10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Efficient Parallel Output-Sensitive Edit Distance

Xiangyun Ding &
University of California, Riverside
Xiaojun Dong &
University of California, Riverside

Yan Gu &

University of California, Riverside

Youzhe Liu &

University of California, Riverside

Yihan Sun &

University of California, Riverside

—— Abstract

In this paper, we study efficient parallel edit distance algorithms, both in theory and in practice.
Given two strings A[l..n] and B[l..m], and a set of operations allowed to edit the strings, the
edit distance between A and B is the minimum number of operations required to transform A
into B. In this paper, we use edit distance to refer to the Levenshtein distance, which allows
for unit-cost single-character edits (insertions, deletions, substitutions). Sequentially, a standard
Dynamic Programming (DP) algorithm solves edit distance with ©(nm) cost. In many real-world
applications, the strings to be compared are similar to each other and have small edit distances.
To achieve highly practical implementations, we focus on output-sensitive parallel edit-distance
algorithms, i.e., to achieve asymptotically better cost bounds than the standard ©(nm) algorithm
when the edit distance is small. We study four algorithms in the paper, including three algorithms
based on Breadth-First Search (BFS), and one algorithm based on Divide-and-Conquer (DaC). Our
BFS-based solution is based on the Landau-Vishkin algorithm. We implement three different data
structures for the longest common prefix (LCP) queries needed in the algorithm: the classic solution
using parallel suffix array, and two hash-based solutions proposed in this paper. Our DaC-based
solution is inspired by the output-insensitive solution proposed by Apostolico et al., and we propose
a non-trivial adaption to make it output-sensitive. All of the algorithms studied in this paper have
good theoretical guarantees, and they achieve different tradeoffs between work (total number of
operations), span (longest dependence chain in the computation), and space.

We test and compare our algorithms on both synthetic data and real-world data, including DNA
sequences, Wikipedia texts, GitHub repositories, etc. Our BFS-based algorithms outperform the
existing parallel edit-distance implementation in ParlayLib in all test cases. On cases with fewer
than 10° edits, our algorithm can process input sequences of size 10° in about ten seconds, while
ParlayLib can only process sequences of sizes up to 10° in the same amount of time. By comparing
our algorithms, we also provide a better understanding of the choice of algorithms for different
input patterns. We believe that our paper is the first systematic study in the theory and practice of
parallel edit distance.

2012 ACM Subject Classification Theory of computation — Parallel algorithms

Keywords and phrases Edit Distance, Parallel Algorithms, String Algorithms, Dynamic Program-
ming, Pattern Matching

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.46
Related Version Full Version: https://arxiv.org/abs/2306.17461 [16]
Supplementary Material Source Code: https://github.com/ucrparlay/Edit-Distance [17]

Funding This work is supported by NSF grants CCF-2103483, CCF-2238358, and 11S-2227669, and
UCR Regents Faculty Fellowships.

© Xiangyun Ding, Xiaojun Dong, Yan Gu, Youzhe Liu, Yihan Sun;
oY licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).

Editors: Inge Li Ggrtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 46;

pp. 46:1-46:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:xding047@ucr.edu
https://orcid.org/0009-0001-8367-8399
mailto:xdong038@ucr.edu
https://orcid.org/0000-0003-4828-7066
mailto:ygu@cs.ucr.edu
https://orcid.org/0000-0002-4392-4022
mailto:yliu908@ucr.edu
https://orcid.org/0009-0004-9721-5522
mailto:yihans@cs.ucr.edu
https://orcid.org/0000-0002-3212-0934
https://doi.org/10.4230/LIPIcs.ESA.2023.46
https://arxiv.org/abs/2306.17461
https://github.com/ucrparlay/Edit-Distance
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

©n
oo

91

92

X. Ding, X. Dong, Y. Gu, Y. Liu, and Y. Sun

1 Introduction

Given two strings (sequences) A[1l..n] and B[1..m] over an alphabet ¥ and a set of operations
allowed to edit the strings, the edit distance between A and B is the minimum number of
operations required to transform A into B. WLOG, we assume m < n. The most commonly
used metric is the Levenshtein distance which allows for unit-cost single-character edits
(insertions, deletions, substitutions). In this paper, we use edit distance to refer to the
Levenshtein distance. We use k to denote the edit distance for strings A and B throughout
this paper. Edit distance is usually used to measure the similarity of two strings (a smaller
distance means higher similarity).

Edit distance is a fundamental problem in computer science, and is introduced in most
algorithm textbooks (e.g., [14, 15, 23]). In practice, it is widely used in version-control
software [54], computational biology [12, 31, 39], natural language processing [10, 29], and
spell corrections [28]. It is also closely related to other important problems such as longest
common subsequence (LCS) [50], longest increasing subsequence (LIS) [34], approximate
string matching [56], and multi-sequence alignment [59]. The classic dynamic programming
(DP) solution can compute edit distance in O(nm) work (number of operations) between
two strings of sizes n and m. This complexity is impractical if the input strings are large.
One useful observation is that, in real-world applications, the strings to be compared are
usually reasonably similar, resulting in a relatively small edit distance. For example, in many
version-control softwares (e.g., Git), if the two committed versions are similar (within a
certain number of edits), the “delta” file is stored to track edits. Otherwise, if the difference
is large, the system directly stores the new version. Most of the DNA or genome sequence
alignment applications also only focus on when the number of edits is small [39]. We say
an edit distance algorithm is output-sensitive if the work is o(nm) when k = o(n). Many
more efficient and/or practical algorithms were proposed in this setting with cost bounds
parameterized by k [19, 20, 21, 22, 26, 35, 36, 37, 46, 47, 49].

Considering the ever-growing data size and plateaued single-processor performance, it is
crucial to consider parallel solutions for edit distance. Although the problem is simple and
well-studied in the sequential setting, we observe a huge gap between theory and practice
in the parallel setting. The few implementations we know of 7, 55, 58] simply parallelize
the O(nm)-work sequential algorithm and require O(n) span (longest dependence chain),
which indicates low-parallelism and redundant work when k& <« n. Meanwhile, numerous
theoretical parallel algorithms exist [1, 3, 20, 37, 41, 48], but it remains unknown whether
these algorithms are practical (i.e., can be implemented with reasonable engineering effort),
and if so, whether they can yield high performance. The goal of this paper is to formally
study parallel solutions for edit distance. By carefully studying existing theoretical solutions,
we develop new output-sensitive parallel solutions with good theoretical guarantees
and high performance in practice. We also conduct in-depth experimental studies on
existing and our new algorithms.

The classic dynamic programming (DP) algorithm solves edit distance by using the states
Gli, j] as the edit distance of transforming A[1..7] to B[1..j]. G[i,j] can be computed as:

.y Gli—1,j —1] if Ali] = B[j] and i > 0,5 > 0
i,j] =

/ 14+ min(G[i — 1,4],Gli — 1,5 — 1], G[i,j — 1]) otherwise

G[i, j] = max(s, j) ifi=0o0rj=0

A simple parallelization of this computation is to compute all states with the same i + j
value in parallel, and process all i + j values in an incremental order [7, 55, 58]. However,

46:1

ESA 2023

46:2

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

Efficient Parallel Output-Sensitive Edit Distance

Algorithm ‘Work Span Space®™ Algorithm ‘Work Span Space™
BFS-SA O(n+k? O(k) O(n) BFS-Hash* O(n+k*logn) O(k) O(n)

DaC-SD O(nklogk) O(1) O(nk) BFS-B-Hash® O(n + k%blogn) O(kb) O(n/b+ k)

Table 1 Algorithms in this paper. k is the edit distance. b is the block size. *: Monte Carlo
algorithms due to the use of hashing. “Space™”
Here we assume constant alphabet size for BFS-SA.

means auxiliary space used in addition to the input.

this approach has low parallelism as it requires n + m rounds to finish. Later work [1, 3, 41]
improved parallelism using a divide-and-conquer (DaC) approach and achieved O(n?)
work and polylog(n) span. These algorithms use the monotonicity of the DP recurrence, and
are complicated. There are two critical issues in the DaC approaches. First, to the best of
our knowledge, there exist no implementations given the sophistication of these algorithms.

Second, they are not output-sensitive (O(nm) work), which is inefficient when k& < n.

