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Abstract12

In this paper, we study efficient parallel edit distance algorithms, both in theory and in practice.13

Given two strings A[1..n] and B[1..m], and a set of operations allowed to edit the strings, the14

edit distance between A and B is the minimum number of operations required to transform A15

into B. In this paper, we use edit distance to refer to the Levenshtein distance, which allows16

for unit-cost single-character edits (insertions, deletions, substitutions). Sequentially, a standard17

Dynamic Programming (DP) algorithm solves edit distance with Θ(nm) cost. In many real-world18

applications, the strings to be compared are similar to each other and have small edit distances.19

To achieve highly practical implementations, we focus on output-sensitive parallel edit-distance20

algorithms, i.e., to achieve asymptotically better cost bounds than the standard Θ(nm) algorithm21

when the edit distance is small. We study four algorithms in the paper, including three algorithms22

based on Breadth-First Search (BFS), and one algorithm based on Divide-and-Conquer (DaC). Our23

BFS-based solution is based on the Landau-Vishkin algorithm. We implement three different data24

structures for the longest common prefix (LCP) queries needed in the algorithm: the classic solution25

using parallel suffix array, and two hash-based solutions proposed in this paper. Our DaC-based26

solution is inspired by the output-insensitive solution proposed by Apostolico et al., and we propose27

a non-trivial adaption to make it output-sensitive. All of the algorithms studied in this paper have28

good theoretical guarantees, and they achieve different tradeoffs between work (total number of29

operations), span (longest dependence chain in the computation), and space.30

We test and compare our algorithms on both synthetic data and real-world data, including DNA31

sequences, Wikipedia texts, GitHub repositories, etc. Our BFS-based algorithms outperform the32

existing parallel edit-distance implementation in ParlayLib in all test cases. On cases with fewer33

than 105 edits, our algorithm can process input sequences of size 109 in about ten seconds, while34

ParlayLib can only process sequences of sizes up to 106 in the same amount of time. By comparing35

our algorithms, we also provide a better understanding of the choice of algorithms for different36

input patterns. We believe that our paper is the first systematic study in the theory and practice of37

parallel edit distance.38
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1 Introduction47

Given two strings (sequences) A[1..n] and B[1..m] over an alphabet Σ and a set of operations48

allowed to edit the strings, the edit distance between A and B is the minimum number of49

operations required to transform A into B. WLOG, we assume m ≤ n. The most commonly50

used metric is the Levenshtein distance which allows for unit-cost single-character edits51

(insertions, deletions, substitutions). In this paper, we use edit distance to refer to the52

Levenshtein distance. We use k to denote the edit distance for strings A and B throughout53

this paper. Edit distance is usually used to measure the similarity of two strings (a smaller54

distance means higher similarity).55

Edit distance is a fundamental problem in computer science, and is introduced in most56

algorithm textbooks (e.g., [14, 15, 23]). In practice, it is widely used in version-control57

software [54], computational biology [12, 31, 39], natural language processing [10, 29], and58

spell corrections [28]. It is also closely related to other important problems such as longest59

common subsequence (LCS) [50], longest increasing subsequence (LIS) [34], approximate60

string matching [56], and multi-sequence alignment [59]. The classic dynamic programming61

(DP) solution can compute edit distance in O(nm) work (number of operations) between62

two strings of sizes n and m. This complexity is impractical if the input strings are large.63

One useful observation is that, in real-world applications, the strings to be compared are64

usually reasonably similar, resulting in a relatively small edit distance. For example, in many65

version-control softwares (e.g., Git), if the two committed versions are similar (within a66

certain number of edits), the “delta” file is stored to track edits. Otherwise, if the difference67

is large, the system directly stores the new version. Most of the DNA or genome sequence68

alignment applications also only focus on when the number of edits is small [39]. We say69

an edit distance algorithm is output-sensitive if the work is o(nm) when k = o(n). Many70

more efficient and/or practical algorithms were proposed in this setting with cost bounds71

parameterized by k [19, 20, 21, 22, 26, 35, 36, 37, 46, 47, 49].72

Considering the ever-growing data size and plateaued single-processor performance, it is73

crucial to consider parallel solutions for edit distance. Although the problem is simple and74

well-studied in the sequential setting, we observe a huge gap between theory and practice75

in the parallel setting. The few implementations we know of [7, 55, 58] simply parallelize76

the O(nm)-work sequential algorithm and require O(n) span (longest dependence chain),77

which indicates low-parallelism and redundant work when k ≪ n. Meanwhile, numerous78

theoretical parallel algorithms exist [1, 3, 20, 37, 41, 48], but it remains unknown whether79

these algorithms are practical (i.e., can be implemented with reasonable engineering effort),80

and if so, whether they can yield high performance. The goal of this paper is to formally81

study parallel solutions for edit distance. By carefully studying existing theoretical solutions,82

we develop new output-sensitive parallel solutions with good theoretical guarantees83

and high performance in practice. We also conduct in-depth experimental studies on84

existing and our new algorithms.85

The classic dynamic programming (DP) algorithm solves edit distance by using the states86

G[i, j] as the edit distance of transforming A[1..i] to B[1..j]. G[i, j] can be computed as:87

G[i, j] =
{

G[i − 1, j − 1] if A[i] = B[j] and i > 0, j > 0
1 + min(G[i − 1, j], G[i − 1, j − 1], G[i, j − 1]) otherwise

88

G[i, j] = max(i, j) if i = 0 or j = 089
90

A simple parallelization of this computation is to compute all states with the same i + j91

value in parallel, and process all i + j values in an incremental order [7, 55, 58]. However,92
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46:2 Efficient Parallel Output-Sensitive Edit Distance

Algorithm Work Span Space∗ Algorithm Work Span Space∗

BFS-SA O(n + k2) Õ(k) O(n) BFS-Hash∗ O(n + k2 log n) Õ(k) O(n)
DaC-SD O(nk log k) Õ(1) O(nk) BFS-B-Hash∗ O(n + k2b log n) Õ(kb) O(n/b + k)

Table 1 Algorithms in this paper. k is the edit distance. b is the block size. ∗: Monte Carlo
algorithms due to the use of hashing. “Space∗” means auxiliary space used in addition to the input.
Here we assume constant alphabet size for BFS-SA.

this approach has low parallelism as it requires n + m rounds to finish. Later work [1, 3, 41]93

improved parallelism using a divide-and-conquer (DaC) approach and achieved Õ(n2)94

work and polylog(n) span. These algorithms use the monotonicity of the DP recurrence, and95

are complicated. There are two critical issues in the DaC approaches. First, to the best of96

our knowledge, there exist no implementations given the sophistication of these algorithms.97

Second, they are not output-sensitive (Õ(nm) work), which is inefficient when k ≪ n.98

Alternatively, many existing solutions, both sequentially [19, 20, 21, 22, 26, 35, 36, 46, 47]99

and in parallel [20, 37] use output-sensitive algorithms, and achieve Õ(nk) or Õ(n + k2) work100

and Õ(k) span. These algorithms view DP table as a grid-like DAG, where each state (cell)101

