J)−O(1) =W+
ext(I, J) � log+ min{|I|, |J |}

dist(I, J)
+ 1.

Theorem 4.3 will be proven in §4.3. We remark that narrow families based on T
can be estimated by evaluating their dual families using Theorem 4.1.

4.0.1. Outline and Motivation. Theorem 4.1 says that Siegel disks develop fjords
in a controllable way. Roughly, as Figures 2 and 11 illustrate, fjords are vertical
strips towards the α fixed point and wide parabolic rectangles are horizontal. After
conformal uniformization, fqm+1 | fjord becomes a quasi-rotation of the unit disk;
Theorem 4.1 describes the geometry of this quasi-rotation. During the conformal
uniformalization “fjord → D”, the hyperbolic geodesic `x,y ⊂ ∂(fjord) connecting
x, y will get the length � dist(v, x) – this explains v in the estimates of Theorem 4.1;
taking this into account, the estimates in Theorem 4.1 are similar to the estimates
in Lemma 2.5.

The central theme of this section is designing “shifts” for rectangles based on
T ; after that, the proof of Theorem 4.1 is similar to Lemma 2.5. Shifts towards v

(pullbacks) are relatively easy: the external condition “R ⊂ Ĉ \ intKm” is almost
equivalent to “non-winding around the Siegel disk”, hence R can be efficiently
moved towards v using f−qm+1 , see §4.1. Shifts towards w (push-forwards) are
more delicate because curves may hit Km. Since pullbacks are well-defined, we can
choose the closest to v′ outermost external parabolic rectangle Rout with a certain
fixed width; then we set Tpar := [x, y] to be the complementary interval between

∂h,0Rout and ∂h,1Rout. Thanks to the “protection” by Rout, rectangles based on
[x, y] can be efficiently shifted towards y using fqm+1 , see §4.2. We note that our
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wv

x y
yx

≈ exp

Figure 11. Two types of wide rectangles in a parabolic fjord;
compare with Figures 1 and 2. The red (parabolic) rectangle has a
small combinatorial distance towards x and y relative its horizontal
sides, while the orange rectangle has a small distance between its
horizontal sides.

arguments are not local: the global branched structure of fqm+1 is essential in the
proofs.

4.1. Pullbacks in fjords. We say that a parabolic rectangle R based on T is
non-winding if every vertical curve in R is homotopic in C \ Z to a curve in T ;
i.e. vertical curves in a non-winding parabolic rectangle do not go around ∞. For
a non-winding parabolic rectangle R, we will write

•
R := R∪O,

where O is the bounded component of C \
(
Z ∪ ∂v,innR

)
; i.e. O is the component

between R and T .

Lemma 4.2. Let R be an external parabolic rectangle based on T with W(R) > 1.
Let Rnew be the rectangle obtained from R by removing the outer 1-buffer. Then

Rnew, fqm+1(Rnew) are non-winding and fqm+1 |
•
Rnew is injective.

Proof. Let T be the fjord attached to T , see §2.1.7. By Lemma A.5, intRnew ⊂
T 63 ∞; hence Rnew is non-winding. By Lemma 2.4, fqm+1 |

•
Rnew is injective. The

image fqm+1(Rnew) is non-winding. �

Lemma 4.3 (Pullbacks). Let R be a parabolic non-winding rectangle on T ′. Then
the pullback of R along fqm+1 : T ′�θm+1 → T ′ is a parabolic non-winding rectangle
on T .

Proof. For every vertical curve ` ∈ R there is a homotopy τ in C \
(
Z ∪ T ′c

)
between ` and a curve ¯̀ ⊂ T ′, where T ′c = ∂Z \ T ′. This homotopy τ lifts
under fqm+1 into a homotopy between ¯̀� θm ⊂ T and a curve `1; all such curves
`1 form a parabolic non-winding rectangle R1 which is the pullback of R along
fqm+1 : T ′ � θm+1 → T ′. �
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Lemma 4.4. Let R be a parabolic non-winding rectangle based on T ′. Then R
contains a parabolic non-winding subrectangle Rnew with

(4.7) ∂h,0Rnew| ≤ |∂h,1Rnew| and W(Rnew) ≥ W(R)− 2,

where we assume Notations (4.2) and (4.3).

Proof. Assume that |∂h,0Rnew| > |∂h,1Rnew|. Present

∂h,0R = I1#I2, I1 ≤ I2, |I1| = |∂h,1R|,
and let R2 be the subrectangle of R consisting of vertical curves emerging from I2.
We claim that W(R2) ≤ 2, this implies the lemma.

The claim follows from the Shift Argument §A.3. Let k be the smallest integer
such that k ≥ |I1|/lm+1. Pulling back R2 under fqm+1k, we obtain a rectangle R′2
linked with R2, see (A.9): ∂h,0R2 < ∂h,1R′2 < ∂h,1R2. Lemma A.11 completes the
proof. �

Lemma 4.5. Let R be a parabolic non-winding rectangle based on T ′ with W(R) >
2. Assume Notations (4.2) and (4.3). Then |∂h,0R| > 1 and, moreover,

(4.8) log
|∂h,0R|

dist(v, ∂h,0R)
+ 1 � W(R),

i.e., dist(v, ∂h,0R) is small compared to |∂h,0R| if W(R) is big.

Proof. Follows from the Shift Argument §A.3 and Lemma 4.3. If |∂h,0R| < 1,
then the pullback R1 of R under fqm+1 would be linked to R – impossible because
W(R) > 2.

By Lemma 4.4, there is a parabolic subrectangle Rnew ⊂ R satisfying (4.7); thus
|∂h,0Rnew| < distT ′(∂

h,0Rnew, ∂h,1Rnew) + lm+1. Let k ≥ 1 be the integer part
of dist(v, ∂h,0Rnew)/lm+1. Decompose ∂h,0Rnew into the concatenation of closed
intervals

I1#I2# . . .#In, v′ ≤ I1 ≤ I2 ≤ · · · ≤ In < w

such that

|I1| = klm+1, |I2| = 2klm+1, . . . , |In−1| = 2n−1klm−1, |In| ≤ 2nklm−1.

We claim that n ≥ W(Rnew)/2 – this will imply the lemma.
Let Rt be the subrectangle of Rnew consisting of vertical curves connecting It

and ∂h,1Rnew. Then Rt is linked to its pullback R′t under fqm+12t−1k, see (A.9):
∂h,0R′t < ∂h,0Rt < ∂h,1R′t. By Lemma A.11, W(Rt) ≤ 2 for every t. By the
Parallel Law §A.1.4, n ≥ W(Rnew)/2 ≥ W(R)/2 + 1. �

The following lemma is a counterpart to Lemma 4.2.

Lemma 4.6. Let R be a parabolic non-winding rectangle based on T ′. IfW(R) > 2,
then after removing the outermost 2-buffer from R, we obtain an external parabolic

rectangle Rnew with fqm+1

(
•
Rnew

)
⊂
•
R. In particular, fqm+1 |

•
Rnew is injective.

Proof. As before, we assume Notations (4.2) and (4.3). Consider the pullback R1

of R under fqm+1 (see Lemma 4.3); clearly, int(R1) ⊂ C \ intKm. We claim that
after removing the outermost 2-buffer from R, the new rectangle Rnew is within
•
R1. This would imply the lemma because fqm+1 |

•
R1 is injective.
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Denote by X the outermost 1-buffer of R, and denote by Y the outermost 1-
buffer of R \ X . We have R = X ∪ Y ∪ Rnew. Let X1 ⊂ R1 be the pullback of
X under fqm+1 . Since the distance between ∂h,0R and ∂h,1X is bigger than lm+1

(see (4.1)), we have

∂h,0X1 < ∂h,0Y ∪ ∂h,0Rnew < ∂h,1X1;

thus at most 1-wide part of Y ∪ Rnew can cross X1, see §A.2.1. Hence Rnew ⊂
R1. �

Combined with Lemma 4.4, we obtain:

Corollary 4.7. If R is a parabolic non-winding rectangle on T ′ with W(R) ≥ 5,
then |∂h,0R|, |∂h,1R| ≥ 1. �

4.2. Push-forwards in fjords. As before, we assume Notations (4.2), (4.3).

Let us select a simple arc δ ⊂ Ĉ \ Z connecting a point in δ(0) ∈ ∂Z \ (v, w) to

δ(1) =∞ such that δ is disjoint from ∂Z \ δ(0). Then ∆ := Ĉ \ (Z ∪ δ) is an open
topological disk.

For a rectangle R based on T , we will define below the push-forward Rk of
R under fqm+1k assuming that dist(∂h,1R, w) > klm+1. The result Rk will be a
lamination in ∆.

Let us orient all vertical curves in R from ∂h,1R to ∂h,0R:

(4.9) γ(0) ∈ ∂h,1R, γ(1) ∈ ∂h,0R for [γ : [0, 1]→ Ĉ \ Z] ∈ R.

Let ∆−k be the component of f−qm+1k(∆) attached to [v, w � kθm+1] ⊂ T .

For a vertical curve ` : [0, 1] → Ĉ in R, let t`k > 0 be the first moment such that
`
(
t`k
)
∈ ∂∆−k. We define

R′k := {` | [0, t`k] for ` ∈ R}, Rk := fqm+1k(R′k).

In other words, R′k is the restriction (see §A.1.5) of R to ∆−k and Rk is the
appropriate conformal image of R′k. We say that the curve ` | [0, t`k] in R′k and its
image fqm+1k

(
` | [0, t`k]

)
in Rk is of

• Type I if t`k = 1,
• Type II if t`k < 1 but fqm+1k ◦ `

(
t`k
)
∈ T ;

• Type III otherwise.

We denote by RIk, RIIk , RIIIk the sublaminations of Rk consisting of Type I, II,
III curves respectively. Similarly are defined the sublaminations R′Ik , R′IIk , R′IIIk

of R′k. Since R overflows R′k, we have

(4.10) W(R) ≥ W(R′k) =W(Rk).

Lemma 4.8. In Ĉ \ Z, the lamination RIIk separates RIk from RIIIk and {v, w};
i.e., RIIIk ∪ {v, w} and RIk are in different components of Ĉ \ (Z ∪ γ) for every
γ ∈ RIIk , see Figure 12.

Proof. Consider the preimage T−k := f−qm+1k(T )∩∂∆−k of T under fqm+1k : ∆−k → ∆.
Observe that T−k contains v but not w. The point v splits T−k into two intervals
T b−k and T a−k, we assume that T a−k ⊂ T while T b−k is disjoint from ∂Z. Then

• R′Ik is the sublamination of R′k landing at T a−k,

• R′IIk is the sublamination of R′k landing at T b−k,
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Figure 12. Types I (red), II (orange), and III (blue) curves in
Rk.

• R′IIIk is the sublamination of R′k landing at ∂∆−k \ T−k.

The lemma now follows from the observation that in ∆−k, the lamination R′IIk
separates R′Ik from R′IIIk and w � θm+1k. �

Let X be an external parabolic rectangle based on T ′ with W(X ) ≥ 10. Let
P ⊂ T ′ be the complementary interval between ∂h,0X and ∂h,1X . We say that P
is protected by X .

Lemma 4.9 (Push-forwards). Let P be an interval protected by an external para-
bolic rectangle X as above. If R is a parabolic rectangle based on P such that

∂hR� ilm+1 ⊂ P for all i ∈ {0, 1, 2, . . . , k},
then after removing the 1-outermost buffer, the rectangle Rnew has univalent push-
forwards:

(4.11) fqm+1i(Rnew) ⊂
•
X for all i ∈ {0, 1, 2, . . . , k}.

Proof. Let us choose δ to be disjoint from
•
X and let X new be the rectangle obtained

by removing the outermost 5-buffer from X . By Lemmas 4.2 and 4.6, fqm+1 is

injective on
•
X new and:

(4.12) fqm+1

(
•
X new

)
⊂
•
X hence int

•
X new ⊂ ∆−1.

Note that W(X new) ≥ 5. Let us prove by induction that

(4.13) W
(
RIi
)
≥ W(R)− 4/5.

for all i ≤ k. This will imply (4.11) because at most
1

5
-wide family of RIi can cross

the protection X new.
It follows from (4.12) that

(4.14) RIi+1 ⊇
{
fqm+1(γ) | γ ∈ RIi and γ is disjoint from ∂∆−1 \ T

}
.

IfW(RIi ) >W(R)−3/5, then at most 1/5 curves in RIi can cross the protection
X new and hit ∂∆−1 \ T . We obtain that W(RIi+1) >W(R)− 4/5.
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Assume now that

W(RIi ) ≤ W(R)− 3/5 hence W(RIIi ) +W(RIIIi ) ≥ 3/5,

by (4.10). Since RIIIi crosses X new, we obtain W(RIIIi ) ≤ 1/5 and W(RIIi ) ≥ 2/5.
At most 1/5 curves in RI ∪ RII can cross X new and hit ∂∆−1 \ T ; and all such
curves must be in RII – they are outermost by Lemma 4.8. We obtain that all

curves in RIi are inside
•
X new and W(RIi+1) ≥ W(RIi ). �

4.3. Proof of Theorem 4.1.

Lemma 4.10. Let R be a parabolic non-winding rectangle based on T ′ withW(R) >
50. Then R contains a parabolic non-winding balanced geodesic rectangle Rnew with
W(Rnew) ≥ W(R)− 25.

Proof. We assume Notations (4.2) and (4.3). Let Rnew be the rectangle obtained
from R by removing the outermost 18-buffer X . Then Lemma 4.9 (push-forwards)

is applicable in
•
Rnew.

Choose the maximal intervals I ⊂ ∂h,0Rnew and J ⊂ ∂h,1Rnew so that the
geodesic rectangle R(I, J) is in Rnew. By Lemma A.5, R(I, J) contains most of
the width of Rnew: we have W(R(I, J)) ≥ W(R)− 20.

Assume that |I| > |J |. As in the proof of Lemma 4.4, we present

I = I1#I2, I1 ≤ I2, |I1| = |J |.

Let k be the smallest integer such that k ≥ |I1|/lm+1. Since the geodesic rectangle
R(I2, J) is linked to its pullback under fqm+1k, we have W(R(I2, J)) ≤ 2; hence
W(R(I1, J)) ≥ W(R)− 25.

Assume that |I| < |J |. We present

J = J2#J1, J2 ≤ J1, |J1| = |I|.

Let k be the smallest integer such that k ≥ |J1|/lm+1. After removing the out-
ermost 1-buffer from the geodesic rectangle R(I, J2), we obtain a rectangle linked
to its push-forward under fqm+1k (Lemma 4.9). We have W(R(I, J2)) ≤ 3; hence
W(R(I, J1)) ≥ W(R)− 25. �

Proof of Theorem 4.1. For x ∈ T ′ with distT (v′, x) < |T ′|/10, define m10 ∈ T ′ so
that distT (v′,m10) = 10 distT (v′,m).

Let Z be a sufficiently wide external parabolic rectangle based on T ′ with
∂h,0Z < ∂h,1Z in T ′. By removing O(1) buffers from Z we can assume that
|∂h,0Z| ≤ |∂h,1Z| (Lemma 4.4) and that |bv′, ∂h,0Zc| is small compare to distT ′(∂

h,0Z, ∂h,1Z)
(Lemma 4.8). Therefore, we can define the shortest interval

(4.15) S := [v′,m] ⊂ T ′, |S| ≥ lm+1 such that W+
ext,m(S, [m10, w]) ≥ 500.

By Lemmas 4.2 and 4.10, we can select two disjoint parabolic balanced non-winding
geodesic rectangles based on T ′ satisfying

X ,Y ⊂ F+
ext,m(S, [m10, w]), X ⊂ Y• \ Y with W(X ) ≥ 400, W(Y) ≥ 10.

We set, see Figure 13:

T̃par = [x̃, ỹ] := b∂hXc ⊂ T ′, and Tpar = [x, y] := T̃par \ ∂hX ,
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Figure 13. Intervals Tpar = [x, y] and T̃ = [x̃, ỹ].

where x̃ < x < y < ỹ in T ′. Since Y protects T̃par, wide rectangles based on T̃par

can be push-forward. By Lemma 4.5, |∂h,0X| > dist(v′, ∂h,0X ) hence

(4.16) distT ′(v
′, z) � distT ′(x̃, z) for all z ∈ Tpar.

Claim 1. For an interval I ⊂ Tpar with

dist(I, {x̃, ỹ}) � |I| and dist(I, {x̃, ỹ}), |I| ≥ lm+1

we have W+
3 (I) � 1.

Proof. By splitting I into finitely many intervals (depending on the constant repre-
senting “�”), it is sufficient to assume that dist(I, {x̃, ỹ}) ≥ |I|+lm+1 or |I| = lm+1.
Write I = [a, b] with x̃ < a < b < ỹ. Let us present F+

3 (I) as F− t F+ t F ′ where

• F ′ consists of curves crossing X ;

• F− consists of curves in
•
X connecting I and [x̃, a] ∩ (3I)c;

• F+ consists of curves in
•
X connecting I and [b, ỹ] ∩ (3I)c.

Clearly, W(F ′) ≤ 1/10. We will estimate the width of F−,F+ using the Shift Ar-
gument. Let R− ⊂ F− and R+ ⊂ F+ be the canonical rectangles; i.e. W(R−) =
W(F−) and W(R+) = W(F+). Let k be the smallest integer such that k ≥
|I|/lm+1. Then R+ is linked to its pullback under f−kqm+1 implying thatW(R+) ≤
2. Since T̃par is protected by Y, the rectangle Rnew

− obtained by removing the out-

ermost 1-buffer from R− is linked to its push-forward under fkqm+1 (Lemma 4.9);
this implies W(R−) ≤ 3. �

Claim 2. If I, J ⊂ Tpar, I < J are two intervals with

1

2
|bI, Jc| < |Tpar|, min{|I|, |J |} � dist(I, J), |I|, |J |, dist(I, J) ≥ lm+1,

then W+(I, J) � 1.

Proof. Assume |I| ≤ |J |. Let L ⊂ Tpar be the complementary interval between
I, J . Applying Claim 1, and subdividing if necessary I and L into finitely many
intervals we obtain

W+(I, J) � 1 and
(
W+(I, J)

)−1
=W+(L, bI, Jcc) � 1.

Therefore, W+(I, J) � 1. �

Statement (III) of Theorem 4.1 follows from Claims 1 and 2 using the Splitting
Argument, see Remark 2.6.

Claim 3. If I, J ⊂ Tpar, I < J are two intervals with

(4.17) distT ′(x̃, I) � distT ′(J, ỹ) � |I| � |J | � distT ′(I, J)

and |I|, |J |, distT ′(I, J) ≥ lm+1. Then W+(I, J) � 1.
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Proof. The property W−(I, J) � 1 follows from Claim 1 by splitting, if necessary,
I into finitely many intervals.

Denote by L ⊂ Tpar the complementary interval between I and J. Let us show
that that the dual family G = F+(L, bI, Jcc) satisfiesW(G) � 1; this will imply the
claim. Denote by N ⊂ [x̃, ỹ] the interval between x̃ and bI, Jc and by M ⊂ [x̃, ỹ]
the interval between bI, Jc and ỹ. As in the proof of Claim 1, we decompose G as
G′ t G− t G+ where

• G′ consists of curves crossing X ;

• G− consists of curves in
•
X connecting N and L;

• G+ consists of curves in
•
X connecting L and M .

Let R− ⊂ G− and R+ ⊂ G+ be the canonical rectangles; i.e. W(R−) =W(G−)
and W(R+) =W(G+). Set

τ := min{distT ′(x̃, I), |I|, |J |, distT ′(J, ỹ)} − lm+1;

if τ < lm+1, then replace τ := lm+1. We decompose N and M into finitely many
intervals ∪iNi and ∪iMi so that |Ni|, |Mi| ≤ τ for all i. The number of intervals
depends on the constants representing “�” and “�” in (4.17).

Denote by R−,i ⊂ R− the subrectangle consisting of vertical curves landing at
Ni. Similarly, R+,i ⊂ R+ is the subrectangle consisting of vertical curves landing
at Mi. Define k to be smallest integer such that klm+1 ≥ τ . Then R−,i is linked to

its push-forward under fkqm+1 (Lemma 4.9); i.e. W(R−,i) ≤ 3. And R+,i is linked

to its pullback under fkqm+1 ; i.e. W(R+,i) ≤ 2. �

Statement (II) of Theorem 4.1 follows from Claims 1 and 3 using the Splitting
Argument, see Remark 2.6.

Claim 4. Consider s ∈ N such that distT ′(y, ỹ) < slm+1 < dist(ỹ, w)−lm+1. Define
Zs := fs[y, ỹ] and note that Zs is between Z0 := [y, ỹ] and w. Then

(4.18) W+
div(Zs, (T

′)c ∪ [v′, x]) ≥ 100.

Proof. See Figure 14 for illustration. Let Xs be the push-forward of X under fqm+1s

as in §4.2. Then W(Xs) ≥ W(X ) ≥ 400. Since most of the curves in Xs do not
cross X , we obtain W+(Zs, (T

′)c ∪ [v′, x]) ≥ 399. The width of external curves in
F+(Zs, (T

′)c ∪ [v′, x]) landing at S is at most 100 because, otherwise, [v′, x] ⊂ S
would not be the shortest interval satisfying (4.15). This implies

W+(Zs, (T
′)c) +W+

div(Zs, [v
′, x]) ≥ 299.

By Lemma 2.7, W+
ext(Zs, T

c) ≤ 5. We claim that W+
ext([v, v

′], Zs) ≤ 150; this will
imply (4.18).

If W+
ext([v, v

′], Zs) ≥ 150, then F+
ext([v, v

′], Zs) contains an external parabolic
rectangle R with W(R) ≥ 150; applying Lemma 4.2 we obtain a non-winding
parabolic rectangle R2 := fqm+1(Rnew) in F+

ext([v, v
′]�θm+1, Zs+1) withW(R2) ≥

149. Since most curves in R2 are external (Lemma 4.6), we obtain a contradiction
with the property that S is the shortest interval satisfying (4.15).

�

We will later need the following fact:
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wv Zs
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[y, ỹ][x̃, x]

X . . .

Figure 14. Laminations Xs are push-forwards of the rectangle X .

Corollary 4.11. For every λ� 1, the following holds. If distT ′(y, w)�λ distT ′(v, x),
then there is an interval J ⊂ [ỹ, w] such that

W+
λ,div,m(J) �λ

distT ′(y, w)

distT (v, x)
.

Proof. We will use notations of Claim 4. Set k to be the minimal integer bigger
than distT ′(y, ỹ)/lm+1. Since distT ′(y, w)�λ distT (v, x), we can find

J := bZs, Zs+kjc ⊃ Zs t Ss+k t · · · t Ss+jk j �λ
distT ′(y, w)

distT (v, x)

so that (λJ)c ⊃ (T ′)c∪[v′, x]. By (4.18) and the Parallel Law, we haveW+
λ,div,m(J) ≥

90j. �

Let us prove Statement (I). By Lemmas 4.5 and 4.10, R contains a balanced
non-winding geodesic subrectangle R1 with

W(R1) =W(R)−O(1) and ∂h,0X < ∂h,0R1.

Consider J := b∂R1c \ ∂hR1. Using Claim 4 and its notations, J contains neither
Z0 nor Zs for s satisfying Claim 4. We deduce that J ⊂ b∂hXc. By removing a
2-buffer, we obtain that the new rectangle Rnew

1 is disjoint from X .
It follows from Claim 1 that Rnew

1 contains a balanced geodesic subrectangle R2

such that W(R2) ≥ W(Rnew
1 ) and

dist(x, ∂h,0R2) � dist(∂h,1R2, y) � |∂h,0R2| � |∂h,1R2|

Statement (II) is now applicable for R2. �

4.4. Submergence Rule. Let us underline the following fact, see Figure 15. Sup-
pose that we have a wide parabolic rectangle N , W(N ) � K � 1 based on
Tpar = [x, y]. We note that N is non-winding after removing O(1)-buffer. As-
sume that a parabolic rectangle R with W(R) � 1 is protected by N ; i.e. R is
based on the interval between ∂h,0N and ∂h,1N . Then by Theorem 4.1

(4.19) log
|∂h,0R|

dist(v, x)
, log

|∂h,1R|
dist(v, x)

� K.
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v x y w

N , W(N ) � K

a

b

R, W(R) � 1

X

Figure 15. Submergence Rule. Suppose a buffer N has width
� K � 1. If a parabolic rectangle R has width � 1, then

log
dist(a, b)

dist(v, x)
� K.

4.5. Central rectangles. We say that a parabolic rectangle R based on T ′ is
central if

0.9 <
distT (v, b∂hR′c)
distT (b∂hR′c, w)

< 1.1;

i.e. if the distances from ∂hR to v and w are essentially the same.

Lemma 4.12 (Central subrectangles). Consider a parabolic non-winding rectangle
R based on T ′ with W(R)�λ 1. Then

• either R contains a parabolic non-winding central balanced geodesic subrect-
angle Rnew with W(Rnew) ≥ W(R)/2;
• or there is an interval

I ⊂ T ′, |I| > lm+1 such that logW+
λ,div,m(I) � W(R).

Proof. Write K := W(R) �λ 1. Let Rnew be the rectangle obtained from R by
removing the outermost K/3 buffer N . By Theorem 4.1, I, we have

(4.20) log
|∂h,0N|

distT ′(v, ∂h,0N )
, log

|∂h,1N|
distT ′(v, ∂h,0N )

� K.

Since W(Rnew) = 2K/3, using Part II, we can select intervals I ⊂ ∂h,0Rnew and

J ⊂ ∂h,1Rnew such that the geodesic rectangle RNew := R(I, J) ⊂ Ĉ \ Z between
I, J is in Rnew and satisfies:

|I| = |J |, distT ′(x, I) = distT ′(J, y), and W(RNew) ≥ K/2.

Assume that RNew is not central. Then

distT ′(y, w) = distT ′(J,w)− distT ′(x, I) > 0.1 distT ′(J, y) � |∂h,0N|.
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Using (4.20), we have:

log
distT ′(y, w)

dist(v, x)
� log

|∂h,0N|
dist(v, x)

� K.

Corollary 4.11 now implies the existence of a required interval I with logW+
λ,div,m(I) �

W(R). �

Part 2. Pseudo-Siegel disks and Snakes

5. Pseudo-Siegel disks

A pseudo-Siegel disk Ẑm is obtained from Z by filling-in deep parts of parabolic

fjords of levels ≥ m. We will show in Theorem 11.1 that Ẑ−1 can be constructed
to be a uniform quasidisk. Consider a sufficiently small δ > 0.

Definition 5.1. A δ-pseudo-Siegel disk Ẑm of level m is a disk inductively con-
structed as follows:

• Ẑn = Z for n� 0,

• either Ẑm := Ẑm+1,

• or Ẑm := Ẑm+1 ∪Zm, where is Zm is a δ/2-near rotation domain (see §3),

called the core of Ẑm, satisfying the compatibility conditions with Ẑm+1

stated in §5.1.

If Ẑm 6= Ẑm+1, then we call Ẑm := Ẑm+1∪Zm a regularization of Ẑm+1 at level

m. Given Ẑm, all its levels of regularization mi are enumerated as

· · · > mi+1 > mi > mi−1 > · · · ≥ m.
We say that mi+1 is the level before mi while mi−1 is the level after mi.

5.0.1. Outline and Motivation. Pseudo-Siegel disks are inductively constructed as

Ẑm = Ẑm+1 ∪ Zm = Z ∪ · · · ∪ Zmi ∪ Zmi−1 ∪ · · · ∪ Zmk ∪ Zm,

where Zm is obtained from Ẑm+1 = Ẑmk by smoothing its boundary on level m.
The boundary ∂Zm is a cyclic concatenation α0#β0#α1#β1# . . . , where αi are

“channels” through peninsulas of Ẑm+1 and βi are “dams” in parabolic fjords of

Ẑm+1, see Figure 16. We require that there is a system of annuli around αi, βi
making Zm a near-rotation domain §3.

We will require in Assumption 5 that dams are sufficiently deep in fjords so that

the outer geometries of Z and Ẑm are close: if the endpoints of intervals I, J ⊂ ∂Z
are in upper parts peninsulas, thenW+

Z (I, J) = (1±ε)W+

Ẑm
(Im, Jm), where Im, Jm

are the “projections” of I, J onto Ẑm, see details in §5.2. Here ε is uniformly small
independently of the number of regularizations.