Alternatively, many existing solutions, both sequentially [19, 20, 21, 22, 26, 35, 36, 46, 47|
and in parallel [20, 37] use output-sensitive algorithms, and achieve O(nk) or O(n + k?) work
and O(k) span. These algorithms view DP table as a grid-like DAG, where each state (cell)
(z,y) has three incoming edges from (x —1,y), (x,y—1), and (x—1,y—1) (if they exist). The
edge weight is 0 from (x — 1,y — 1) to (z,y), when A[x] = B[y], and 1 otherwise. Then edit
distance is equivalent to the shortest path from (0, 0) to (n,m). An example is given in Fig. 1.
Since the edge weights can only be 0 or 1, we can use breadth-first search (BFS) from the
cell (0,0) until (n,m) is reached. Ukkonen [56] further showed that using longest common
prefix (LCP) queries based on suffix trees or suffix arrays, the work can be improved to
O(n + k?). Landau and Vishkin [37] parallelized this algorithm (see Sec. 3). While the
sequential output-sensitive algorithms have been widely used in practice [21, 26, 36, 46, 47],
we are unaware of any existing implementations for the parallel version.

We systematically study parallel output-sensitive edit distance, using both the BFS-based
and the DaC-based approaches. Our first effort is to implement the BFS-based Landau-
Vishkin algorithm with our carefully-engineered parallel suffix array (SA) implementation,
referred to as BFS-SA. Although suffix array is theoretically efficient with O(n) construction
work, the hidden constant is large. Thus, we use hashing-based solutions to replace SA for
LCP queries to improve the performance in practice. We first present a simple approach
BFS-HASH in Sec. 3.2 that stores a hash value for all prefixes of the input. This approach
has O(n) construction work, O(logn) per LCP query, and O(n) auxiliary space. While both
BFS-SA and BFS-HAsH take O(n) extra space, such space overhead can be significant in
practice—for example, BFS-HASH requires n 64-bit hash values, which is 4x the input size
considering characters as inputs, and 32x with even smaller alphabet such as molecule bases
(alphabet as {A,C,G,T}). To address the space issue, we proposed BFS-B-HASH using
blocking. Our solution takes a user-defined parameter b as the block size, which trades off
between space usage and query time. BFS-B-HASH limits extra space in O(n/b) by using
O(blogn) LCP query time. Surprisingly, despite a larger LCP cost, our hash-based solutions
are consistently faster than BFS-SA in all real-world test cases, due to cheaper construction.
All of our BFS-based solutions are simple to program.

We also study the DaC-based approach and propose a parallel output-sensitive solution.
We propose a non-trivial adaption for the AALM algorithm [1] to make it output-sensitive.
Our algorithm is inspired by the BFS-based approaches, and improves the work from O(nm)
to O(nk), with polylogarithmic span. The technical challenge is that the states in the
computation are no longer a rectangle, but an irregular shape (see Fig. 1 and 3). We then
present a highly non-trivial implementation of this algorithm. Among many key challenges,
we highlight our solution to avoid dynamically allocating arrays in the recursive execution.

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

X. Ding, X. Dong, Y. Gu, Y. Liu, and Y. Sun

While memory allocation is mostly ignored theoretically, in practice it can easily be the
performance bottleneck in the parallel setting. We refer to this implementation as DAC-SD,
with details given in Sec. 4 and 5.2 and the full version of this paper [16].

The bounds of our algorithms (BFS-SA, BFS-HasH, BFS-B-HasH, and DAC-SD) are
presented in Tab. 1. We implemented them and show an experimental study in Sec. 6. We
tested both synthetic and real-world datasets, including DNA, English text from Wikipedia,
and code repositories from GitHub, with string lengths in 10°-10° and varying edit distances,
many of them with real edits (e.g., edit history from Wikipedia and commit history on
GitHub). In most tests, our new BFS-B-HAsH or BFS-HAsH performs the best, and
their relative performance depends on the value of k and the input patterns. Our BFS-
based algorithms are faster than the existing parallel output-insensitive implementation in
ParlayLib [7], even with a reasonably large k ~ 10°. We believe that our paper is the first
systematic study in theory and practice of parallel edit distance, and we give the first publicly
available parallel edit distance implementation that can process billion-scale strings with
small edit distance and our code at [17]. Due to page limit, some details are provided in the
full version of this paper [16]. We summarize our contributions as follows:

1. Two new BFS-based edit distance solutions BFS-HASH and BFS-B-HAsH using hash-
based LCP queries. Compared to the existing SA-based solution in Landau-Vishkin,
our hash-based solutions are simpler and more practical. BFS-B-HASH also allows for
tradeoffs between time and auxiliary space.

2. A new DaC-based edit distance solution DAC-SD with O(nklog k) work and polylogar-
ithmic span.

3. New implementations for four output-sensitive edit distance algorithms: BFS-SA, BFS-
HasH, BFS-B-HasH and DAC-SD. Our code is publicly available[17].

4. Experimental study of the existing and our new algorithms on different input patterns.

2 Preliminaries

We use O(f(n)) with high probability (whp) (in n) to mean O(cf(n)) with probability at
least 1 —n~¢ for ¢ > 1. We use O(f(n)) to denote O(f(n) - polylog(n)). For a string A, we
use A[i] as the i-th character in A. We use string and sequence interchangeably. We use
Ali..j] to denote the i-th to the j-th characters in A, and A[i..j) the i-th to the (j — 1)-th
characters in A. Throughout the paper, we use “auxiliary space” to mean space used in
addition to the input.

String Edit Distance. Given two strings A[l..n] and B[l..m], Levenshtein’s Edit Dis-
tance [38] between A and B is the minimum number of operations needed to convert A to B
by using insertions, deletions, and substitutions. We also call the operations edits. In this
paper, we use edit distance to refer to Levenshtein’s Edit Distance. The classic dynamic
programming (DP) algorithm for edit distance uses DP recurrence shown in Sec. 1 with
O(mn) work and space.

Hash Functions. For the simplicity of algorithm descriptions, we assume a perfect hash
function for string comparisons, i.e., a function h : S — [1,0(|S])] such that h(z) = h(y) <
z = y. For any alphabet ¥ with size |a|, we use a hash function h(A[l..r]) = >"1_, A[i] x p"*
for some prime numbers p > |a|, which returns a unique hash value of the substring A[l..r].
The hash values of two consecutive substrings S; and Ss can be concatenated as h([S7, S2]) =
h(S1)-p!*2l +h(Ss), and the inverse can also be computed as h(Ss) = h([S1, Sa]) —p!®2!-h(Sy).
For simplicity, we denote concatenation and its inverse operation as ¢ and &, respectively, as
h([S1, S2]) = h(S1) ® h(S2) and h(S2) = h([S1,S2]) © h(S1). We assume perfect hashing for

46:3

ESA 2023

46:4

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

Efficient Parallel Output-Sensitive Edit Distance

theoretical analysis. In practice, we use p as a large prime and modular arithmetic to keep
the word-size hash values. In our experiment, we compare different approaches and validate
that our implementations are correct in all test cases. However, collisions are possible for
other datasets, since different strings may be mapped to the same hash value. If such cases
arise, one can either use multiple hash functions for a better success rate in practice, or use
the idea of Hirschberg’s algorithm [27] to generate the edit sequence and run a correctness
check (and restart with another hash function if failed).

Longest Common Prefix (LCP). For two sequences A[l..n] and B[l..m], the Longest
Common Prefix (LCP) query at position x in A[l..n] and position y in B[1..m] is the longest
substring starting from A[z] that match a prefix starting from B[y]. With clear context, we
also use the term “LCP” to refer to the length of the LCP, i.e., LCP(A, B, z,y) is the length
of the longest common prefix substring starting from A[z] and B[y| for A and B.

Computational Model. We use the work-span model in the classic multithreaded model
with binary-forking [2, 8, 9]. We assume a set of threads that share the memory. Each
thread acts like a sequential RAM plus a fork instruction that forks two child threads running
in parallel. When both child threads finish, the parent thread continues. A parallel-for is
simulated by fork for a logarithmic number of steps. A computation can be viewed as a
DAG (directed acyclic graph). The work W of a parallel algorithm is the total number
of operations, and the span (depth) S is the longest path in the DAG. The randomized
work-stealing scheduler can execute such a computation in W/P + O(S) time whp in W on
P processors [2, 9, 25].