(x, y) has three incoming edges from (x−1, y), (x, y −1), and (x−1, y −1) (if they exist). The102

edge weight is 0 from (x − 1, y − 1) to (x, y), when A[x] = B[y], and 1 otherwise. Then edit103

distance is equivalent to the shortest path from (0, 0) to (n, m). An example is given in Fig. 1.104

Since the edge weights can only be 0 or 1, we can use breadth-first search (BFS) from the105

cell (0, 0) until (n, m) is reached. Ukkonen [56] further showed that using longest common106

prefix (LCP) queries based on suffix trees or suffix arrays, the work can be improved to107

O(n + k2). Landau and Vishkin [37] parallelized this algorithm (see Sec. 3). While the108

sequential output-sensitive algorithms have been widely used in practice [21, 26, 36, 46, 47],109

we are unaware of any existing implementations for the parallel version.110

We systematically study parallel output-sensitive edit distance, using both the BFS-based111

and the DaC-based approaches. Our first effort is to implement the BFS-based Landau-112

Vishkin algorithm with our carefully-engineered parallel suffix array (SA) implementation,113

referred to as BFS-SA. Although suffix array is theoretically efficient with O(n) construction114

work, the hidden constant is large. Thus, we use hashing-based solutions to replace SA for115

LCP queries to improve the performance in practice. We first present a simple approach116

BFS-Hash in Sec. 3.2 that stores a hash value for all prefixes of the input. This approach117

has O(n) construction work, O(log n) per LCP query, and O(n) auxiliary space. While both118

BFS-SA and BFS-Hash take O(n) extra space, such space overhead can be significant in119

practice—for example, BFS-Hash requires n 64-bit hash values, which is 4× the input size120

considering characters as inputs, and 32× with even smaller alphabet such as molecule bases121

(alphabet as {A, C, G, T }). To address the space issue, we proposed BFS-B-Hash using122

blocking. Our solution takes a user-defined parameter b as the block size, which trades off123

between space usage and query time. BFS-B-Hash limits extra space in O(n/b) by using124

O(b log n) LCP query time. Surprisingly, despite a larger LCP cost, our hash-based solutions125

are consistently faster than BFS-SA in all real-world test cases, due to cheaper construction.126

All of our BFS-based solutions are simple to program.127

We also study the DaC-based approach and propose a parallel output-sensitive solution.128

We propose a non-trivial adaption for the AALM algorithm [1] to make it output-sensitive.129

Our algorithm is inspired by the BFS-based approaches, and improves the work from Õ(nm)130

to Õ(nk), with polylogarithmic span. The technical challenge is that the states in the131

computation are no longer a rectangle, but an irregular shape (see Fig. 1 and 3). We then132

present a highly non-trivial implementation of this algorithm. Among many key challenges,133

we highlight our solution to avoid dynamically allocating arrays in the recursive execution.134
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While memory allocation is mostly ignored theoretically, in practice it can easily be the135

performance bottleneck in the parallel setting. We refer to this implementation as DaC-SD,136

with details given in Sec. 4 and 5.2 and the full version of this paper [16].137

The bounds of our algorithms (BFS-SA, BFS-Hash, BFS-B-Hash, and DaC-SD) are138

presented in Tab. 1. We implemented them and show an experimental study in Sec. 6. We139

tested both synthetic and real-world datasets, including DNA, English text from Wikipedia,140

and code repositories from GitHub, with string lengths in 105–109 and varying edit distances,141

many of them with real edits (e.g., edit history from Wikipedia and commit history on142

GitHub). In most tests, our new BFS-B-Hash or BFS-Hash performs the best, and143

their relative performance depends on the value of k and the input patterns. Our BFS-144

based algorithms are faster than the existing parallel output-insensitive implementation in145

ParlayLib [7], even with a reasonably large k ≈ 105. We believe that our paper is the first146

systematic study in theory and practice of parallel edit distance, and we give the first publicly147

available parallel edit distance implementation that can process billion-scale strings with148

small edit distance and our code at [17]. Due to page limit, some details are provided in the149

full version of this paper [16]. We summarize our contributions as follows:150

1. Two new BFS-based edit distance solutions BFS-Hash and BFS-B-Hash using hash-151

based LCP queries. Compared to the existing SA-based solution in Landau-Vishkin,152

our hash-based solutions are simpler and more practical. BFS-B-Hash also allows for153

tradeoffs between time and auxiliary space.154

2. A new DaC-based edit distance solution DaC-SD with O(nk log k) work and polylogar-155

ithmic span.156

3. New implementations for four output-sensitive edit distance algorithms: BFS-SA, BFS-157

Hash, BFS-B-Hash and DaC-SD. Our code is publicly available[17].158

4. Experimental study of the existing and our new algorithms on different input patterns.159

2 Preliminaries160

We use O(f(n)) with high probability (whp) (in n) to mean O(cf(n)) with probability at161

least 1 − n−c for c ≥ 1. We use Õ(f(n)) to denote O(f(n) · polylog(n)). For a string A, we162

use A[i] as the i-th character in A. We use string and sequence interchangeably. We use163

A[i..j] to denote the i-th to the j-th characters in A, and A[i..j) the i-th to the (j − 1)-th164

characters in A. Throughout the paper, we use “auxiliary space” to mean space used in165

addition to the input.166

String Edit Distance. Given two strings A[1..n] and B[1..m], Levenshtein’s Edit Dis-167

tance [38] between A and B is the minimum number of operations needed to convert A to B168

by using insertions, deletions, and substitutions. We also call the operations edits. In this169

paper, we use edit distance to refer to Levenshtein’s Edit Distance. The classic dynamic170

programming (DP) algorithm for edit distance uses DP recurrence shown in Sec. 1 with171

O(mn) work and space.172

Hash Functions. For the simplicity of algorithm descriptions, we assume a perfect hash173

function for string comparisons, i.e., a function h : S → [1, O(|S|)] such that h(x) = h(y) ⇐⇒174

x = y. For any alphabet Σ with size |α|, we use a hash function h(A[l..r]) =
∑r

i=l A[i] × pr−i
175

for some prime numbers p > |α|, which returns a unique hash value of the substring A[l..r].176

The hash values of two consecutive substrings S1 and S2 can be concatenated as h([S1, S2]) =177

h(S1) ·p|S2| +h(S2), and the inverse can also be computed as h(S2) = h([S1, S2])−p|S2| ·h(S1).178

For simplicity, we denote concatenation and its inverse operation as ⊕ and ⊖, respectively, as179

h([S1, S2]) = h(S1) ⊕ h(S2) and h(S2) = h([S1, S2]) ⊖ h(S1). We assume perfect hashing for180
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46:4 Efficient Parallel Output-Sensitive Edit Distance

theoretical analysis. In practice, we use p as a large prime and modular arithmetic to keep181

the word-size hash values. In our experiment, we compare different approaches and validate182

that our implementations are correct in all test cases. However, collisions are possible for183

other datasets, since different strings may be mapped to the same hash value. If such cases184

arise, one can either use multiple hash functions for a better success rate in practice, or use185

the idea of Hirschberg’s algorithm [27] to generate the edit sequence and run a correctness186

check (and restart with another hash function if failed).187

Longest Common Prefix (LCP). For two sequences A[1..n] and B[1..m], the Longest188