We define the combinatorial distance on ∂Ẑm to be induced from ∂Z:

(5.1) dist∂Ẑm(x, y) := dist∂Z(x, y) for x, y ∈ ∂Ẑm ∩ ∂Z.

With respect to this metric, the inner geometry of Ẑm has a description similar
to Z – see estimates in Theorem 5.12. The estimates depend on δ; however on
scale �δ lm, the estimates are uniform. Lemma 5.15 relates the inner geometry of

peninsulas of Ẑm with the inner geometry of Ẑm+1. As a consequence, Localization

and Squeezing Lemmas 5.16, 5.17 hold for Ẑm – compare with §2.2.1, §2.2.2. The
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constant δ > 0 will be fixed in Section 7 so that the regularization Ẑm+1  Ẑm

can be iterated if Z has deep parabolic fjords of level m.

5.0.2. Regular intervals. A regular point of ∂Ẑm is a point in ∂Ẑm∩∂Z. A regular

interval I ⊂ ∂Ẑm is an interval with regular endpoints. An interval I ⊂ ∂Z is

regular rel Ẑm if the endpoints of I are in ∂Ẑm ∩ ∂Z.

The projection of a regular interval I ⊂ ∂Ẑm onto ∂Z is the interval I• ⊂ ∂Z
with the same endpoints and the same orientation as I. All regular points of I are
in I•. We define the combinatorial length of I by |I| := |I•|. Similarly is defined

the projection Ik of a regular interval I ⊂ ∂Ẑm onto ∂Ẑk for k > m.
For an interval I ⊂ ∂Z, the projection Im onto ∂Zm is the shortest regular

interval whose projection onto ∂Z contains I. Similarly is defined the projection of

an interval I ⊂ ∂Ẑm onto ∂Ẑn for n < m. An interval I ⊂ ∂Z is regular rel Ẑm if
and only if I = (Im)•

As for ∂Z, given I, J ⊂ ∂Ẑm, we set bI, Jc := I ∪L∪ J , where L ⊂ ∂Ẑm is the
complementary interval between I and J so that I, L, J are clockwise oriented.

5.1. Compatibility between Ẑm+1 and Zm. In this subsection, we inductively

define Ẑm = Ẑm+1 ∪ Zm completing Definition 5.1.
We say γ is an external arc of a closed topological disk D if γ is a simple arc in

Ĉ \ intD such that γ ∩∂D consists of two endpoints of γ. Similarly, an internal arc
of D is a simple arc ` ⊂ D such that ` ∩ ∂D consists of two endpoints of `.

5.1.1. Channels and Dams. Recall from §2.1.6 that Dm denotes the diffeo-tiling of
level m ≥ −1. Let us enumerate intervals in Dm clockwise as Ti = [ai, ai+1]; i.e.

∂Z = T0#T1# . . .#Tqm+1−1

is the level m tessellation of ∂Z into diffeo-intervals. Then fqm+1 maps the Ti almost
into Ti−pm+1

. We also recall that T ′i = Ti ∩ fqm+1(Ti) (with a slight adjustment for

m = −1). Let us denote by T ′m+1
i , Tm+1

i the projections of T ′i , Ti onto Ẑm+1. By

Assumptions 1, Ti, T
′
i are regular rel Ẑn, n ≥ m:

Assumption 1 (Channels and dams). The clockwise tessellation (3.1) of ∂Zm into
unit intervals

∂Zm = L0#L1# . . .#Lqm−1

satisfies Li = αi#βi, where (see Figure 16):

• αi = αmi is an internal arc of Ẑm+1 connecting

yi−1 ∈ T ′m+1
i−1 and xi ∈ T ′m+1

i ,

• βi = βmi is an external arc of Ẑm+1 connecting xi, yi ∈ T ′m+1
i ,

• xi is on the left of yi in T ′m+1
i .

Moreover, xi, yi ∈ CPm+1 \ CPm.
We say that αi is a level m channel and βi is a level m dam. 4

We will require in Assumption 7 that the αmi , βmj are pairwise disjoint except
possibly at endpoints and that the αmi are disjoint from the αnj for all n > m.

Components of Ẑm \ Ẑm+1 = Zm \ Ẑm+1 and of Ẑm \ Zm = Ẑm+1 \ Zm will be
called fjords and peninsulas, see §5.1.5.
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Figure 16. The channels αi, the dams βi, the collars
Ainn(α0), Aout(α0), and buffers Sinn, Sout of a pseudo-Siegel disk

Ẑm+1. (The inner boundary of Ainn is omitted.)

5.1.2. Collars and S-buffers.

Assumption 2 (Collars). There are closed collars around αi and βi

A(αi) = Ainn(αi) ∪Aout(αi) and A(βi) = Ainn(βi) ∪Aout(βi),

∂innAout(αi) = ∂outAinn(αi), ∂innAout(βi) = ∂outAinn(βi)

with

modAinn(αi), modAout(αi), modAinn(βi), modAout(βi) ≥ δ
such that for all i and all k ∈ {0,+1, . . . , qm+1} we have

• A(αi−kpm+1
) encloses fk(αi);

• A(αi+kpm+1
) encloses the unique fk-lift of αi starting and ending at ∂Z;
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• A(βi−kpm+1
) encloses fk(βi);

• A(βi+kpm+1
) encloses the unique fk-lift of βi starting and ending at ∂Z.

In other words, A(αi) and A(βi) control the difference between Zm and its image
under fk for |k| ≤ qm+1. The inner colors Ainn will be used later in this section to

describe the inner geometry of Ẑm. The outer colors Aout will be used on several
occasions; for instance, to “tame snakes,” see Lemmas 6.3, 6.4.

Assumption 3 (Intersection Pattern). For all αmi , β
m
i , the simple closed curves

∂outAout(αmi ), ∂innAout(αmi ) = ∂outAinn(αmi ), ∂innAinn(αmi ),

∂outAout(βmi ), ∂innAout(βmi ) = ∂outAinn(βmi ), ∂innAinn(βmi )

intersect ∂Ẑm at exactly 4 points and these intersection points are in CPm+1\CPm.
Moreover, all 12 intersection points in

P (βmi ) := ∂Ẑm ∩
(
∂outAout(βmi ) ∪ ∂innAout(βmi ) ∪ ∂innAinn(βmi )

)
are within Ti. The 6 most left points of P (βmi ) ∩ Ti are within

P (αmi ) := ∂Ẑm ∩
(
∂outAout(αmi ) ∪ ∂innAout(αmi ) ∪ ∂innAinn(αmi )

)
,

the 6 most right points of P (βmi ) ∩ Ti are within P (αmi+1).

Let us denote by Ã(αmi ), Ãinn(αmi ), Ã(βmi ), Ãinn(βmi ) the disks obtained by filling-
in A(αmi ), Ainn(αmi ), A(βmi ), Ainn(βmi ). It follows from the Assumption 3 that

Ã, Ãinn have the following intersection properties with ∂Ẑm+1:

Ã(αi) ∩ ∂Ẑm+1 = Syi−1
∪ Sxi , Ã(βi) ∩ ∂Ẑm+1 = Sxi ∪ Syi ,

Ãinn(αi) ∩ ∂Ẑm+1 = Sinn
yi−1
∪ Sinn

xi , Ãinn(βi) ∩ ∂Ẑm+1 = Sinn
xi ∪ S

inn
yi ,

where

• Sinn
xi ⊂ Sxi are sub-intervals of T ′m+1

i containing xi,

• Sinn
yi ⊂ Syi are sub-intervals of T ′m+1

i containing yi,
• all Sxi , Syi are pairwise disjoint. 4

We say that Sxi , Syi are S-buffers of level m and we say that Sinn
xi , Sinn

yi are Sinn-

buffers of level m. Note that ∂Ẑm+1 may also contain many S- and Sinn-buffers of
deeper levels We also write:

(5.2) Sinn(βmi ) := Ãinn(βmi ) ∩ ∂Ẑm =
(
Sinn
xi ∪ β

m
i ∪ Sinn

yi

)
\ int(Ẑm),

(5.3) Sinn(αmi ) := Ãinn(αmi ) ∩ ∂Ẑm =
(
Sinn
yi−1
∪ Sinn

xi

)
\ int(Ẑm),

and similar with S(βmi ), S(αmi ).

Lemma 5.2. The disk Zm (see Assumption 1) is a δ/2-near rotation domain (see
Section 3) with respect to

Ai = A(Li) := Ainn(αi)�A
inn(βi);

see §A.1.11 for the definition of “�”.

Proof. By Assumption 2, the annulus Ai controls the difference between fk(Li)
and Li−kpm+1 . It follows from Assumptions 3 and 7 that Ai intersects only Ai−1

and Ai+1. Since mod(Ainn(αi)),mod(Ainn(βi)) ≥ δ, we have mod(Ai) ≥ δ/2 by
Lemma A.3. �
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Assumption 4 (Combinatorial space). Each of the 15 intervals in Ti \
(
P (βni ) ∪

{xi, yi}
)

has length at least 200lm+1.

Moreover, the subinterval [xi, yi] ⊂ Tm+1
i has length at least

4

5
|Tm+1
i |. 4

In particular, most of Tm+1
i is “reclaimed” during the regularization.

5.1.3. Extra geometry constrains.

Assumption 5 (Conformal separation). For all i we have

W(Sxi , Syi), W(Syi , Sxi+1
) ≤ 1/δ.

4

Recall from (2.12) that a rectangle R is based on T ′m+1
i if R ⊂ Ĉ\ int Ẑm+1 and

∂hR ⊂ T ′m+1
i . A rectangle R based on T ′m+1

i is

• parabolic if distT ′m+1
i

(∂h,0R, ∂h,1R) ≥ 6 min{|∂h,0R|, |∂h,1R|}+ 3lm+1;

• balanced if |∂h,0R| = |∂h,1R|;
• non-winding if, in addition, every vertical curve in R is homotopic in

C \ int Ẑm to a subcurve of T ′m+1
i

Consider a sufficiently big ∆� 1 – it will be fixed in §5.2, see Remark 5.11.

Assumption 6 (Extra outer protection). For every dam βmi there is a balanced
parabolic non-winding rectangle Xmi = X (βmi ) based on T ′m+1

i such that W(Xmi ) ≥
∆ and Ã(βmi ) \ Ẑm+1 is in the bounded component of C \ (Ẑm+1 ∪ Xmi ). 4

In particular, βi is deep in the fjord associated with Ti, see 2.1.7. We assume that
∂h,0Xmi < ∂h,1Xni in Ti; i.e. bXni c ⊂ Tm+1

i . We denote by bXni cm the projection of

bXni c onto ∂Ẑm.

5.1.4. Minimal position of the collars. A collection Γ = (γk) of external arcs of a
topological disk D is in minimal position rel ∂D if every two arcs γk, γt have the

minimal intersection number up to homotopy in (Ĉ \ D, ∂D). This means that
|γk ∩ γt| ≤ 1 and |γk ∩ γt| = 1 if and only if the endpoints of γk are linked rel ∂D
to the endpoints of γt. Similarly, the minimal position for internal arcs is defined.

By Assumption 3, every simple closed curve

∂outAout(αmi ), ∂innAout(αmi ), ∂innAinn(αmi ),

∂outAout(βmi ), ∂innAout(βmi ), ∂innAinn(βmi )

is a cyclic concatenation of 2 external and 2 internal arcs of Ẑm. We denote by Γmext

and Γminn the set of external and internal arcs of the above boundaries of collars.

Assumption 7. The set Γminn ∪ {αmi }i is in minimal position rel ∂Ẑm. The set⋃
n≥m

Γnext ∪ {βni }i ∪ {∂v,0Xni , ∂v,1Xni }i

is in minimal position rel ∂Z.
Moreover, all landing points of curves in Γmext∪Γminn∪{αmi , βmi }i∪{∂v,0Xmi , ∂v,1Xmi }i

are within CPm+1 \ CPm. 4

In particular, the Xni geometrically separate dams of all levels.
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5.1.5. Fjords and Peninsulas. A connected component of Ẑm \ Ẑm+1 = Zm \ Ẑm+1

is called a level m fjord while a connected component of Ẑm \ Zm = Ẑm+1 \ Zm
is called a level m peninsula. Every peninsula P has a unique channel αmi on its
boundary; we will often write P = P(αmi ). The coast of P is

∂cP := ∂P \ αmi .

The boundary ∂Ẑm is a concatenation of dams βmi and coasts of peninsulas.

Consider a peninsula P(αnj ) of Ẑn, where n > m. By construction (Assump-
tion 1), P contains a unique point z ∈ CPn. There are three possibilities:

• ∂cP (as well as P) is in the interior of Ẑm;

• ∂cP ⊂ ∂Ẑm;

• one of the components of ∂cP \ {z} is in int Ẑm while the other component

is in ∂Ẑm.

In the last case, z is an endpoint of a dam βks ⊂ ∂Ẑm of generation k < n (by
Assumption 7).

5.1.6. Sinn(Ẑm) ⊂ S(Ẑm) ⊂ Swell(Ẑm). Let us write

Sinn(Ẑm) :=
⋃
n,j

Sinn(βnj ), S(Ẑm) :=
⋃
n,j

S(βnj ), Swell(Ẑm) :=
⋃
n,j

bXnj c,

where the unions are taken over all n ≥ m and j.

By construction: CPm ⊂ ∂Ẑm \ Swell(Ẑm) and, moreover:

Lemma 5.3. Every connected component of Swell(Ẑm) is bXnj c for some n ≥ m, j.
Similarly, every connected component of S(Ẑm) is S(βni ) for some βni .

Similarly, every connected component of Sinn(Ẑm) is Sinn(βni ) for some βni . �

We say that an interval I ⊂ ∂Ẑm is well-grounded if its endpoints are in

∂Ẑm \ Swell(Ẑm). An interval I ⊂ ∂Z is well-grounded rel Ẑm if I is regular

and its projection Im ⊂ ∂Ẑm is well-grounded.

5.1.7. U
(
Ẑm
)
⊂ X

(
Ẑm
)
. Let us denote by U(αni ) := Ã(αni ) \A(αni ) and U(βni ) :=

Ã(βni ) \A(βni ) the topological disks surrounded by A(αni ) and A(βni ). Let us write

U
(
Ẑm
)

:= Ẑm ∪
⋃
n,i

(
U(αni ) ∪ U(βni )

)
= Ẑm ∪

⋃
n,i

U(βni ),

where the equality follows from Assumption 3. Since the A(αni ), A(βni ) control the

difference between Ẑm and the induced image under fk, |k| ≤ qm+1 (Assumption 2),
the map (f | Z)k : Z ý extends uniquely to

(5.4) fk : Ẑm
1:1−→ (fk)∗

(
Ẑm
)
⊂ U

(
Ẑm
)
, where |k| ≤ qm+1.

Let us also set

(5.5) X
(
Ẑm
)

:= Filling-in of

⋃
n,j

Xnj ∪ Ẑm
 .

By construction, X
(
Ẑm
)

contains all A(αni ) and A(βni ).
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5.1.8. Pullbacks of Ẑm. Let stab(Ẑm) ∈ N≥0 be the smallest number such that the

distance between ∂hXmsj and the endpoints of T ′msj is at least (stab(Ẑm)+1)lms+1

for every level of regularization ms ≥ m and every j. Then pullbacks of Ẑm are

well defined up to stab(Ẑm)qm+1 iterates:

Lemma 5.4. For every t ≤ stab(Ẑm)qm+1 all the αni , β
n
i , A(αni ), A(βni ),X (βni )

have univalent lifts along f t : Z → Z; the resulting lifts αni,−t, β
n
i,−t, A(αni,−t),

A(βni,−t),X (βni,−t) form a (δ,∆) pseudo-Siegel disk Ẑm−t such that f t : Ẑm−t → Ẑm is
conformal.

Proof. Since the Xni are non-winding, they have univalent lifts for all t ≤ stab(Ẑm)qn+1

– compare with Lemma 4.3. Since the Xni separate A(βni ) \ Ẑn+1 from CPn
(Assumption 6) and since A(αni ) \ Ẑn+1 ⊂ A(βni−1) ∪ A(βni ), the filled-in collars

Ã(αni ), Ã(βni ) also have univalent lifts and the statement follows. �

5.1.9. Geodesic pseudo-Siegel disks. We say Ẑm is a geodesic pseudo-Siegel disk if

•
⋃
n≥m

Γnext ∪ {βni }i ∪ {∂v,0Xni , ∂v,1Xni }i consists of hyperbolic geodesics of

Ĉ \ Z;

• Γninn ∪ {αmi }i consists of hyperbolic geodesics of int Ẑn+1 for every regular-
ization level n ≥ m; and

• stab(Ẑm) ≥ 10.

Consider a parabolic non-winding rectangleR based on T ′i ⊂ ∂Z. By Lemma 4.3,
R has a univalent pullback along fqm+1 : T ′ � θm+1 → T for j ∈ {0, 1, . . . , qm+1 − 1}.
Let R−j be the lift of R along f j : Z ý. We set

orb−qm+1+1R :=

qm+1−1⋃
j=0

R−j ,

i.e., orb−qm+1+1R is the set of rectangles obtained by spreading around R using
pullbacks.

We say that a regularization Ẑm = Zm+1 ∪ Ẑm+1 is within orb−qm+1+1R if

Γmext ∪ {βmi }i ∪ {∂v,0Xmi , ∂v,1Xmi }i ⊂ orb−qm+1+1R.

Remark 5.5. If Ẑm is geodesic, then stab(Ẑm) ≥ 10 implies that

(5.6)

 ⋃
|i|≤2qm+1

[f | ∂Z]i(CPm)

 ∩ Swell(Ẑm) = ∅.

Therefore, if the endpoints of an interval J ⊂ ∂Z are in CPm, then f i(J) is well-

grounded rel Ẑm for all i ≤ 2qm+1.
For instance, let I ⊂ ∂Z be a combinatorial level-m interval such that one of the

endpoints of I is in CPm. Let Is, s < qm+1 be the intervals obtained by spreading

around I = I0, see §2.1.5. Then all Is are well-grounded rel Ẑm.

5.2. Outer geometry of Ẑm. In this subsection, we will show that Z and Ẑm

have comparable outer geometries with respect to grounded intervals.
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5.2.1. Removing small components from a rectangle. Fix a big ∆ � 1 and some

τ > 1. Consider a rectangle R ⊂ Ĉ. Let Di, i ∈ I be a finite set of open Jordan
disks in R with pairwise disjoint closures satisfying the following properties:

(A) every Di is a attached to a unique side Ti of R: the intersection ∂Di ∩ ∂R is
a closed arc within Ti;

(B) there is a rectangle

Yi ⊂ R, ∂hYi = ∂Yi ∩ ∂R ⊂ Ti, W(Yi) ≥ ∆

protecting Di in the following sense: ∂R\Ti and Di are in different components
of R \ Yi.

Let us denote by T opp
i ⊂ ∂R the opposite side to Ti; i.e. Ti ∪ T opp

i is either ∂vR
or ∂hR. We will also consider the following relaxations of (B):

(Bv) if Ti is a vertical side of R, then there is a rectangle

Yi ⊂ R, ∂hYi = ∂Yi ∩ ∂R ⊂ Ti, W(Yi) ≥ τ
protecting Di in the following sense: T opp

i and Di are in different components
of R \ Yi.

(Bh) if Ti is a horizontal side of R, then there is a rectangle

Yi ⊂ R, ∂hYi = ∂Yi ∩ ∂R ⊂ ∂R \ T opp
i , W(Yi) ≥ ∆

protecting Di: T
opp
i and Di are in different components of R \ Yi.

(B′h) if Ti is a horizontal side of R, then there is a rectangle

Yi ⊂ R, ∂hYi = ∂Yi ∩ ∂R ⊂ ∂R \ T opp
i , W(Yi) ≥ ∆i

protecting Di: T
opp
i and Di are in different components of R \ Yi, where:

∆i ≥ τ for i ∈ S and ∆i ≥ ∆ for i 6∈ S.
(Here S is an index set.)

Set

R′ := intR \
⋃
i∈I

Di

and view R′i as a rectangle with the same vertices as R and with the same labeling
of sides; i.e. ∂hR and ∂hR′ have an infinite intersection. In other words, R′ is
obtained from R by slightly moving its boundaries towards the interior; the motion
is geometrically controlled by rectangles Yi. If we view R as an outer rectangle in

Ĉ (i.e., ∞ ∈ intR), then R′ is obtained from R by filling in fjords, see Figure 17.

Lemma 5.6. For every ε > 0 and ∆ �ε 1 the following holds. For R and R′
satisfying the above (A) and (B) we have:

(5.7) 1− ε < W(R′)
W(R)

< 1 + ε.

Proof. Let us conformally replace R with a Euclidean rectangle, see §A.1.1; i.e. we
assume that R = [0, x] × [0, 1]. Since every Di is separated from three sides of
R by a wide rectangle Yi, we obtain that Di has a Euclidean diameter less than
δmin{x, 1}, where δ → 0 as ∆→∞. Therefore, the width of R′ is estimated from
below and above by the width of [δ, x − δ] × [0, 1] and of [0, x] × [δ, 1 − δ]. This
implies (5.7). �

Lemma 5.7. For every ε > 0 and ∆�ε 1 the following holds.
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Ĉ \ R
Yi

Yj

∂h,1R

∂h,0R

Ĉ \ R

∂h,1R′

∂h,0R′

Figure 17. The (outer) rectangle R′ is obtained from R by fill-
ing fjords. If all the fjords are protected by wide rectangles Yj
(orange), i.e., fjords have narrow entrances, then W(R) is close to
W(R′).

• if R and R′ satisfy (A) and (Bv), then:

(5.8) W(R)−Oτ (1) <W(R′)

• if R and R′ satisfy (A) and (Bh), then:

(5.9) W(R′) < (1 + ε)W(R)

• if R and R′ satisfy (A) and (B′h), then:

(5.10) W(R′) < (1 + ε)W(R) +Oτ (|S|).

Proof. As in the proof of Lemma 5.6, we assume thatR = [0, x]×[0, 1] is a Euclidean
rectangle. We also assume that x =W(R) > 1 – the only relevant case.

Assume R,R′ satisfy (A) and (Bv). If Ti is vertical, then diamDi < Cτ for some
Cτ > 0. Therefore, W(R′) is estimated from below by the width of [Cτ , x− Cτ ]×
[0, 1] and (5.8) follows.

Assume R,R′ satisfy (A) and (Bh). If Ti is horizontal, then diamDi < c∆,
where c∆ → 0 as ∆→∞. Therefore, W(R′) is estimated from above by the width
of

Rnew := [0, x]× [c∆, 1− c∆]

and (5.9) follows.
Assume R,R′ satisfy (A) and (B′h). Consider the vertical foliation F ′ of R′.

The width of curves in F ′ landing at
⋃
i∈S

Di is Oτ (|S|). The width of the remaining

curves in F ′ is bounded by W(Rnew) because every remaining curve contains a
subcurve in Rnew connecting ∂hRnew. This implies (5.10). �

5.2.2. Well grounded intervals. Recall from §5.1.6 that a regular interval Im ⊂ ∂Ẑm
is well-grounded if its endpoints are not in Swell(Ẑm). Recall also that ∆ is a
parameter from Assumption 6.
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Lemma 5.8. For every ε > 0 and ∆ �ε 1 the following holds. For every pseudo-

Siegel disk Ẑm and every pair of well-grounded intervals Im, Jm ⊂ ∂Ẑm, we have:

1− ε ≤
W+

Ẑm
(Im, Jm)

W+
Z (I, J)

≤ 1 + ε,

where I, J are the projections of Im, Jm onto ∂Z. Similarly, if µ+

Z
, µ+

Ẑm
are the

outer harmonic measures of Z, Ẑm rel ∞, then

1− ε ≤
µ+

Ẑm
(Im)

µ+
Z (I)

≤ 1 + ε.

Proof. Let us enumerate all components of int Ẑm \ Z as Di, i ∈ Im. Every
component Di is bounded by Z and a level ni ≥ m dam βnii . By Assumption 6,
there is a wide rectangle

Xnii ⊂ C \ int(Ẑni+1), ∂hXnii ⊂ ∂Ẑ
ni+1 with W(Xi) ≥ ∆

separating the endpoints of βnii from the endpoints of I, J .

We denote by
?

Xnii the rectangle obtained from Xnii by adding all bounded com-

ponents of C\(Z∪∂hXnii ); i.e. we adjust the horizontal boundary of Xnii by adding

fjords so that ∂h
?

Xnii ⊂ ∂Z.

Lemma 5.9. If ∆ �δ 1, then W(
?

Xnii ) ≥ ∆/2 (independently of the number of
regularizations).

Proof. We proceed by induction on n: we assume that the statement is verified for

all
?

Xnii with ni ≥ n+ 1, and we will prove it for all
?

Xnii with ni = n.

Consider a rectangle Xni and recall that
?

Xni is obtained from Xni by adding fjords
of level > n. Every such fjord is separated from intXni by a dam β

nj
j with nj > n.

Consider the protection Xnjj from Assumption 6. By construction, Xnjj ⊂
?

Xni and

hence
?

Xnjj ⊂
?

Xni . By the induction assumption, W(
?

Xnjj ) ≥ ∆/2 �ε 1. Applying

Lemma 5.6 for the rectangles R =
?

Xni , R′ = Xni and protections {
?

Xnjj }, we obtain

that their widths are close; in particular, W(
?

Xni ) >W(Xni )/2 ≥ ∆/2. �

Lemma 5.8 now follows from Lemmas 5.6 and 5.9 by viewing Ĉ\Z as a rectangle
with horizontal sides I, J . �

5.2.3. Grounded intervals. A regular interval Im ⊂ ∂Ẑm is grounded if its endpoints

are not in Sinn(Ẑm). An interval I ⊂ ∂Z is grounded rel Ẑm if its projection

Im ⊂ ∂Ẑm is grounded.

Lemma 5.10. For every ε > 0 and ∆�δ,ε 1 the following holds. If

I, J ⊂ ∂Z with dist(I, J) ≥ 3 min{|I|, |J |}

is a pair of grounded rel Ẑm intervals, then

(5.11) W+
Z (I, J)−Oδ(1) <W+

Ẑm
(Im, Jm) < (1 + ε)W+

Z (I, J) +Oδ(1),

where Im, Jm ⊂ ∂Ẑm are the projections of I, J onto Ẑm.
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Proof. We view Ĉ\Z as a rectangle R with horizontal sides I, J and we view Ĉ\Zm
as a rectangle R′ with horizontal sides I ′, J ′.

Consider a dam βni . By Assumption 3, Ainn(βni ) \ Ẑn+1 consists of 2 rectangles;
let the rectangle

Ani ⊂ Ĉ \ int Ẑn+1, ∂hAni = Ani ∩ ∂Ẑn+1

be the closure of the connected component of Ainn(βni ) \ Ẑn+1 separating (i.e.,
protecting) βni from CPn. Since mod(A(βni )) ≥ δ we have W(Ani ) ≥ δ.

As in the proof of Lemma 5.8, we define
?

Ani to be the rectangle obtained from
Ani by adding all fjords between Z and ∂hAni . Since ∂hAni consists of a pair of

well-grounded intervals of ∂Ẑn, the argument in Lemma 5.8 is applicable to Ani
and shows that W

(
?

Ani
)
≥ W(Ani )/(1 + ε) > δ/2 =: τ because ∆�δ 1.

Since
?

Ani satisfy (Bv) for R,R′, the first inequality in (5.11) follows from (5.8).
Below we will remove O(1) buffers fromR,R′ so that the new rectanglesRnew,R′new

satisfy (5.10) with |S| ≤ 3.
Assume that |I| ≤ |J |. Let k be the level of I: the unique number satisfying

4

5
lk > |I| ≥

4

5
lk+1, where

4

5
is from Assumption 4. Consider dams βni ⊂ In ∪ Jn.

We distinguish the following three cases.
Assume n > k. Since

dist(In, Jn) ≥ 3 min{|In|, |Jn|} = 3|In| > 2lk+1 > |b∂hXni c|,

b∂hXni c is disjoint from either In or Jn; i.e.
?

Xni satisfy (Bh) for R,R′.
Assume n = k. Then βni ⊂ Jm because |βni | > |I| by Assumption 4. There are

at most two level n = k dams βni such that the associated rectangles
?

Xni intersect

In. Such exceptional dams are protected
?

Ani , and we add these dams into S. The

remaining dams βni are protected by
?