Suffix Array. The suffix array (SA) [42] is a lexicographically sorted array of the suffixes of
a string, usually used together with the longest common prefix (LCP) array, which stores
the length of LCP between every adjacent pair of suffixes. The SA and LCP array can be
built in parallel in O(n) work and O(log®n) span whp [32, 53].

In edit distance, we need the LCP query between A[z..n] and B[y..m] for any = and y.
This can be computed by building the SA and LCP arrays for a new string C[l..n + m]
that concatenates A[l..n] and B[l..m]. The LCP between any pair of suffixes in C' can be
computed by a range minimum query (RMQ) on the LCP array, which can be built in
O(n+m) work and O(log(n+m)) span [8]. Combining all pieces gives the following theorem:

» Lemma 1. Given two strings A[l..n] and B[l..m|, using a suffiz array, the longest common
prefix (LCP) between any two substrings A[z..n] and Bly..m| can be reported in O(1) work
and span, with O(n +m) preprocessing work and O(log®(n 4+ m)) span whp.

3 BFS-based Algorithms

3.1 Overview of Existing Sequential and Parallel BFS-based Algorithms

Many existing output-sensitive algorithms [19, 20, 21, 22, 26, 35, 36, 37, 46, 47| are based
on breadth-first search (BFS). These algorithms view the DP matrix for edit distance as a
DAG, as shown in Fig. 1. In this section, we use z and y to denote the row and column
ids of the cells in the DP matrix, respectively. Each state (cell) (z,y) has three incoming
edges from (x — 1,y), (x,y — 1), and (v — 1,y — 1) (if they exist). The edge weight is 0 from
(x—1,y —1) to (z,y) when Alz] = Bl[y], and 1 otherwise. Then edit distance is equivalent
to the shortest distance from (0,0) to (n,m).

Since the edge weights are 0 or 1, we can use a special breadth-first search (BFS) to
compute the shortest distance. In round ¢, we process states with edit distance t. The

X. Ding, X. Dong, Y. Gu, Y. Liu, and Y. Sun

yl0 1 23 456 Frontier 0 Algorithm 1 BFS-based parallel edit dis-
x| |~ a b c ab a Frontier 1 tance [37]
(UK @ Frontier 2 - -
i 1 fo[0] <~ LCP(A[l..n], B[1..m]) // Starting point
1la <) Frontier 3 2t 0
21b ... Not explored 3 while f;[n —m] # n do
3¢ N, Diagonal 0 4 t+—t+1
4lb N\ -0 Diagonal 1/ —1 // Find new frontier for diagonal i
\e \e Diagonal 2 / —2 5 | parallel-for-each —t < i <t do
5)d — BFS Path (successful) 6 feli] < fi1li] // Start from the last cell
6|a BFS Path (unsuccessful) 7 foreach (dz, dy) € {(0,1),(1,0),(1,1)} do
7|b @-~6)| x:rowid y:column id // The previous cell is from diagonal j
Frontier 0: £,[0]=3, the cell on diagonal 0 is (3,3) //J = (x—dr) = (y—dy) =i—dr+dy
8 j—i—dx+dy

Frontier 1: fil-1]=4, f,[0]=4, f,[1]=4 [(4,3),(4,4),(4,5)]
Frontier 2: £,[-2]=4, f,[-1]=5, f,[@]=6, f,[1]=5, f,[2]=7
Frontier 3: £;[@]=3, the others are invalid

if |j| <¢—1 then
The row id z + fi—1[j] + dz

11 The column id y + x — ¢
. . . // Skip the common prefix
Figure 1 BFS-based edit distance on |, z + x+LCP(A[z + 1..n], By + 1..m])
A[l..n] and B[l..m]. A more detailed descrip- // Keep the largest row id
tion is in the full version [16]. f¢[i] is the row-id 13 fili] + max(f:[i],x)

of the last cell on diagonal ¢ with edit distance ¢ 14 return ¢

(frontier t), representing cell (fi[7], f:[i] — 7).

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

algorithm terminates when we reach cell (n,m). First observed by Ukkonen [56], in the
BFS-based approach, not all states need to be visited. For example, all states with |z —y| > k
will not be reached before we reach (n,m) with edit distance k, since they require more than
k edits. Thus, this BFS will touch at most O(kn) cells, leading to O(kn) work.

Another key observation is that starting from any cell (z,y), if there are diagonal edges
with weight 0, we should always follow the edges until a unit-weight edge is encountered.
Namely, we should always find the longest common prefix (LCP) from Afzx + 1] and Bly + 1],
and skip to the cell at (z + p,y + p) with no edit, where p is the LCP length. This idea is
used in Landau and Vishkin [37] on parallel approximate string matching, and we adapt this
idea to edit distance here. Using the modified parallel BFS algorithm by Landau-Vishkin [37]
(shown in Alg. 1), only O(k?) states need to be processed—on each diagonal and for each
edit distance t, only the last cell with ¢ edits needs to be processed (see Fig. 1). Hence,
the BFS runs for k rounds on 2k + 1 diagonals, which gives the O(k?) bound above. In
the BF'S algorithm, we can label each diagonal by the value of x — y. In round ¢, the BFS
visits a frontier of cells fi[-], where fi[i] is the cell with edit distance ¢ on diagonal ¢, for
—t < i <t. We present the algorithm in Alg. 1 and an illustration in Fig. 1. Note that in
the implementation, we only need to maintain two frontiers (the previous and the current
one), which requires O(k) space. We provide more details about this algorithm in the full
version [16]. If the LCP query is supported by suffix arrays, we can achieve O(n + k?) work
and O(logn + klog k) span for the edit distance algorithm.

Algorithm Based on Suffix Array (BFS-SA). Using the SA algorithm in [32] and the LCP
algorithm in [53] for Landau-Vishkin gives the claimed bounds in Tab. 1. We present details
about our SA implementation in Sec. 5.1.

3.2 Algorithm Based on String Hashing (BFS-Hash)

Although BFS-SA is theoretically efficient with O(n) preprocessing work to construct the
SA, the hidden constant is large. For better performance, we consider string hashing as an
alternative for SA. Similar attempts (e.g., locality-sensitive hashing) have also been used in
approximate pattern matching problems [43, 44]. In our pursuit of exact output-sensitive

46:5

ESA 2023

46:6

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

Efficient Parallel Output-Sensitive Edit Distance

edit distance computation, we draw inspiration from established string hashing algorithms,
such as the Rabin-Karp algorithm (also known as rolling hashing) [33]. We will first present
a simple hash-based solution BFS-HAsH with O(n) preprocessing cost and O(n) auxiliary
space. Then later in Sec. 3.3, we will present BFS-B-HASH, which saves auxiliary space by
trading off more work in LCP queries.

As mentioned in Sec. 2, the hash function h(-) maps any substring A[l..r] to a unique hash
value, which provides a fingerprint for this substring in the LCP query. The high-level idea
is to binary search the query length, using the hash value as validation. We precompute the
hash values for all prefixes, i.e., T4[x] = h(A[l..z]) for the prefix substring A[l..z] (similar
for B). They can be computed in parallel by using any scan (prefix-sum) operation [6] with
O(n) work and O(logn) span. We can compute h(A[l..r]) by Talr] © Tall — 1].

With the preprocessed hash values, we dual binary search the LCP of A[z..n] and Bly..m].
We compare the hash values starting from A[z] and B[y] with chunk sizes of 1,2,4,8,...,
until we find value [, such that Afz..x+2!) = Bly..y+2'), but A[z..z +2*1) # Bly.y+2!*1).
By doing this with O(logn) work, we know that the LCP of A[x..n] and Bly..m] must have
a length in the range [2!,2!*1). We then perform a regular binary search in this range,
which costs another O(logn) work. This indicates O(logn) work in total per LCP query.
Combining the preprocessing and query costs, we present the cost bounds of BFS-HASH:

» Theorem 2. BFS-HASH computes the edit distance between two sequences of length n and
m <n in O(n+ k%logn) work, O(k) span, and O(n) auziliary space, where k is the output
size (fewest possible edits).

BFS-HASH is simple and easy to implement. Our experimental results indicate that its
simplicity also allows for a reasonably good performance in practice for most real-world
input instances. However, this algorithm uses n 64-bit integers as hash values, and such
space overhead may be a concern in practice. This is more pronounced when the input is
large and/or the alphabet is small (particularly when each input element can be represented
with smaller than byte size), as the auxiliary space can be much larger than the input
size. This concern also holds for BFS-SA as several O(n)-size arrays are needed during SA
construction. Note that for shared-memory parallel algorithms, space consumption is also a
key constraint—if an algorithm is slow, we can wait for longer; but if data (and auxiliary
data) do not fit into the memory, then this algorithm is not applicable to large input at
all. In this case, the problem size that is solvable by the algorithm is limited by the space
overhead, which makes the improvement from parallelism much narrower. Below we will
discuss how to make our edit distance algorithms more space efficient.