Common Prefix (LCP) query at position x in A[1..n] and position y in B[1..m] is the longest189

substring starting from A[x] that match a prefix starting from B[y]. With clear context, we190

also use the term “LCP” to refer to the length of the LCP, i.e., LCP(A, B, x, y) is the length191

of the longest common prefix substring starting from A[x] and B[y] for A and B.192

Computational Model. We use the work-span model in the classic multithreaded model193

with binary-forking [2, 8, 9]. We assume a set of threads that share the memory. Each194

thread acts like a sequential RAM plus a fork instruction that forks two child threads running195

in parallel. When both child threads finish, the parent thread continues. A parallel-for is196

simulated by fork for a logarithmic number of steps. A computation can be viewed as a197

DAG (directed acyclic graph). The work W of a parallel algorithm is the total number198

of operations, and the span (depth) S is the longest path in the DAG. The randomized199

work-stealing scheduler can execute such a computation in W/P + O(S) time whp in W on200

P processors [2, 9, 25].201

Suffix Array. The suffix array (SA) [42] is a lexicographically sorted array of the suffixes of202

a string, usually used together with the longest common prefix (LCP) array, which stores203

the length of LCP between every adjacent pair of suffixes. The SA and LCP array can be204

built in parallel in O(n) work and O(log2 n) span whp [32, 53].205

In edit distance, we need the LCP query between A[x..n] and B[y..m] for any x and y.206

This can be computed by building the SA and LCP arrays for a new string C[1..n + m]207

that concatenates A[1..n] and B[1..m]. The LCP between any pair of suffixes in C can be208

computed by a range minimum query (RMQ) on the LCP array, which can be built in209

O(n + m) work and O(log(n + m)) span [8]. Combining all pieces gives the following theorem:210

▶ Lemma 1. Given two strings A[1..n] and B[1..m], using a suffix array, the longest common211

prefix (LCP) between any two substrings A[x..n] and B[y..m] can be reported in O(1) work212

and span, with O(n + m) preprocessing work and O(log2(n + m)) span whp.213

3 BFS-based Algorithms214

3.1 Overview of Existing Sequential and Parallel BFS-based Algorithms215

Many existing output-sensitive algorithms [19, 20, 21, 22, 26, 35, 36, 37, 46, 47] are based216

on breadth-first search (BFS). These algorithms view the DP matrix for edit distance as a217

DAG, as shown in Fig. 1. In this section, we use x and y to denote the row and column218

ids of the cells in the DP matrix, respectively. Each state (cell) (x, y) has three incoming219

edges from (x − 1, y), (x, y − 1), and (x − 1, y − 1) (if they exist). The edge weight is 0 from220

(x − 1, y − 1) to (x, y) when A[x] = B[y], and 1 otherwise. Then edit distance is equivalent221

to the shortest distance from (0, 0) to (n, m).222

Since the edge weights are 0 or 1, we can use a special breadth-first search (BFS) to223

compute the shortest distance. In round t, we process states with edit distance t. The224
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Frontier 0: f0[0]=3, the cell on diagonal 0 is (3,3)

Frontier 1: f1[-1]=4, f1[0]=4, f1[1]=4 [(4,3),(4,4),(4,5)]

Frontier 2: f2[-2]=4, f2[-1]=5, f2[0]=6, f2[1]=5, f2[2]=7

Frontier 3: f3[0]=3, the others are invalid

Diagonal 0
Diagonal 1 / −1
Diagonal 2 / −2

0 Frontier 0

1 Frontier 1

2 Frontier 2

3 Frontier 3

BFS Path (successful)

BFS Path (unsuccessful)

1 2 3 …  Not explored

Figure 1 BFS-based edit distance on
A[1..n] and B[1..m]. A more detailed descrip-
tion is in the full version [16]. ft[i] is the row-id
of the last cell on diagonal i with edit distance t

(frontier t), representing cell (ft[i], ft[i]− i).

Algorithm 1 BFS-based parallel edit dis-
tance [37]

1 f0[0]←LCP(A[1..n], B[1..m]) // Starting point
2 t← 0
3 while ft[n−m] ̸= n do
4 t← t + 1

// Find new frontier for diagonal i
5 parallel-for-each −t ≤ i ≤ t do
6 ft[i]← ft−1[i] // Start from the last cell
7 foreach ⟨dx, dy⟩ ∈ {⟨0, 1⟩, ⟨1, 0⟩, ⟨1, 1⟩} do

// The previous cell is from diagonal j
// j = (x− dx)− (y − dy) = i− dx + dy

8 j ← i− dx + dy
9 if |j| ≤ t− 1 then

10 The row id x← ft−1[j] + dx
11 The column id y ← x− i

// Skip the common prefix
12 x← x+LCP(A[x + 1..n], B[y + 1..m])

// Keep the largest row id
13 ft[i]← max(ft[i], x)
14 return t

algorithm terminates when we reach cell (n, m). First observed by Ukkonen [56], in the225

BFS-based approach, not all states need to be visited. For example, all states with |x−y| > k226

will not be reached before we reach (n, m) with edit distance k, since they require more than227

k edits. Thus, this BFS will touch at most O(kn) cells, leading to O(kn) work.228

Another key observation is that starting from any cell (x, y), if there are diagonal edges229

with weight 0, we should always follow the edges until a unit-weight edge is encountered.230

Namely, we should always find the longest common prefix (LCP) from A[x + 1] and B[y + 1],231

and skip to the cell at (x + p, y + p) with no edit, where p is the LCP length. This idea is232

used in Landau and Vishkin [37] on parallel approximate string matching, and we adapt this233

idea to edit distance here. Using the modified parallel BFS algorithm by Landau-Vishkin [37]234

(shown in Alg. 1), only O(k2) states need to be processed—on each diagonal and for each235

edit distance t, only the last cell with t edits needs to be processed (see Fig. 1). Hence,236

the BFS runs for k rounds on 2k + 1 diagonals, which gives the O(k2) bound above. In237

the BFS algorithm, we can label each diagonal by the value of x − y. In round t, the BFS238

visits a frontier of cells ft[·], where ft[i] is the cell with edit distance t on diagonal i, for239

−t ≤ i ≤ t. We present the algorithm in Alg. 1 and an illustration in Fig. 1. Note that in240

the implementation, we only need to maintain two frontiers (the previous and the current241

one), which requires O(k) space. We provide more details about this algorithm in the full242

version [16]. If the LCP query is supported by suffix arrays, we can achieve O(n + k2) work243

and O(log n + k log k) span for the edit distance algorithm.244

Algorithm Based on Suffix Array (BFS-SA). Using the SA algorithm in [32] and the LCP245

algorithm in [53] for Landau-Vishkin gives the claimed bounds in Tab. 1. We present details246

about our SA implementation in Sec. 5.1.247

3.2 Algorithm Based on String Hashing (BFS-Hash)248

Although BFS-SA is theoretically efficient with O(n) preprocessing work to construct the249