Xni .
Assume n < k. Again βni ⊂ Jn. For every βni , we recognize disjoint genuine

subrectangles Xn,inn
i ,Xn,out

i ⊂ Xni such that dist(∂hXn,out
i , ∂hXn,inn

i ) > |I| and

W(Xn,inn
i ),W(Xn,out

i ) ≥ ∆/3, b∂hXn,inn
i c ⊂ b∂hXn,out

i c.

If In is disjoint from all ∂hXn,inn
i for n < k, then

?

Xn,inn
i satisfy (Bh) and the lemma

follows from (5.10). Suppose that n is minimal so that for a dam βni the interval

In intersects ∂hXn,inn
i ; note that the dam βni is unique. Then

∂h,0Xn,out
i < In < Xn,out

i

and for every t ≥ n, βtj 6= βni , the rectangle Xn,out
i separates In from βtj . By remov-

ing a Oδ(1)-buffer from R,R′ we can assume that the new rectangles Rnew,R′new

do not cross Xn,out
i ; the new rectangles are disjoint from all βtj 6= βni with t ≥ k.

We add βni to S and apply (5.10). �

5.2.4. Restrictions of rectangles. Consider a rectangles R ⊂ Ĉ \ Z and assume
that there is a connected graph G ⊂ R containing all vertices of R such that

G ⊂ Ĉ \ intX (Ẑm), see (5.5). Then the restriction Rm of R to the complement

of Ẑm is the connected component of R \ int Ẑm containing G. We view Rm as a
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rectangle with the same vertex set and the same orientation of sides as R. Observe
that every connected component of R\Rm is separated from G by a restriction of

some F(
?

Xnii ). Therefore, Lemmas 5.9 and 5.6 imply that

(5.12) 1− ε < W(R)

W(Rm)
< 1 + ε,

for a small ε > 0, where ∆�ε 1.

Remark 5.11 (Fixing ∆). From now on we assume that ∆ � 1 is fixed so that ε
in Lemmas 5.8 and 5.10 and in (5.12) is small.

5.3. The geometry on shallow scales. On scale ≥ lm, the geometry of Ẑm is
controlled by its core Zm:

Theorem 5.12. Consider two regular intervals

I, J ⊂ ∂Ẑm such that |I|, |J |, dist(I, J) ≥ 1/qm+1.

If dist(I, J) ≤ min{|I|, |J |}, then

(5.13) W−(I, J) �δ log
min{|I|, |J |}

dist(I, J)
+ 1;

otherwise

(5.14) W−(I, J) �δ

(
log

dist(I, J)

min{|I|, |J |}
+ 1

)−1

.

Moreover, there is a constant Tδ > 1 such that if |I|, |J |, dist(I, J) ≥ Tδ/qm+1,
then (5.13) and (5.14) are independent of δ: if dist(I, J) ≤ min{|I|, |J |}, then

(5.15) W−(I, J) � log
min{|I|, |J |}

dist(I, J)
+ 1;

otherwise

(5.16) W−(I, J) �
(

log
dist(I, J)

min{|I|, |J |}
+ 1

)−1

.

We refer to (5.15) and (5.16) as beau coarse-bounds, compare with Theorem 3.8.

Proof. For a channel αi ⊂ ∂Zm, let us denote by W−Zm,3(αi) the width of curves

starting at αi and ending at ∂Zm \ (βi−1#αi#βi). Similarly, W−Zm,3(βi) is the

width of curves starting at βi and ending at ∂Zm \ (αi#βi#αi+1).

Claim 1. For all channels and dams of ∂Zm, we have:

W−Zm,3(αi) �δ 1, W−Zm,3(βi) �δ 1.

Proof. We haveW−Zm,3(αi) �δ 1 becauseAinn(αi) separates αi from ∂Zm\(βi−1#αi#βi).

Similarly, W−Zm,3(βi) �δ 1. Since(
W−Zm,3(αi)

)−1

=W−Zm(βi−1, βi) ≤ W−Zm,3(βi−1) �δ 1,

where W−Zm(βi−1, βi) is the width of curves connecting βi−1 and βi, we obtain

W−Zm,3(αi) �δ 1. Similarly, W−Zm,3(βi) �δ 1. �

Claim 2. If min{|I|, |J |} � dist(I, J), then W−
Ẑm

(I, J) �δ 1.
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Proof. Let us define the projection I◦ of I onto ∂Zm to be the minimal concatena-
tion

αi#βi+1#βi+1# . . .#βk#αk+1

(starting and ending with a channel) such that every component of I \ I◦ is in
the peninsula whose channel is in I◦. Similarly, J◦ is defined. Since dist(I, J) ≥
1/qm+1, the intervals I◦ and J◦ are separated by at least one dam (follows from
Assumption 4) and we still have min{|I◦|, |J◦|} � dist(I◦, J◦) with respect to the
distance of ∂Zm.

The case min{|I |, |J |}, dist(I, J) � 1/qm+1 follows from Claim 1 by spiting in-
tervals into finitely many channels and dams. Let us assume that |I|, |J |, dist(I, J) ≥
50/qm+1.

By Lemma A.9 that the set of curves in F := F−
Ẑm

(I, J) entering a peninsula

with a channel in ∂Zm \ (I◦∪J◦) is a buffer of F−
Ẑm

(I, J). By removing two Oδ(1)-

buffers from F−
Ẑm

(I, J), we obtain that curves in the new family Fnew do not enter

any peninsula whose channel is in ∂Zm \ (I◦ ∪ J◦) – such channels are separated
from I◦ ∪ J◦ by a definite annulus. Let FNew be the restriction of Fnew to the
family F−Zm(I◦, J◦) (see §A.1.5); i.e., FNew consists of the first shortest subcurves
γ′ of γ ∈ Fnew such that γ′ connects I◦ and J◦. We have:

W−
Ẑm

(I, J)−Oδ(1) ≤ W(Fnew) ≤ W(FNew) ≤ W−Zm(I◦, J◦) � 1

by Proposition 3.3; i.e.W−
Ẑm

(I, J) �δ 1. If A,B are the components of ∂Ẑm\(I, J),

then the above argument shows W−
Ẑm

(A,B) �δ 1. Therefore, W−
Ẑm

(I, J) �δ 1. �

The case dist(I, J) ≤ min{|I|, |J |} follows from Claim 2 by applying the Splitting
Argument (Remark 2.6). By the same reason, the second part of the theorem follows
from the following claim:

Claim 3. There is a constant Tδ > 50 such that if

|I|, |J |, dist(I, J) ≥ Tδ/qm+1 and min{|I|, |J |} �δ dist(I, J),

then W−(I, J) � 1.

Proof. Assume Tδ � 50 is sufficiently big and let us consider I◦ and J◦ as in the

proof of Claim 2. Let us enlarge I◦, J◦ by adding
√
Tδ unit intervals on both sides

of I◦, J◦; the new intervals Ĩ◦, J̃◦ still satisfy min{|Ĩ◦|, |J̃◦|} � dist(Ĩ◦, J̃◦).
We claim that by removing two 1-buffers from F−

Ẑm
(I, J) we obtain the fam-

ily Fnew so that curves in Fnew do not enter any peninsula with a channel in

∂Zm \ (Ĩ◦ ∪ J̃◦). Indeed, consider a channel αk ∈ ∂Zm \ (Ĩ◦ ∪ J̃◦), and let A,B ⊂
∂Ẑm be intervals of length

√
Tδ attached to αk. Since we already established (5.13),

W−
Ẑk

(A,B) �δ log
√
Tδ � 1; removing a Oδ(1)-buffer from F−

Ẑk
(A,B), we obtain

a family of curves Rk such that W(Rk) > 1 and Rk separates αk from I◦ ∪ J◦.
The set of vertical curves in F−

Ẑm
(I, J) that intersect α form a buffer of R by

Lemma A.9; this buffer has width less than 1 by W(Rk) > 1.
As in the proof of Claim 2, we now define FNew to be the restriction of Fnew

to the family F−Zm(Ĩ◦, J̃◦) (see §A.1.5); i.e., FNew consists of the first shortest

subcurves γ′ of γ ∈ Fnew such that γ′ connects Ĩ◦ and J̃◦. We have:

W−
Ẑm

(I, J)−O(1) ≤ W(Fnew) ≤ W(FNew) ≤ W−Zm(I◦, J◦) � 1
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by Theorem 3.8; i.e.W−
Ẑm

(I, J) � 1. And similarly,
(
W−
Ẑm

(I, J)
)−1

=W−
Ẑm

(A,B) �

1, where A,B are the components of ∂Ẑm \ (I, J). �

�

5.3.1. Hyperbolic geodesics in Ẑm. Let us extend continuously the distance function

dist∂Ẑm( , ) specified in (5.1) to all points of ∂Ẑm. Given two sets X,Y intersecting

∂Ẑm, we define the ∂Ẑm-distance between X,Y to be dist∂Ẑm
(
X ∩ ∂Ẑm, Y ∩ ∂Ẑm

)
.

Lemma 5.13. There is an M = M(δ) ≥ 1 such that the following properties hold

for every hyperbolic geodesic γ ⊂ Ẑm connecting x, y ∈ ∂Ẑm.

(I) If the ∂Ẑm-distance from {x, y} to Ãinn(βni ) is at least M lm, then γ is

disjoint Ãinn(βni ).

(II) Similarly, if the ∂Ẑm-distance from {x, y} to Ãinn(αni ) is at least M lm, then

γ is disjoint Ãinn(αni ).

Let γk = (fk)∗(γ) ⊂ U
(
Ẑm
)

be the image of γ under (5.4), and assume that the
endpoints of γk are in Ux,k, Uy,k – the components of

(5.17) {Ã(αni ) \A(αni ), Ã(βni ) \A(βni ) | n, i}, see §5.1.7.

(III) If a component U ′ of (5.17) has ∂Ẑm-distance at least M lm to Ux,k ∪Uy,k,
then γk is disjoint from U ′.

Proof. Choose a sufficiently big M = M(δ) and assume that Ãinn(βni ) has distance
at least M lm+1 to {x, y}. By Theorem 5.12, there is a sufficiently wide geodesic

rectangle R ⊂ Ẑm with ∂hR ⊂ ∂Ẑm such that ∂hR separates Ã(βni ) ∩ ∂Ẑm from

{x, y} in ∂Ẑm. By removing 1/δ buffers from R, we obtain a rectangle Rnew that

separates Ãinn(βni ) from γ. This proves (I) and (II) is similar.
Property (III) follow from (I) and (II) by applying f−k. �

5.4. The inner geometry of peninsulas. For a level n ≥ m peninsula P of Ẑn

with ∂cP ⊂ ∂Ẑm and intervals I, J ⊂ ∂cP, we denote by F−P(I, J) the family of

curves in P connecting I and J . We write W−P(I, J) :=W(F−P(I, J)).

By a grounded pair of intervals I, J ⊂ ∂Ẑm, we mean a pair of disjoint grounded
intervals §5.2.3.

Lemma 5.14. Let I, J ⊂ ∂Ẑm be a grounded pair of intervals, and assume that I

is within a level k ≥ m peninsula P of Ẑm. Set Jnew := J ∩∂P. Then ∂cP ⊂ ∂Ẑm
and

(5.18) W−P(I, Jnew) =W−
Ẑk+1

(I, Jnew)−Oδ(1) =W−
Ẑm

(I, J)−Oδ(1).

If Jnew 6= ∅, then I, Jnew is a grounded pair of Ẑk+1.

Proof. Since the endpoints of I are grounded, ∂cP is non in any Sinn buffer of level

< k; this implies that ∂cP ⊂ ∂Ẑm. Let αk be the channel of P. If Jnew = ∅,
then every curve in F−

Ẑm
(I, J) crosses Ainn(αk) before intersecting αk; i.e. all parts

of (5.18) are equal to Oδ(1) and the lemma follows.

If Jnew 6= ∅, then Jnew is a grounded interval of Ẑk+1 because the endpoints of
α are not in any Sinn-buffers of level ≥ k + 1. Since I ⊂ ∂cP \ Sinn(α), the width
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of curves in F−
Ẑm

(I, J) that are not in P is Oδ(1) because every such curve crosses

Ainn(αk). This implies the lemma. �

The following lemma combined with Theorem 5.12 allows us to inductively cal-
culate the width between grounded intervals.

Lemma 5.15. Let I, J ⊂ ∂Ẑm be a grounded pair with |bI, Jc ≤ 1/2. Assume that
both I, J intersect a level m peninsula P = P(αmi ). Set

Inew := I∩∂cP, I ′ := I\(βmi−1∪Inew) Jnew := J∩∂cP, J ′ := J\(Jnew∪βmi ).

Then:

W−
Ẑm

(I, J) =W−
Ẑm

(I ′, J ′) +W−P(Inew, Jnew) +Oδ(1)

=W−
Ẑm

(I ′, J ′) +W−
Ẑm+1

(Inew, Jnew) +Oδ(1)
.

Proof. The intervals Inew and Jnew are grounded intervals of Ẑm+1 because the
endpoints yi−1, xi of αmi are not in any Sinn-buffer of level ≥ m + 1. We need to
show that the width of the set F ′ of curves in F−

Ẑm
(I, J) intersecting αmi is Oδ(1).

Let A be the set of curves in F ′ that are in Ãinn(αmi ). Note thatW(F ′\A) = Oδ(1)
because every curve in F ′ \ A crosses Ainn(αmi ).

Assume A 6= ∅. This is only possible if

βmi−1 ∪ (Sinn(yi−1) ∩ ∂Ẑm) ⊂ I and (Sinn(xi) ∩ ∂Ẑm) ∪ βmi ⊂ J

because I, J are grounded. Therefore, every curve in A has a subcurve connecting
Sinn
yi−1

and Sinn
xi . By Assumption 5, we obtain W(A) = Oδ(1). �

5.5. Localization and Squeezing lemmas. We are now ready to establish Lo-

calization and Squeezing Properties for ∂Ẑm, compare with §2.2.1 and §2.2.2.
See §2.2.1 for the notion of an innermost subpair.

Localization Lemma 5.16. For every λ > 1 the following holds. If I, J ⊂ ∂Ẑm

is a grounded pair with |bI, Jc| ≤ 1 − 1

λ
min{|I|, |J |}, then there is an innermost

subpair

Inew, Jnew with Inew ⊂ I, Jnew ⊂ J
satisfying

|Inew|, |Jnew| ≤ 1

λ
min{|I|, |J |}

such that, up to Oδ(log λ), the width of F−(I, J) is contained in F−(Inew, Jnew):

(5.19) W−(I \ Inew, J) +W−(I, J \ Jnew) = Oδ(log λ).

Moreover, we can assume that max{|Inew|, |Jnew|} < 2 min{|Inew|, |Jnew|}. The

subpair Inew, Jnew is grounded rel Ẑn, where n ≥ m is the deepest level such that

Inew, Jnew ⊂ ∂Ẑn.

Squeezing Lemma 5.17. There is a constant Cδ such that the following holds.

If I, J ⊂ ∂Ẑm is a grounded pair of intervals with |bI, Jc| ≤ 1/2 such that

W−(I, J) ≥ Cδ log λ, λ > 2,

then dist(I, J) ≤ 1

λ
min{|I|, |J |}.
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Proof of Lemmas 5.16 and 5.17. By splitting I, J into shorter grounded intervals,
we can assume that |bI, Jc| ≤ 1/2.

Let L ⊂ bI, Jc be the shortest complementary interval between I and J . The
case dist(I, J) = |L| ≥ lm follows from Theorem 5.12: we can find points a, b ∈ CPm
so that the right interval Inew of I \ {a} and the left interval Jnew of J \ {b} satisfy
the conclusion of Lemma 5.16. (The intervals Inew, Jnew are grounded because the
set CPm is away from Sinn-buffers.)

Let mj ≥ m be the smallest regularization level such that |I|, |J | ≥ lmj . If m <

mj , then by Lemma 5.14, up to Oδ(1) the width of F−
Ẑm

(I, J) is in F−
Ẑmj

(Inew, Jnew);

set I1 = Inew, J1 = Jnew ⊂ ∂Ẑm ∩ ∂Ẑmj . If m = mj , set I1 := I, J1 := J . Note
that L is still the shortest complementary interval between I1, J1.

The case dist(I1, J1) = |L| ≥ lmj follows again from Theorem 5.12. Otherwise,
as in Lemma 5.15, we recognize subintervals I ′1, I

new
1 ⊂ I1 and Jnew

1 , J ′1 ⊂ J1. Up
to Oδ(1), the family F−

Ẑmj
(I1, J1) is F−

Ẑmj
(I ′1, J

′
1) t F−

Ẑmj+1(Inew
1 , Jnew

1 ). Applying

Theorem 5.12 to F−
Ẑmj

(I ′1, J
′
1), we either conclude the lemma if min{|I ′1|, |J ′1|} ≥

λ|L| or we reduce the problem to the pair I2 := Inew
1 , J2 := Jnew

1 with a new
λ2 < λ/2 because |I2|, |J2| ≤ 2lmk/5 by Assumption 4. Proceeding by induction,
we conclude the lemma with at most log2 λ steps. �

5.6. Grounded subintervals. As before, we extend continuously the distance

function distẐm specified in (5.1) to all points of ∂Ẑm. Then F−λ (I) and W−λ (I)

are well defined for all intervals I ⊂ ∂Ẑm.
Given an interval J ⊂ ∂Z, we define:

• JGRND ⊂ J be the biggest grounded interval in J ; and
• Jgrnd ⊃ J be the smallest grounded interval containing J .

We allow Jgrnd = ∅ or JGRND = ∂Ẑm.

Lemma 5.18 (X vs Xgrnd). Consider a family F(I, J), where I, J ⊂ ∂Ẑm. Let

A,B ⊂ ∂Ẑm be two complementary intervals to I, J .

(i) If dist(I, J) > lm, then for every interval X ⊂ ∂Ẑm, there are at most Oδ(1)
curves in F(I, J) intersecting X \Xgrnd.

(ii) If |I|, |J |, |A| ≥ lm, then for every interval X ⊂ A, there are at most Oδ(1)
curves in F(I, J) intersecting X \Xgrnd.

Proof. Consider Case (i). Every component (out of at most 2) of X \Xgrnd is
within Sinn(β) for a dam β ⊂ L. Since |A|, |B| ≥ lm, the color Aout(β) is disjoint
(and hence separate Sinn(β)) from either I or J . The lemma now follows from
modAout(β) ≥ δ.

Case (ii) follows from a similar argument. Every component of X \Xgrnd is
within Sinn(β). Since |I|, |J |, |A| ≥ lm, the annulus Aout(β) separates Sinn(β) from
either I or J . �

5.7. Pseudo-bubbles. A bubble Z` is the closure of a connected component of
f−k(Z) \ Z. The generation of Z` is the minimal k such that fk(Z`) = Z; i.e.

fk : Z` → Z is the first landing. Given a pseudo-Siegel disk Ẑm, the pseudo-bubble

Ẑ` is the closure of the connected component of f−k
(

int Ẑm
)

containing intZ`.

In other words, Ẑ` is obtained from Z` by adding the lifts of all reclaimed fjords

(components of Ẑm \ Z) along fk : Z` → Z.
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Channels, dams, collars Ainn, Aout, extra protections Xni are defined for Ẑ` as

pullbacks of the corresponding objects along fk : Ẑ` → Ẑm. For instance, X (Ẑ`)

is the pullback of X (Ẑm), see (5.5), under fk. The length of an interval I ⊂ ∂Ẑ`
is the length of its image fk(I) ⊂ ∂Ẑm. All results of this section are valid for

pseudo-bubbles. In particular, the results concerning the inner geometry of Ẑm

(such as Theorem 5.12, Lemmas 5.16 and 5.17) are obtained by identifying Ẑ` with

Ẑm via fk. The results concerning the outer geometry of Ẑ` (see §5.2) are obtained
by repeating the arguments.

6. Snakes

Consider the family F◦L(I, J) = F◦
L,Ẑm

(I, J) as in §2.5. Our principal result of

the section is the following generalization of Lemma 2.12:

Snake Lemma 6.1. Let I, J ⊂ ∂Ẑm be a pair of grounded intervals, and let L be
a complementary interval between I, J . Normalize I < L < J and set

K :=W◦L(I, J)−W+(I, J).

Assume that |N | ≥ lm, where N = ∂Ẑm \ (I ∪ L ∪ J) is the second complementary
interval between I and J .

If K �δ log λ with λ > 2, then there are grounded intervals

(6.1) J1, I1 ⊂ L, |J1| <
dist(I, J1)

λ
, |I1| <

dist(I1, J)

λ
, I < J1 < I1 < J

such that

(6.2) W◦La(I, J1)⊕W◦Lb(I1, J) ≥ K −Oδ(log λ),

where La, Lb ⊂ L are the intervals between I, J1 and I1, J respectively:

I JJ1 I1

F◦La(I, J1) F◦Lb(I1, J)

Note that (6.2) implies

(6.3) max{W◦La(I, J1),W◦Lb(I1, J)} ≥ 2K −Oδ(log λ).

Corollary 6.2. Under the assumption of Lemma 6.1, there is an interval Inew ⊂
L• ⊂ ∂Z grounded rel Ẑm such that W+

λ (Inew) � K, where L• is the projection of
L onto ∂Z.

6.0.1. Outline and motivation of the section. The proof of Lemma 6.1 repeats the
argument of Lemma 2.12 (the Snake Lemma for Z) with an additional input from
Lemma 6.4. More precisely, the Series Decomposition §2.4 yields families F◦La(I, J1)
and F◦Lb(I1, J) shown on the figure in Lemma 6.1. By Localization Lemma 5.16,
we can assume that |J1|, |I1| are small compared with dist(I, J1), dist(I1, J) respec-

tively. And by Lemma 6.4, we can assume that J1, I1 are grounded rel Ẑm; i.e.,
Snake Lemma 6.1 can be iterated.

This allows to trade families entering int Ẑm into outer families (Corollary 6.2).
Indeed, assuming that W◦La(I, J1) ≥ 2K − Oδ(log λ), either W+

La
(I, J1) ≥ K/3 or
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repeating the Snake Lemma we find I2, J2 with W◦L2
(I2, J2) ≥ 3

2
K enlarging the

family. Since Ẑm is a non-uniformly qc disk, the process eventually stops.
For applications, we will need several variations of the Snake Lemma. In §6.4

we state the Snake Lemma “with toll barriers”: if F◦L(I, J) contains a lamination
R submerging into L at least n times, then 2K in (6.3) can be replaced by nK.
In §6.13 we state the Sneaking Lemma when F◦(I, J) “sneaks” through a wide
outer rectangle R, see Figure 19 for illustration. Both versions will be used in
Snake-Lair Lemma 8.6 to amplify the width of degeneration.

6.1. Proof of Snake Lemma 6.1. We will prove the Snake Lemma in §6.1.2 af-
ter introducing an auxiliary subfamily F?L(I, J) ⊂ F◦L(I, J). The family F?L(I, J)
consists of curves omitting dams (and some space around them) that have an end-
point in Lc. We will show that W◦L(I, J) − W?

L(I, J) = Oδ(1) and that at most
Oδ(1)-curves in F?L(I, J) intersects X \Xgrnd for every interval X ⊂ L.

6.1.1. F?-family. Let us fix an interval L ⊂ ∂Ẑm. For a dam α = αni ⊂ Ẑm with
|α ∩ Lc| ≥ 1 (i.e., at least one of the endpoints of α is in Lc), define

• α?L
c

:= α if |α ∩ Lc| = 2;

• α?L
c

to be the connected component of Ainn(α) \ Lc intersecting int Ẑm if
|α ∩ Lc| = 1 (i.e., this connected component is attached to (Lc)−).

We define (
Lc
)?

:= filling in of

Lc ∪ ⋃
|α∩Lc|≥1

α?L
c

 .
We remark that if lmi+1

≤ |L| < lmi , where the mi are level of regularizations, then

Ẑm \
(
Lc
)?

is within the level mi peninsula containing L on its boundary.
Finally, we define F?L(I, J) to be the the set of curves in F◦L(I, J) that are in

Ĉ \ int(Lc)?.

Lemma 6.3 (Trading F◦ into F?). Under the assumption of Lemma 6.1, the family
F?L(I, J) \ F+(I, J) contains a rectangle R such that

W(R) =W◦L(I, J)−W+(I, J)−Oδ(1).

Proof. Write K := W◦L(I, J) − W+(I, J). By Lemma 2.9, F◦L(I, J) contains a

rectangleR submerging into Ẑm withW(R) = K−O(1). LetRnew be the rectangle
obtained by removing the 1/δ innermost buffer (attached to (Lc)−) from R. We

claim that R ⊂ Ĉ \
(
Lc
)?

.

Assume first that |α ∩ Lc| = 2. Since α = α?L
c

is attached to (Lc)−, vertical
curves in R intersecting α form a buffer of R, see Lemma A.9. Since curves in this

buffer cross Ainn after entering int Ẑm through L, the width of the buffer is ≤ 1/δ.
Assume now that |α∩Lc| = 1. We claim that Aout(α) is disjoint from either I or

J . The claim will imply that the width of the buffer formed by curves intersecting
α?L

c

(these curves form a buffer of R by Lemma A.9) is ≤ 1/δ because α?L
c

is
separated from either I or J by Aout(α).

Proof of the claim. Write α = αni = [yn−1, xn] as in Figure 16 and assume that
yn−1 ∈ Lc; the opposite case is analogous.
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Suppose first that xn ∈ int Ẑn. Then the unique point z in ∂cP(αni )∩CPn is an

endpoint of a dam βks ⊂ ∂Ẑm for k < n, see §5.1.5. Therefore, Aout(αni ) ∩ ∂Ẑm ⊂
Sinn
z . Since I, J are grounded, Sinn

z (and hence Aout(αni )) is disjoint from either I
or J .

Suppose now that xn ∈ L. Since L is grounded, it also contains βni – the dam
after αni . We obtain that βni separates Sxn from J while N separates Syn−1 from

J because |N | ≥ lm. Therefore, Aout(αni ) separates Ãinn(αni ) from J . �

�

Lemma 6.4 (X vs Xgrnd). Consider a family F?L(I, J) from Lemma 6.3. Then
for every interval X ⊂ L, there are at most Oδ(1) curves in F?L(I, J) intersecting
X \Xgrnd.

Combined with Lemma 6.3, there are at most Oδ(1) curves in F◦(I, J) intersecting
X \Xgrnd.

Proof. Let us start the proof with the following two properties.

Claim 1. Let α be a channel such that either both endpoints of α are in L or one

of the endpoints of α is in L and the second endpoint is in int Ẑm. Then at most

Oδ(1) curves in F?L(I, J) intersect Ãinn(α).

Proof of the claim. Assume first that both endpoints of α are in L. Then we have
∂cP(α) ⊂ L. Since L is grounded, it also contains two dams attached to α. There-

fore, Ãout(α) is disjoint from I ∪ J . The claim now follows from modAout(α) ≥ δ.
Assume that one of the endpoints of α is in intZ. Then the unique point z in

∂cP(αni ) ∩ CPn is an endpoint of a dam βks ⊂ ∂Ẑm for k < n, see §5.1.5. We have

Aout(αni ) ∩ ∂Ẑm ⊂ Sinn
z and Aout(αni ) separates Ãinn(α) from I, J . �

Claim 2. Let β ⊂ L be a dam. Then at most Oδ(1) curves in F?L(I, J) intersect
Sinn(β).

Proof of the claim. Since L is grounded, Ainn(β) separates β from I ∪ J ; thus at
most Oδ(1) curves in F?L(I, J) intersect β. Write β = βni ; then Sinn(β) ⊂ Sinn(αni )∪
Sinn(αni+1). By Lemma 6.3 and Claim 2, at most Oδ(1) curves in F?L(I, J) intersect

Sinn(αni ) ∪ Sinn(αni+1). �

The lemma now follows from Claim 2 because every component (out of at most
2) of X \Xgrnd is within Sinn(β) for a dam β ⊂ L. �

6.1.2. Proof of Snake Lemma 6.1. Let R ⊂ F?L(I, J) \ F◦ = (I, J) with W(R) =
K − Oδ(1) be a rectangle (a snake) from Lemma 6.3 realizing K. Applying Se-
ries Decomposition §2.4 to R, we obtain that F(R) consequently overflows the
laminations

(6.4) Fa ⊂ F◦(I, Ja), Γ ⊂ F−(Ja, Ib), Fb ⊂ F◦(Ib, J),

where Ja, Ib ⊂ L. Let Jgrnd
a , Igrnd

b be the biggest grounded intervals in Ja, Ib,

see §5.6. By Lemma 6.4, the width of vertical curves in R intersecting
(
Ja\Jgrnd

a

)
∪(

Ib \ Igrnd
b

)
is Oδ(1); removing these curves from R and their restrictions from the
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laminations in (6.4), we obtain that the new rectangle Rnew,W(Rnew) ≥ K−Oδ(1)
such that F(Rnew) consequently overflows

(6.5) Fnew
a ⊂ F◦(I, Jgrnd

a ), Γnew ⊂ F−(Jgrnd
a , Igrnd

b ), Fnew
b ⊂ F◦(Igrnd

b , J).