3.3 Algorithm Based on Blocked-Hashing (BFS-B-Hash)

In this section, we introduce our BFS-B-HASH algorithm that provides a more space-efficient
solution by trading off worst-case time (work and span). Interestingly, we observed that on
many data sets, BFS-B-HASH can even outperform BFS-HASH and other opponents due to
faster construction time, and we will analyze that in Sec. 6.

To achieve better space usage, we divide the strings into blocks of size b. As such, we
only need to store the hash values for prefixes of the entire blocks h(A[1..]), h(A[1..20]),- -,
h(A[1..|(n/b)] - b]). Our idea of blocking is inspired by many string algorithms (e.g., [4]).
Using this approach, we only need auxiliary space to store O(n/b) hash values, and thus
we can control the space usage using the parameter b. To compute these hash values, we
will first compute the hash value for each block, and run a parallel scan (prefix sum on

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

X. Ding, X. Dong, Y. Gu, Y. Liu, and Y. Sun

T[3]: hash value up to block 3

Prefix TableT [1.. [%J] T[1]: hash value up to block 1 T[2]:hash value up to block 2
Input A[1..7] | A1) | Al2] | A3] | Al4] | Al5] | ate) | a7 | aig) | A | apo)| apu| apz)| aps| apg | A[15] | A[16] |
E.g., Finding hash Hash value before A[7]: hy = T[1] @ A[5] @ A[6] Hash value at A[13]:
value of A[7..13] [~/ hy =T[3] © A[13]

hd
Hash value of A[7..13]: h, © h,

Figure 2 The illustrations of prefix table values and one specific query, with key
concepts shown when computing the hash value of a range using a prefix table.

Algorithm 2 The prefix table for finding the longest common prefix of A[l..n] and B[1..m]

1// Table construction // Compare the subsequences Alz..x +1] and Bly..y +1]
2 Function Construct(A, B) 19 Function Compare(A, B, z,y,!)

38 | Ta[-] < Build(A) 20 | ha < GetHash(A,Ta,z+1)© GetHash(A,Ta,z—1)
a | Tg[| + Build(B) 21 | hp + GetHash(B,Tg,y+1)© GetHash(B, T,y —1)

// The prefiz table building process 22 | return hy = hp

5 Function Build(A) // Longest Common Prefiz from Alz] and Bly]

6 | w< [[A]/b] 23 Function LCP(A, B,z,y)

© | paralieh-for-cach j < 110w do 2 |10

8 | parallel-for-each j <+ 1 to w do . . L L+l
o | T[] < A(A[G —1)b+ 1. b)) // (1)%72%811, s.t. the LCP is between 2'' to 2
10 | Scan(T)

. l1 11
11 | return T[] 25 | while x4+ 2" <n and y+ 2" <m do

26 if Compare(A, B,z,y,l1) = false then break
// Get hash value for prefix sub- 27 il +1
// sequence A[l..x] // Trivial binary search process on the range
12 Function GetHash(A,Tx, x) [2!1, 2T
13 | if £ = 0 then return 0 28 | s 201 ¢ ¢ out!
14 | r [(z-1)/b+1] 29 | while s < t do
15 | h < Talr] 30 if Compare(A, B, z,y, |(s+t)/2]) = false then
16 | for i< r-b+1tozdo 31 | t < [(s+1)/2]
17 | | h+ h®h(A[]) 32 else s+ |[(s+1t)/2]+1
18 | return h 33 | return s

@) on the hash values for all the blocks. Similar to the above, we refer to these arrays as
T4li] = h(A[1..20]) (and T[i] accordingly), and call them prefiz tables.

We now discuss how to run LCP with only partial hash values available. The LCP
function in Alg. 2 presents the process to find the LCP of A[z..n] and B[y..m] using the
prefix tables. We present an illustration in Fig. 2. We will use the same dual binary search
approach to find the LCP of two strings. Since we do not store the hash values for all
prefixes, we use a function GetHash(A,T4,x) to compute h(A[l..z]). We can locate the
closest precomputed hash value and use r as the previous block id before x. Then the hash
value up to block r is simply h = T[r]. We then concatenate the rest characters to the hash
value (i.e., return h @ h(A[rb +1]) @ --- @ h(A[z])). In this way, we can compute the hash
value of any prefixes for both A and B, and plug this scheme into the dual binary search in
BFS-HAsH. In each step of dual binary search, the concatenation of hash value can have at
most b steps, and thus leads to a factor of b overhead in query time than BFS-HASH.

» Theorem 3. BFS-B-HASH computes the edit distance between two sequences of length
n and m < n in O(n + k? - blogn) work and O(kb) span, using O(n/b+ k) auziliary space,
where k is the output size (fewest possible edits).

The term k in space usage is from the BFS (each frontier is at most size O(k)). O(blogn)
is the work for each LCP query. Note that this is an upper bound—if the LCP length L is
small, the cost can be significantly smaller (a tighter bound is O(min(L,blog L))). Sec. 6
will show that for normal input strings where the LCP lengths are small in most queries,

46:7

ESA 2023

46:8

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

Efficient Parallel Output-Sensitive Edit Distance

V3n/2 t
Un Usn/2 ¢ LU
Gl G3 Gl
Vn/2 Yor -2 Wn/z Uy
GZ G4 GZ
Vo
U Un/2

(a) (b) (c) (d)
Figure 3 The illustrations of the key concepts and notation in the AALM algorithm
described in Sec. 4.

the performance of BFS-B-HASH is indeed the fastest, although for certain input instances
when the worst case is reached, the performance is not as good.

4 The Divide-and-Conquer Algorithms

Our parallel output-sensitive algorithm DAC-SD is inspired by the AALM algorithm [1],
and also uses it as a subroutine. We first overview the AALM algorithm, and introduce our
algorithm in details. We assume m = n is a power of 2 in this section for simple descriptions,
but both our algorithm and AALM work for any n and m.

The AALM Algorithm. As described above, the edit distance problem can be considered as
a shortest distance (SD) problem from the top-left cell (0,0) to the bottom-right cell (n,n) in
the DP matrix G. Instead of directly computing the SD from (0, 0) to (n,n), AALM computes
pairwise SD between any cell on the left/top boundaries and the bottom/right boundaries
(i-e., those on LUU to W U R in Fig. 3(a)). We relabel all cells in L U U as a sequence
v ={vg, v1,...V2,} (resp., WU R as u = {ug,uy -+ ,u2,}), as shown in Fig. 3. Therefore,
for the DP matrix G, the pairwise SD between v and u forms a (2n+1) x (2n+1) matrix. We
call it the SD matrixz of G, and denote it as Dg. AALM uses a divide-and-conquer approach.
It first partitions G into four equal submatrices G1, Ga2, G3, and G4 (See Fig. 3(b)), and
recursively computes the SD matrices for all G;. We use D; to denote the SD matrix for G;.
In the “conquer” step, the AALM algorithm uses a Combine subroutine to combine two SD
matrices into one if they share a common boundary (our algorithm also uses this subroutine).
For example, consider combining G and Ga. We still use v; and u; to denote the cells on the

left /top and bottom/right boundaries of (gl> (see Fig. 3(c)), and denote the cells on the
2

common boundary of G; and G as wy, -+ ,w, /2, ordered from left to right. For any pair v;
and uj, if they are in the same submatrix, we can directly get the SD from the corresponding
SD matrix. Otherwise, WLOG assume v; € G; and u; € Gs, then we compute the SD
between them by finding min; D [i,1] + Do[l, j], i.e., for all w; on the common boundary, we
attempt to use the SD between v; to w;, and w; to u;, and find the minimum one. Similarly,
we can combine D3 with Dy, and D2 with D34, and eventually get Dg. We note that the
Combine algorithm, even theoretically, is highly involved. At a high level, it uses the Monge
property of the shortest distance (the monotonicity of the DP recurrence), and we refer
the readers to [1] for a detailed algorithm description and theoretical analysis. In Sec. 5.2,
we highlight a few challenges and our solutions for implementing this highly complicated
algorithm. Theoretically, combining two n x n SD matrices can be performed in O(n?) work
and O(log? n) span, which gives O(n?logn) work and O(log®n) span for AALM.