SA, the hidden constant is large. For better performance, we consider string hashing as an250

alternative for SA. Similar attempts (e.g., locality-sensitive hashing) have also been used in251

approximate pattern matching problems [43, 44]. In our pursuit of exact output-sensitive252
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edit distance computation, we draw inspiration from established string hashing algorithms,253

such as the Rabin-Karp algorithm (also known as rolling hashing) [33]. We will first present254

a simple hash-based solution BFS-Hash with O(n) preprocessing cost and O(n) auxiliary255

space. Then later in Sec. 3.3, we will present BFS-B-Hash, which saves auxiliary space by256

trading off more work in LCP queries.257

As mentioned in Sec. 2, the hash function h(·) maps any substring A[l..r] to a unique hash258

value, which provides a fingerprint for this substring in the LCP query. The high-level idea259

is to binary search the query length, using the hash value as validation. We precompute the260

hash values for all prefixes, i.e., TA[x] = h(A[1..x]) for the prefix substring A[1..x] (similar261

for B). They can be computed in parallel by using any scan (prefix-sum) operation [6] with262

O(n) work and O(log n) span. We can compute h(A[l..r]) by TA[r] ⊖ TA[l − 1].263

With the preprocessed hash values, we dual binary search the LCP of A[x..n] and B[y..m].264

We compare the hash values starting from A[x] and B[y] with chunk sizes of 1, 2, 4, 8, . . . ,265

until we find value l, such that A[x..x+2l) = B[y..y +2l), but A[x..x+2l+1) ̸= B[y..y +2l+1).266

By doing this with O(log n) work, we know that the LCP of A[x..n] and B[y..m] must have267

a length in the range [2l, 2l+1). We then perform a regular binary search in this range,268

which costs another O(log n) work. This indicates O(log n) work in total per LCP query.269

Combining the preprocessing and query costs, we present the cost bounds of BFS-Hash:270

▶ Theorem 2. BFS-Hash computes the edit distance between two sequences of length n and271

m ≤ n in O(n + k2 log n) work, Õ(k) span, and O(n) auxiliary space, where k is the output272

size (fewest possible edits).273

BFS-Hash is simple and easy to implement. Our experimental results indicate that its274

simplicity also allows for a reasonably good performance in practice for most real-world275

input instances. However, this algorithm uses n 64-bit integers as hash values, and such276

space overhead may be a concern in practice. This is more pronounced when the input is277

large and/or the alphabet is small (particularly when each input element can be represented278

with smaller than byte size), as the auxiliary space can be much larger than the input279

size. This concern also holds for BFS-SA as several O(n)-size arrays are needed during SA280

construction. Note that for shared-memory parallel algorithms, space consumption is also a281

key constraint—if an algorithm is slow, we can wait for longer; but if data (and auxiliary282

data) do not fit into the memory, then this algorithm is not applicable to large input at283

all. In this case, the problem size that is solvable by the algorithm is limited by the space284

overhead, which makes the improvement from parallelism much narrower. Below we will285

discuss how to make our edit distance algorithms more space efficient.286

3.3 Algorithm Based on Blocked-Hashing (BFS-B-Hash)287

In this section, we introduce our BFS-B-Hash algorithm that provides a more space-efficient288

solution by trading off worst-case time (work and span). Interestingly, we observed that on289

many data sets, BFS-B-Hash can even outperform BFS-Hash and other opponents due to290

faster construction time, and we will analyze that in Sec. 6.291

To achieve better space usage, we divide the strings into blocks of size b. As such, we292

only need to store the hash values for prefixes of the entire blocks h(A[1..b]), h(A[1..2b]), · · · ,293

h(A[1..⌊(n/b)⌋ · b]). Our idea of blocking is inspired by many string algorithms (e.g., [4]).294

Using this approach, we only need auxiliary space to store O(n/b) hash values, and thus295

we can control the space usage using the parameter b. To compute these hash values, we296

will first compute the hash value for each block, and run a parallel scan (prefix sum on297
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Input 𝐴[1. . 𝑛] 𝐴[1] 𝐴[2] 𝐴[3] 𝐴 4 𝐴[5] 𝐴[6] 𝑨[𝟕] 𝑨[𝟖] 𝑨[𝟗] 𝑨[𝟏𝟎] 𝑨[𝟏𝟏] 𝑨[𝟏𝟐] 𝑨[𝟏𝟑] 𝐴[14] 𝐴[15] 𝐴[16]

𝑇 1 : hash value up to block 1
𝑇 2 : hash value up to block 2

E.g., Finding hash 
value of 𝑨[𝟕. . 𝟏𝟑]

Hash value before 𝐴[7]: ℎ! = 𝑇 1 ⊕𝐴 5 ⊕𝐴[6] Hash value at 𝐴[13]: 
ℎ" = 𝑇 3 ⊕𝐴 13

Hash value of 𝑨[𝟕. . 𝟏𝟑]: 𝒉𝟐⊖𝒉𝟏

𝑇 3 : hash value up to block 3
Prefix Table𝑇[1. . !

"
]

Figure 2 The illustrations of prefix table values and one specific query, with key
concepts shown when computing the hash value of a range using a prefix table.

Algorithm 2 The prefix table for finding the longest common prefix of A[1..n] and B[1..m]

1 // Table construction
2 Function Construct(A, B)
3 TA[·]←Build(A)
4 TB [·]←Build(B)

// The prefix table building process
5 Function Build(A)
6 w ← ⌊|A|/b⌋
7 T [0]← 0
8 parallel-for-each j ← 1 to w do
9 T [j]← h(A[(j − 1)b + 1 .. jb])

10 Scan(T )
11 return T [·]

// Get hash value for prefix sub-
// sequence A[1..x]

12 Function GetHash(A, TA, x)
13 if x = 0 then return 0
14 r ← ⌊(x− 1)/b + 1⌋
15 h̄← TA[r]
16 for i← r · b + 1 to x do
17 h̄← h̄⊕ h(A[i])
18 return h̄

// Compare the subsequences A[x..x + l] and B[y..y + l]
19 Function Compare(A, B, x, y, l)
20 hA ← GetHash(A, TA, x+ l)⊖GetHash(A, TA, x−1)
21 hB ← GetHash(B, TB , y + l)⊖GetHash(B, TB , y−1)
22 return hA = hB

// Longest Common Prefix from A[x] and B[y]
23 Function LCP(A, B, x, y)
24 l1 ← 0

// Find l1, s.t. the LCP is between 2l1 to 2l1+1

blocks
25 while x + 2l1 < n and y + 2l1 < m do
26 if Compare(A, B, x, y, l1) = false then break
27 l1 ← l1 + 1