By Localization and Squeezing Lemmas 5.16, 5.17, Jgrnd
a , Igrnd

b contains an in-
nermost pair J1, I1 such that

|bJ1, I1c| ≤
1

5λ
{|Igrnd

a |, |Jgrnd
b |}

and up to Oδ(log λ)-width the family F−(Ja, Ib) is in F−(J1, I1):

(6.6) W−(Ja \ J1, Ib) +W−(Ja, Ib \ I1) = Oδ(log λ).

Let RNew be the lamination obtained from Rnew by removing all γ ∈ F(R) with
γda 6∈ F−(J1, I1) or γdb 6∈ F−(J1, I1). Then W(RNew) = K −Oδ(log λ).

Applying the Series Decomposition §2.4 to RNew, we obtain that RNew conse-
quently overflows

(6.7) FNew
a ⊂ F◦(I, JNew

a ), ΓNew ⊂ F−(JNew
a , INew

b ), FNew
b ⊂ F◦(INew

b , J),

where JNew
a ⊂ J1, INew

b ⊂ I1 and bJNew
a , INew

b c ⊂ bJ1, I1c. Set J2 :=
(
JNew
a

)grnd

and I2 :=
(
INew
b

)grnd
. By Lemma 6.4, the width of curves in RNew intersecting

JNew
a \ J2 or INew

b \ I2 is at most Oδ(1). Removing these curves from RNew and
their restrictions from the laminations in (6.7), we obtain that the new RNEW

consequently overflows

(6.8) FNEW
a ⊂ F◦(I, J2), ΓNEW ⊂ F−(J2, I2), FNEW

b ⊂ F◦(I2, J),

where bJ2, I2c ⊂ bJ1, I1c. Therefore, (6.6) and (6.8) imply the lemma.

Remark 6.5. Let us summarize the steps in the proof of Lemma 6.1:

(a) first we apply Series Decomposition §2.4 to F(R), see (6.4);

(b) then we apply Lemma 6.4 to obtain grounded intervals Jgrnd
a , Igrnd

b , see (6.5);

(c) then we apply Localization Lemma 5.16 to Jgrnd
a , Igrnd

b ;
(d) then we reapply the Series Decomposition §2.4, see (6.7);
(e) finally, we reapply Lemma 6.4 to obtain required (6.8).

In Steps (b), (c), (e) we remove at most Oδ(log λ) curves from R.

6.1.3. Submerging laminations. We can refine the Snake Lemma as follows:

Lemma 6.6. Under the assumptions of Lemma 6.1, consider a lamination R ⊂
F◦L(I, J) \F+(I, J) with W(R)�δ log λ. Then there are intervals J1, I1 satisfying
(6.1) and there are laminations Ra ⊂ FLa(I, J1), Rb ⊂ F◦Lb(I1, J) such that

W(Ra)⊕W(Rb) ≥ W(R)−Oδ(log λ),

and such that Ra,Rb are restrictions of sublaminations of R.

Proof. By Lemma 6.3, we can remove Oδ(1) buffers from R so that the new lam-
ination Rnew is in F?L(I, J). We apply the argument of §6.1.2 to Rnew until (6.8),
and then we set Ra := FNEW

a and Rb := FNEW
b . �

Remark 6.7. The condition |N | ≥ lm in Snake Lemmas 6.1 6.6 can be omitted if
the lamination R in Lemma 6.6 has the following property:
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(X) for every interval X ⊂ ∂Ẑ`, there are at most Oδ(1) vertical curves in R
intersecting X \Xgrnd.

In the proof, Property (X) substitutes Lemma 6.4.

6.2. Trading W into W+. In thus subsection we will prove Corollary 6.2 as well
as several of its variations.

Proof of Corollary 6.2. Snake Lemma 6.1 implies (6.3). Assume thatW◦La(I, J1) ≥
2K −Oδ(log λ); the second case is analogous.

If W+(I, J1) ≥ 1

3
K, then we set Inew = J•1 to be the projections of J1 onto ∂Z.

By Lemma 5.10 we have

W+
λ,Z(Inew) ≥ W+

Z (I•, J•1 ) ≥ W+

Ẑm
(I, J1)−Oδ(1) � K.

If W+
La

(I, J1) <
5

3
K, then applying Snake Lemma 6.1 again, we find I2, J2 ⊂ L

with

W◦L2
(I2, J2) ≥ 3

2
K and min{|I2|, |J2|} <

1

λ
dist(I2, J2).

The case W+(I2, J2) ≥ 1

3
K is treated as above. If W+(I2, J2) <

1

3
K, then

applying Snake Lemma 6.1 again, we find I3, J3 ⊂ L with

W◦L3
(I3, J3) ≥

(
3

2

)2

K and min{|I3|, |J3|} <
1

λ
dist(I3, J3),

i.e.,W◦Ln(In, Jn) ≥
(
3/2
)n
K growth exponentially fast. Since Ẑm is a non-uniformly

qc disk, the process eventually stops: we obtain W+(In, Jn) ≥ 1

3
K for some n and

grounded intervals In, Jn with min{|In|, |Jn|} <
1

λ
dist(In, Jn). Lemma 5.10 allows

to replace In, Jn with their projections onto ∂Z. �

6.2.1. Scale ≥ lm. Trading W into W+ is more straightforward if intervals have
length ≥ lm thanks to Lemma 5.18.

Lemma 6.8. Let I, L ⊂ ∂Ẑ be disjoint intervals such that

|I| ≥ lm, dist(I, L) ≥ max{lm+1, |I|/λ}, |L| ≥ 1

2
, |Lc| ≤ λlm+1,

K :=W(I, L)−W+(I, L)�δ,λ 1, where λ ≥ 3.

Then there is an interval Inew ⊂ Lc \ I ⊂ ∂Z grounded rel Ẑm such that

|Inew| < 1

λ
|I| and W+

λ (Inew) � K.

Proof. Let R be the vertical family of F(I, L), see §A.1.6. By Lemma 5.18, Prop-
erty (X) in Remark 6.7 holds for R.

Let Ĩ , L̃ be slight enlargements of Igrnd, Lgrnd such that every interval in Ĩ \
Igrnd, L̃\Lgrnd has length

1

5λ2
|I|. Applying Lemma 2.8, we construct intervals Î , L̂

with I ⊂ Î ⊂ Ĩ and L ⊂ L̂ ⊂ L̃ such that there is a restriction G ⊂ F(Î+, L̂+) of a
sublamination of R satisfying

• W(R|G) =W(I, L)−O(C) = K −Oδ(log λ);
• G is disjoint from the central arc in F−(I, L).
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Here C = Oδ(log λ) by Lemmas 5.16 and 5.18.

Let A,B be the complementary intervals to Î , L̂, and let Ia, Ib be two intervals

(possibly empty) in Î \ I. Similarly, let La, Lb be two intervals (possibly empty) in

L̂ \ L. Since W(I, L)−W+(I, L) = K, there are two possibilities:

(I) either G contains a lamination H in F+
(
Ia, L̂

)
∪ F+

(
Ib, L̂

)
∪ F+

(
Î , La

)
∪

F+
(
Î , Lb

)
with W(R|H) ≥ K/3, see §A.1.9;

(II) or G contains a lamination H intersecting A ∪ B with W(R|H) ≥ K/3,

where A,B are two intervals of ∂Ẑm \
(
Î ∪ L̂

)
.

Case (I) follows from Lemma 5.10 and Property (X) by defining Inew to be the

projection of either Igrnd
a , or Igrnd

b , or Lgrnd
a , or Lgrnd

b onto ∂Z.
Consider Case (II). Let HA be the lamination of curves in H intersecting A

before intersecting B. Similar, HB ⊂ H consists of curves intersecting B before
A. We have H = HA t HB . Below we assume that W(HA) ≥ K/6; the case
W(HB) ≥ K/6 is analogous.

Since HA is disjoint from the central arc in F−(I, J), we can restrict HA to the

lamination P in F◦A
(
Î , L̂ ∪ B

)
; i.e., P consists of the first shortest subcurve γ′ of

γ ∈ HA such that γ′ connects Î+ to
(
Ĵ ∪B

)+
.

Because of Property (X), Snake Lemma 6.1 is applicable to P, see Remark 6.7.

Therefore, there are grounded intervals J1 ⊂ A,La such that W◦La(Îgrnd, J1) � K

for and |J1| < λ dist(J1, Î
grnd). Corollary 6.2 applied to F◦La(I, J1) � K finishes

the proof. �

6.3. Rectangles crossing pseudo-bubbles. Consider a rectangle R and a closed

topological disk D such that ∂hR ⊂ Ĉ \ D. Assume that all vertical curves in R
intersect D. We denote by x, y ⊂ ∂D the first intersections of ∂v,`R, ∂v,ρR with D;
and let I = [x, y] ⊂ ∂D be an interval with endpoints x, y. We say that R crosses
D through I if for every γ ∈ F(R)

• the first intersection of γ with D is in I; and
• the last intersection of γ with D is in Ic = ∂D \ I.

Lemma 6.9. Assume that a rectangle R, W(R) = K crosses a pseudo-bubble Ẑ`
(see §5.7) through I ⊂ ∂Ẑ`. Assume also that either ∂h,0R or ∂h,1R is disjoint

from X (Ẑ`), see (5.5). Then one of the following holds for every λ > 2.

(I) There is a grounded interval B ⊂
[(

1 + λ−2
)
I
]
\ I ⊂ ∂Ẑ` and there is

a sublamination Q̃ ⊂ F(R) with W(Q̃) � K − Oδ(log λ) such that the

restriction (see §A.1.5) Q of Q̃ to the family from ∂D to ∂h,1R starts in B.

(II) There is a grounded interval B ⊂
[(

1 + λ−2
)
I
]
\ I ⊂ ∂Ẑ` and there is a

lamination Q ⊂ F+
(
B,
[
(λB)c

]grnd
)

such that W(Q) � K−Oδ(log λ) and

such that Q is a restriction (see §A.1.5) of a sublaminatrion of R.

Proof. Since either ∂h,0R or ∂h,1R is disjoint from X (Ẑ`), we have

(X) for every interval X ⊂ ∂Ẑ`, there are at most Oδ(1) vertical curves in R
intersecting X \Xgrnd.

(This is Property (X) of Remark 6.7.) Write

Ĩ :=
[(

1 + λ−5
)
I
]grnd

and N :=
[
∂Ẑ` \

(
1 + λ−5

)
I
]grnd

.
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Let Fnew be the lamination obtained from F(R) by removing all γ ∈ F(R) that

have a subarc in Ẑ` connecting I and Ĩc. By Property (X), the width of removed
curves is bounded by F−(Igrnd, N), and by Squeezing Lemma 5.17, F−(Igrnd, N) =
Oδ(log λ). Therefore, W(Fnew) ≥ K −Oδ(log λ).

Following notations of §2.4, for every γ ∈ Fnew, let

• γdb ⊂ Ẑ` be the last subarc of γ connecting I to Ĩ \ I; and
• γb be the subarc of γ after γdb .

We set

Γb := {γdb | γ ∈ Fnew} and F̃b := {γb | γ ∈ Fnew},

where W
(
R|F̃b

)
� K −Oδ(log λ) following conventions of §A.1.9. Let Ĩnew ⊂ Ĩ be

the subinterval bounded by the leftmost and rightmost endpoints of curves in Γb.

And let Fb be the restriction (see §A.1.5) of F̃b to the family of curves from Ĩnew

to ∂h,1R. Since Γb is a lamination, every curve in Fb starts in
[
Ĩnew \ I

]+
.

If a sufficient part of Fb is outside of Ẑ`, then we obtain Case (I) of the lemma

(we apply Property (X) to construct a grounded interval B ⊂ Ĩnew \ I).
Assume converse. Then using Property (X) we find a grounded interval J ⊂

Ĩnew \ I and a sublamination H of Fb with W(R|H) � K − Oδ(log λ) such that

curves in H start in J+ and every γ ∈ H intersects ∂Ẑ` \ J .
Let H1 be the sublamination of H consisting of γ ∈ H such that the first inter-

section of γ with ∂Ẑ` \ J is in [(λJ)c]
grnd

. And we set H2 := H \H1.
If W(R|H1) ≥ W(R|H2), then the Case (II) of the lemma is obtained by re-

stricting H1 to the family F+
(
J,
[
(λJ)c

]grnd
)

.

Assume that W(R|H1) ≤ W(R|H2). Let Ja, Jb be the connected components of
(λJ)grnd \ Jgrnd with Ja < J < Jb in λJ . Let

• Ha be the set of curves in H2 intersecting Ja before intersecting (Ja)c; and
• Hb be the set of curves in H2 intersecting Jb before intersecting (Jb)

c.

By Property (X), at most Oδ(1) curves in R intersect (λJ) \ (λJ)grnd before
intersecting (λJ)grnd ∪ (λJ)c. Therefore, either W(R|Ha) � K − Oδ(log λ) or
W(R|Hb) � K−Oδ(log λ). Below we will assume that W(R|Hb) � K−Oδ(log λ);
the case of Ha is analogous.

Let ρ ∈ Hb be the curve with the rightmost starting point in J , let z be the first
intersection of ρ with Jb, and let J ′ ⊂ Jb be the subinterval of Jb between J and z.
Following notations of §2.4, for every γ ∈ Hb, let

• γda ⊂ Ẑ` be the first subarc of γ connecting J ′ to (J ∪ J ′)c; and
• γa be the subarc of γ before γda .

We set

Γa := {γda | γ ∈ Hb} and P̃ := {γa | γ ∈ Hb},

where W
(
R|P̃

)
� K − Oδ(log λ). Let N ⊂ J ′ be the subinterval bounded by the

leftmost starting point of curves in Γa and z. We now apply Steps (b), (c), (d), (e)
(see Remark 6.5) of §6.1.2, where Property (X) substitutes Lemma 6.4, to localize
N and to contract a lamination

Q ⊂ F◦(J,N), |N | < 1

2λ
dist(J,N), W(R|Q) � K −Oδ(log λ).
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Applying iteratively Lemma 6.6 and repeating the argument of Corollary 6.2, we

can replace Q with a required Qnew in the complement of int Ẑ`. �

6.4. Snakes with barriers. Consider a grounded pair I, J ⊂ Ẑm with |J | > 1/2.
Let A,B be two complementary intervals between I and J . We assume that the
intervals are clockwise oriented as A < I < B < J .

Let `1, `2, . . . , `n be pairwise disjoint simple arcs in C \ Ẑm such that every `i
connects ai ∈ A and bi ∈ B with the orientation ai < ai−1 < bi−1 < bi for every
i > 1. We say that `1, . . . , `n are barriers for a lamination R ⊂ F(I, J) if no curves

in R intersect
n⋃
i=1

`i.

We say that a curve γ ∈ R
• skips under [ai, ai−1] if γ∩ Ẑm contains a subcurve connecting two different

components of A \ [ai, ai−1];

• skips under [bi−1, bi] if γ∩ Ẑm contains a subcurve connecting two different
components of B \ [bi−1, bi];
• skips under [ai, ai−1]∪ [bi−1, bi] if γ skips under [ai, ai−1] or under [bi−1, bi].

Definition 6.10 (Toll barriers). Let R ⊂ F(I, J) be a lamination with barriers

`1, . . . , `n as above, where I, J ⊂ ∂Ẑm is a grounded pair with |J | > 1/2. Then
`1, . . . , `n are toll barriers for R if for all i, no curves in R skip under [ai, ai−1] ∪
[bi−1, bi].

Lemma 6.11. For every λ, χ > 1 the following holds. Assume that `1, . . . , `n are

barriers for a lamination R ⊂ F(I, J), where I, J ⊂ ∂Ẑ is a grounded pair with
|J | > 1/2. Assume moreover, that

1/χ <
|A|
|I|

,
|B|
|I|

< χ and |A|, |B| ≥ 2lm,

where A,B are the complementary intervals between I and J as above.
Then either

• dist∂Ẑm(ai, ai−1) < |I|/λ or dist∂Ẑm(bi, bi−1) < |I|/λ for some i with re-
spect to any extension of dist∂Ẑm( , ) from regular to all points;
• or after removing Oχ,n,δ(log λ)-curves from R, we obtain a lamination
Rnew for which `1, . . . , `n are toll barriers.

Let us say that a curve γ ∈ R skip under [ai+1, ai] ∪ [bi, bi+1] if γ intersects the
interval {z | bi+1 < z < ai+1} ⊃ J before intersecting [ai+1, ai] ∪ [bi, bi+1].

Proof. If the width of curves skipping under [ai+1, ai] or under [bi, bi+1] is at least
C �δ,χ log λ, then Squeezing Lemma 5.17 applied to A \ [ai+1, ai]

GRND or to

B\[bi, bi+1]GRND implies that either dist∂Ẑm(ai, ai−1) < |I|/λ or dist∂Ẑm(bi, bi−1) <
|I|/λ holds. �

Snake Lemma 6.12 (with toll barriers). Suppose that a lamination R ⊂ F(I, J)

has n ≥ 3 toll barriers, where I, J ⊂ Ẑm is a grounded pair with |J | > 1/2. Assume
also that |A|, |B| ≥ 2lm, where A,B are the complementary intervals between I, J .

Then for every λ > 1 there is an interval T ⊂ ∂Z grounded rel Ẑm such that

W+
λ (T ) � nW(R)−Oδ,n(log λ).
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JJ I

`i−1

`i

Figure 18. An example of a lamination (orange) with two toll
barriers (black).

We will give a proof of Lemma 6.12 after introducing the Series Decomposition
for R.

6.4.1. Series Decomposition for laminations with tall barriers. The construction
below is an adaptation of Series Decomposition §2.4. We assume that I = [a0, b0]
and J = [bn+1, an+1] so that an+1 < an < · · · < a0 < b0 < · · · < bn+1. Consider a
curve γ : [0, 1]→ C in R. For i ∈ {2, 3 . . . , n}, we will define below:

• γdfi the first passage of γ under {ai, bi};
• γdli−1 the last passage of γ under {ai−1, bi−1} before γdfi ;

• γi the subcurve of γ between γdli−1 and γdfi .

Then we will specify the laminations Fi and Γi.

Definition of γdfi , γ
dl
i−1, γi. Set:

• γ(t̃i) ∈ ∂Ẑm to be the first intersection of γ with [ai+1, ai] ∪ [bi, bi+1];

• γ(ti) ∈ ∂Ẑm to be the last before t̃i intersection of γ with [ai, ai−1] ∪
[bi−1, bi];

• γdfi to be the subcurve γ | [ti, t̃i];
• γ(τi−1) ∈ ∂Ẑm to be the last intersection of γ with [ai−1, ai−2]∪ [bi−2, bi−1]

before ti;

• γ(τ̃i−1) ∈ ∂Ẑm to be the first after τi−1 intersection of γ with [ai, ai−1] ∪
[bi−1, bi];
• γdli−1 to be the subcurve γ | [τi−1, τ̃i−1];

• γi is the subcurve of γ between γdli−1 and γdfi .

By construction, γi

• is disjoint from `−1 ∪ `i;
• can only submerge into int Ẑm thorough [ai, ai−1] ∪ [bi−1, bi]; and

• can not travel between [ai, ai−1] and [bi−1, bi] within Ẑm.

Laminations Γi = Γai ∪ Γbi and Fi = Fai ∪ Fbi . Set

F̃i := {γi | γ ∈ R} and Γi :=
{
γdfi , γ

dl
i | γR

}
.
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Every curve β ∈ Γi is either under ai or under bi depending on whether β
connects [ai, ai−1] to [ai+1, ai] or [bi−1, bi] to [bi, bi+1]. Let Γai ,Γbi be the sublami-
nations of Γi consisting of curves that are below ai and bi respectively. One of the
Γai ,Γbi can be empty.

Similarly, we decompose F̃i = F̃ai ∪ F̃ai as follows:

• F̃ai consists of curves γi ∈ F̃i such that γdfi ∈ Γai ; and

• F̃bi consists of curves γi ∈ F̃i such that γdfi ∈ Γbi .

For every ai and bi set βai and βbi to be the lowest curves in Γai and Γbi and
specify the following intervals:

• Jai to be between the right endpoint of βai and ai,
• Iai to be between the left endpoint of βai and ai,
• Jbi to be between the left endpoint of βbi and bi,
• Ibi to be between the right endpoint of βbi and bi.

If Γai (resp Γbi) is empty, then Jai , Iai (resp Jbi , Ibi) are trivial.

By construction every curve in F̃i = F̃ai ∪ F̃bi connects Iai−1 ∪ Ibi−1 to Jai ∪ Jbi
and is disjoint from barriers `i−1, `i and arcs βai−1

, βbi−1
, βai , βbi .

We define

(6.9) Fai ⊂ F◦(Jai , bIai−1
, Jbic) and Fbi ⊂ F◦(bJai , Ibi−1

c, Jbi)

to be the restrictions of F̃ai , F̃bi to the associated families; i.e.:

• Fai consists of the first shortest subcurves in F̃ai connecting bIai−1
, Jbic

and Jai ;

• Fbi consists of the first shortest subcurves in F̃bi connecting bJai , Ibi−1
c

and Jbi .

Series Decomposition. We obtain that R consistently overflows

(6.10) Γ1 = Γa1 ∪ Γb1 , F2 = Fa2 ∪ Fb2 , . . . , Fn = Fan ∪ Fbn , Γn = Γan ∪ Γbn

6.4.2. Proof of Lemma 6.12. Follows by repeating the steps in the proof of Lemma 6.1,
see §6.1.2 and Remark 6.5.

Consider Series Decomposition 6.10. We recall that every Fi satisfies (6.9).
By Lemma 5.18, at most Oδ(n) curves in R intersect

n⋃
i=2

((
Iai \ Igrnd

ai

)
∪
(
Ibi \ I

grnd
bi

)
∪
(
Jai \ Jgrnd

ai

)
∪
(
Jbi \ J

grnd
bi

))
;

removing all such curves from R, we can assume that Iai , Ibi , Jai , Jbi are grounded

(by replacing them with Igrnd
ai , Igrnd

bi
, Jgrnd
ai , Jgrnd

bi
).

By Localization and Squeezing Lemmas 5.16, 5.17 applied to

F−(Iai , Jai) ⊃ Γai and F−(Ibi , Jbi) ⊃ Γbi ,

Iai , Jai and Ibi , Jbi have innermost subpairs Inew
ai , Jnew

ai and Inew
bi , Jnew

bi such that, up

to Oδ(log λ), the width of F−(Iai , Jai),F−(Ibi , Jbi) is contained in F−(Inew
ai , Jnew

ai ),

F−(Inew
bi , Jnew

bi ) and such that bInew
ai , Jnew

ai c, bJ
new
bi , Inew

bi c are at least 5λ times smaller
than Iai , Jai , Ibi , Jbi respectively. Removing all curves in R intersecting(

Iai \ Inew
ai

)
∪
(
Jai \ Jnew

ai

)
∪
(
Ibi \ Inew

bi

)
∪
(
Jbi \ Jnew

bi

)
,

and then reapplying Series Decomposition 6.10, we obtain that the new Jai and Jbi
have small length compare to their distances to Iai and Ibi respectively.



62 DZMITRY DUDKO AND MIKHAIL LYUBICH

R

F(I, J)
BA

R

F(I, J)
BA

Figure 19. Two patterns for F(I, J) to sneak through R.

Since R consequently overflows the Fi, there is an i such that

W(Fi) =W(Fai) +W(Fbi) � nW(R)−Oδ,n(log λ).

The lemma now follows by applying Lemma 6.8 to either Fai or Fbi – they sat-
isfy (6.9) and the λ-separation. �

6.5. Sneaking Lemma.

Sneaking Lemma 6.13. Let Ẑm be a δ pseudo-Siegel disk. For all t, χ, λ > 2
there is a κ(t) > 2 such that the following holds.

Suppose

I, J ⊂ ∂Ẑm, |I| ≥ lm, |A|, |B| ≥ 2lm, |J | > 1/2

is a grounded pair and denote by A,B two complementary intervals between I and

J ; i.e., A ∪B = ∂Ẑm \ (I ∪ J). Suppose also that

1/χ ≤ |A|
|I|

,
|B|
|I|
≤ χ.

If

• W(I, J) =: K �χ,λ,δ 1; and
• W+(A,B) ≥ κ(t)K,

then there is a [tK, λ]+-wide interval T ⊂ ∂Z with |T | < |I| such that T is grounded

rel Ẑm.

Proof. Let us denote by R the canonical rectangle of F+(A,B). The idea of the
proof is illustrated on Figure 19: either the family F(I, J) submerges many times
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Rk

Ik

Rk−1

Ik−1

Rk−2

Ik−2

Rk+1

Ik+1

Rk+2

Ik+2

Figure 20. Illustration to Lemma 6.14: rectangles Rk do not
exist because, otherwise, they would block each other.

in A or B, or a substantial part of F+(A,B) is focused; i.e. it starts or terminates
in a sufficiently small interval.

Let us select in R a disjoint union of rectangles

R1 tR2 t · · · t Rm, with W(Ri) = (t+ 1)K, and m ≈ κ(t)/(t+ 1).

We assume that Ai and Bi is the base and the roof of Ri respectively, and that
they have the following orientation:

Am < Am−1 < · · · < A1 < B1 < · · · < Bm;

in particular, Ri+1 is above Ri.
By Lemma A.6, we can forget Om(1)- curves in F(I, J) and we can choose a

vertical curve βi in the inner Om(1)-buffer of every Ri such that the remaining part
L of F(I, J) is disjoint from every βi. We assume that βi connects ai ∈ Ai with
bi ∈ Bi. We denote by Rnew

i the rectangle obtained from Ri by removing an inner
O(1)-buffer so that the horizontal sides of Rnew

i are within [ai+1, ai] t [bi, bi+1].
We obtain that βi are barriers for L as in §6.4 and that Rnew

i is between βi+1

and βi. By Lemma 6.11, we have two possibilities (depending whether a sufficiently
wide part of L skips under [ai+1, ai] ∪ [bi, bi+1]):

Case I: [ai+1, ai] or [bi, bi+1] is smaller than |I|/λ. Then either Fλ[ai+1, ai] or
Fλ[bi+1, bi] contains Rnew

i . The statement follows from Lemmas 5.10 and 5.18 by
setting T to be the projection of either [ai+1, ai]

grnd or [bi, bi+1]grnd on ∂Z.
Case II: we can remove Oλ,δ,χ(1)-part from L so that β1, . . . , βm are toll barriers

for the remaining Lnew. The statement now follows from Snake Lemma 6.12 (with
toll barriers). �

6.6. Families that block each other. We will need the following simple fact.

Lemma 6.14. Let Ẑm be a pseudo-Siegel disk. There is no sequence of pairwise
disjoint intervals

In = I0, I1, . . . , In−1 ⊂ ∂Ẑm, W+(Ik, L
c
k) ≥ 3

enumerated either counterclockwise or clockwise such that Ik−1 ∪ Ik ∪ Ik+1 ⊂ Lk.

Proof. Suppose converse. Let Fk be the canonical rectangle of F+(Ik, L
c
k) in Ĉ \

int(Ẑm). By removing 1-buffers on each side of Fk, we obtain closed rectangles
Rk ⊂ F+(Ik, L

c
k) such that the Rk are disjoint and have width at least 1. This is
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impossible because Rk block each other, see Figure 20. Indeed, let us choose[
γ : [0, 1]→ Ĉ \ int(Ẑm)

]
∈

n⊔
i=1

Rk

so that dist∂Ẑm(γ(1), γ(0)) is the minimal possible. Assuming γ ∈ Rk and using
Ik−1 t Ik+1 ⊂ Lk, we find an ` ∈ Rk−1 tRk with smaller dist∂Ẑm(`(1), `(0)). �

7. Welding of Ẑm+1 and parabolic fjords

Let Ẑm+1 be a δ-pseudo-Siegel disk. For an interval Jm+1 = [x, y] ⊂ ∂Ẑm+1, let

[x, y]Ẑm+1 and [x, y]Ĉ\Ẑm+1 be the closed hyperbolic geodesics of int Ẑm+1 and of

Ĉ \ Ẑm+1 connecting x and y. Define OJm+1 ⊃ Jm+1 to be the closed topological
disk bounded by [x, y]Ẑm+1 ∪ [x, y]Ĉ\Ẑm+1 =: ∂OJm+1 , see Figure 21.