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

X. Ding, X. Dong, Y. Gu, Y. Liu, and Y. Sun

Algorithm 3 Divide-and-Conquer edit distance algorithm on A[l..n] and B[l..n].

1 Notes: We assume both A and B has size Function GETDISTANCE(%, j,n,t)

n = 2°¢ for simple description. Our if n/2 <t then
algorithm also works for strings with Computed D by the AALM algorithm
different lengths with minor changes. return D
2 Function DAC-SD // Compute the SD matrices for
3| t«1 G1,G2,Gs,Gy (as shown in Fig. 3 (d)).
4 | while {rue do 11 | Di + GETDISTANCE(4, §,1/2, 1)
5 D < Check(t) 12 Compute Dy and Ds by the AALM al-
6 if D[t][t] <t then break gorithm
7 t < min(2t,n) 13 | D4 + GETDISTANCE(i +n/2,j +n/2,n —
8 | return D[t][t] n/2,t)
// Find the SD in the DP matriz from (0,0) // ZSXL;Z‘? same Combine function as
to (n,n) by restricting in the diagonal stripe .
with width t 14 D1y2 < Combine(D1, D2)
9 Function Check(t) 15 Dsyy 4= Combine(Ds, D)
10 | D <+ GETDISTANCE(0,0,7,t) 16 | D < (Diuz, Dsua)
17 return D

Our algorithm. The AALM algorithm has O(n?) work (O(nm) if n # m) and polylogar-
ithmic span, which is inefficient in the output-sensitive setting. As mentioned in Sec. 3.1,
only a narrow width-O(k) diagonal area in G is useful (Fig. 3(d)). We thus propose an
output-sensitive DAC-SD algorithm adapted from the AALM algorithm. We follow the
same steps in AALM, but restrict the paths to the diagonal area, although the exact size is
unknown ahead of time. We first present the algorithm to compute the shortest distance
on the diagonal region with width 2¢ + 1 as function Check(t) in Alg. 3, which restricts the
search in diagonals —t to ¢. First, we divide such a region into four sub-regions (see Fig. 3(d)).
Two of them (G; and G4) are of the same shape, and the other two of them (G2 and G3)
are triangles. For G5 and G3, we use the AALM algorithm to compute their SD matrices by
aligning them to squares. For G; and G4, we process them recursively, until the base case
where the edge length of the matrix is smaller than ¢ and they degenerate to squares, in
which case we apply the AALM algorithm. Note that even though the width-(2¢+ 1) diagonal
stripe is not a square (G7 and G4 are also of the same shape), the useful boundaries are still
the left /top and bottom/right boundaries (L U U and W U R in Fig. 3(d)). Therefore, we
can use the same Combine algorithm as in AALM to combine the SD matrices. For example,
in Fig. 3(d), when combining G; with G2, we obtain the pairwise distance between L UU
and RU R’ using the common boundary W. We can similarly combine all G, G5, G3, and
G4 to get the SD matrix for G.

However, the output value k is unknown before we run the algorithm. To overcome this
issue, we use a strategy based on prefix doubling to “binary search” the value of k£ without
asymptotically increasing the work of the algorithm. We start with ¢ = 1, and run the
Check(t) in Alg. 3 (i.e., restricting the search in a width-(2¢ + 1) diagonal). Assume that
the Check function returns o edits. If o < ¢, we know that o is the SD from (0,0) to (n,n),
since allowing the path to go out of the diagonal area will result in an answer greater than ¢.
Otherwise, we know ¢ > t, and o is not necessarily the shortest distance from the (0,0) to
(n,n), since not restricting the path in the t-diagonal area may allow for a shorter path. If
so, we double ¢t and retry. Although we need O(log k) searches before finding the final answer
k, we will show that the total search cost is asymptotically bounded by the last search. In
the last search, we have t < 2k.

We first analyze the cost for Check(t). Tt contains two recursive calls, two calls to AALM,
and three calls to the Combine function. Therefore, the work for Check(t) is W(n) =

46:9

ESA 2023

46:10

383
384
385

386
387

388

389

390
391

392

393
394

395

396

397

398

399

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

415

416

417
418
419
420
421
422
423

424

Efficient Parallel Output-Sensitive Edit Distance

2W (n/2) + O(t? log t), with base cases W (t) = t?logt, which solves to W(n) = O(ntlogt).
For span, note that there are log(n/t) levels of recursion before reaching the base cases. In
each level, the Combine function combines ¢ x t SD matrices with O(log?t) span. In the leaf
level, the base case uses AALM with O(log®t) span. Therefore, the total span of a Check is:

O(logn/t -log*t + (logn/t +1log®t)) = O(log®t - (logn/t +logt)) = O(log*tlogn) (1)

We will apply Check(-) for O(log k) times, with ¢ = 1,2,4,... up to at most 2k. Therefore, the
total work is dominated by the last Check, which is O(nklog k). The span is O(log n log® k).

» Theorem 4. The DAC-SD algorithm computes the edit distance between two sequences of
length n and m < n in O(nklogk) work and O(lognlog3 k) span, where k is the oulput size
(fewest possible edits).

Compared to the BFS-based algorithms with O(k) span, our DAC-SD is also output-sensitive
and achieves polylogarithmic span. However, the work is O(kn) instead of O(n + k?), which
will lead to more running time in practice for a moderate size of k.

5 Implementation Details

We provide all implementations for the four algorithms as well as testing benchmarks at [17].
In this section, we highlight some interesting and challenging parts of our implementations.

5.1 Implementation Details of BFS-based Algorithms

For the suffix array construction in BFS-SA, we implemented a parallel version of the
DC3 algorithm [32]. We also compared our implementation with the SA implementation
in ParlayLib [7], which is a highly optimized version of the prefix doubling algorithm with
O(nlogn) work and O(log?n) span. On average, our implementation is about 2x faster
than that in ParlayLib when applied to edit distance. We present some results for their
comparisons in the full version [16]. For LCP array construction and preprocessing RMQ
queries, we use the implementation in ParlayLib [7], which requires O(nlogn) work and
O(log® n) span. With them, the query has O(1) cost.

In our experiments on both synthetic and real-world data, we observed that the LCP
length is either very large when we find two long matched chunks, or in most of the cases,
very short when they are not corresponding to each other. This is easy to understand—for
genomes, text or code with certain edit history, it is unlikely that two random starting
positions share a large common prefix. Based on this, we add a simple optimization for all
LCP implementations such that we first compare the leading eight characters, and only when
they all match, we use the regular LCP query. This simple optimization greatly improved
the performance of BFS-SA, and also slightly improved the hash-based solutions.

5.2 Implementation Details of the DaC-SD Algorithm

Although our DAC-SD algorithm given in Alg. 3 is not complicated, we note that imple-
menting it is highly non-trivial in two aspects. First, in Sec. 4, we assume both strings A
and B have the same length n, which is a power of two. However, handling two strings
with different lengths makes the matrix partition more complicated in practice. Another
key challenge is that the combining step in the AALM algorithm is recursive and needs to
allocate memory with varying sizes in the recursive execution. While memory allocation is
mostly ignored theoretically, frequent allocation in practice can easily be the performance
bottleneck in the parallel setting. We discuss our engineering efforts as follows.

X. Ding, X. Dong, Y. Gu, Y. Liu, and Y. Sun

Figure 4 The illustrations of our

Data Alijas |A| | B| k |3]
f Wikipedia WViKi VI 056M 0.56M 439 256
& pages (4] WIKiVv2 0.56M 0.56M 5578 256
Wiki v3 0.56M 0.55M 15026 256
% i kool LMUWX VI GATM GATM 236 256
s Gy code [40] LAmuxvZ GATM GATM 1447 256
Linux v3 6.47M 6.46M 9559 256
(a) (b) DNA DNA1 423M 423M 928

4
DNA 2 42.3M 42.3M 9162 4
4

sequences 5] p\a s 4o3M 42.3M 91419

output-sensitive DaC-SD algorithm.
(a) Two parameters ¢; and t; are needed Table 2 Real-world datasets in our experiments,

to denote the lengths of the diagonal area including input sizes |A| and |B|, number of edits

on each side. (b) The case that t, = 0 and K, and alphabet sizes |31
G's degenerates.