// Trivial binary search process on the range
[2l1 , 2l1+1)

28 s← 2l1 , t← 2l1+1

29 while s < t do
30 if Compare(A, B, x, y, ⌊(s + t)/2⌋) = false then
31 t← ⌊(s + t)/2⌋
32 else s← ⌊(s + t)/2⌋+ 1
33 return s

⊕) on the hash values for all the blocks. Similar to the above, we refer to these arrays as298

TA[i] = h(A[1..ib]) (and TB [i] accordingly), and call them prefix tables.299

We now discuss how to run LCP with only partial hash values available. The LCP300

function in Alg. 2 presents the process to find the LCP of A[x..n] and B[y..m] using the301

prefix tables. We present an illustration in Fig. 2. We will use the same dual binary search302

approach to find the LCP of two strings. Since we do not store the hash values for all303

prefixes, we use a function GetHash(A, TA, x) to compute h(A[1..x]). We can locate the304

closest precomputed hash value and use r as the previous block id before x. Then the hash305

value up to block r is simply h̄ = TA[r]. We then concatenate the rest characters to the hash306

value (i.e., return h̄ ⊕ h(A[rb + 1]) ⊕ · · · ⊕ h(A[x])). In this way, we can compute the hash307

value of any prefixes for both A and B, and plug this scheme into the dual binary search in308

BFS-Hash. In each step of dual binary search, the concatenation of hash value can have at309

most b steps, and thus leads to a factor of b overhead in query time than BFS-Hash.310

▶ Theorem 3. BFS-B-Hash computes the edit distance between two sequences of length311

n and m ≤ n in O(n + k2 · b log n) work and Õ(kb) span, using O(n/b + k) auxiliary space,312

where k is the output size (fewest possible edits).313

The term k in space usage is from the BFS (each frontier is at most size O(k)). O(b log n)314

is the work for each LCP query. Note that this is an upper bound—if the LCP length L is315

small, the cost can be significantly smaller (a tighter bound is O(min(L, b log L))). Sec. 6316

will show that for normal input strings where the LCP lengths are small in most queries,317
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Figure 3 The illustrations of the key concepts and notation in the AALM algorithm
described in Sec. 4.

the performance of BFS-B-Hash is indeed the fastest, although for certain input instances318

when the worst case is reached, the performance is not as good.319

4 The Divide-and-Conquer Algorithms320

Our parallel output-sensitive algorithm DaC-SD is inspired by the AALM algorithm [1],321

and also uses it as a subroutine. We first overview the AALM algorithm, and introduce our322

algorithm in details. We assume m = n is a power of 2 in this section for simple descriptions,323

but both our algorithm and AALM work for any n and m.324

The AALM Algorithm. As described above, the edit distance problem can be considered as325

a shortest distance (SD) problem from the top-left cell (0, 0) to the bottom-right cell (n, n) in326

the DP matrix G. Instead of directly computing the SD from (0, 0) to (n, n), AALM computes327

pairwise SD between any cell on the left/top boundaries and the bottom/right boundaries328

(i.e., those on L ∪ U to W ∪ R in Fig. 3(a)). We relabel all cells in L ∪ U as a sequence329

v = {v0, v1, . . . v2n} (resp., W ∪ R as u = {u0, u1 · · · , u2n}), as shown in Fig. 3. Therefore,330

for the DP matrix G, the pairwise SD between v and u forms a (2n+1)× (2n+1) matrix. We331

call it the SD matrix of G, and denote it as DG. AALM uses a divide-and-conquer approach.332

It first partitions G into four equal submatrices G1, G2, G3, and G4 (See Fig. 3(b)), and333

recursively computes the SD matrices for all Gi. We use Di to denote the SD matrix for Gi.334

In the “conquer” step, the AALM algorithm uses a Combine subroutine to combine two SD335

matrices into one if they share a common boundary (our algorithm also uses this subroutine).336

For example, consider combining G1 and G2. We still use vi and uj to denote the cells on the337

left/top and bottom/right boundaries of
(

G1
G2

)
(see Fig. 3(c)), and denote the cells on the338

common boundary of G1 and G2 as w1, · · · , wn/2, ordered from left to right. For any pair vi339

and uj , if they are in the same submatrix, we can directly get the SD from the corresponding340

SD matrix. Otherwise, WLOG assume vi ∈ G1 and uj ∈ G2, then we compute the SD341

between them by finding minl D1[i, l] + D2[l, j], i.e., for all wl on the common boundary, we342

attempt to use the SD between vi to wl, and wl to uj , and find the minimum one. Similarly,343

we can combine D3 with D4, and D1∪2 with D3∪4, and eventually get DG. We note that the344

Combine algorithm, even theoretically, is highly involved. At a high level, it uses the Monge345

property of the shortest distance (the monotonicity of the DP recurrence), and we refer346

the readers to [1] for a detailed algorithm description and theoretical analysis. In Sec. 5.2,347

we highlight a few challenges and our solutions for implementing this highly complicated348

algorithm. Theoretically, combining two n × n SD matrices can be performed in O(n2) work349

and O(log2 n) span, which gives O(n2 log n) work and O(log3 n) span for AALM.350
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Algorithm 3 Divide-and-Conquer edit distance algorithm on A[1..n] and B[1..n].

1 Notes: We assume both A and B has size
n = 2c for simple description. Our
algorithm also works for strings with
different lengths with minor changes.

2 Function DaC-SD
3 t← 1
4 while true do
5 D ← Check(t)
6 if D[t][t] ≤ t then break
7 t← min(2t, n)
8 return D[t][t]

// Find the SD in the DP matrix from (0, 0)
to (n, n) by restricting in the diagonal stripe
with width t

9 Function Check(t)
10 D ←GetDistance(0, 0, n, t)

Function GetDistance(i, j, n, t)
if n/2 < t then

Computed D by the AALM algorithm
return D

// Compute the SD matrices for
G1, G2, G3, G4 (as shown in Fig. 3 (d)).