Consider T ∈ Dm, m ≥ −1 and let T ′ be as in §2.1.6; i.e. T ′ := T ∩ fqm+1(T )
for m ≥ 0 with an appropriate adjustment for m = −1. Assume that there is a
sufficiently wide non-winding parabolic rectangle based on T ′. By Theorem 4.1, all
such wide rectangles are essentially based on Tpar ⊂ T ′. Theorem 4.1 also describes

the outer geometry of Z above Tpar on scale ≥ lm+1.

Welding Lemma 7.1. Consider a concatenation of intervals J = N#I#M ⊂ Tpar

with |J | < 1

2
|Tpar|, where Tpar is from Theorem 4.1, such that the endpoints of

N, I,M are within CPm+1. Assume that

(7.1) |N | � |I| � |M |.

Then there is a constant ε > 0 depending only on “�” in (7.1) such that the follow-

ing holds for all λ > 2. If Ẑm+1 is a δ-pseudo-Siegel disk and if ν := |I|/lm+1 �δ,λ 1,
then either

(7.2) mod
(
OJm+1 \ Im+1

)
≥ ε

holds, where Im+1, Jm+1 are the projections of I, J onto ∂Ẑm+1, or there is an

interval S ⊂ ∂Z with |S| < lm+1 such that S is grounded rel Ẑm+1 and

(7.3) logW+
λ (S) � log ν.

Remark 7.2. We emphasize that “ε and �” in (7.2) and (7.3) are independent
of δ. Only the scale on which the Welding Lemma works (i.e., how big is ν) de-

pends on δ. This independence of δ follows from beau coarse-bounds for Ẑm+1

(Theorem 5.12) that are based on beau coarse-bounds for near rotation domains
(Theorem 3.8). The independence of δ implies that the error does not increase

during the regularization . . . Ẑm+1  Ẑm  Ẑm−1  . . . – see Corollary 7.3.

Recall from §5.1.9 that a regularization Ẑm = Zm+1∪Ẑm+1 is within orb−qm+1+1R
if all relevant objects are within the backward orbit of a rectangle R. The following
result is our primary tool of constructing pseudo-Siegel disks.

Corollary 7.3. There is a sufficiently small δ > 0 with the following properties.
Consider T ∈ Dm and let T ′ be as above. Let R be a non-winding parabolic rec-

tangle based on T ′ with W(R)�δ 1. Let Ẑm+1 be a geodesic δ-pseudo-Siegel disk,
see §5.1.9. Then:



UNIFORM A PRIORI BOUNDS FOR NEUTRAL RENORMALIZATION 65

∂Ẑm+1x ya b

R

[x, y]Ĉ\Ẑm+1

[x, y]Ẑm+1

OJm+1

Im+1

Figure 21. The open disk OJm+1 is bounded by hyper-

bolic geodesics in the interior and exterior of Ẑm+1. If
mod(OJm+1 \ Im+1) is small, then there is a wide lamination R
submerging many times into Ẑm+1.

(1) either there is a geodesic δ-pseudo-Siegel disk Ẑm = Zm ∪ Ẑm+1 with its
level-m regularization within orb−qm+1+1R;

(2) or there is an interval

I ⊂ T ′, |I| > lm+1 such that logW+
λ,div,m(I) � W(R);

(3) or there is a grounded rel Ẑm+1 interval

I ⊂ ∂Z with |I| ≤ lm+1 such that logW+
λ (I) � W(R).

We refer to Cases (2) and (3) as exponential boosts.

Remark 7.4. Calibration Lemma 9.1 will reduce Case (2) to Case (3).

Remark 7.5. Starting with (the next) Section 3, we fix a sufficiently small δ > 0
so that Corollary 7.3 is applicable.

7.0.1. Outline and Motivation. Note that we already have a control of

• the outer geometry of Z on scale ≥ lm+1 above Tpar – Theorem 4.1;

• the outer geometry of Ẑm+1 on scale ≥ lm+1 above Tm+1
par – because the

outer geometries of Z and Ẑm+1 are close (Lemma 5.8);

• the inner geometry of Ẑm+1 with the estimates depending on δ – see (5.13)
and (5.14) in Theorem 5.12;

• the inner geometry of Ẑm+1 with the estimates independent of δ on scale
�δ lm+1, see (5.15) and (5.16) in Theorem 5.12.

Therefore, the families F+

Ẑm+1
(Nm+1,Mm+1) and F−

Ẑm+1
(Nm+1,Mm+1) have width

� 1. Since these families (after a slight adjustment) separate Im+1 from ∂OJm+1 ,
most of the curves in the vertical family G := F(OJm+1 \ Im+1) intersectMm+1 ∪Nm+1
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(assuming W(G)� 1). Moreover, we should expect that a typical curve in G sub-
merges � ν times into N ∪ M because we have control of the inner and outer
geometries on scale ≥ lm+1. Combined with Lemma 6.8, this would have implied
the existence of an interval S withW+

λ (S) � ν. Our proof gives a somewhat weaker

estimate logW+
λ (S) � log ν (i.e. (7.3)) that is sufficient for our purposes.

The main step in Corollary 7.3 is construction of annuli A(αmi ), A(βmi ) around
channel and dams. The annuli are of the form illustrated on Figure 29: A =
O` ∪ Y ∪ Oρ \ X . Rectangles Y±,X are constructed using Theorems 4.1 and 5.12.

To assemble all such rectangles in a chain around Ẑm+1 we need the property that
R contains central subrectangles. If this is not the case, then Lemma 4.12 implies
Case (2) of the corollary. If R contains central subrectangles, then applying the
Welding Lemma to construct O`, Oρ, we obtain either Case (1) or Case (3) of the
corollary.

7.1. Proof of the Welding Lemma. Since the endpoints of M,N are within

CPm+1, these intervals are well-grounded rel Ẑm+1. By Lemma 5.8, we have
W+

Ẑm+1
(Nm+1,Mm+1) � 1 . Since |N |, |I|, |M | �δ lm+1, we haveW−

Ẑm+1
(Nm+1,Mm+1) �

1 by Theorem 5.12, Equations (5.15) and (5.16).
LetR, W(R) = K := 1/ε be the vertical lamination of the annulus OJm+1 \ Im+1.

Let us assume that K � 1. Let us write

F ≈` G if both F � G and F = G+O(`) hold.

To simplify notations, we will omit below the upper index “m+ 1” for intervals.

All intervals will be in ∂Ẑm+1. Let us write

N = [x, a], I = [a, b], M = [b, y] ∈ ∂Ẑm+1, N ≤ I ≤M in T.

Let N1 and M1 be middle 1/3 well-grounded subintervals of N and M :

dist(x,N1) ≈lm+1
|N1| ≈lm+1

dist(N1, a) � νlm+1/3,

dist(b,M1) ≈lm+1
|M1| ≈lm+1

dist(M1, y) � νlm+1/3.

Claim 1. At least 0.99K curves in R intersect N1 ∪M1 before intersecting
bN1,M1cc ∪ ∂outOJ , see Figure 22.

Proof. Consider the outer and inner geodesic rectangles (see §A.1.12)

F+ ⊂ Ĉ \ Ẑm, F− ⊂ Ẑm, ∂h,0F+ = ∂h,0F− = N1, ∂h,1F+ = ∂h,1F− = M1

between N1 and M1. Since |M1| � |N1| � dist(M1, N1) �δ νlm+1, Theorems 4.1
and 5.12 imply that W(F−) � W(F+) � 1. Since F−∪F+ separate I from ∂O[x,y],
most of the curves in R must intersect N1 ∪M1 before intersecting bN1 ∪M1cc ∪
∂outOJ . �

Let X,Y ⊂ ∂Ẑm+1 be a pair of intervals and let A be one of the complementary
intervals to X,Y . We denote by FA(X,Y ) the subfamily of F(X,Y ) consisting of

curves that are disjoint from ∂Ẑm+1 \
(
X ∪A ∪ Y

)
.

Let La be the shortest complementary interval between N1 and I, and let Lb
be the shortest complementary interval between I and M1. Claim 1 implies that
either

WLa(N1, I) ≥ 0.49K or WLb(I,M1) ≥ 0.49K.

Setting I0 := I and I1, L1 to be either N1, La or M1, Lb, we obtain FL1
(I1, I0) ≥

0.49K. Note that |L1| ≈lm+1
|I1|. We can now proceed by induction:
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x ya b

N1

F+

F−

M1I

∂OJ

Figure 22. Since the families F+ and F− separate I from ∂OJ
(compare with Figure 21), most of the curves in the family R
intersect N1 ∪M1.

Claim 2. There is a sequence of grounded intervals

I1, I2, . . . , Ik, |It| � νlm+1/3
k, k � log ν, |Ik| � lm+1

such that for every It there is a j(t) ∈ {0, 1, . . . , t− 1} with

WLt(It, Ij(t)) ≥ 0.49 · 1.9tK, |Lt| ≈lm+1 |It| � νlm+1/3
k,

where Lt is the shortest complementary interval between It and Ij(t). Moreover,

(7.4) WLt(It, Ij(t))−W+
Lt

(It, Ij(t)) ≥ 0.48 · 1.9tK for t < k

and dist(Ik−1, Ik) ≥ 0.6|Ik| ≥ 4lm+1.

Proof. Assume that It is constructed for t ≥ 1. Set

It+1 ⊂ Lt with |It+1| ≈lm+1 dist(It+1, It) ≈lm+1 dist(It+1, Ij(t))

to be a middle 1/3-subinterval of Lt, see Figure 23. Let us show that either

(7.5) WLa(It+1, It) ≥ 0.49 · 1.9t+1K or WLb(It+1, Ij(t)) ≥ 0.49 · 1.9t+1K,

where La and Lb are the shortest complementary intervals between It+1, It and
It+1, Ij(t). This would finish the construction of It+1 with j(t+ 1) ∈ {t, j(t)}.

Consider a grounded interval X ⊂ ∂Ẑm+1 attached to It so that |It| ≈lm+1
|X|

and It is between X and It+1 in T . As in Claim 1, consider the outer and inner
geodesic rectangles

F+ ⊂ Ĉ \ Ẑm, F− ⊂ Ẑm, ∂h,0F+ = ∂h,0F− = X, ∂h,1F+ = ∂h,1F− = It+1

between X and It+1. By Theorems 4.1 and 5.12:

• if |It+1| �δ 1, then W(F−) � W(F+) � 1;
• otherwise W(F−) �δ 1 �δ W(F+).
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X Ij(t)It

It+1

F−

F+

Figure 23. The interval It+1 is a middle 1/3 interval between
It and Itj(t). Since F− and F+ separate It and Ij(t), most of the

curves in F(It, Ij(t)) must intersect It+1.

In the first case, after removing O(1) curves, the family FLt(It, Ij(t)) overflows
consequently FLa(It+1, It) and then FLb(It+1, Ij(t)). The Equation (7.5) follows.

In the second case, we have t �δ 1 because ν �δ 1. Therefore, we can still
remove Oδ(1) � WLt(It, Ij(t)) curves from FLt(It, Ij(t)); the remaining family
overflows consequently FLa(It+1, It) and then FLb(It+1, Ij(t)). The Equation (7.5)
follows.

Note that we also established (7.4) for t. The induction can be proceed until
|It| > 20lm+1.

�

The Welding Lemma now follows from Lemma 6.8 applied to (7.4) with t =
k − 1. �

7.2. Proof of Corollary 7.3. Write K := W(R) and let Rnew be the rectangle
obtained from R by removing the outermost K/2 buffer. If Rnew is not central,
then Lemma 4.12 implies Case (2) of the corollary.

Assume that Rnew is central and write T = [a0, a1] with a0 < ∂h,0Rnew <
∂h,1Rnew < a1. By Theorem 4.1,

(7.6) log
dist(a0, ∂

h,0Rnew)

lm+1
, log

dist(∂h,1Rnew, a1)

lm+1
� K

because the removed outermost buffer from R has width K/2. As in §5.1.9, let
Rnew
−j for j < qm+1 be the pullback of Rnew along f j : Z ý. Then every Rnew

−j is
based on a certain Ti = [ai, ai+1] ∈ Dm, i = t(j), where Ti are enumerated from
left-to-right. We write Rnew

i(j) = Rnew
−j .

Similarly, by spreading around R \ Rnew, we construct a wide rectangle Bi,
W(Bi) � K based on Ti such that Bi separates Rnew

i from Km \ Z.
Fix a big S � 1 independent of (and much smaller than) K. We can select

intervals Xi ⊂ ∂h,0Rnew
i and Yi ⊂ ∂h,1Rnew

i such that

(A) the endpoints of Xi, Yi are in CPm+1;
(B) all Xi are obtained by spreading around X0 and, similar, all Yi are obtained

by spreading around Y0;

(C) 0.99 <
|Xi|
|Yi|

=
|X0|
|Y0|

< 1.01;

(D) S dist(Xi, ai) < |Xi| < (S + 1) dist(Xi, ai);
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(E) S dist(Yi, ai+1) < |Yi| < (S + 1) dist(Yi, ai+1);

(F) the geodesic rectangle Gi ⊂ Ĉ\Z between Xi, Yi splitsRnew
i into two rectangles

with width � K.

Here, to achieve (D) and (E) we use the property that Rnew is central. Property (F)
is achieved by combining Theorem 4.1 with (C), (D) (E). By construction (i.e.,
by (7.6) and Theorem 4.1), we also have

(F) log |Xi|, log |Yi| � K.

By (C), (D), (E) and Theorem 4.1, we have W(Gi) � logS � 1.

Let Xm+1
i , Y m+1

i be the projections of Xi, Yi onto ∂Ẑm+1. Similar, let Gm+1
i be

the restriction of Gi onto Ĉ \ int Ẑm+1. By (5.12), W(Gm+1
i ) � logS � 1.

LetHi ⊂ Ẑm+1 be the geodesic rectangles between Y m+1
i−1 andXm+1

i . By (C), (D), (E),
(F), and Theorem 5.12, we have W(Hi) � logS � 1. Below we will construct rel-

evant objects for Ẑm to satisfy §5.1.9.

7.2.1. Channels αi and dams βi, see Figure 16. Let us select points xi ∈ Xi ∩
CPm+1, yi ∈ Yi ∩ CPm+1 such that the hyperbolic geodesics αi = [yi−1, xi]Ẑm+1

and βi = [xi, yi]Ĉ\Z split everyHi and Gm+1
i into two subrectangles of width � logS

respectively. Moreover, we can choose genuine subrectangles Gm+1
i,a ,Gm+1

i,b ,Gm+1
i,c in

Gm+1
i and genuine subrectangles Hi,a,Hi,b,Hi,c in Hi such that

• all subrectangles have width � logS;
• Gm+1

i,b is between Gm+1
i,a and Gm+1

i,c and contains βi in the middle, i.e. βi

splits Gm+1
i,b into two subrectangles of width � logS;

• dist(∂hGm+1
i,b , ∂hGm+1

i,a ), dist(∂hGm+1
i,b , ∂hGm+1

i,c )� lm+1;
• Hi,b is between Hi,a and Hi,c and contains αi in the middle, i.e. αi splits
Hi,b into two subrectangles of width � logS;

• dist(∂hHi,b, ∂hHi,a), dist(∂hHi,b, ∂hHi,c)� lm+1.

Following (5.4), we denote by fk∗ (αi), f
k
∗ (βi) either the fk-images of αi, βi if

k > 0 or the lifts under f−k starting and ending at ∂Z if k < 0, where |k| ≤ qm+1.
Similarly, fk∗ (Gi), fk∗ (Hi) are defined.

Consider fk∗ (βi) for |k| ≤ qm+1. Then fk∗ (βi) is in the appropriate Gj because

at most O(1) curves in fk∗
(
Gi,b
)

can cross Gj,a,Gj,c. Since the Bt with W(Bt) � K

separate the Rnew
t from Km\Z, we obtain that fk∗ (βi) is in the ε = ε(K) hyperbolic

neighborhood of the geodesic of Ĉ \ Z connecting the endpoints of fk∗ (βi), where
ε(K)→ 0 asK →∞. Therefore, fk∗ (βi) is in Gm+1

j because components of Gj\Gm+1
j

are separated by the Xnr , see Assumption 6.

Similarly, fk∗ (αi) ∩ Ẑm+1 is in the appropriate Hj because fk∗
(
Hi,b

)
is disjoint

from ∂hHj,a ∪ ∂hHj,c by Lemma 5.13, (III), and hence at most O(1) curves in

fk∗
(
Hi,b

)
can cross Hj,a,Hj,c. By Lemma 5.13, (III), fk∗ (αi) can intersect only

components of fk∗

(
Ẑm+1

)
\ Ẑm+1 that are close to the endpoints of fk∗ (αi). We

conclude that the orbits fk∗ (αi), f
k
∗ (βi) with |k| ≤ qm+1 are within

⋃
i

(
Gm+1
i ∪

Hm+1
i

)
and Assumption 1 follows.
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7.2.2. Collars A(αi), A(βi). By (F), we can choose well-grounded enlargements of
intervals

Xi = Xi,0 ⊂ Xi,1 ⊂ Xi,2 ⊂ Xi,3 ⊂ Xi,4 ⊂ ∂h,0Rnew
i ,

Yi = Yi,0 ⊂ Yi,1 ⊂ Yi,2 ⊂ Yi,3 ⊂ Yi,4 ⊂ ∂h,1Rnew
i

such that for every t ∈ {1, 2, 3, 4} and every i

• Xi,t \ Xi,t−1 consists of a pair of intervals X±i,t with X+
i,t < Xi,t−1 < X−i,t

such that |X+
i,t| �S |X

−
i,t| �S dist(X+

i,t, ai) �S dist(X−i,t, ai) �S |Xi|;
• Yi,t \ Yi,t−1 consists of a pair of intervals Y ±i,t with Y −i,t < Yi,t−1 < Y +

i,t such

that |Y −i,t| �S |Y
+
i,t| �S dist(Y −i,t, ai+1) �S dist(Y +

i,t, ai+1) �S |Yi|.

Taking the projection of the new intervals onto ∂Ẑm+1 and using Theorems 4.1
and 5.12, we obtain that

• the geodesic rectangles G+
i,t and G−i,t of Ĉ\Ẑm+1 between (X+

i,t)
m+1, (Y +

i,t)
m+1

and between (X−i,t)
m+1, (Y −i,t)

m+1 have width �S 1;

• the geodesic rectanglesH+
i,t andH−i,t of Ẑm+1 between (Y +

i−1,t)
m+1, (X+

i,t)
m+1

and between (Y −i−1,t)
m+1, (X−i,t)

m+1 have width �S 1.

Applying Welding Lemma 7.1, we obtain either Case (3) of the corollary, or:

(7.7) mod(OXm+1
i,t
\Xm+1

i,t−1), mod(OYm+1
i,t
\ Y m+1

i,t−1 ) ≥ ε = ε(S).

We now construct collars

Ainn(αi), Aout(αi), Ainn(βi), Aout(βi)

as annuli bounded by hyperbolic geodesics of Ĉ \ Z and of Ẑm+1 such that their
outer boundaries pass through the endpoints of

Y m+1
i−1,2 ∪X

m+1
i,2 , Y m+1

i−1,4 ∪X
m+1
i,4 , Xm+1

i,2 ∪ Y m+1
i,2 , Xm+1

i,4 ∪ Y m+1
i,4

while their inner boundaries pass through the endpoints of

Y m+1
i−1,0 ∪X

m+1
i,0 , Y m+1

i−1,2 ∪X
m+1
i,2 , Xm+1

i,0 ∪ Y m+1
i,0 , Xm+1

i,2 ∪ Y m+1
i,2

respectively. The moduli of the collars are bounded by Lemma A.4 (see also Fig-
ure 29) by δ = δ(S) because we have bounds on the width of G±i,t,H

±
i,t and the

moduli bounds (7.7).
This verifies Assumptions 2 and 3. Assumption 4 follows from (7.6). Assump-

tion 5 follows from Theorems 4.1 and 5.12.
Extra protections Xmi for Assumption 6 can be selected as subrectangles of Rnew

i .
Assumption 7 and conditions in §5.1.9 hold by construction.

�

Part 3. Covering and Calibration lemmas

8. Covering and Lair Lemmas

In the section, we will prove the following theorem that can be characterized by
the principle “if the life is bad now, then it will be worse tomorrow”1:

1Compare with Kahn’s principle: “If the life is bad now, then it was even worse yesterday.”
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Amplification Theorem 8.1. There are increasing functions

λt, Kt for t > 1

such that the following holds. Suppose that there is a combinatorial interval

I ⊂ ∂Z such that W+
λt

(I) =: K ≥ Kt and |I| ≤ |θ0|/(2λt).

Consider a geodesic pseudo-Siegel disk Ẑm, where m is the level of I. Then there

is a grounded rel Ẑm interval

J ⊂ ∂Z such that W+
λt

(J) ≥ tK and |J | ≤ |I|.

8.0.1. Motivation and outline. Recall from §2.1.4 that a forward orbit of a combi-
natorial interval up to the first return almost tiles ∂Z. If a combinatorial interval
I ⊂ ∂Z witnesses a big degeneration, say that I is [K,λ]+-wide with K �λ 1, then,
using the Covering Lemma, we spread this degeneration around ∂Z and obtain an
almost tiling Ik of ∂Z so that, roughly Ik is [CK, λ]-wide for an absolute C > 0.
(Covering Lemma 8.5 has two possibilities; we are omitting the “local” Case (1) in
this outline.) The constant C is independent of λ; the λ influences only the degen-
eration threshold Kt �λ 1. In short, Snake-Lair Lemma 8.6 states that if λ�C,t 1,
then λ “beats” C and produces a [tK,λ]+-wide interval J on a deeper scale. More
precisely, since wide families Fλ(Ik) combinatorially block each other, they must
submerge under each other resulting in long snakes. Then Snake Lemmas 6.12 and
6.13 are applicable.

A key technical issue is that the new wide interval J may be far from being
combinatorial. Namely, the resulting wide family F+

λ (J) can be within a wide
non-winding parabolic rectangle – such rectangles exist and are described by Theo-
rem 4.1. To deal with this issue, we apply the Covering and Snake-Lair Lemmas to

the pseudo-Siegel disk Ẑm instead of Z. Pseudo-Siegel disks are almost invariant up
to ∼ qm+1 iterates §5.1.8 – this is sufficient to spread the degeneration around using
the Covering Lemma. Lemma 5.10 allows us to trade W+ wide families between Z

and Ẑm.
In Section 10 (see §10.0.1, (a)), we will inductively construct (from the deep to

shallow scales) Ẑm so that it absorbs “most” of the non-winding parabolic rectan-
gles. Then the Calibration Lemma will replace J with a combinatorial interval on
a deeper scale.

8.1. Applying the Covering Lemma. As in §5.0.2, we will denote by Im the

projection of a regular interval I ⊂ ∂Z onto ∂Ẑm.

Lemma 8.2. For every κ > 1 and λ > 10, there is Kλ,κ > 1 and Cκ (independent
of λ) such that the following holds. Suppose that there is a combinatorial interval

I ⊂ ∂Z such that W+
λ+2(I) = K ≥ Kλ,κ, |I| ≤ θ/(2λ+ 4), m = Level(I)

and such that one of the endpoints of I is in CPm. Let Ẑm be a geodesic pseudo-
Siegel disk (see §5.1.9), and

Is ⊂ ∂Z, Is = f is(I), s ∈ {0, 1, . . . , qm+1 − 1}
be the intervals obtained by spreading around I = I0 (as in §2.1.5). Then every

interval Is is well-grounded rel Ẑm+1 and its projection Ims ⊂ ∂Ẑm is

(1) either [κK, 10]-wide;
(2) or [CκK,λ]-wide.
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Proof. Since one of the endpoints of I is in CPm, all intervals Is, s < qm+1 are
well grounded, see the Remark 5.5.

We will start the proof by introducing appropriate branched covering restric-
tions of the f is with uniformly bounded degrees. Then we will apply the Covering
Lemma. The condition “|I | ≤ |θ0|/(2λ+ 4)” will be used in removing slits.

8.1.1. Projections onto Ẑm. Let us first approximate 10I and λI with well-grounded
intervals. Choose intervals L and T whose endpoints are in CPm such that

10I ⊂ T ⊂ 12I and λI ⊂ L ⊂ (λ+ 2)I.

Applying f is to T and L we obtain the intervals Ts and Ls respectively satisfying

10Is ⊂ Ts ⊂ 12Is and λIs ⊂ Ls ⊂ (λ+ 2)Is.

Then Ts, Ls are well-grounded rel Ẑm, see (5.6).

8.1.2. Covering structure around f is | I. Observe first that I ⊂ ∂Z contains at
most one critical point of f is because the map f is : I → Is realizes the first landing
of points in I onto Is, see Lemma 2.1.

Since |I| ≤ |θ0|/(2λ+ 4) < 1/2, the interval (Ls)
c = ∂Z \ Ls has length greater

than 1/2. Consider a simple arc γs ⊂ C \ Z connecting (Ls)
c to ∞; we will specify

γs in §8.1.5. Then

(8.1) V := C \ (γs ∪ (Ls)
c)

is an open topological disk. Define U−s to be the pullback of V along f is | I. We
obtain a branched covering

(8.2) f is : U−s → V.

Lemma 8.3. The degree of (8.2) is at most 4λ+2.

Proof. Let us present (8.2) as the composition of branched coverings

U−s = X0
f−→ X1

f−→ X2
f−→ . . .

f−→ Xn = V.

Observe that Xj ∩∂Z is the interior of the interval f j(L). The map f : Xj → Xj+1

has degree 2 if and only if f j(L) contains c0 in its interior. Since f is : I → Is is
the first landing, there are at most 2(λ + 2) moments t ∈ {0, 1, . . . , is} such that
(λ+ 2)f t(I) ⊃ f t(L) 3 c0. The lemma follows. �

�

8.1.3. Covering structure around f is | Im. Consider the projection Lms ⊂ ∂Ẑm of

Ls. Similar to §8.1.2, we choose a simple arc γms ⊂ Ĉ \ Ẑm connecting

(L̂ms )c = ∂Ẑm \ L̂ms and ∞.

By Lemma 5.4, Ẑm has the conformal pullback f is : Ẑm−s → Ẑm such that Ẑm−s is

also a pseudo-Siegel disk. We denote by Im,−s the projection of I onto Ẑm−s. Then

Ims = f is(Im,−s) is the projection of I onto Ẑm.
Similar to (8.2), we define the branched covering

(8.3) f is : Um−s → V m := C \
(
γms ∪

(
L̂ms
)c)

,

where Um−s is the pullback of V m along f is : Im,−s → Ims .
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Lemma 8.4. The degree of (8.2) is at most 4λ+2. �

Proof. All critical values of f is are in ∂Z ∩ ∂Ẑm and we can repeat the argument
of Lemma 8.3. �

8.1.4. Covering Lemma. The Covering Lemma was proven in [KL1]; for our con-
venience we will state it in terms of the width W(A) instead of mod(A) = 1/W(A)
for an annulus A. We will also state the Collar Assumption (1) as one of the
alternatives.

Lemma 8.5 (Covering Lemma). Fix some κ > 1. Let U ⊃ Λ′ ⊃ Λ and V ⊃ B′ ⊃ B
be two nests of Jordan disks. Let

f : (U,Λ′,Λ)→ (V,B′, B)

be a branched covering between the respective disks, and let D = deg(U → V ),
d = deg(Λ′ → B′). Then there is a K1 > 0 (depending on κ and D) such that the
following holds. If

W(U \ Λ) > K1,

then either

(1) W(B′ \B) > κW(U \ Λ), or

(2) W(V \B) >
(
2κd2

)−1W(U \ Λ).

Consider (8.3) and recall that Im,−s to be the projection of I onto Ẑm−s. We

denote by Tms ⊂ ∂Ẑm the projection of Ts. Set

• B := Ims ;
• Λ to be the connected component of f−is(Ims ) containing Im,−s;

• B′ := C \
(
γms ∪

(
Tms
)c)

;

• Λ′ to be the connected component of f−is(B′) containing Im,−s.

By Lemma 8.4 applied to the case λ = 12, the degree of f : Λ′ → B′ is at most
d := 412. Clearly,

W(Um−s \ Λ) ≥ W+

Ẑm−s
(Im,−s) ≥ W+

Z (I)−O(1) = K −O(1).