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

Irregularity. The general case, when n and m are not powers of two and not the same, is
more complicated than the case in Alg. 3. In this case, all four subproblems G;, G, G3,
and G4 will have different sizes. While theoretically, we can always round up, for better
performance in practice, we need to introduce additional parameters to restrict the search
within the belt region as shown in Fig. 4. Therefore, we use two parameters ¢; and ts, to
denote the lengths of the diagonal area on each side. We show an illustration in Fig. 4(a)
along with how to compute the subproblem sizes. In extreme cases, t; or t5 can degenerate
to 0, which results in three subproblems (Fig. 4(b)). In such cases, we will first merge Go
and G4, then merge G7 and Gayyg.

The Combining Step. As mentioned in Sec. 4, achieving an efficient combining step is
highly non-trivial. The straightforward solution to combine two matrices is to use the
Floyd-Warshall algorithm [18], but it incurs O(n?) work and will be a bottleneck. The
AALM algorithm improves this step to O(n?) by taking advantage of the Monge property of
the two matrices. For page limit, we introduce the details of the combining algorithm in the
full version [16]. However, the original AALM algorithm is based on divide-and-conquer and
requires memory allocation for every recursive function call. This is impractical as frequent
parallel memory allocation is extremely inefficient. To overcome this challenge, we redesign
the recursive solution to an iterative solution, such that we can preallocate the memory
space before the combining step. No dynamic memory allocation is involved during the
computation. We provide the details of this approach in the full version [16].

6 Experiments

Setup. We implemented all algorithms in C++ using ParlayLib [7] for fork-join parallelism
and some parallel primitives (e.g., reduce). Our tests use a 96-core (192 hyperthreads)
machine with four Intel Xeon Gold 6252 CPUs, and 1.5 TB of main memory. We utilize
numactl -i all in tests with more than one thread to spread the memory pages across
CPUs in a round-robin fashion. We run each test three times and report the median.

Tested Algorithms and Datasets. We tested five algorithms in total: four output-sensitive
algorithms in this paper (BFS-SA, BFS-HasH, BFS-B-HasH, DAC-SD), and a baseline
algorithm from ParlayLib [7], which is a parallel output-insensitive implementation with
O(nm) work. The ParlayLib implementation is intended to showcase the simplicity of
parallel algorithms, and as a result, it may not be well-ptimized. We are unaware of other

46:11

ESA 2023

46:12

456
457
458

459

461
462
463

4

>

465

466

467

468

469

470

471

472

473

Efficient Parallel Output-Sensitive Edit Distance

0.001

0.000

n=10°

0.01

0.00

=1

0.0025

0.0000

Synthetic Datasets:

n=10% k=10?

0.1 5 10
0.0 - - 0.0 ‘ 0 H_H -
n=10% k=103 n=10% k=10" n=10% k=10°
0.05
0.00 XX (.0 XX 0 XX
n=10" k=103 n=10" k=10 n=10" k=10°

0.05 _ 0. 10
0.00 = 0.00 A 0 0 XX 0 X
’ n=10° k=10 n=10° k=10? n=10% k=10% n=10% k=10* n=10% k=10°
20
0.5 0.5
0.0 0.0 0 0.0 0 - 0 X X
n=10° k= n=10" k=10 n=10° k=10% n=10° k=10% n=10° k=10* n=10° k=10°
Real-world Datasets:
o 1
0.2 ﬂ (ﬂ 0.0 0.5
0.0 —X 0 — - 0.0 - 0.0 -
Wiki v2 Wiki v3 Linux v1 Linux v2 Linux v3
I BFS-B-Hash: Building [BFS-B-Hash: Query
0.05 05| 3 f 10 [0 BFS-Hash: Building [BFS-Hash: Query
2 ([BFS-SA: Building [BFS-SA: Query
0.00 x x| 0,0 XX 0 X [DaC-SD [0 ParlayLib
DNA 1 DNA 2 DNA 3

Figure 5 Running time (in seconds) of synthetic and real-world datasets for all
algorithms. Lower is better. We put an “x” if the algorithm does not finish within 1000 seconds.
For BFS-based algorithms, we separate the time into building time (constructing the data structure
for LCP queries) and query time (running BFS). All bars out of the range of the y-axis are annotated
with numbers. The number is the total running time for DAC-SD and ParlayLib, and is in the
format of a 4+ b for BFS-SA, where a is the building time and b is the query time. Full results are

presented in the full version [16].

parallel implementations that provide output-sensitive cost bounds. We use b = 32 for our
BFS-B-HAsH. As we will show later, the running time is generally stable with 4 < b < 64.
We tested the algorithms on both synthetic and real-world datasets. For synthetic datasets,
we generate random strings with different string lengths n = 10° for 6 <4 < 9 and k (number
wo of edits) varying from 1 to 10°, and set the size of the alphabet as 256. We create strings A
and B by generating n random characters, and applying k edits. The k edits are uniformly
random for insertion, deletion and substitution. For k < n, we have m =~ n. All values of
k shown in the figures and tables are approximate values. Our real-world datasets include
« Wikipedia [45], Linux kernel [40], and DNA sequences [51]. We compare the edit distance
between history pages on Wikipedia and history commits of a Linux kernel file on GitHub.
We also compare DNA sequences by adding valid modifications to them to simulate DNA
damage or genome editing techniques, as is used in many existing papers [11, 13, 30, 57]. We

present the statistics of the real-world datasets in Tab. 2.

Overall Performance on Synthetic Data.

n > 105 due to its O(nm) work bound.

We present our results on synthetic data in
the upper part of Fig. 5. We also present the complete results in the full version [16]. For
BFS-based algorithms, we also separate the time for building the data structures for LCP
queries, and the query time (the BFS process). ParlayLib cannot process instances with

Running Time (s)

X. Ding, X. Dong, Y. Gu, Y. Liu, and Y. Sun

BB B-Hash Building M 100 | MM B-Hash Building M BDlg e Input Space
) == Auxiliary S 20
6| 7 B-Hash Query 1 B-Hash Query uxi {ary Pace
[Hash Building w 80| EEE Hash Building o =1 Running Time - m =
[Hash Query g [Hash Query 8,10 1 M [M =z
|| mmm SA Building = 60| EEE SA Building g m - 1[)_§
[SA Query o 1 SA Query S —
£ [
S 40 | -
2 > B
o
X D_H [(0 il ol - 0
0 N Y Q o 4 in 0 D_ﬂ % ' ? g|0ck85izelb6 . o
SR R e 105 b = 10°
Average LCP Length Average LCP Length - -
(a) n =107 k = 10000 (b) n = 10" k = 50000 Figure 7 Time-space trade-

off in BFS-B-Hash. The space

shown is the memory required for
Figure 6 Performance of BFS-based algorithms vs. the prefix tables. The dotted line is

average LCP length. Some building times are invisible the input size. Note that by setting

because they are too small. b =1, the algorithm is equivalent to

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

495

496

497

498

499

500

501

502

503

504

505

506

507

BFS-HAsH.

We first compare our solutions with ParlayLib [7]. Since ParlayLib is not output-sensitive,
its running time remains the same regardless of the value of k. Among the tests that
ParlayLib can process (n = 10°%), our output-sensitive algorithms are much faster than
ParlayLib, especially when k is small (up to 10°x). For n = 10%, all our BFS-based
algorithms are at least 1.7x faster than ParlayLib even when k = n/10.

We then compare our DaC- and BFS-based solutions. DAC-SD has the benefit of
polylogarithmic span, compared to O(k‘) span for the BFS-based algorithm. Although this
seems to suggest that DAC-SD should have better performance when k is large, the result
shows the opposite. The reason is that DAC-SD has O(nk) work, compared to O(n + k?)
cost of the BFS-based algorithms. When k becomes larger, the overhead in work is also
more significant. On the other hand, when k is small, the O(nk) work becomes linear, which
hides the inefficiency in work. Therefore, the gap between DAC-SD and other algorithms is
smaller when k is small, but DAC-SD is still slower than BFS-based algorithms in all test
cases, especially when k is large. This experiment reaffirms the importance of work efficiency
on practical performance for parallel algorithms.