11 D1 ← GetDistance(i, j, n/2, t)
12 Compute D2 and D3 by the AALM al-

gorithm
13 D4 ← GetDistance(i + n/2, j + n/2, n−

n/2, t)
// use the same Combine function as

AALM
14 D1∪2 ← Combine(D1, D2)
15 D3∪4 ← Combine(D3, D4)
16 D ← (D1∪2, D3∪4)
17 return D

Our algorithm. The AALM algorithm has Õ(n2) work (Õ(nm) if n ̸= m) and polylogar-351

ithmic span, which is inefficient in the output-sensitive setting. As mentioned in Sec. 3.1,352

only a narrow width-O(k) diagonal area in G is useful (Fig. 3(d)). We thus propose an353

output-sensitive DaC-SD algorithm adapted from the AALM algorithm. We follow the354

same steps in AALM, but restrict the paths to the diagonal area, although the exact size is355

unknown ahead of time. We first present the algorithm to compute the shortest distance356

on the diagonal region with width 2t + 1 as function Check(t) in Alg. 3, which restricts the357

search in diagonals −t to t. First, we divide such a region into four sub-regions (see Fig. 3(d)).358

Two of them (G1 and G4) are of the same shape, and the other two of them (G2 and G3)359

are triangles. For G2 and G3, we use the AALM algorithm to compute their SD matrices by360

aligning them to squares. For G1 and G4, we process them recursively, until the base case361

where the edge length of the matrix is smaller than t and they degenerate to squares, in362

which case we apply the AALM algorithm. Note that even though the width-(2t+1) diagonal363

stripe is not a square (G1 and G4 are also of the same shape), the useful boundaries are still364

the left/top and bottom/right boundaries (L ∪ U and W ∪ R in Fig. 3(d)). Therefore, we365

can use the same Combine algorithm as in AALM to combine the SD matrices. For example,366

in Fig. 3(d), when combining G1 with G2, we obtain the pairwise distance between L ∪ U367

and R ∪ R′ using the common boundary W . We can similarly combine all G1, G2, G3, and368

G4 to get the SD matrix for G.369

However, the output value k is unknown before we run the algorithm. To overcome this370

issue, we use a strategy based on prefix doubling to “binary search” the value of k without371

asymptotically increasing the work of the algorithm. We start with t = 1, and run the372

Check(t) in Alg. 3 (i.e., restricting the search in a width-(2t + 1) diagonal). Assume that373

the Check function returns σ edits. If σ ≤ t, we know that σ is the SD from (0, 0) to (n, n),374

since allowing the path to go out of the diagonal area will result in an answer greater than t.375

Otherwise, we know σ > t, and σ is not necessarily the shortest distance from the (0, 0) to376

(n, n), since not restricting the path in the t-diagonal area may allow for a shorter path. If377

so, we double t and retry. Although we need O(log k) searches before finding the final answer378

k, we will show that the total search cost is asymptotically bounded by the last search. In379

the last search, we have t < 2k.380

We first analyze the cost for Check(t). It contains two recursive calls, two calls to AALM,381

and three calls to the Combine function. Therefore, the work for Check(t) is W (n) =382
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2W (n/2) + O(t2 log t), with base cases W (t) = t2 log t, which solves to W (n) = O(nt log t).383

For span, note that there are log(n/t) levels of recursion before reaching the base cases. In384

each level, the Combine function combines t × t SD matrices with O(log2 t) span. In the leaf385

level, the base case uses AALM with O(log3 t) span. Therefore, the total span of a Check is:386

O(log n/t · log2 t + (log n/t + log3 t)) = O(log2 t · (log n/t + log t)) = O(log2 t log n) (1)387

We will apply Check(·) for O(log k) times, with t = 1, 2, 4, . . . up to at most 2k. Therefore, the388

total work is dominated by the last Check, which is O(nk log k). The span is O(log n log3 k).389

▶ Theorem 4. The DaC-SD algorithm computes the edit distance between two sequences of390

length n and m ≤ n in O(nk log k) work and O(log n log3 k) span, where k is the output size391

(fewest possible edits).392

Compared to the BFS-based algorithms with Õ(k) span, our DaC-SD is also output-sensitive393

and achieves polylogarithmic span. However, the work is Õ(kn) instead of Õ(n + k2), which394

will lead to more running time in practice for a moderate size of k.395

5 Implementation Details396

We provide all implementations for the four algorithms as well as testing benchmarks at [17].397

In this section, we highlight some interesting and challenging parts of our implementations.398

5.1 Implementation Details of BFS-based Algorithms399

For the suffix array construction in BFS-SA, we implemented a parallel version of the400

DC3 algorithm [32]. We also compared our implementation with the SA implementation401

in ParlayLib [7], which is a highly optimized version of the prefix doubling algorithm with402

O(n log n) work and O(log2 n) span. On average, our implementation is about 2× faster403

than that in ParlayLib when applied to edit distance. We present some results for their404

comparisons in the full version [16]. For LCP array construction and preprocessing RMQ405

queries, we use the implementation in ParlayLib [7], which requires O(n log n) work and406

O(log2 n) span. With them, the query has O(1) cost.407

In our experiments on both synthetic and real-world data, we observed that the LCP408

length is either very large when we find two long matched chunks, or in most of the cases,409

very short when they are not corresponding to each other. This is easy to understand—for410

genomes, text or code with certain edit history, it is unlikely that two random starting411

positions share a large common prefix. Based on this, we add a simple optimization for all412

LCP implementations such that we first compare the leading eight characters, and only when413

they all match, we use the regular LCP query. This simple optimization greatly improved414

the performance of BFS-SA, and also slightly improved the hash-based solutions.415

5.2 Implementation Details of the DaC-SD Algorithm416

Although our DaC-SD algorithm given in Alg. 3 is not complicated, we note that imple-417

menting it is highly non-trivial in two aspects. First, in Sec. 4, we assume both strings A418

and B have the same length n, which is a power of two. However, handling two strings419

with different lengths makes the matrix partition more complicated in practice. Another420

key challenge is that the combining step in the AALM algorithm is recursive and needs to421

allocate memory with varying sizes in the recursive execution. While memory allocation is422

mostly ignored theoretically, frequent allocation in practice can easily be the performance423

bottleneck in the parallel setting. We discuss our engineering efforts as follows.424



X. Ding, X. Dong, Y. Gu, Y. Liu, and Y. Sun 46:11

𝑡1

(b)

𝐺1

𝐺2

𝐺4

𝑡1

(a)

𝑡2

𝑚1 + 𝑡1 − 𝑛1

𝑛1 + 𝑡2 −𝑚1
𝑛1

𝑛2

𝑚1 𝑚2

𝐺1

𝐺4

Figure 4 The illustrations of our
output-sensitive DaC-SD algorithm.
(a) Two parameters t1 and t2 are needed
to denote the lengths of the diagonal area
on each side. (b) The case that t2 = 0 and
G3 degenerates.

Data Alias |A| |B| k |Σ|

Wikipedia Wiki v1 0.56M 0.56M 439 256

pages [45] Wiki v2 0.56M 0.56M 5578 256
Wiki v3 0.56M 0.55M 15026 256

Linux kernel Linux v1 6.47M 6.47M 236 256

code [40] Linux v2 6.47M 6.47M 1447 256
Linux v3 6.47M 6.46M 9559 256

DNA DNA 1 42.3M 42.3M 928 4

sequences [5] DNA 2 42.3M 42.3M 9162 4
DNA 3 42.3M 42.3M 91419 4

Table 2 Real-world datasets in our experiments,
including input sizes |A| and |B|, number of edits
k, and alphabet sizes |Σ|.