Applying the Covering Lemma to

f is : (Um−s,Λ
′,Λ)→ (V m, B′, B)

with κ = 3κ, we obtain that either

• W(B′ \B) ≥ 3κK; or
• W(V \B) ≥ CκK otherwise.

8.1.5. Removing γs. It remains to remove γs from

V m = C \
(
γms ∪

(
Lms
)c)

and B′ = C \
(
γms ∪

(
Tms
)c)

without decreasing much W(B′ \B) and W(V \B).

Consider the outer harmonic measure of ∂Ẑm – it is the harmonic measure of
Ĉ \∂Ẑm relative ∞. If the outer harmonic measure of Lms is less than 2/3, then we
can choose γms so that the width of curves in V m connecting B and γs is O(1). We
obtain

W10(Ims ) ≥ W(B′ \B)−O(1), Wλ(Ims ) ≥ W(V \B)−O(1)

and the lemma follows.
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Consider the remaining case when the outer harmonic measure of Lms is bigger

than 2/3. Let Ẑm• be the pullback of Ẑm under f ; i.e. Ẑm• is the pseudo-Siegel

disk so that f : Ẑm• → Ẑm is conformal. Let I ′m, L′m,⊂ ∂Ẑm• be the preimages

of Ims , L
m
s under f : Ẑm• → Ẑm. By Lemma 5.8, the outer harmonic measures of

L′m ⊂ ∂Ẑm• and Lms ⊂ ∂Ẑm are very close to the outer harmonic measures of
L′, Ls ⊂ ∂Z, where L′ is the projection of L′m onto Z. Since L′, Ls are disjoint,

the outer harmonic measure of L′ ⊂ ∂Ẑm• is less than 2/3. Repeating the above
argument for I ′m, we obtain that either

• I ′m is [2κK, 10]-wide; or
• I ′m is [CκK,λ]-wide

relative Ẑm• . Applying f which has the global degree 2, we obtain (see (A.8)) that
either

• Ims is [κK, 10]-wide; or
• Ims is [CtK/2,λt]-wide.

8.2. Lair of snakes. For our convenience, we enumerate intervals clockwise in the
following lemma.

Snake-Lair Lemma 8.6. For every t > 2 there are κ,λ,K �δ 1 such that the

following holds. Suppose that Ẑm is a pseudo-Siegel disk with lm < λ/4. Let

In+1 = I0, I1, . . . , In ⊂ ∂Ẑm, |Ik| = lm, dist(Ik, Ik+1) ≤ lm

be a sequence of well-grounded intervals enumerated clockwise such that every Is is
one of the following two types

(1) either Is is [κK, 10]-wide,
(2) or Is is [CκK,λ]-wide,

where K ≥ K and Cκ is a constant (from Lemma 8.2) independent of λ. Then

there is a [tK, 3λ]+-wide interval J ⊂ ∂Z grounded rel Ẑm with |J | < |I|.

Proof. The first three claims below show that families of Type (2) appear with
certain frequency. The last three claims amplify their width (by the snake lemmas).
We assume that K � λ � κ � t. The first claim follows immediately from
Lemma 6.8.

Claim 1. Lemma 8.6 holds if there is a Type (1) interval Ij such that

W10(Ij)−W+
10(Ij) ≥ κK/2.

�

We assume from now on that for every Type (1) interval Ij we have

(8.4) W+
10(Ij) ≥ κK/2.

Let us enlarge every Ii into a well-grounded interval Îi ⊂ ∂Ẑm by adding to
Ii the interval between Ii and Ii+1 if Ii and Ii+1 are disjoint. Since the distances

between the Ii and Ii+1 are ≤ lm+1 (see §2.1.4), we have |Îi| ≤ 2lm.

Claim 2. There is a sub-sequence

(8.5) Îi, Îi+1, . . . , Îi+λ/20 ⊂ ∂Ẑm, |Î| ≤ 2lm

such that every interval Îj in (8.5) is not [3,λ/4]+ wide.
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Proof. Suppose converse. Then (Îk) has a sub-sequence (Lk) with Lk = Î`(k) such

that `(k) < `(k + 1) ≤ `(k) + λ/20 and such that every Lk is [3,λ/4]+-wide. This
is impossible by Lemma 6.14 (such families would block each other). �

Claim 3. There is k depending on t and κ but not on λ such that Lemma 8.6
holds if (8.5) has k consecutive Type (1) intervals in (8.5).

Proof. Suppose that (8.5) has a consecutive sequence of Type (1) intervals Ia, Ia+1, . . . , Ib
with b− a = k− 1. Consider the intervals

Ia,b := bIa, Ibc and L :=
b⋂

j=a

(
λ

4
Ij

)c
and observe that W+(I, L) = O(b − a) by Claim 2. Since the F+

10(Ij),F+
10(Ij+1)

have small overlaps (they block each other), there is a rectangle

R ⊂ F := F+
10(Ia) ∪ F+

10(Ia+1) ∪ · · · ∪ F+
10(Ib) with W(R) � (b− a)κK.

Let Ja, Jb be two intervals forming L \ Ia,b. We assume that Ja < Ia,b < Jb < L.
Since at most O(b−a) curves in R land at L, we can select a subrectangle R2 in R
with W(R) � (b − a)κK = kκK such that, without loss of generality, R2 is lands
at Ja.

By removing O(1)-buffer, we can assume that R2 skips over Ia−1 ⊂ (10Ia). Since
Type (1) intervals block each other, R2 goes above a Type (2) interval Ix ⊂ Ja.
The claim now follows by applying Sneaking Lemma 6.13 to R2 and F(Ix). �

We may now assume that among k consecutive intervals in Sequence (8.5) there is
at least one Type (2) interval. Let us enumerate Type (2) intervals in Sequence (8.5)
as

Ii0 , Ii2 , . . . , Iis , ij < ij+1 < ij + k,

where s ≥ λ/(22k).

Let us enlarge Iit to well grounded intervals Ĩit ⊃ Iit such that

• Ĩit ends where Iit+1 starts; and

• Ĩi0 and Ĩis have length between λ/4 + 1 and λ/4 + 3.

It follows from Claim 2 that most of the curves in F+
λ (Ĩit) do not bypass Ĩi0∪ Ĩis :

Claim 4. Write L := bĨi0 , Ĩisc. Then for every i ∈ {1, . . . , s− 1}, we have

W+(Ĩit , L) = O(k) for 1 ≤ t ≤ s− 1.

�

Choose a big T � 1 (but still much smaller than K; the T depends on r,g from
Claims 5, 6). We consider the following fundamental arc diagram G:

• the vertices of G are the intervals Ĩij for j ∈ {1, 2, . . . , s− 1}.
• there is an edge between Ĩia and Ĩib if and only if

|a− b| ≥ 2 and W+(Ĩia , Ĩib) ≥ T.

Claim 5. There is a constant r = r(t) depending on t and κ but not on λ such
that Lemma 8.6 holds if G has a vertex with degree r.
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Ĩa Ĩb1 Ĩbf−g
Ĩbf Ĩbf+g

Ĩbτ

Figure 24. Illustration to the argument in Claim 5.

Proof. For our convenience, we replace r with 2r and we also introduce a big con-
stant g with r� g� 1.

Assume that Ĩa is a vertex of G with degree at least 2r. Without loss of gener-
ality, we assume that r neighbors of Ia in G are on the right of Ia; we enumerate

these neighbors as Ĩb1 , Ĩb2 , . . . , Ĩbr , see Figure 24. We will show below that either

there is an Ĩbf such that Fλ(Ibk) submerges many times in the Ibk , or the family

F+
(
Ĩa, bĨb2 , Ĩbrc

)
has width �t K. In the former case, we will apply the Snake

Lemma with toll barriers. In the latter case, we will use the Sneaking Lemma.

Consider Ĩbf , where f ∈ {g,g + 1, . . . , r − g}, see Figure 24. Observe that the

width of curves in Fλ(Ibf ) omitting Ĩbf−g
∪ Ĩbf+g

∪ Ĩa is at most Oλ(1) because

F+(Ĩa, Ĩbf−g
), F+(Ĩa, Ĩbf+g

), F−(Ĩbf−g
, Ĩbf+g

)

have �λ 1 width. We orient curves in Fλ(Ĩbf ) from Ĩbf towards (λĨbf )c.

Case (A). Suppose there is an f ∈ {g,g + 1, . . . , r−g} such that a
1

2
CκK part

of Fλ(Ibf ), call it F , intersects Ĩbf−g
∪ ĨBf+g

before intersecting Ĩa. By the Small
Overlapping Principle §A.2.2, there are pairwise disjoint simple closed arcs

`j ∈ F+(Ĩa, Ĩf+j) for 1 ≤ |j − f | ≤ g

such that at most Oλ(1) curves in F intersect
⋃

1≤|j−f |≤g

`j . Removing Oλ(1) curves

in F we obtain a lamination Fnew ⊂ F whose curves are disjoint from any `j .

Suppose `j lands at xj ∈ Ĩbj . Since dist(xj , xj+2) ≥ lm, we can remove Oλ(1)-

curves from Fnew so that every curve in the new family FNew intersects

bxbf−2j−2
, xbf−2j

c ∪ bxbf+2j
, xbf+2j+2

c

before intersecting bxbf−2j−2
, xbf+2j+2

cc. For |j| ≤ g/2, define the arc β′j ⊂ `f−2j ∪
Ĩa∪`f+2j to be the concatenation of `f−2j , followed by the subarc of Ĩa, and followed

by `f+2j . Note that β′j is a simple arc connecting Ĩf−2j and Ĩf+2j . Moreover, β′j
is disjoint from β′k away from Ĩa. Let us slightly move the arcs β′j away from Ĩa
so that the new arcs βj are pairwise disjoint and so that at most O(1) curves in

FNew intersect any of βj . We denote by FNEW the family obtained from FNew

by removing curves intersecting at least one βj . Case (A) now follows from Snake
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Lemma 6.12 applied to FNEW, W(FNEW) ≥ 1

2
K − Oλ(1) with toll barriers βj ,

j ≤ g/2.

Case (B). If Case (A) never occurs, then CκK/2-wide part of F+(Ĩa, Ĩbf ) is

disjoint from F+(Ĩa, Ĩbf±g
). Applying the Parallel Law A.1.4, we obtain that

F := F+
(
Ĩa, bĨb2 , Ĩbkc

)
has width � r

g
CκK �t K.

We now apply Sneaking Lemma 6.13 to F and Fλ(Ib1). �

Claim 6. Suppose that the degree of every vertex in G is bounded by r from Claim 5.

For every g� 1, if λ�g 1, then the following holds. There is an interval Ĩs such

that Fλ(Ĩs) contains a lamination F , W(F) ≥ CκK−Oλ(1) that has toll barriers
`1, `2, . . . , `g.

Proof. Consider the dual graph G∨:

• vertices of G∨ are faces of G,
• edges of G∨ are orthogonal to edges of G.

We denote by X the outermost vertex of G∨ corresponding to the unbounded face.
Since λ�g 1, it is easy to check that either:

(1) there is a simple path in G∨ of length 3rg starting at X, or
(2) there is a face Y of G (a vertex of G∨) containing at least 3g vertices of G.

In the first case, we can choose edges ˜̀
i, i ≤ g of G such that each ˜̀

i, connects

Ĩai and Ĩbi with

(8.6) ai+1 + 1 < ai, ai + 1 < s < bi − 1, bi < bi+1 − 1.

Since F+(Ĩai , Ĩbi) ≥ T , Small Overlapping Principle §A.2.2 implies that Fλ(Is)
contains a lamination F with W(F) ≥ CκK −Oλ(1) that is disjoint from pairwise

disjoint curves `i ∈ F+(Ĩa, Ĩb). Since at most Oλ(1) curves in F can pass under

Ĩai+1 or Ĩbi+1 (Squeezing Lemma 5.17), we can remove Oλ(1) curves from F such
that `i are toll barriers for the new lamination Fnew withW(Fnew) ≥ CκK−Oλ(1).

Consider the second case. We can choose intervals Ĩs, Ĩai , Ĩbi i ≤ g on the
boundary of the face Y such that (8.6) holds. Since Y is a face of the arc diagram

G, most curves (up to Oλ(1)-width) in Fλ(Ĩs) intersect Iai ∪ Ibi before intersecting

Iai+1
∪ Ibi+1

. Therefore, we can select pairwise disjoint arcs `i ∈ F+(Ĩai , Ĩbi) such

that at most Oλ(1) curves in Fλ(Ĩs) intersect
⋃
i

`i. Since at most Oλ(1) curves in

Fλ(Ĩs) can pass under Ĩai+1 or Ĩbi+1, the family Fλ(Ĩs) contains a lamination F
with W(F) ≥ CκK −Oλ(1) such that `i are toll barriers for F . �

The lemma now follows from Snake Lemma 6.12 applied to F and toll barriers
`1, `2, . . . , `g. �

Proof of Theorem 8.1. Consider a [K,λt]
+ combinatorial interval I ⊂ ∂Z of level

m as in the statement of Theorem 8.1. There are two level m combinatorial intervals
Ia, Ib such that I ⊂ Ia ∪ Ib and at least one of the endpoints of Ia and of Ib is in
CPm. Then either Ia or Ib is [K/2,λt/2]+-wide. The theorem now follows from
Lemmas 8.2 and 8.6. �
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8.3. Bounded type regime. Recall that we are considering eventually golden-
mean rotation numbers θ = [0; a1, a2, . . . ] with an = 1 for n ≥ nθ.

Corollary 8.7. There are absolute constant K,n > 2 such that for every θ we have

W+
3 (I) ≤ K for every interval I ⊂ ∂Z with |I| ≤ lmax{nθ,n}.

Proof. It is sufficient to prove W+
λ (I) ≤ K for some λ ≥ 3 and K; the case λ = 3

follows by spiting I and increasing K. For a sufficiently big t � 1, let λ = λt

and K = Kt be the constants from Theorem 8.1. Set n to be the integer part of

2 log2(2λ) + 2; then ln ≤
|θ0|
2λt

by (2.1).

Assume converse: W+
λ (I) = K ≥ K for some I with |I| ≤ lmax{nθ,n}. Then

I contains a combinatorial subinterval I ′ with |I ′| � |I| such that W+
λ (I ′) � K.

Applying Theorem 8.1 with Zm = Z, we find an interval I2 withW(I2) � tK � K
and |I2| ≤ |I|. Continuing the process, we obtain a sequence of interval Ik with
|Ik| ≤ |Ik−1| such that W+

λ (Ik)→ +∞. This is impossible. �

9. The Calibration Lemma

Recall from §2.3.2 that the diving family F+
λ,div,m(I) ⊂ F+

λ (I) consists of curves

intersecting (or diving into) Km \ Z.

Calibration Lemma 9.1. There is an absolute constant χ > 1 such that the

following holds for every λ ≥ 10. Let Ẑm+1 be a geodesic pseudo-Siegel disk and
consider an interval T ⊂ ∂Z in the diffeo-tiling Dm. If there are intervals

I ⊂ T, L ⊂ ∂Z such that lm+1 ≤ |I| ≤ lm, dist(I, Lc) ≥ λlm+1

and W+
div,m(I, Lc) = χK �λ 1,

then

(I) either there is a [K,λ]+-wide level-(m+ 1) combinatorial interval,
(II) or there is a [χ1.5K,λ]+-wide interval I ′ ⊂ ∂Z, |I ′| < lm+1 grounded rel

Ẑm+1.

In applications, we will often take L = λI.

9.0.1. Outline and Motivation. The Calibration Lemma allows us to trade W+
λ,div-

wide intervals into W+
λ -wide combinatorial intervals. In Section 10 (see §10.0.1,

(a)), we will construct a pseudo-Siegel disk Ẑm+1 to absorb most of the external
families. Therefore, the Calibration Lemma can be inductively applied if Case (II)
happens.

The main idea of the proof is illustrated on Figure 26. If Case (I) does not
happen, then we should expect a wide rectangle P that essentially overflows its two
conformal pullbacks P−,P+; this leads to the “1 ≤ 1⊕ 1 = 0.5” contradiction. To
construct such a wide rectangle P, we will first spread the family F+

λ,div,m(I) around

Dm (using univalent push-forwards §2.3.3). Next we will find a wide rectangle P
between two neighboring intervals of Dm. Finally either the argument illustrated
on Figure 26 is applicable, or the roof of P is shorter than lm+1 – this leads to Case
(II).

9.1. Proof of Calibration Lemma 9.1. We split the proof into several subsec-
tions. We assume that χ� 1 is sufficiently big.
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a0 a1

Z0 Z1

T1 = [a1, a2]
= fqm(N1)� θm+1

T−1 = [a−1, a0]
= fqm(M0)� θm+1

N1M0

I

T = T0 = [a0, a1]

Figure 25. Various intervals on ∂Z and ∂Zi.

9.1.1. Bubbles Zi. We enumerate intervals in Dm as Ti, T0 = T from left-to-right.
Denote by ai the common endpoint of Ti−1 and Ti. We recall from §2.1.6 that ai
is a critical point of generation ti ≤ qm+1. Thus there is a bubble Zi attached to
ai, see Figure 25, with the first landing f ti : Zi → Z.

Let us pullback the diffeo-tiling Dm to a partition of ∂Zi under

f−qm ◦ fqm : ∂Z → ∂Zi (equivalently, under f−ti ◦ f ti : ∂Z → ∂Zi).

We specify the following elements of the new partition:

• Ni is the preimage of Ti � θm+1 = fqm(Ti+1) under fqm | ∂Zi;
• Mi is the preimage of Ti−1 � θm+1 = fqm(Ti) under fqm | ∂Zi.

The point ai is the common endpoint of Mi, Ni.
By the following properties Ni,Mi are intervals of Km = f−qm+1(Z).

Claim 1. The interiors of Mi, Ni+1 contain no branched points of f−qm+1(∂Z).

Proof. By definition, the interiors of the Ti contain no critical points of fqm+1 .
Therefore, the interiors of the fqm+1(Ti) contain no critical values of fqm+1 . Ap-
plying f−qm+1 , we obtain a required claim for the Mi, Ni. �

9.1.2. Rectangle Ri. By Lemma 2.7, most of the width of F+
div,m(I, Lc) is within

two rectangles; thus we can select a rectangle R ⊂ F+
div,m(I, Lc) satisfying

W(G) = χK/2−O(1).

We orient the vertical curves in R from I to Lc. By shrinking I, we can assume that
∂h,0R = I. For an interval J ⊂ I, we denote by RJ ⊂ R the genuine subrectangle
consisting of vertical curves of R starting at J .

Assuming that (I) does not hold, we obtain

(A) For every combinatorial subinterval J ⊂ I with |J | = lm+1, we have

W(RJ) ≤ K.
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In particular, |I| > χlm+1/3� 1. Let us present I as a concatenation

I = Ia ∪ I0 ∪ Ib with Ia < I0 < Ib

such that W(RIa) =W(RIb) = 6K. In particular, |Ia|, |Ib| ≥ 6lm+1 by (A).
We set

R0 := RI0 , where W(G0) = χK/2−O(K).

Since R0 is obtained from R by removing sufficiently wide buffers, we can spread
around R0 using the univalent push-forward (2.15). We denote by Ri the resulting
image of R0 in Ti. As for R, we denote by Ri,J the subrectangle of Ri consisting

of curves starting at J ⊂ ∂h,0Ri.

Claim 2 ((A) holds for all Ri). For every level m+ 1 combinatorial interval J ⊂
∂h,0Ri, we have W(Ri,J ) ≤ K +O(1).

Proof. Assume that W(Ri,J ) ≥ K + C for C � 1. Pushing Ri,J forward under
(2.15) towards T0 we obtain the violation of (A) for R. �

9.1.3. Almost invariance of Ri. For every Ri,J , let us denote by R∗i,J the lift of
Ri,J under fqm+1 starting at J � θm+1.

Claim 3. Every J ⊂ ∂h,0Ri contains a subinterval Jnew ⊂ J such that

W(Ri,Jnew) =W(Ri,J )−O(K)

and such that Ri,Jnew vertically overflows R∗i,J .
Moreover, at most O(K) curves of Ri land at Ti � θm+1.

Proof. LetRi,Jnew be the rectangle obtained fromRi,J by removing two 3K-buffers.
Then the length of each of the intervals in J \Jnew is at least 2lm+1 by (A), and at
most O(1) curves in Ri,Jnew can cross the buffers of R∗i,J starting at

(
J � θm+1

)
\

Jnew.
Similarly, up to O(K), curves ofR∗i,J are inRi,Jnew . SinceRi,Jnew is in F+

div,m, we

obtain that, up to O(K), curves of R∗i,J intersect ∂Zi ∪ ∂Zi+1. Taking J = ∂h,0Ri
and applying fqm+1 , we obtain the second claim. �

Claim 4 (A rectangle between Ts and Ts±1). There is an Rs such that, up to
removing O(K) buffers, the roof of Rs is in

(
Ts−1 ∪ Ts+1

)
� θm+1.

Moreover, up to removing O(K) buffers from Rs, we can assume that

dist(∂h,1Rs, {as−1, as+2}) ≥ 5lm+1.

Proof. Let us show that, up to removing O(K) buffers, there is a rectangle Rs
such that ∂h,1Rs ⊂ b∂h,0Rs−1, ∂

h,0Rs+1c \ (Ts � θm+1). This will imply the claim
because ∂h,0Rj has distance > 5lm+1 to {aj , aj+1}, see §9.1.2.

Assuming converse and using Claim 3 (the second part), we can choose in every
Ri a wide rectangle Si whose roof is outside of b∂h,0Ri−1, ∂

h,0Ri+1c. This is a
contraction by Lemma 6.14. �

9.1.4. Proof of Calibration Lemma. We now fix a rectangle Rs from Claim 4. We
assume that most of the curves (up to O(K)) in Rs land at Ts+1; the case of Ts−1

is similar. By removing O(K) buffers from Rs, we obtain the new Rnew
s with

(9.1) ∂h,0Rnew
s ⊂ Ts, ∂h,1Rnew

s ⊂ Ts+1 dist(∂h,1Rnew
s , as+2) ≥ 5lm+1.
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P

∂h,1P∂h,0P

P−
P+

Figure 26. Illustration to Claim 5. If P essen-
tially overflows its univalent pullbacks P±, then
W(P−)⊕W(P+) ≥ W(P)−O(χ0.9K).

Let P,P1 be the restrictions (see §5.2.4) of Rnew
s onto Ẑm+1 and fqm+1(Ẑm+1)

respectively. Subrectangles PJ of P are defined in the same way as subrectangles
Ri,J for Ri.

Claim 5 (See Figure 26). There is an interval J ⊂ ∂h,0P well-grounded rel Ẑm+1

with W(PJ) ≥ χ0.9K such that |∂h,1PJ | ≤ lm+1/5.

Proof. Let P− and P+ be the lifts of P1 under fqm+1 such that P− starts in Tm+1
s �

θm+1 while P+ lands Tm+1
s+1 � θm+1, where Tm+1

s , Tm+1
s+1 are the projections of

Ts, Ts+1 onto ∂Ẑm+1. Assume a required interval J does not exist. Combining this
assumption with Claim 2, we can remove O(χ0.9K) buffers from P such that Pnew

consequently overflows P− and P+. This contradicts the Grötzsch inequality:

χK −O(χ0.9K) =W(P)−O(χ0.9K) ≤ W(P−)⊕W(P+) = 0.5χK.

By removing O(K)-buffers from PJ , we can assume that J is well-grounded. �

Let Ẑs+1 be the pseudo-bubble (see §5.7) around Zs+1 such that fqm+1 maps

Ẑs+1 onto fqm+1
(
Ẑm+1

)
. We denote by Nm+1

s+1 the projection of Ns+1 onto ∂Ẑs+1.

Consider an interval J from Claim 5. Write X := ∂h,1P1
J , where |X| ≤ lm+1/5,

and let X∗ ⊂ Nm+1
s+1 be the lift of X under fqm+1 . We denote by P∗J , ∂h,1P∗J = X∗

the full lift of P1,J under fqm+1 .
By Claim 3, we can remove O(K) buffers from PJ so that the new rectangle

Pnew
J overflows P∗J . Let us denote by V ⊂ X∗ the subinterval of X∗ between the

first intersections of ∂v,`Pnew
J , ∂v,ρPnew

J with X∗. Set

• F1 to be the restriction (see §A.1.5) of F(Pnew
J ) to F(∂h,0Pnew

J , V );
• F2 to be the restriction of F(Pnew

J ) to F(V, ∂h,0Pnew
J ).

In other words:

F1 = {γ1 | γ ∈ F(Pnew
J )} and F1 = {γ2 | γ ∈ F(Pnew

J )},
where γ1 and γ2 are the shortest subarcs of γ connecting ∂h,0Pnew

J , V and V, ∂h,0Pnew
J

respectively. We remark that γ1 lands at V + while γ2 starts in V −.

Claim 6. We have W(F2) ≥ t1.7K.
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Proof. By the Grötzsch inequalityW(P∗J)⊕W(F2) ≥ W(F1)⊕W(F2) ≥ W(Pnew
J ),

we have:

W(P∗J)⊕W(F2) = χ0.9K ⊕W(F2) ≥ W(Pnew
J ) = χ0.9K −O(K),

1

χ0.9K
+

1

W(F2)
≤ 1

χ0.9K −O(K)
,

W(F2) ≥ χ
1.8K2

O(K)
≥ χ1.7K

because χ� 1. �

Consider the rectangle G bounded by the leftmost and rightmost curves of F2:

G, ∂h,0G ⊂ V −, ∂h,1G ⊂ ∂h,1Pnew
J , W(G) ≥ W(F2) ≥ χ1.7K.

Applying Lemma 6.9 to G, we obtain an interval B ⊂ [(1 + λ−2)V ] \ V ⊂ ∂Ẑs+1

together with a lamination

Q ⊂ Ĉ \ int Ẑs+1, W(Q) � χ1.7K

from B to either
[
(λB)c

]grnd ⊂ ∂Ẑs+1 (Case (II)) or to ∂h,1Pnew
J (Case (I)). In

both cases, Q is disjoint from int Ẑm as a restriction of a sublamination of Pnew
J .

Write Nm+1
s+1 = [as+1, bs+1], where as+1 ∈ ∂Z, see Figure 25. Observe that

(9.2) dist∂Ẑs+1
(B, bs+1) ≥ 4lm+1, dist∂Ẑs+1∪∂Ẑm+1(B, ∂h,1Pnew

J ) ≥ lm+1/5.

Indeed, the first inequality follows from (9.1) because fqm+1(bs+1) = as+2. The
second inequality follows from the observation that if X∗, |X∗| ≤ lm+1/5 is close to
as+1, then X will be close to as+1 � θm+1.

For every γ ∈ Q, let γ′ be the first subarc of γ connecting B to ∂Km. By §2.3.3
and (9.2), fqm+1 injectively maps most of the {γ′ | γ ∈ Q} into a sublamination

of F
(
B2,

[
(λB2)c

]grnd
)

, where B2 = fqm+1(B) ⊂ ∂fqm+1(Ẑm+1) is a grounded

interval. By Lemma 5.10, the projection B•2 of B2 onto ∂Z satisfies

Wλ(B•2) � χ1.7K ≥ χ1.5K;

which is Case (II) of the Calibration Lemma.

Part 4. Conclusions

10. Proof of the main result

Recall that we are considering eventually golden-mean rotation numbers:

(10.1) θ = [0; a1, a2, . . . ] with an = 1 for all n ≥ nθ.

In this section we will establish the following results:

Theorem 10.1. There is an absolute constant K � 1 such that W+
3 (I) ≤ K for

every combinatorial interval I ⊂ ∂Z and every θ satisfying (10.1).

Theorem 10.2. There are absolute constants N � 1 and K � 1 such that for
every θ satisfying (10.1), there is a sequence of geodesic pseudo-Siegel disks (§5.1.9)

Ẑnθ = Z, Ẑnθ−1, Ẑnθ−2, . . . , Ẑ−1 = Ẑ
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satisfying the following properties. If I ⊂ ∂Z is a regular interval rel Ẑm with
lm+1 ≤ |I| ≤ lm, then

(10.2) either |I| ≥ lm/2 or |I| ≤ Nlm+1

and W+
3 (I) ≤ K.

10.0.1. Outline and motivation. Let us note that Theorem 10.1 implies Theorem 1.1.
Indeed, for every θ = [0; a1, a2, a3, . . . ], |ai| ≤ Mθ of bounded type, define the ap-
proximating sequence

θn := [0; a1, a2, . . . , an, 1, 1, 1, . . . ]→ θ.