Finally, we compare all our BFS-based solutions. Our hash-based solutions have significant
advantages over the other implementations when k is small, since the pre-processing time
for hash-based solutions is much shorter. When k is large, pre-processing time becomes
negligible, and BFS-HASH seems to be the ideal choice since its query is also efficient. In
particular, for n ~ m =~ 10°, hash-based algorithms use about 1 second for pre-processing
while BFS-SA uses about 100 seconds. Although BFS-SA also has O(n) construction time,
the constant is much larger and its memory access pattern is much worse than the two
hash-based solutions. We note that in some cases, the query time of BFS-SA can still be
faster than BFS-HASH and BFS-B-HASH, especially when k is large, which is consistent
with the theory (O(1) vs. O(logn) or O(blogn) per LCP query).

In theory, BFS-B-HASH reduces space usage in BFS-HASH by increasing the query time.
Interestingly, when k is small, BF'S-B-HASH can also be faster than BFS-HASH by up to
2.5%. This is because BFS-B-HASH incurs fewer writes (and thus smaller memory footprints)
in preprocessing that leads to faster building time. When k is small, the running time is
mostly dominated by the building time, and thus BFS-B-HASH can perform better. When &
is relatively large and k2 is comparable to n, BFS-HASH becomes faster than BFS-B-HasH
due to better LCP efficiency. In fact, when k is large, the running time is mainly dominated
by the query (BFS), and all three algorithms behave similarly. It is worth noting that in
these experiments with |X| = 256 and random edits, in most of the cases, the queried LCP is

46:13

ESA 2023

46:14

508
509
510
511

512

513
514
515
516

517

518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

552

553
554

555

Efficient Parallel Output-Sensitive Edit Distance

small. Therefore, the O(logn) or O(blogn) query time for BFS-HAsH and BFS-B-HAsH
are not tight, and they have much better memory access patterns than BFS-SA in LCP
queries. As a result, they can have matching or even better performance than BFS-SA.
Later we will show that under certain input distributions where the average LCP length is
large, BFS-SA can have some advantage over both BFS-HAsH and BFS-B-HAsH.

Real-World Datasets. We now analyze how our algorithms perform on real-world string
and edit patterns. The results are shown in the lower part of Fig. 5. The results are mostly
consistent with our synthetic datasets, where BFS-B-HASH is more advantageous when k is
small, and BFS-HASH performs the best when & is large. When k is large, BFS-SA can also
have comparable performance to the hash-based solutions.

LCP Length vs. Performance. It seems that for both synthetic and real-world data shown
above, our hash-based solutions are always better than BFS-SA. It is worth asking, whether
BFS-SA can give the best performance in certain cases, given that it has the best theoretical
bounds (see Tab. 1). By investigating the bounds carefully, BF'S-SA has better LCP query
cost as O(1), while the costs for BFS-HaAsH and BFS-B-HasH are O(log L) and O(blog L),
respectively, where L is the LCP length. This indicates that BF'S-SA should be advantageous
when k and L are both large. To verify this, we artificially created input instances with
medium to large values of k& and controlled average LCP query lengths, and showed the
results in Fig. 6 on two specific settings.

The experimental result is consistent with the theoretical analysis. The running time

for BFS-HASH increases slowly with L, while the performance of BFS-B-HASH grows
much faster, since it is affected by a factor of O(b) more than BFS-HAsH. The query time
for BFS-SA almost stays the same, but also increases slightly with increasing L. This is
because in general, with increasing L, the running time for all three algorithms may increase
slightly due to worse cache locality in BFS due to more long matches. In Figure 6(a), the
building time for both BFS-HASH and BFS-B-HASH are negligible, while BFS-SA still
incurs significant building time. Even in this case, with an LCP length of 300, the query
time of the hash-based solutions still becomes larger than the total running time of BF'S-SA.
In Figure 6(b) with a larger k, the building time for all three algorithms is negligible. In
this case, BF'S-SA always has comparable performance with BFS-HASH, and may perform
better when L > 20. However, such extreme cases (both k and L are large) should be very
rare in real-world datasets - when k is large enough so that the query time is large enough
to hide SA’s building time, L is more likely to be small, which in turn is beneficial for the
query bounds in hash-based solutions. Indeed such cases did not appear in our 33 tests on
both synthetic and real data.
Parallelism. We test the self-relative speedup of all algorithms. We present speedup
numbers on two representative tests with different values of n and k in Tab. 3. For BFS-based
algorithms, we separate the speedup for building and query. All our algorithms are highly
parallelized. Even though BFS-SA and DAC-SD have a longer running time, they still
have a 48—-68x speedup, indicating good scalability. Our BFS-HASH algorithm has about
40-50x speedup in building, and BFS-B-HASH has a lower but decent speedup of about
20-40x. When k is small, the frontier sizes (and the total work) of BFS are small, and the
running time is also negligible. In this case, we cannot observe meaningful speedup. For
larger k = 10°, three BFS-based algorithms achieve 27-48x speedup both in query and entire
edit distance algorithm.

Space Usage. We study the time-space tradeoff of our BFS-B-HaAsH with different block
sizes b. We present the auziliary space used by the prefix table in BFS-B-HASH along with
running time in Fig. 7 using one test case with n = 10 and k£ = 10° in our synthetic dataset.

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

X. Ding, X. Dong, Y. Gu, Y. Liu, and Y. Sun

BFS-B-Hash BFS-Hash BFS-SA DaC-SD
n Build Query Total|Build Query Total | Build Query Total| Total
10% 10 | 204 - 19.9 | 46.6 - 46.5 | 49.6 - 49.4 68.2
10° 10°| 242 364 363 | 427 468 46.6 | 51.2 27.1 483 t.o.
Table 3 Self-relative speedup of each implementation in each step. “Build” = con-

structing the data structure for LCP queries. “Query” = the BFS process. “t.0.” = timeout. We
omit query speedup when k = 10 because there is little parallelism to be explored for BFS with
small k£, and the BF'S time is also small and hardly affects the overall speedup. 192 hyperthreads
are used for parallel executions.

The dotted line shows the input size. Note that when b = 1, it is exactly BFS-HASH. Since
the inputs are 8-bit characters and the hash values are 64-bit integers, BF'S-HASH incurs 8%
space overhead than the input size. Using blocking, we can avoid such overhead and keep
the auxiliary space even lower than the input. The auxiliary space decreases linearly with
the block size b. Interestingly, although blocking itself incurs time overhead, the impact in
time is small: the time grows by 1.19x from b = 1 to 2, and grows by 1.08x from b = 2 to
64. This is mostly due to two reasons: 1) as mentioned, with 8-bit character input type and
random edits, the average LCP length is likely short and within the first block, and therefore
the query costs in both approaches are close to O(L) for LCP length L, and 2) the extra
factor of b in queries (Line 17) is mostly cache hits (consecutive locations in an array). This
illustrates the benefit of using blocking in such datasets, since blocking saves much space
while only increasing the time by a small fraction.

7 Conclusion and Discussions

We proposed output-sensitive parallel algorithms for the edit-distance problem, as well as
careful engineering of them. We revisited the BFS-based Landau-Vishkin algorithm. In
addition to using SA as is used in Landau-Vishkin (our BFS-SA implementation), we
also designed two hash-based data structures to replace the SA for more practical LCP
queries (BFS-HAsH and BFS-B-HasH). We also presented the first output-sensitive parallel
algorithm based on divide-and-conquer with O(nk) work and polylogarithmic span. We have
also shown the best of our engineering effort on this algorithm, although its performance
seems less competitive than other candidates due to work inefficiency.

We implemented all these algorithms and tested them on synthetic and real-world
datasets. In summary, our BFS-based solutions show the best overall performance on
datasets with real-world edits or random edits, due to faster preprocessing time and better
I/O-friendliness. BFS-HASH performs the best in time when k is large. BFS-B-HAsH
has better performance when k is small. The blocking scheme also greatly improves space
efficiency without introducing much overhead in time. In very extreme cases where both
k and the LCP lengths are large, BFS-SA can have some advantages over the hash-based
solutions, while BF'S-B-HASH can be much slower than BFS-HASH. However, such input
patterns seem rare in the real world.

All our BFS-based solutions perform better than the output-insensitive solution in
ParlayLib, and the DaC-based solution with O(nk) work and polylogarithmic span, even for
large k > y/n. The results also imply the importance of work efficiency in parallel algorithm
designs, consistent with the common belief in the literature [52, 24]. Because the number
of cores in modern multi-core machines is small (usually hundreds to thousands) compared
to the problem size, an algorithm is less practical if it blows up the work significantly, as
parallelism cannot compensate for the performance loss due to larger work.