Irregularity. The general case, when n and m are not powers of two and not the same, is425

more complicated than the case in Alg. 3. In this case, all four subproblems G1, G2, G3,426

and G4 will have different sizes. While theoretically, we can always round up, for better427

performance in practice, we need to introduce additional parameters to restrict the search428

within the belt region as shown in Fig. 4. Therefore, we use two parameters t1 and t2, to429

denote the lengths of the diagonal area on each side. We show an illustration in Fig. 4(a)430

along with how to compute the subproblem sizes. In extreme cases, t1 or t2 can degenerate431

to 0, which results in three subproblems (Fig. 4(b)). In such cases, we will first merge G2432

and G4, then merge G1 and G2∪4.433

The Combining Step. As mentioned in Sec. 4, achieving an efficient combining step is434

highly non-trivial. The straightforward solution to combine two matrices is to use the435

Floyd-Warshall algorithm [18], but it incurs O(n3) work and will be a bottleneck. The436

AALM algorithm improves this step to O(n2) by taking advantage of the Monge property of437

the two matrices. For page limit, we introduce the details of the combining algorithm in the438

full version [16]. However, the original AALM algorithm is based on divide-and-conquer and439

requires memory allocation for every recursive function call. This is impractical as frequent440

parallel memory allocation is extremely inefficient. To overcome this challenge, we redesign441

the recursive solution to an iterative solution, such that we can preallocate the memory442

space before the combining step. No dynamic memory allocation is involved during the443

computation. We provide the details of this approach in the full version [16].444

6 Experiments445

Setup. We implemented all algorithms in C++ using ParlayLib [7] for fork-join parallelism446

and some parallel primitives (e.g., reduce). Our tests use a 96-core (192 hyperthreads)447

machine with four Intel Xeon Gold 6252 CPUs, and 1.5 TB of main memory. We utilize448

numactl -i all in tests with more than one thread to spread the memory pages across449

CPUs in a round-robin fashion. We run each test three times and report the median.450

Tested Algorithms and Datasets. We tested five algorithms in total: four output-sensitive451

algorithms in this paper (BFS-SA, BFS-Hash, BFS-B-Hash, DaC-SD), and a baseline452

algorithm from ParlayLib [7], which is a parallel output-insensitive implementation with453

O(nm) work. The ParlayLib implementation is intended to showcase the simplicity of454

parallel algorithms, and as a result, it may not be well-ptimized. We are unaware of other455
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Synthetic Datasets:
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Figure 5 Running time (in seconds) of synthetic and real-world datasets for all
algorithms. Lower is better. We put an “×” if the algorithm does not finish within 1000 seconds.
For BFS-based algorithms, we separate the time into building time (constructing the data structure
for LCP queries) and query time (running BFS). All bars out of the range of the y-axis are annotated
with numbers. The number is the total running time for DaC-SD and ParlayLib, and is in the
format of a + b for BFS-SA, where a is the building time and b is the query time. Full results are
presented in the full version [16].

parallel implementations that provide output-sensitive cost bounds. We use b = 32 for our456

BFS-B-Hash. As we will show later, the running time is generally stable with 4 ≤ b ≤ 64.457

We tested the algorithms on both synthetic and real-world datasets. For synthetic datasets,458

we generate random strings with different string lengths n = 10i for 6 ≤ i ≤ 9 and k (number459

of edits) varying from 1 to 105, and set the size of the alphabet as 256. We create strings A460

and B by generating n random characters, and applying k edits. The k edits are uniformly461

random for insertion, deletion and substitution. For k ≪ n, we have m ≈ n. All values of462

k shown in the figures and tables are approximate values. Our real-world datasets include463

Wikipedia [45], Linux kernel [40], and DNA sequences [51]. We compare the edit distance464

between history pages on Wikipedia and history commits of a Linux kernel file on GitHub.465

We also compare DNA sequences by adding valid modifications to them to simulate DNA466

damage or genome editing techniques, as is used in many existing papers [11, 13, 30, 57]. We467

present the statistics of the real-world datasets in Tab. 2.468

Overall Performance on Synthetic Data. We present our results on synthetic data in469

the upper part of Fig. 5. We also present the complete results in the full version [16]. For470

BFS-based algorithms, we also separate the time for building the data structures for LCP471

queries, and the query time (the BFS process). ParlayLib cannot process instances with472

n > 106 due to its O(nm) work bound.473
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We first compare our solutions with ParlayLib [7]. Since ParlayLib is not output-sensitive,474

its running time remains the same regardless of the value of k. Among the tests that475

ParlayLib can process (n = 106), our output-sensitive algorithms are much faster than476

ParlayLib, especially when k is small (up to 105×). For n = 106, all our BFS-based477

algorithms are at least 1.7× faster than ParlayLib even when k ≈ n/10.478

We then compare our DaC- and BFS-based solutions. DaC-SD has the benefit of479

polylogarithmic span, compared to Õ(k) span for the BFS-based algorithm. Although this480

seems to suggest that DaC-SD should have better performance when k is large, the result481

shows the opposite. The reason is that DaC-SD has Õ(nk) work, compared to Õ(n + k2)482

cost of the BFS-based algorithms. When k becomes larger, the overhead in work is also483

more significant. On the other hand, when k is small, the O(nk) work becomes linear, which484

hides the inefficiency in work. Therefore, the gap between DaC-SD and other algorithms is485

smaller when k is small, but DaC-SD is still slower than BFS-based algorithms in all test486

cases, especially when k is large. This experiment reaffirms the importance of work efficiency487

on practical performance for parallel algorithms.488

Finally, we compare all our BFS-based solutions. Our hash-based solutions have significant489

advantages over the other implementations when k is small, since the pre-processing time490

for hash-based solutions is much shorter. When k is large, pre-processing time becomes491

negligible, and BFS-Hash seems to be the ideal choice since its query is also efficient. In492

particular, for n ≈ m ≈ 109, hash-based algorithms use about 1 second for pre-processing493

while BFS-SA uses about 100 seconds. Although BFS-SA also has O(n) construction time,494

the constant is much larger and its memory access pattern is much worse than the two495

hash-based solutions. We note that in some cases, the query time of BFS-SA can still be496

faster than BFS-Hash and BFS-B-Hash, especially when k is large, which is consistent497

with the theory (O(1) vs. O(log n) or O(b log n) per LCP query).498

In theory, BFS-B-Hash reduces space usage in BFS-Hash by increasing the query time.499

Interestingly, when k is small, BFS-B-Hash can also be faster than BFS-Hash by up to500

2.5×. This is because BFS-B-Hash incurs fewer writes (and thus smaller memory footprints)501

in preprocessing that leads to faster building time. When k is small, the running time is502

mostly dominated by the building time, and thus BFS-B-Hash can perform better. When k503

is relatively large and k2 is comparable to n, BFS-Hash becomes faster than BFS-B-Hash504

due to better LCP efficiency. In fact, when k is large, the running time is mainly dominated505

by the query (BFS), and all three algorithms behave similarly. It is worth noting that in506

these experiments with |Σ| = 256 and random edits, in most of the cases, the queried LCP is507
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small. Therefore, the O(log n) or O(b log n) query time for BFS-Hash and BFS-B-Hash508

are not tight, and they have much better memory access patterns than BFS-SA in LCP509

queries. As a result, they can have matching or even better performance than BFS-SA.510