Since Zθn → Zθ as qc disks (with dilatation depending on Mθ), the estimate
W+

3 (I) ≤ K in Theorem 10.1 also holds for Zθ, where K > 1 is independent
of Mθ.

We will prove Theorem 10.1 by induction from deep to shallow levels as follows.
We will show that there are λ� 1 and K�λ 1 such that the following properties
hold for every level m:

(a) Existence of a geodesic pseudo-Siegel disk Ẑm so that

W+
λ,ext,m(I) = O(

√
K)

for every interval I grounded rel Ẑm with lm+1 ≤ |I| ≤ lm.

(In other words, we construct Ẑm in (a) so that it absorbs all but O(
√

K)-external

rel m families: if W+
λ,ext,m(I) �

√
K for an interval I ⊂ ∂Z, then most of the I

together with most of the family F+
λ,ext,m(I) submerges into Ẑm.)

(b) W+
λ (I) ≤ (2χ)K for every grounded rel Ẑm interval m with |I| ≤ lm, where χ

is the constant from Calibration Lemma 9.1.
(c) W+

λ (I) ≤ K for every combinatorial interval I of level ≥ m.

The proof of the induction step is illustrated in Figure 27:

• If a pseudo-Siegel disk Ẑ can not be constructed to satisfy Statement (a),

i.e. to absorb all but O(
√

K)-external rel m families, then by the exponential

boost in Corollary 7.3 there will be a degeneration of order a
√
K � (2χ)K

on levels ≥ m+ 1, where a > 1 is fixed.
• If Statement (b) is violated, then it follows from F+

λ (I) = F+
λ,div,m(I) t F+

λ,ext,m(I)

that either Ẑm was not properly constructed, i.e. the violation of State-
ment (a) with lm ≥ |I| ≥ lm+1, or there is a diving degeneration of order
> (1.5χ)K.
• If there is a diving degeneration of scale > (1.5χ)K with lm ≥ |I| ≥ lm+1,

then by Calibration Lemma 9.1, either Statement (c) or Statement (b) is
violated on levels ≥ m+ 1.
• If Statement (c) is violated, then by Amplification Theorem 8.1, State-

ment (b) is violated with |I| < lm.

After the induction, there might still be finitely many renormalization levels
where Amplification Theorem 8.1 is not applicable because of the condition |I| ≤
|θ0|/(2λt). The number of such levels is bounded in terms of λ; the estimates for
these levels are established by increasing K.

Let us stress that regularizations on different levels do not interact much. Corol-
lary 7.3, Theorem 8.1, and Calibration Lemma 9.1 are stated in terms of the outer
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not (c):
W+

λ (I) > K
I is combinatorial

not (b):
W+

λ (I) > (2χ)K
I is grounded

not (a):
for mth regularization

W+
λ,ext,m(I)�

√
K

I is grounded

W+
λ,div,m(I) > (1.5χ)K

I is grounded

Corollary 7.3

(regularization,

exp boost)

m+ 1/2 m+ 1

Amplification Theorem 8.1

m m+ 1/2

F+
λ =

F+
λ,div,m t F

+
λ,ext,m

Calibration Lemma 9.1

m+ 1/2 m+ 1

Figure 27. Statements (a), (b), and (c) are proved by contradic-
tion: if one of the statements is violated on levels m or m + 1/2,
then there will be even bigger violation on deeper scales. Here
“m” indicates level m combinatorial intervals, “m+ 1/2” indicates
intervals with lm ≥ |I| ≥ lm+1, and “m + 1” indicates intervals
with |I| ≤ lm+1. The dashed arrows illustrate the decomposition
F+

λ (I) = F+
λ,div,m(I) t F+

λ,ext,m(I).

geometry of the Siegel disk Z with only indirect references to Ẑm. Lemma 5.10

implies that the outer geometries of Ẑm and Z are close rel grounded intervals inde-
pendently of the number of regularizations. Our estimates for the inner geometry

of Ẑm are also independent of the number of regularizations – see the discussion
in §3.0.1 and in §5.0.1.

To prove Theorem 10.2, we will show that external families can not be unex-
pectedly narrow (Lemma 10.5); otherwise, the dual family will be very wide –
contradicting the estimates established for Theorem 10.1. Combined with the Par-
allel Law, this will imply the existence of the combinatorial threshold N. We will
refer to N in Theorem 10.2 as the high-type condition. This a near-degenerate
analogy of the high-type condition in the Inou-Shishikura theory [IS].
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10.1. Proof of Theorem 10.1. We choose constants λ,K and a parameter t from
Theorem 8.1 such that

χ� t, λ := λt, Kt � K,

where χ > 1 is the constant in Calibration Lemma 9.1 and λt,Kt are from The-
orem 8.1. Theorem 10.1 on levels ≥ nθ follows from Corollary 8.7. Let s = sθ be
the smallest so that ls ≤ |θ0|/(2λ+ 4).

Lemma 10.3 (Induction). There is a sequence of geodesic pseudo-Siegel disks

Ẑnθ = Z, Ẑnθ−1, Ẑnθ−2, . . . , Ẑsθ

with the following properties:

(A) If Z does not have an external level-m parabolic rectangle of width
√

K, then

Ẑm = Ẑm+1; otherwise Ẑm is the regularization of Ẑm+1 constructed by Corol-

lary 7.3. Moreover, W+
λ,ext,m(J) ≤ 2

√
K + O(1) for every interval J ⊂ ∂Z

grounded rel Ẑm with lm+1 ≤ |J | ≤ lm.

(B) For every interval J ⊂ ∂Z grounded rel Ẑm with lm+1 ≤ |J | ≤ lm, we have
W+

λ (J) ≤ 2χK.

(C) For every level-m combinatorial interval I ⊂ ∂Z, we have W+
λ (I) ≤ K.

Proof. We proceed by induction from deep to shallow scales. The base case m = nθ
follows from Corollary 8.7. Let us assume that the lemma is true for levels > m.

In particular, Ẑm+1 is constructed. Let us verify the lemma for m.
Suppose that Z has a level-m external parabolic rectangle R with W(R) ≥√

K. Assume that R is based on T ∈ Dm and let T ′ be as in §2.1.6. We replace

R with an outermost external rel Ĉ \ Km geodesic rectangle Rnew based on T ′

with W(Rnew) ≥
√
K − O(1). In particular, Rnew is non-winding. Let us apply

Corollary 7.3 to Rnew. We claim that Case (1) of Corollary 7.3 occurs.

Proof of the Claim. Assume Case (3) of Corollary 7.3 occurs. We obtain an interval

I ⊂ ∂Z grounded rel Ẑm+1 with |I| ≤ lm+1 such that logW+
λ (I) �

√
K. Since

K� χ > 1, we have

W+
λ (I) ≥ a

√
K � 2χK, where a > 1 represents “�”

contradicting the induction assumption that Statement (B) holds on levels ≥ m+1.
Calibration Lemma 9.1 reduces Case (2) of Corollary 8.7 to Case (3). �

By construction,
√

K + O(1) bounds the width of level-m external parabolic

rectangles R such that ∂hR is a pair of grounded rel Ẑm intervals – wider rectangles

are absorbed by Ẑm. By splitting J into at most 2 intervals, we obtain the estimate

W+
λ,ext,m(J) ≤ 2

√
K +O(1). This proves Statement (A).

Let us verify Statement (B). Assuming otherwise and using W+
λ,ext,m(J) ≤

2
√

K +O(1) (Statement (A)), we obtain W+
λ,div,m(J) > 1.5χK. Applying Calibra-

tion Lemma 9.1, there would exist

• either a combinatorial [1.5K,λ]+-wide level-(m+ 1) combinatorial interval
– contradicting Statement (C) on level m+ 1,

• or a [1.5χ1.5K,λ]+-wide interval I ′ ⊂ ∂Z grounded rel Ẑm+1 with |I ′| <
lm+1 – contradicting Statement (B) on levels ≥ m+ 1.
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It remain to verify Statement (C). Let us assume converse: W+
λ (I) > K for

a combinatorial level m interval I ⊂ ∂Z. Applying Theorem 8.1, we obtain a

[tK,λ]+ wide interval J grounded rel Ẑm with length ≤ lm. This contradicts
Statement (B). �

Since ln+2 < ln/2, see (2.1), we have:

l2n < l0/2
n = |θ0|/2n ≤ |θ0|/(2λ+ 4) if n > log2(2λ+ 4).

We obtain that sθ ≤ s := 2 log2(2λ+ 4). Set Ki := (2χ)iK.

Lemma 10.4 (A few shallow levels). The sequence of geodesic pseudo-Siegel disks
in Lemma 10.3 can be continued with a sequence of geodesic pseudo-Siegel disks

Ẑsθ−1, Ẑsθ−2, Ẑnθ−3, . . . , Ẑ−1 := Ẑfθ , sθ ≤ s

with the following properties for m < sθ:

(A) If Z does not have an external level-m parabolic rectangle of width
√

(2χ)sθ−m−1K,

then Ẑm = Ẑm+1; otherwise Ẑm is the regularization of Ẑm+1 constructed by

Corollary 7.3. Moreover, W+
λ,ext,m(J) ≤ 2

√
(2χ)sθ−m−1K + O(1) for every

interval J ⊂ ∂Z grounded rel Ẑm with lm+1 ≤ |J | ≤ lm.

(B) For every interval J ⊂ ∂Z grounded rel Ẑm with lm+1 ≤ |J | ≤ lm, we have
W+

λ (J) ≤ (2χ)sθ−mK.

Proof. Statements (A) and (B) are proven in the same way as the corresponding
statements in Lemma 10.3 where Statement (C) of Lemma 10.3 replaced with a
weaker Statement (B) of Lemma 10.4. �

10.1.1. Proof of Theorem 10.1. We have shown in Lemmas 10.3 and 10.4 that there
are absolute λ � 1, K �λ 1 such that W+

λ (I) ≤ K for every combinatorial

interval I. We need to show that W+
3 (I) ≤ K2 for some K2.

Assume I is a level m combinatorial interval. For simplicity, let us round up λ to
the smallest integer number. Choose the minimal n > m such that lm/ln > 2λ+ 1.
We can decompose I as a concatenation

I = I−λ ∪ I−λ+1 ∪ . . . I−1 ∪ I0 ∪ I1 ∪ · · · ∪ Iλ
so that for k 6= 0 the interval Ik is level-n combinatorial while I0 is a grounded rel

Ẑn interval. By construction, Then

F+
3 (I) ⊂

⋃
j

F+(Ij , (3I)c) and F+(Ik, (3I)c) ⊂ F+
λ (Ik) for k 6= 0.

For k 6= 0, we haveW+
λ (Ik) ≤ K. IfW+(I0, (3I)c)�K 1, then applying Calibration

Lemma 9.1 to F+(I0, (3I)c), we obtain an interval J grounded rel Ẑn with |J | ≤ ln
such that W+

λ (J) �K 1 – contradicting the estimates in Lemmas 10.3 and 10.4.
Therefore, W3(I) is bounded in terms of λ and K. �

10.2. Proof of Theorem 10.2. Consider a renormalization level m ≥ −1 with
lm/lm+1 � 1, and let T = [v, w] be an interval in the diffeo-tiling Dm. As in §4,
we assume that v < w in T and that T ′ = [v′, w] is T ∩ fqm+1(T ) (with necessary
adjustments for m = −1).

For k < log2[lm/(20lm+1)] we define vk, wk ∈ T ′ to be the points at distance
10(2k − 1)lm+1 from v′ and w respectively with vk < wk in T ′. We set

T k := [vk, wk] ⊂ T ′, Xk+1 := [vk, vk+1], Y k+1 := [wk+1, wk]
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i.e. T 0 = T ′ and

T k = Xk+1 ∪ T k+1 ∪ Y k+1, |Xk+1| = |Y k+1| = 2k10lm+1.

Lemma 10.5. For a constant K in Theorem 10.1 and every above well-defined
pair Xk, Y k with k ≥ 1, we have

W+
ext,m(Xk, Y k) �K 1.

Proof. Assume converse; then we have the following estimate of the dual family:

W+
Km(T k, ∂Km \ T k−1) = K �K 1.

Up to O(1), the family F+
Km(T k, ∂Km \ T k−1) is within two rectangles Rx,Ry in

C \ intKm. Applying Lemma A.10, we can push-forward F+
Km(T k, ∂Km \ T k−1)

almost univalently under fqm+1 : Ĉ \ Km+1 → Ĉ \ Z; we obtain that

W+

Z
(Tk � θm+1, (Tk−1 � θm+1)c) ≥ K −O(1).

Below we recognize three types of the curves in

F := F+
Z (Tk � θm+1, (Tk−1 � θm+1)c)

and prove that the width of each type curve family can be bounded in terms of K.
Curves diving into Km\Z. If the width of such curves is sufficiently big, then ap-

plying Calibration Lemma 9.1 to such curves, we obtain a sufficiently wide interval
on deeper scale contradicting the estimates in Lemmas 10.3 and 10.4.

Curves landing at [v, v′]. Since [v, v′] is combinatorial, the width of such curves
is bounded by K.

External curves landing at T ′ ∩ (Tk−1 � θm+1)c. Note that T ′ ∩ (Tk−1 � θm+1)c

consists of two intervals of length � 2klm+1. Since the distance between

T ′ ∩ (Tk−1 � θm+1)c and Tk � θm+1

is � 2klm+1, the width of curves of this last type is O(1) by Theorem 4.1. �

Let us now choose a sufficiently big N �K 1. Write M := log2 N/103.. If
lm/lm+1 ≥ N/2, then

W+
ext,m(X1 ∪X2 ∪ · · · ∪XM, Y 1 ∪ Y 2 ∪ · · · ∪ YM)�K M� K

by Lemma 10.5. Therefore, F+
ext,m(X1∪X2∪· · ·∪XM, Y 1∪Y 2∪· · ·∪YM) contains

a parabolic external level m rectangle of width
√

K and the regularization happens
within the orbit of such rectangle. This implies (10.2).

The combinatorial threshold (10.2) implies that for every interval I ⊂ ∂Z regular

rel Ẑm with lm ≥ |I| ≥ lm+1, there is a grounded rel Ẑm interval Igrnd ⊂ I such that
I \ Igrnd is within 2N level m+ 1 combinatorial intervals. Therefore, the condition

“grounded rel Ẑm” in Lemmas 10.3 and 10.4 can be replaced with “regular rel Ẑm”
by possibly increasing K.

11. Mother Hedgehogs and uniform quasi-conformality of Ẑ

Recall that we are considering eventually golden-mean rotations numbers θ, (10.1).

Theorem 11.1. There is an absolute constant K� 1 such that the pseudo-Siegel

disk Ẑf = Ẑ−1 in Theorem 10.2 is K-qc.
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Recall that a hull Q ⊂ C is a compact connected full set. The Mother Hedge-
hog [Chi] for a neutral polynomial fθ is an invariant hull containing both the fixed
point 0 and the critical point c0(f).

Theorem 11.2. Any neutral quadratic polynomial f = fθ, θ 6∈ Q, has a Mother
Hedgehog Hf 3 c0(f) such that f : Hf → Hf is a homeomorphism.

11.0.1. Outline of the section. Since Ẑ = Ẑ−1 is obtained from a qc disk Z by

adding finitely many fjords bounded by hyperbolic geodesics in Ĉ \Z, the resulting

pseudo-Siegel disk Ẑ is a qc disk. To show that Ẑ is uniformly K-qc, we will

introduce a nest of tilings on ∂Ẑ as follows:

(11.1) T (Ẑ) := ProjectionẐ(D) ∪
⋃

βmi ⊂∂Ẑm

T (βmi ),

where:

• ProjectionẐ(D) is the projection onto Ẑ the nest of diffeo-tilings D =

[Dn]n≥−1 (2.8), where intervals completely submerged into Ẑ are removed;
• T (βmi ) = [Tn(βmi )]n≥m+1 is an appropriate nest of tilings on dams, see §11.3.

The combinatorial threshold N will imply that T (Ẑ) has 2N-bounded combina-
torics: each level-n interval consists of at most 2N intervals of level n + 1. Using

Theorem 10.1, we will show that T (Ẑ) has uniformly bounded outer geometry:

neighboring intervals in T n(Ẑ) have comparable outer harmonic measures. And

using Theorem 5.12, we will show that T (Ẑ) has uniformly bounded inner geom-

etry. This will conclude that Ẑ is uniformly K-qc as a result of quasisymmetric
welding, see Lemma 11.3.

Let us comment on the construction of the T (βmi ). Every dam βmi connects two
points in CPm+1, call them x and y. For every n ≥ m + 1, we can consider four
level-n intervals of Dn adjacent to x, y; we call these intervals the nth foundation
of βmi . Our estimates imply that intervals in the nth and (n + 1)th foundations
have comparable outer harmonic measures. This fact allows us to introduce a nest
of tilings T (βmi ) = [Tn(βmi )]n≥m+1 comparable with the foundations of βmi on all
levels ≥ m+ 1. We view βmi as a sole interval in Tm+1(βmi ). Since every dam βmi is
protected by a wide rectangle Xmi (Assumption 6), different dams are geometrically
faraway and their nests of tilings do not interact much in (11.1).

Theorem 11.2 follows from Theorem 11.1 by taking Hausdorff limits of bounded-
type Siegel disks:

Proof of Theorem 11.2 using Theorem 11.1. For every θ ∈ R \ Z, consider a se-
quence of eventually golden-mean rotation numbers θn converging to θ. Let Zθn ⊂
Ẑθn be the Siegel disk and a K-qc pseudo-Siegel disk of fθn . By passing to a
subsequence, we can assume that the Zθn have a Hausdorff limit Hfθ = Hθ and

the Ẑθn have a qc limit Ẑθ. We obtain that Hθ is fθ invariant, c0, α ∈ Hθ ⊂ Ẑθ,

and fθ : Ẑθ → fθ

(
Ẑθ

)
is a homeomorphism. Therefore, fθ | Hθ is a homeomor-

phism. �

11.1. Nests of tilings. We will use notations similar to [L2, §15.1]. Consider a
closed qc disk D ⊂ C. Let T = (Tn)n≥m be a system of finite partitions of ∂D into
finitely many closed intervals such that Tn+1 is a refinement of Tn. We say that T
is a nest of tilings if
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• the maximal diameter of intervals in Tn tends to 0 as n→∞, and
• every interval in Tn for n ≥ m decomposes into at least two intervals of
Tn+2.

Similarly, a nest of tilings is defined for a closed qc arc. (In the second condition,
we require Tn+2 instead of Tn+1 because of Lemma 2.3.)

We say that a nest of tilings T has M -bounded combinatorics if every interval of
Tn consists of at most M > 1 intervals of Tn+1.

For an interval I ∈ Tn, let I`, Iρ ∈ Tn be two its neighboring intervals. We denote
by [3I]c the closure of ∂D \ (I` ∪ I ∪ Iρ). We set

[3I]c := Γ \ (I ∪ I` ∪ Iρ),

and we define:

• F−3,T (I) to be the family of curves in D connecting I and [3I]c;

• F+
3,T (I) to be the family of curves in Ĉ \D connecting I and [3I]c;

• W±3,T (I) =W
(
F±3,T (I)

)
.

We say that a nest of tilings T has essentially C-bounded outer geometry if for
every I ∈ T we have W+

3 (I) ≤ C. If moreover, T has M -bounded combinatorics,
then we say that T has (C,M)-bounded outer geometry. Similarly, bounded and
essentially bounded inner geometries are defined.

Lemma 11.3. For every pair C,M , there is a KC,M > 1 such that the following
holds. Let D be a closed qc disk and T be a nest of tilings of ∂D. If T has (C,M)-
bounded inner and outer geometries, then D is a KC,M qc disk.

Proof. Assume that T = [T n]n≥−1. Then there are at least 4 intervals in T3. Let us

choose base points u ∈ intD and v ∈ Ĉ \D such that the inner and outer harmonic
measure of every I ∈ T3 with respect to u and v is less than 1/3.

Consider conformal maps h− : (intD,u) → (D, 0) and h+ : (Ĉ \ D, v) → (D, 0)
and define

T −n := h−,∗(Tn) and T +
n := h+,∗(Tn)

to be the induced partitions on S1 = ∂D. The assumptions on the harmonic
measures and the width imply that the diameter of every I ∈ T −n ∪T +

n is comparable
to the diameters of two neighboring intervals in the same tiling – see the estimates
in Lemma 2.5. Therefore, h+◦h−1

− is quasisymmetric with the dilatation bounded in
terms C and M . The curve ∂D is a KC,M -qc circle as the result of a qc welding. �

11.2. Estimates for Dn. Let us for the rest of this section view K in Theo-
rems 10.1 and 10.2 as K = O(1). In particular, the main estimate in Theorem 10.1
takes form W+

3 (I) ≤ K = O(1) for every combinatorial interval I ⊂ ∂Z. We will
need the following estimates:

Lemma 11.4. For every diffeo-tiling §2.1.6 Dm consisting of at least 4 intervals
and every interval Ij ∈ Dm the following holds. Write Lj := Ij−1 ∪ Ij ∪ Ij+1, and

let Imj , L
m,c
j be the projections of Ij , L

c
j onto ∂Ẑm. Then

(I) W+
3,Dm

(Ij) :=W+
Z

(
Ij , L

c
j

)
� 1;

(II) W3,D̂m
m

(Ij) =W
(
F3,D̂m

m
(Ij)

)
:=WẐm

(
Imj , L

m,c
)
� 1

(where D̂m
m denotes the projection of Dm onto Ẑm);
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x y

βmi

InUInV

U

V

JnV JnU

Figure 28. Intervals InU , I
n
V , J

n
U , J

n
V form the foundation of βmi .

(III) for an interval V ∈ Dm+n such that V ⊂ Ij and V is attached to one of the
endpoints of Ij, we have W+

Z

(
V,Lc

)
�n 1.

Proof. It follows from Lemmas 10.3 and 10.4 by splitting Ij as in §10.1.1 that
W+

3,Dm
(Ij) � 1. Since this holds for all the Ij , we obtain Statement (I).

Lemma 6.8 reduces Statement (II) to Lemmas 10.3, 10.4.

Choose a point w ∈ Ĉ \ Z such that the intervals Ij−1, Ij , Ij+1, L
c
j have compa-

rable harmonic measures in Ĉ \ Z with respect to w. Let Vn ∈ Dm+n, V0 = Ij be
a sequence of nested intervals so that Vn is attached to one of the endpoints of Ij .

We claim that Vn and Vn−1 have comparable harmonic measures in (Ĉ\Z,w); this
will imply Statement (III).

Proof of the claim. If lm+n � lm+n−1, then the claim follows from Statement (I).
Assume that lm+n−1 � lm+n. Let V ′n ⊂ Vn−1 \ Vn be the interval in Dm+n

attached to another endpoint of Vn−1. It follows from W+(X1, Y 1) � 1 (in
Lemma 10.5) and Statement (I) that W+(Vn, V

′
n) � 1. This implies the claim. �

�

For an interval Ij ⊂ Dm, let R+
dual(Ij) be the geodesic rectangle (see A.1.12)

in Ĉ \ Z between Ij−1 and Ij+1; i.e., ∂h,0R+
dual(Ij) = Ij−1, ∂

h,1R+
dual(Ij) = Ij+1,

and the vertical sides of R+
dual(Ij) = Ij−1 are the hyperbolic geodesics of Ĉ \ Z. It

follows from Lemma 11.4, (I) that

(11.2) W
(
R+

dual(Ij)
)
� 1.

11.3. Nest of tiling of dams. Consider a dam βmi ⊂ ∂Ẑ, and assume that it
connects x and y. We recall from Assumption 7 that x, y ∈ CPm+1. Let us

denote by V = V (βmi ) 3 ∞ the unbounded component of Ĉ \ (Z ∪ βmi ) and by

U = U(βmi ) 63 ∞ the bounded component of Ĉ \ (Z ∪ βmi ). For every n ≥ m + 1,
we specify, see Figure 28:

• InV to be the interval in Dn (see §2.1.6) adjacent to x such that InV ⊂ ∂V ,
• InU to be the interval in Dn adjacent to x such that InU ⊂ ∂U ,
• JnV to be the interval in Dn adjacent to y such that JnV ⊂ ∂V ,
• JnU to be the interval in Dn adjacent to y such that JnU ⊂ ∂U .

We will refer to InU , I
n
V , J

n
U , J

n
V ∈ Dn as the nth foundation of βmi .
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We say that intervals A1, A2, . . . , As ⊂ ∂S1 with pairwise disjoint interiors are
harmonically comparable with respect to D if W−D (I, J) � 1 for every pair of non-
adjacent intervals

I, J ∈ {Aj , j ≤ s} ∪ {connected components of S1 \
s⋃
j=1

Aj}.

In other words, all the Aj as well as all their complementary intervals have compa-
rable inner harmonic measures with respect to a certain point in D. Similarly, the

harmonic comparison is defined for intervals of ∂Z rel Ĉ \Z. The following lemma
is a consequence of Lemma 11.4, Estimates (I) and (III).

Lemma 11.5. For every βmi and every n > m+ 1, we have:

• Im+1
U , Im+1

V , Jm+1
U , Jm+1

V are harmonically comparable with respect to Ĉ\Z,

• InU , InV , (In−2
U ∪ In−2

V )c are harmonically comparable with respect to Ĉ \ Z,

• JnU , JnV , (Jn−2
U ∪ Jn−2

V )c are harmonically comparable with respect to Ĉ \ Z.

�

Lemma 11.6. There is an absolute C > 0 such that for every βmi there is a nest of
tilings T (βmi ) = (Tn)n≥m+1 with 10-bounded combinatorics such that the following
properties hold.

For V = V (βmi ) as above and every interval I ∈ Tn ∪ {InV , JnV }, n ≥ m+ 1, let

• IV− , IV+ be two neighboring intervals of I in

Tn(βmi ) ∪ {intervals of Dn that are in ∂V };

• R+
dual,V (Ij) be the geodesic rectangle (similar to (11.2)) in V between IV− , I

V
+ ;

For U = U(βmi ) and every interval I ∈ Tn ∪ {InU , JnU}, n ≥ m+ 1, let

• IU− , IU+ be two neighboring intervals of I in

Tn(βmi ) ∪ {intervals of Dn that are in ∂U};

• F−3,U (I) be the family of curves in U connecting I to ∂U \ (IU− ∪ I ∪ IU+ ).

Then

(A) W(R+
dual,V (Ij)) � 1;

(B) W−3,U (I) =W(F−3,U (I)) � 1.

Proof. Consider

S1 = {z : |z| = 1} ⊂ C and X = S1 ∪ [−1, 1] ⊂ C.

And let us consider a conformal map h : Ĉ \ Z → D mapping x and y to −1 and 1
respectively. Since βmi is a hyperbolic geodesic, we have

h(βmi ) = [−1, 1] and h(∂Z ∪ βmi ) = X.

Let h∗(Dn) be the pushforward of the diffeo-tiling Dn, n > m onto S1 by h. By
Lemma 11.4, any two neighboring intervals in h∗(Dn) have comparable diameters
(uniformly over n). And by Lemma 11.5, the following diameters are comparable:

• of h(Im+1
U ), h(Im+1

V ), h(Jm+1
U ), h(Jm+1

V );

• of h(InU ), h(InV ), h(In+1
U ), h(In+1

V ) for n ≥ m+ 1;

• of h(JnU ), h(JnV ), h(Jn+1
U ), h(Jn+1

V ) for n ≥ m+ 1.
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For n ≥ m+ 1, let `nI be the hyperbolic geodesic of D connecting the endpoints
of h (InU ∪ InV ), and let xnI be the intersection of `nI with [−1, 1] ⊂ X. We define
In := [−1, xnI ] ⊂ [−1, 1].

Similarly, let `nJ be the hyperbolic geodesic of D connecting the endpoints of
h (JnU ∪ JnV ), and let xnJ be the intersection of `nJ with [−1, 1] ⊂ X. We define
Jn := [xnJ , 1] ⊂ [−1, 1]. By construction, the following diameters are comparable:

• of Im+1, Jm+1, h(Im+1
U ), h(Im+1

V ), h(Jm+1
U ), h(Jm+1

V );

• of In, In+1, h(InU ), h(InV ), h(In+1
U ), h(In+1

V ) for n ≥ m+ 1;

• of Jn, Jn+1, h(JnU ), h(JnV ), h(Jn+1
U ), h(Jn+1

V ) for n ≥ m+ 1.

We can now easily extend {In, Jn}n≥m+1 to a tiling of [−1, 1] and then pull it
back under h to a required tiling of βmi . �

11.4. Nest of tilings on ∂Ẑ. For m ≥ 0, consider the diffeo-tiling Dm of ∂Z.
Since level n ≤ m dams land at CPn+1 (Assumption 7), every interval T ∈ Dm is

either regular rel Ẑ or is inside a reclaimed fjord of generation n < m. We denote

by D′m the set of regular rel Ẑ intervals in Dm. And we defined D̂′m to be the set

of projections of intervals in D′m onto Ẑ. We define

(11.3) T (Ẑ) :=
[
D̂′n
]
n≥−1

∪
⋃
βni

T (βni ),

The following proposition combined with Lemma 11.3 implies Theorem 11.1.

Proposition 11.7. There is an absolute C � 1 such that for every eventually

golden-mean rotation number the nest of tilings T (Ẑ) has (2N,C)-bounded inner
and outer geometries.

Proof. By construction, T (Ẑ) has 2N bounded combinatorics. Consider an interval

X ∈ T n(Ẑ). We need to show that W±
3,T (Ẑ)

(X) = O(1), whereW±
3,T (Ẑ)

are defined

in §11.1. We write

• X• := X if X is within a dam βmi , m < n;

• X• to be the projection of X onto ∂Z if X is an interval in ∂Ẑn.

Set either

• R := R+
dual,V (X•) as in Lemma 11.6 if X ∈

[
Tn ∪ {InV , JnV }

]
(βmi ) for some

dam βmi ;
• or, otherwise, R := R+

dual(X
•) as in (11.2).

In both cases, we have W(R) � 1. Let Rn be the restriction (as in §5.2.4) of R
onto Ĉ \ Ẑn. By (5.12), we have W(Rn) � 1. Since the curves in F+

3,T (Ẑ)
(X) cross

Rn, we obtain

W+

3,T (Ẑ)
(X) = O(1).

To show W−
3,T (Ẑ)

(X) = O(1), we will use the monotonicity of the width under

the embeddings Ẑn, U(βmi ) ⊂ Ẑ = Ẑ−1. Consider several cases.

Assume first that X ⊂ ∂Ẑn and X is not a neighbor of any dam βmi , m < n.

Then W−
3,T (Ẑ)

(X) ≤ W−
3,D̂n

n(Ẑn)
(X) = O(1) by Theorem 5.12, where D̂n

n is the

projection of Dn onto Ẑn.
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In the remaining case, we have X• ∈ Tn∪{InV , JnV }, n ≥ m+1 as in Lemma 11.6
for a dam βmi . If X is in the interior of βmi , thenW−

3,T (Ẑ)
(X) ≤ W−3,U (X) = O(1) by

Lemma 11.6, (B) because F−
3,T (Ẑ)

(X) overflows F−3,U (X); i.e. because U(βmi ) ⊂ Ẑ.

Assume finally that X touches one of the endpoints of βmi . If X ⊂ βmi , then
F−

3,T (Ẑ)
(X) overflows

F−3,U (X) ∪ F3,D̂n
n

([
InU (βmi )

]n) ∪ F3,D̂n
n

([
JnU (βmi )

]n)
(see Lemma 11.4, (II); here [ ]n denotes the projection onto Ẑn); otherwise X ∈[
{InV , JnV }

]
(βmi ) and F−

3,T (Ẑ)
(X) overflows

F3,D̂n
n

(X) ∪ F−3,U
([
InU (βmi )

]n) ∪ F−3,U ([JnU (βmi )
]n)

.

Lemma 11.4, (II) and Lemma 11.6, (B) complete the proof. �

Appendix A. Degeneration of Riemann surfaces

Consider a compact Riemann surface S b C with boundary. We assume that
∂S consists of finitely many components. In this subsection, we will recall basic
tools to detect degenerations of S, see [A, L2, KL1] for details. The discussion
can be adjusted for open Riemann surfaces in C by considering their Caratheodory
boundaries.

A.1. Rectangles and Laminations. Given two disjoint intervals I, J ⊂ ∂S on
the boundary of a Riemann surface, we denote by

• FS(I, J) the family of curves in S connecting I and J :

(A.1) FS(I, J) := {γ : [0, 1]→ S | γ(0) ∈ I, γ(1) ∈ J};

• WS(I, J) = W(FS(I, J)) the extremal width between I, J – the modulus
of the family FS(I, J).

We will often write F−(I, J) = FS(I, J) and W−(I, J) = WS(I, J) when the
surface S is fixed.

A.1.1. Rectangles. A Euclidean rectangle is a rectangle Ex := [0, x] × [0, 1] ⊂ C,
where:

• (0, 0), (x, 0), (x, 1), (0, 1) are four vertices of Ex,
• ∂hEx = [0, x]× {0, 1} is the horizontal boundary of Ex,
• ∂h,0Ex := [0, x]× {0} is the base of Ex,
• ∂h,1Ex := [0, x]× {1} is the roof of Ex,
• ∂vEx = {0, x} × [0, 1] is the vertical boundary of Ex,
• ∂v,`Ex := {0} × [0, 1], ∂v,ρEx := {x} × [0, 1] is the left and right vertical

boundaries of Ex;
• F(Ex) := {{t} × [0, 1] | t ∈ [0, x]} is the vertical foliation of Ex,
• F full(Ex) := {γ : [0, 1] → Ex | γ(0) ∈ ∂h,0Ex, γ(1) ∈ ∂h,1Ex} is the full

family of curves in Ex;
• W(Ex) =W(F(Ex)) =W(F full(Ex)) = x is the width of Ex,
• mod(Ex) = 1/W(Ex) = 1/x the extremal length of Ex.
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By a (topological) rectangle in C we mean a closed Jordan disk R together with a
conformal map h : R → Ex into the standard rectangle Ex. The vertical foliation
F(R), the full family F full(R), the base ∂h,0R, the roof ∂h,1R, the vertices of
R, and other objects are defined by pulling back the corresponding objects of Ex.
Equivalently, a rectangle R ⊂ C is a closed Jordan disk together with four marked
vertices on ∂R and a chosen base between two vertices.

A genuine subrectangle of Ex is any rectangle of the form E′ = [x1, x2] × [0, 1],
where 0 ≤ x1 < x2 ≤ x; it is identified with the standard Euclidean rectangle
[0, x2−x1]× [0, 1] via z 7→ z−x1. A genuine subrectangle of a topological rectangle
is defined accordingly.

A subrectangle of a rectangle R is a topological rectangle R2 ⊂ R such that
∂h,0R2 ⊂ R and ∂h,1R2 ⊂ R. By monotonicity: W(R2) ≤ W(R).

Assume that W(Ex) > 2. The left and right 1-buffers of Ex are defined

B`1 := [0, 1]× [0, 1] and Bρ1 := [x− 1, x]× [0, 1]

respectively. We say that the rectangle

Enew
x := [1, x− 1]× [0, 1] = Ex \

(
B`1 ∪B

ρ
1

)
is obtained from Ex by removing 1-buffers. If W(Ex) ≤ 2, then we set Enew

x := ∅.
Similarly, buffers of any width are defined.

A.1.2. Annuli. A closed annulus A of modulus 1/x is a Riemann surface obtained
from Ex by gluing its vertical boundaries:

A := Ex/∂v,`Ex3(0,y)∼(x,y)∈∂v,ρEx| ∀y , W(A) = x, mod(A) := 1/x.

Its interior int(A) is an open annulus with modulus x. The induced image of the
vertical foliation F(Ex) is the vertical foliation F(A) of A. The width of F(A) is
equal to the width of all the curves in A connecting its boundaries ∂h,0A, ∂h,1A –
the induced images of the horizontal boundaries ∂h,0Ex, ∂

h,1Ex.

A.1.3. Monotonicity and Grötzsch inequality. We say a family of curves S overflows
a family G if every curve γ ∈ S contains a subcurve γ′ ∈ G. We also say that

• a family of curves F overflows a rectangle R if F overflows F full(R);
• a rectangleR1 overflows another rectangle R2 if F(R1) overflows F full(R2).

If F overflows a family or a rectangle G, then G is wider than F :

(A.2) W(F) ≤ W(G).

If F overflows both G1,G2, and G1,G2 are disjointly supported, then the Grötzsch
inequality states:

(A.3) W(F) ≤ W(G1)⊕W(G2),

where x⊕ y = (x−1 + y−1)−1 is the harmonic sum.

A.1.4. Parallel Law. For any families of curves G1,G2, we have:

(A.4) W(G1 ∪ G2) ≤ W(G1) +W(G2).

If G1,G2 are disjointly supported, then

(A.5) W(G1 ∪ G2) =W(G1) +W(G2).
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A.1.5. Restriction of families. Consider a family of curves G connecting X and Y .
And suppose

X̃ ⊃ X, Ỹ ⊃ Y, X̃ ∩ Ỹ = ∅
are enlargements. Then every curve

[γ : [0, 1]→ Ĉ] ∈ G

has a unique first shortest subcurve γ′ ⊂ γ connecting X̃ and Ỹ : there is a minimal
t1 ≥ 0 for which there is a t2 > t1 such that

γ
(
(t1, t2)

)
⊂ C \ (X̃ ∪ Ỹ ), and γ(t1) ∈ X̃, γ(t2) ∈ Ỹ ;

we set γ′ := γ | [t1, t2]. Define Gnew to be the family consisting of γ′ for all γ ∈ G.
Since G overflows Gnew, we have (see §A.1.3):

W(Gnew) ≥ W(G).

Note that if G is a lamination, then so is Gnew.
Consider now the following generalization. For a lamination G and disjoint sets

X1, X2, . . . , Xm suppose that the following holds. Every curve γ ∈ G intersects all
the Xi and it intersects Xi before intersecting any Xi+j for j > 0. Then every γ ∈ G
contains disjoint subcurves γ1, γ2, . . . , γm−1 where γi is the first shortest subcurve
between Xi and Xi1 . Setting Gi to be the set of γi over all γ ∈ G, we obtain that
G overflows consequently Gi and, by §A.1.3:

W(G) ≤ W(G1)⊕ · · · ⊕W(Gm−1).

Note that Gi are disjoint laminations.

A.1.6. Canonical rectangles. Consider a closed Jordan disk D ⊂ C together with
disjoint intervals I, J ⊂ ∂D. We denote by F−(I, J),F+(I, J),F(I, J) the families

of curves in D, Ĉ \ intD, Ĉ \ (I ∪ J) connecting I, J . The widths of these families
are denoted by W−(I, J),W+(I, J),W(I, J).

We can view D as a rectangle R with ∂vR = I ∪ J . We call R the canonical

rectangle of F−(I, J); we have W(R) =W−(I, J). Similarly, viewing Ĉ\ intD as a
rectangle R2 with ∂hR2 = I ∪J , we obtain the canonical rectangle R2 of F+(I, J);
we have W+

D(I, J) =W(R2).

Observe that A := Ĉ \ (I ∪ J) is an open annulus; its Caratheodory boundary
consists of I−∪I+ and J−∪J+, where I−, J− are the sides of I, J from intD while

I+, J+ are the sides of I, J from Ĉ\D. The vertical family H of F(I, J) consists of
vertical curves of A together with their landing points. We have W(H) =W(I, J).

A.1.7. Innermost and outermost curves. It will be convenient for us to use the
following inner-outer order on vertical curves in rectangles. Consider a rectangle

R ⊂ Ĉ, with ∂hR ⊂ ∂D,

where D is a closed Jordan disk, such that R is disjoint from a complementary
interval N ⊂ ∂D between ∂h,0R, ∂h,1R. Let N− and N+ be two sides of N from
the inside and outside of D. Consider a set of vertical curves {`i}i ⊂ F(R). The
innermost curve of {`i}i is the curve `inn separating N− from all remaining `i in

Ĉ \ (∂hR∪N). The outermost curve of {`i}i is the curve `out separating N+ from

all remaining `i in Ĉ \ (∂hR∪N).
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A.1.8. Laminations. By a lamination L we mean a family of pairwise disjoint sim-
ple rectifiable arcs such that suppL is measurable. A sublamination of L is any
collection H of arcs from G such that suppH is measurable.

Laminations naturally appear as restrictions of rectangles – see §A.1.5. Note
that a restriction of a rectangle is usually not a rectangle as discussed in [KL1,
§2.3]. For convenience, a lamination G can often be replaced by a rectangle R
bounded by the left- and rightmost curves of G; then W(R) ≥ W(G).

All laminations in our paper will appear from rectangles using basic operations
like restrictions and finite unions.

A.1.9. Restrictions of sublaminations. Consider a lamination or a rectangle R, and

let S̃ be a sublamination of R (or of F(R)). Assume that S̃ overflows a lamination
S. Then we write

(A.6) W(R|S) :=W(S̃) (note that W(R|S) ≤ W(R)) .

A.1.10. Splitting Rectangles.

Lemma A.1. Consider a Jordan disk D and let I, J ⊂ ∂D be a pair of disjoint
intervals. Consider an arc ` in the canonical rectangle of F−D (I, J), §A.1.6. Suppose
` splits I and J into I1, I2 and J1, J2 enumerated so that the pairs I1, J1 and I2, J2

are on the same side of `. We denote by D1 and D2 connected components of D \ `
containing I1, J1 and I2, J2 on its boundaries respectively. Then

W−D(I1, J1) +W−D(I2, J2)− 2 ≤ W−D1
(I1, J1) +W−D2

(I2, J2) =

=W−D(I, J) ≤ W−D(I1, J1) +W−D(I2, J2).

Proof. The last inequality is immediate. Let

• R be the canonical rectangle of F−D (I, J);

• R1,R2 be the canonical rectangles of F−D1
(I1, J1),F−D2

(I2, J2);

• R̃1, R̃2 be the canonical rectangles of F−D (I1, J1),F−D (I2, J2).

Since ` splits R into R1,R2, we have

W−D1
(I1, J1) +W−D2

(I2, J2) =W(R1) +W(R2) =W(R) =W−D(I, J).

By removing 1-buffers from R̃1, R̃2, we obtain new disjoint rectangles R̃new
1 , R̃new

2 ;

since R̃new
1 t R̃new

2 ⊂ R, we have

W(R̃new
1 ) +W(R̃new

2 ) ≤ W(R).

�

Lemma A.2. Under the assumptions of Lemma A.1, let G1 be the family of curves
in D connecting I to J such that every curve in G1 intersects D1. Then

W−D1
(I1, J1) ≤ W(G1) ≤ W−D1

(I1, J1) + 2

Proof. As in the proof of Lemma A.1, let R be the canonical rectangle of F−D (I, J)

andR1 be the canonical rectangle of F−D1
(I1, J1). SinceR1 is a genuine subrectangle

of R, we can consider the genuine subrectangle R+
1 of R specified by

R1 ⊂ R+
1 and W(R+

1 ) =W(R1) + 1;

i.e. R1 is R+
1 minus its one 1-buffer B. The width of curves in G1 crossing B is less

than 1; the remaining curves of G1 are in R+
1 . �
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X

Y+

Y−

a

b

d

c

O` Oρ

Figure 29. Assume a rectangle Y is a union Y+ ∪ X ∪ Y− such
that W(Y+) � W(Y−) � mod(O` \ [a, b]) � mod(Oρ \ [c, d]) � 1.
Then mod(O` ∪ Y ∪Oρ \ X ) � 1, see Lemma A.4.

A.1.11. Enclosed annuli. Let A,B ⊂ C be two closed annuli surrounding open disks
U and V respectively. Assume that

• U ∪ V is an open topological disk;
• A ∪ U ∪B ∪ V is a closed topological disk.

Then the enclosed annulus is

A�B :=
(
A ∪ U ∪B ∪ V

)
\
(
U ∪ V

)
.

Lemma A.3. If mod(A),mod(B) ≥ 2ε, then mod(A�B) ≥ ε.

Proof. Let γ : [0, 1]→ A�B be a vertical curve of the annulus A�B. Assume first
that γ(0) ∈ ∂innA. Then for some t ∈ (0, 1] we have γ(t) ∈ ∂outA; i.e. γ crosses
A. Similarly, if γ(0) ∈ ∂innB, then γ crosses B. By the Parallel Law §A.1.4,
W(A�B) ≤ W(A) +W(B) ≤ 1/ε. �

Let us consider the following construction which will be used in §7. Suppose, see
Figure 29:

• a rectangle Y is a union of its genuine subrectangles Y+,X ,Y− with disjoint
interiors, where X is between Y+ and Y−;
• closed disks O`, Oρ contain ∂h,0Y = [a, b] and ∂h,1Y = [c, d] respectively;
• O` ∪ Y ∪Oρ is a closed topological disk.

Lemma A.4. For O`, Y = Y+ ∪ X ∪ Y−, Oρ as above, if

W(Y+) � W(Y−) � mod(O` \ [a, b]) � mod(Oρ \ [c, d]) � 1,

then mod(O` ∪ Y ∪Oρ \ X ) � 1.

Proof. Consider a vertical curve γ of the annulus O` ∪ Y ∪Oρ \ X .
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• If γ intersects [a, b], then γ crosses the annulus O` \ [a, b].
• If γ intersects [c, d], then γ crosses the annulus Oρ \ [c, d].
• If γ is disjoint from [a, b] ∪ [c, d], then γ crosses either Y+ or Y−.

By the Parallel Law §A.1.4, mod(O` ∪ Y ∪Oρ \ X ) � 1. �

A.1.12. Geodesic Rectangles. Let D be a closed Jordan disk, and consider two
closed disjoint intervals I, J ⊂ ∂D. The geodesic rectangle R(I, J) in D is a rec-
tangle such that

∂h,0R(I, J) = I, ∂h,1R(I, J) = J,

and the vertical sides of R(I, J) are the hyperbolic geodesics of D.

Lemma A.5. Let R with W(R) > 1 be a rectangle in D with ∂h,0R = I and
∂h,1R = J . Let Rnew be the rectangle obtained from R by removing two 1/2-buffers
on each side. Write ∂h,0Rnew = Inew ⊂ I and ∂h,1Rnew = Jnew ⊂ J . Then

R ⊃ R(Inew, Jnew) and Rnew ⊂ R(I, J),

where R(Inew, Jnew),R(I, J) are geodesic rectangles as above.

In particular, R can be replaced with a geodesic subrectangle R(Inew, Jnew) so that
W(R)−W [R(Inew, Jnew)] ≤ 1.

Proof. We can assume that R′ = D = Ex, where Ex is a Euclidean rectangle,
see §A.1.1. Then the lemma follows by appropriately applying the following claim:
the hyperbolic geodesic γ ⊂ Ex connecting (0, 0) and (0, 1) is within E1/2 – the left
1/2-buffer of Ex.

To prove the claim about γ, consider the right half-plan C>0 := {z | Re z > 0}.
Then the hyperbolic geodesic γ̃ ⊂ C>0 connecting (0, 0) and (0, 1) is the semicircle
orthogonal to the imaginary line; i.e. γ̃ ⊂ E1/2. Since Ex ⊂ C>0, we also obtain
that γ ⊂ E1/2. �

It follows from Lemma A.5 that if J ⊂ ∂D is a concatenation of subintervals
J1#J2 and I ⊂ ∂D, then

(A.7) W−(I, J) =W−(I, J1) +W−(I, J2)−O(1).

A.2. Small overlapping of wide families. Many arguments in the near-degenerate
regime are based on the principle that wide families have a relatively small overlap.

A.2.1. Non-Crossing Principle. Consider a closed Jordan disk D and let

R1,R2 ⊂ D, ∂hR1, ∂
hR2 ⊂ ∂D, ∂hR1 ∩ ∂hR2 = ∅

be two rectangles. IfW(R1),W(R2) > 1, then R1,R2 do not cross-intersect : there
are vertical curves γ1 ∈ F(R1) and γ2 ∈ F(R2) with γ1∩γ2 = ∅. Indeed, assuming
otherwise, we obtain

1/W(R1) = mod(R1) ≥ W(R2)

by monotonicity of the external length.
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A.2.2. Vertical boundaries. The following lemma is a slight generalization of [KL1,
Lemma 2.14].

Lemma A.6. For every ε > 0 the following holds. Consider rectangles

G, R1,R2, . . . ,Rn ⊂ Ĉ, W(G), W(Ri) > 8n+ 2ε

such that the Ri are pairwise disjoint. Then after removing buffers of width at
most 4n + ε, we can assume that the new rectangles Gnew,Rnew

1 ,Rnew
2 , . . . ,Rnew

n

have disjoint vertical boundaries.

Proof. We need the following fact:

Lemma A.7 ([KL1, Lemma 2.13]). Consider two laminations Λ,G such that Λ is
a sublamination of the vertical foliation of a rectangle. If W(Λ) > κ and W(G) ≥
κ ≥ 1, then there is a curve ` ∈ G that intersects less than

1

κ
W(Λ) of curves in Λ.

Let G±,R±,n be the buffers of width 4n+ ε in G,Rn. Applying Lemma A.7, we
can select vertical curves γ−,n ∈ R−,n,γ+,n ∈ R+,n so that each γ±,n intersects less

than
1

4n
W(G− t G+) =

1

2n
W(G±) curves in G− t G+. Therefore, there are curves

β− ∈ G−, β+ ∈ G+ that are disjoint from all the γ±,n. We set β±, γ±,n to be the
vertical boundaries of Gnew,Rnew

1 ,Rnew
2 , . . . ,Rnew

n . �

A.2.3. Crossing an annulus. Let A ⊂ C be an annulus and G be a family of curves
such that every its curve starts in the unbounded component U of C \A. Then at
most 1/modA curves in G intersect the bounded component O of C \ A. Indeed,
every curve γ ∈ G intersecting O contains a subcurve γ′ connecting the inner and
outer boundaries of A. The width of such γ is at most 1/modA.

Lemma A.8. Let D ⊂ C be a closed Jordan disk and A,µ = modA be a closed
topological annulus such that the bounded component O of C \ A intersects ∂D.
Then for every rectangle

R ⊂ D such that ∂hR ⊂ D \ (A ∪O),

after removing two 1/µ-buffers from R, the new rectangle Rnew is disjoint from O.

We will need the following topological property:

Lemma A.9. Let D ⊂ C be a closed Jordan disk together with a rectangle

R ⊂ D, ∂hR ⊂ ∂D.
Let O ⊂ C \ ∂hR be a connected set intersecting ∂D \ ∂hR. If R intersects O, then
the set of vertical curves in R intersecting O forms either one or two buffers of
R. If, moreover, O intersects exactly one component of ∂D \ ∂hR, then the set of
vertical curves in R intersecting O forms a buffer of R.

Proof. If γ1, γ2 ∈ F(R) are two curves disjoint from O, then all vertical curves of
R between γ1 and γ2 are also disjoint from O – otherwise O would be enclosed by
∂hR∪ γ1 ∪ γ2. Therefore, the set of vertical curves intersecting O form one or two
buffers.

Assume there are two buffers. Then there will be a vertical curve γ ∈ F(R)\∂vR
that is disjoint from O. Since O is disjoint from γ ∪ ∂hR and since O intersects
both ∂v,`R, ∂v,ρR, the set O intersects both components of ∂D \ ∂hR. �
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Proof of Lemma A.8. At most 1/µ vertical curves in R can cross A and all such
curves form one or two buffers of R by Lemma A.9. �

A.2.4. Push-forwards. Suppose f : S1 → S2 is a branched covering between Rie-
mann surfaces of degree d. Let G be a family of curves in S1. Then, see [KL1,
Lemma 4.3]:

(A.8) W(f [G]) ≥ 1

d
W(G).

Covering Lemma [KL1] (stated as Lemma 8.5) allows one to push-forward width
of curves more efficiently.

Lemma A.10. Suppose g : A → B is a covering between either two closed annuli
or between punctured disks. Let R ⊂ A, ∂hR ⊂ ∂A be a rectangle in A such that g
maps ∂h,0R injectively onto g

(
∂h,0R

)
. Then after removing two 1-buffers from R,

the map g is injective on the new rectangle Rnew.

Proof. Write D := deg g. Since g is a normal covering, g has a group of deck
transformations; we denote by R0 = R,R1, . . . ,RD−1 the orbit of R under the
group of deck transformations. Since ∂h,0Ri are disjoint, all Rnew

i are disjoint.
(The last claim can be easily checked by lifting the Ri to the universal cover.)
Therefore, g | Rnew

0 is injective. �

A.3. Shift Argument. If a rectangleR has a conformal shiftR1 cross-intersecting
R, then W(R) ≤ 1, see Figure 30. Often, a weaker condition is sufficient: ∂h,0R is
disjoint from ∂hR1. Let us provide details. Consider a rectangle

R ⊂ C \ Z such that ∂hR ⊂ ∂Z
that has a conformal pullback or push-forward

R1 := f t(R)
1:1←− R, R1 ⊂ C \ Z, ∂hR1 ⊂ ∂Z

for t ∈ Z. Assume next that there is an interval T ( ∂Z containing b∂hRc∪b∂Rh1c
such that

∂h,0R < ∂h,1R, ∂h,0R1 < ∂h,1R1 in T

and f t maps ∂h,0R, ∂h,1R, b∂hRc onto ∂h,0R1, ∂
h,1R1, b∂hR1c. We say that R,R1

are linked if

(A.9)
either ∂h,0R1 < ∂h,0R < ∂h,1R1 or ∂h,0R < ∂h,0R1 < ∂h,1R
or ∂h,0R1 < ∂h,1R < ∂h,1R1 or ∂h,0R < ∂h,1R1 < ∂h,1R

holds.

Lemma A.11. If R is linked to its conformal pullback or push-forward R1 as
above, then W(R) ≤ 2.

Proof. Assume that ∂h,0R1 < ∂h,0R < ∂h,1R1 holds; the other cases are analogous.
Assume that W(R) > 2. Let Rnew be the rectangle obtained from R by removing
two 1-buffers on each side. Set Rnew

1 := f t(Rnew) ⊂ R1. Since ∂h,0Rnew ⊂ ∂h,0R
is disjoint from ∂hRnew

1 ⊂ ∂hR1, the new rectangles Rnew,Rnew
1 are disjoint. Since

f t maps ∂h,0Rnew, ∂h,1Rnew, b∂hRnewc onto ∂h,0Rnew
1 , ∂h,1Rnew

1 , b∂hRnew
1 c and all

the intervals are in T , we obtain

∂h,0R1 < ∂h,0R < ∂h,1R1 < ∂h,1R in T ;

i.e., Rnew,Rnew
1 intersect, compare with Figure 30. This is a contradiction. �
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∂h,0R ∂h,1R

R R1

Figure 30. If a rectangle R cross-intersects its conformal image,
then W(R) ≤ 1.
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Brjuno type. Ann. Sci. Éc. Norm. Sup., v. 52 (2019), 59–138.

[Ch2] D. Cheraghi. Topology of irrationally indifferent attractors. arXiv:1706.02678.
[ChC] D. Cheraghi and A. Cheritat. A proof of the Marmi-Moussa-Yoccoz conjecture for rotation

numbers of high type. Invent. Math. 202, no. 2, pp. 677–742, 2015.

[Che] A. Cheritat. Near parabolic renormalization for unicritical holomorphic maps.
arXiv:1404.4735.

[Chi] D. K. Childers. Are there critical points on the boundaries of mother hedgehogs? Holo-

morphic dynamics and renormalization, Fields Inst. Commun., 53 (2008), 75–87.
[CS] D. Cheraghi and M. Shishikura. Satellite renormalization of quadratic polynomials.

arXiv:1509.0784
[D1] A. Douady. Disques de Siegel et anneaux de Herman. In Séminaire Bourbaki, Astérisque,
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Norm. Sup., v. 18 (1985), 287 – 343.
[DL] D. Dudko and M. Lyubich. Local connectivity of the Mandelbrot set at some satellite

parameters of bounded type. arXiv:1808.10425

[DLS] D. Dudko, M. Lyubich, and N. Selinger. Pacman renormalization and self-similarity of

the Mandelbrot set near Siegel parameters. Journal of the AMS, 33 (2020), 653-733.
[dF] E. de Faria. Asymptotic rigidity of scaling ratios for critical circle maps. Erg. Th. and

Dyn. Syst., v. 19 (1999), 995–1035.
[GY] D. Gaidashev and M. Yampolsky. Renormalization of almost commuting pairs. Invent.

math. 221 (2020), 203–236 .

[H] M. Herman. Conjugaison quasi symmétrique des difféomorphisms du cercle à des rota-
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