Later we will show that under certain input distributions where the average LCP length is511

large, BFS-SA can have some advantage over both BFS-Hash and BFS-B-Hash.512

Real-World Datasets. We now analyze how our algorithms perform on real-world string513

and edit patterns. The results are shown in the lower part of Fig. 5. The results are mostly514

consistent with our synthetic datasets, where BFS-B-Hash is more advantageous when k is515

small, and BFS-Hash performs the best when k is large. When k is large, BFS-SA can also516

have comparable performance to the hash-based solutions.517

LCP Length vs. Performance. It seems that for both synthetic and real-world data shown518

above, our hash-based solutions are always better than BFS-SA. It is worth asking, whether519

BFS-SA can give the best performance in certain cases, given that it has the best theoretical520

bounds (see Tab. 1). By investigating the bounds carefully, BFS-SA has better LCP query521

cost as O(1), while the costs for BFS-Hash and BFS-B-Hash are O(log L) and O(b log L),522

respectively, where L is the LCP length. This indicates that BFS-SA should be advantageous523

when k and L are both large. To verify this, we artificially created input instances with524

medium to large values of k and controlled average LCP query lengths, and showed the525

results in Fig. 6 on two specific settings.526

The experimental result is consistent with the theoretical analysis. The running time527

for BFS-Hash increases slowly with L, while the performance of BFS-B-Hash grows528

much faster, since it is affected by a factor of O(b) more than BFS-Hash. The query time529

for BFS-SA almost stays the same, but also increases slightly with increasing L. This is530

because in general, with increasing L, the running time for all three algorithms may increase531

slightly due to worse cache locality in BFS due to more long matches. In Figure 6(a), the532

building time for both BFS-Hash and BFS-B-Hash are negligible, while BFS-SA still533

incurs significant building time. Even in this case, with an LCP length of 300, the query534

time of the hash-based solutions still becomes larger than the total running time of BFS-SA.535

In Figure 6(b) with a larger k, the building time for all three algorithms is negligible. In536

this case, BFS-SA always has comparable performance with BFS-Hash, and may perform537

better when L > 20. However, such extreme cases (both k and L are large) should be very538

rare in real-world datasets - when k is large enough so that the query time is large enough539

to hide SA’s building time, L is more likely to be small, which in turn is beneficial for the540

query bounds in hash-based solutions. Indeed such cases did not appear in our 33 tests on541

both synthetic and real data.542

Parallelism. We test the self-relative speedup of all algorithms. We present speedup543

numbers on two representative tests with different values of n and k in Tab. 3. For BFS-based544

algorithms, we separate the speedup for building and query. All our algorithms are highly545

parallelized. Even though BFS-SA and DaC-SD have a longer running time, they still546

have a 48–68× speedup, indicating good scalability. Our BFS-Hash algorithm has about547

40–50× speedup in building, and BFS-B-Hash has a lower but decent speedup of about548

20–40×. When k is small, the frontier sizes (and the total work) of BFS are small, and the549

running time is also negligible. In this case, we cannot observe meaningful speedup. For550

larger k = 105, three BFS-based algorithms achieve 27–48× speedup both in query and entire551

edit distance algorithm.552

Space Usage. We study the time-space tradeoff of our BFS-B-Hash with different block553

sizes b. We present the auxiliary space used by the prefix table in BFS-B-Hash along with554

running time in Fig. 7 using one test case with n = 108 and k = 105 in our synthetic dataset.555
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n k
BFS-B-Hash BFS-Hash BFS-SA DaC-SD

Build Query Total Build Query Total Build Query Total Total

108 10 20.4 - 19.9 46.6 - 46.5 49.6 - 49.4 68.2
109 105 24.2 36.4 36.3 42.7 46.8 46.6 51.2 27.1 48.3 t.o.

Table 3 Self-relative speedup of each implementation in each step. “Build” = con-
structing the data structure for LCP queries. “Query” = the BFS process. “t.o.” = timeout. We
omit query speedup when k = 10 because there is little parallelism to be explored for BFS with
small k, and the BFS time is also small and hardly affects the overall speedup. 192 hyperthreads
are used for parallel executions.

The dotted line shows the input size. Note that when b = 1, it is exactly BFS-Hash. Since556

the inputs are 8-bit characters and the hash values are 64-bit integers, BFS-Hash incurs 8×557

space overhead than the input size. Using blocking, we can avoid such overhead and keep558

the auxiliary space even lower than the input. The auxiliary space decreases linearly with559

the block size b. Interestingly, although blocking itself incurs time overhead, the impact in560

time is small: the time grows by 1.19× from b = 1 to 2, and grows by 1.08× from b = 2 to561

64. This is mostly due to two reasons: 1) as mentioned, with 8-bit character input type and562

random edits, the average LCP length is likely short and within the first block, and therefore563

the query costs in both approaches are close to O(L) for LCP length L, and 2) the extra564

factor of b in queries (Line 17) is mostly cache hits (consecutive locations in an array). This565

illustrates the benefit of using blocking in such datasets, since blocking saves much space566

while only increasing the time by a small fraction.567

7 Conclusion and Discussions568

We proposed output-sensitive parallel algorithms for the edit-distance problem, as well as569

careful engineering of them. We revisited the BFS-based Landau-Vishkin algorithm. In570

addition to using SA as is used in Landau-Vishkin (our BFS-SA implementation), we571

also designed two hash-based data structures to replace the SA for more practical LCP572

queries (BFS-Hash and BFS-B-Hash). We also presented the first output-sensitive parallel573

algorithm based on divide-and-conquer with Õ(nk) work and polylogarithmic span. We have574

also shown the best of our engineering effort on this algorithm, although its performance575

seems less competitive than other candidates due to work inefficiency.576

We implemented all these algorithms and tested them on synthetic and real-world577

datasets. In summary, our BFS-based solutions show the best overall performance on578

datasets with real-world edits or random edits, due to faster preprocessing time and better579

I/O-friendliness. BFS-Hash performs the best in time when k is large. BFS-B-Hash580

has better performance when k is small. The blocking scheme also greatly improves space581

efficiency without introducing much overhead in time. In very extreme cases where both582

k and the LCP lengths are large, BFS-SA can have some advantages over the hash-based583

solutions, while BFS-B-Hash can be much slower than BFS-Hash. However, such input584

patterns seem rare in the real world.585

All our BFS-based solutions perform better than the output-insensitive solution in586

ParlayLib, and the DaC-based solution with Õ(nk) work and polylogarithmic span, even for587

large k >
√

n. The results also imply the importance of work efficiency in parallel algorithm588

designs, consistent with the common belief in the literature [52, 24]. Because the number589

of cores in modern multi-core machines is small (usually hundreds to thousands) compared590

to the problem size, an algorithm is less practical if it blows up the work significantly, as591

parallelism cannot compensate for the performance loss due to larger work.592
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