46:15

ESA 2023

46:16

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

644

Efficient Parallel Output-Sensitive Edit Distance

—— References

1

10

11

12

13

14

15

16

17

18
19

20

21

22

Alberto Apostolico, Mikhail J Atallah, Lawrence L Larmore, and Scott McFaddin. Efficient
parallel algorithms for string editing and related problems. SIAM J. on Computing, 19(5):968—
988, 1990.

Nimar S Arora, Robert D Blumofe, and C Greg Plaxton. Thread scheduling for multipro-
grammed multiprocessors. Theory of Computing Systems (TOCS), 34(2):115-144, 2001.

K Nandan Babu and Sanjeev Saxena. Parallel algorithms for the longest common subsequence
problem. In IEEE International Conference on High Performance Computing (HiPC), pages
120-125. IEEE, 1997.

Michael A. Bender and Martin Farach-Colton. The lca problem revisited. In Latin American
Symposium on Theoretical Informatics (LATIN), pages 88-94. Springer, 2000.

Dennis A Benson, Mark Cavanaugh, Karen Clark, Ilene Karsch-Mizrachi, David J Lipman,
James Ostell, and Eric W Sayers. Genbank. Nucleic acids research, 41(D1):D36-D42, 2012.
Guy E. Blelloch. Scans as primitive parallel operations. IEEE Trans. on Comput., 38(11),
1989.

Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. Parlaylib — a toolkit for parallel
algorithms on shared-memory multicore machines. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 507-509, 2020.

Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. Optimal parallel algorithms in
the binary-forking model. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 89-102, 2020.

Robert D. Blumofe and Charles E. Leiserson. Space-efficient scheduling of multithreaded
computations. SIAM J. on Computing, 27(1), 1998.

Nicholas Boucher, Ilia Shumailov, Ross Anderson, and Nicolas Papernot. Bad characters:
Imperceptible nlp attacks. In IEEE Symposium on Security and Privacy (SP), pages 1987-2004.
IEEE, 2022.

Dana Carroll. Focus: genome editing: genome editing: past, present, and future. The Yale
journal of biology and medicine, 90(4):653, 2017.

Jung Hee Cheon, Miran Kim, and Kristin Lauter. Homomorphic computation of edit distance.
In International Conference on Financial Cryptography and Data Security, pages 194-212.
Springer, 2015.

Kendell Clement, Holly Rees, Matthew C Canver, Jason M Gehrke, Rick Farouni, Jonathan Y
Hsu, Mitchel A Cole, David R Liu, J Keith Joung, Daniel E Bauer, et al. Crispresso2 provides
accurate and rapid genome editing sequence analysis. Nature biotechnology, 37(3):224-226,
2019.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms (3rd edition). MIT Press, 2009.

Sanjoy Dasgupta, Christos H Papadimitriou, and Umesh Virkumar Vazirani. Algorithms.
McGraw-Hill Higher Education New York, 2008.

Xijangyun Ding, Xiaojun Dong, Yan Gu, Yihan Sun, and Youzhe Liu. Efficient parallel
output-sensitive edit distance. arXiv preprint:2306.17461, 2023.

Xiangyun Ding, Xiaojun Dong, Yan Gu, Yihan Sun, and Youzhe Liu. Parallel implementations
for output-sensitive edit distance. https://github.com/ucrparlay/Edit-Distance, 2023.
Robert W Floyd. Algorithm 97: shortest path. Commun. ACM, 5(6):345, 1962.

Zvi Galil and Raffaele Giancarlo. Improved string matching with k& mismatches. ACM SIGACT
News, 17(4):52-54, 1986.

Zvi Galil and Raffaele Giancarlo. Parallel string matching with k& mismatches. Theoretical
Computer Science (TCS), 51(3):341-348, 1987.

Zvi Galil and Raffaele Giancarlo. Data structures and algorithms for approximate string
matching. Journal of Complexity, 4(1):33-72, 1988.

Zvi Galil and Kunsoo Park. An improved algorithm for approximate string matching. SIAM
Journal on Computing, 19(6):989-999, 1990.

https://github.com/ucrparlay/Edit-Distance

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

X. Ding, X. Dong, Y. Gu, Y. Liu, and Y. Sun

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Michael T Goodrich and Roberto Tamassia. Algorithm design and applications. Wiley Hoboken,
2015.

Yan Gu, Ziyang Men, Zheqi Shen, Yihan Sun, and Zijin Wan. Parallel longest increasing
subsequence and van emde boas trees. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2023.

Yan Gu, Zachary Napier, and Yihan Sun. Analysis of work-stealing and parallel cache
complexity. In STAM Symposium on Algorithmic Principles of Computer Systems (APOCS),
pages 46-60. SIAM, 2022.

Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
siam Journal on Computing, 13(2):338-355, 1984.

Daniel S. Hirschberg. A linear space algorithm for computing maximal common subsequences.
Commun. ACM, 18(6):341-343, 1975.

Daniel Hlddek, Jan Stas, and Matas Pleva. Survey of automatic spelling correction. Flectronics,
9(10):1670, 2020.

Md Mosabbir Hossain, Md Farhan Labib, Ahmed Sady Rifat, Amit Kumar Das, and Monira
Mukta. Auto-correction of english to bengali transliteration system using levenshtein distance.
In International Conference on Smart Computing € Communications (ICSCC), pages 1-5.
IEEE, 2019.

Yoon-Seong Jeon, Kihyun Lee, Sang-Cheol Park, Bong-Soo Kim, Yong-Joon Cho, Sung-Min
Ha, and Jongsik Chun. Ezeditor: a versatile sequence alignment editor for both rrna-and
protein-coding genes. International journal of systematic and evolutionary microbiology,
64(Pt_2):689-691, 2014.

Tao Jiang, Guohui Lin, Bin Ma, and Kaizhong Zhang. A general edit distance between RNA
structures. Journal of Computational Biology, 9(2):371-388, 2002.

Juha Karkkéinen and Peter Sanders. Simple linear work suffix array construction. In Intl.
Collog. on Automata, Languages and Programming (ICALP), pages 943-955. Springer, 2003.
Richard M Karp and Michael O Rabin. Efficient randomized pattern-matching algorithms.
IBM journal of research and development, 31(2):249-260, 1987.

Peter Krusche and Alexander Tiskin. New algorithms for efficient parallel string comparison.
In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 209-216,
2010.

Gad M Landau and Uzi Vishkin. Efficient string matching with k mismatches. Theoretical
Computer Science (TCS), 43:239-249, 1986.

Gad M Landau and Uzi Vishkin. Fast string matching with k& differences. J. Computer and
System Sciences, 37(1):63-78, 1988.

Gad M Landau and Uzi Vishkin. Fast parallel and serial approximate string matching. J.
Algorithms, 10(2):157-169, 1989.

Vladimir I Levenshtein et al. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10, pages 707-710. Soviet Union, 1966.

Heng Li and Nils Homer. A survey of sequence alignment algorithms for next-generation
sequencing. Briefings in bioinformatics, 11(5):473-483, 2010.

Linux Kernel File den_1_0_sh_mask.h Commit History on GitHub. https:
//github.com/torvalds/linux/blob/master/drivers/gpu/drm/amd/include/asic_reg/
dcn/den_1_0_sh_mask.h.

Mi Lu and Hua Lin. Parallel algorithms for the longest common subsequence problem. [EFEFE
Transactions on Parallel and Distributed Systems, 5(8):835-848, 1994.

Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches. SIAM
J. on Computing, 22(5):935-948, 1993.

Guillaume Margais, Dan DeBlasio, Prashant Pandey, and Carl Kingsford. Locality-sensitive
hashing for the edit distance. Bioinformatics, 35(14):i127-i135, 2019.

46:17

ESA 2023

https://github.com/torvalds/linux/blob/master/drivers/gpu/drm/amd/include/asic_reg/dcn/dcn_1_0_sh_mask.h
https://github.com/torvalds/linux/blob/master/drivers/gpu/drm/amd/include/asic_reg/dcn/dcn_1_0_sh_mask.h
https://github.com/torvalds/linux/blob/master/drivers/gpu/drm/amd/include/asic_reg/dcn/dcn_1_0_sh_mask.h
https://github.com/torvalds/linux/blob/master/drivers/gpu/drm/amd/include/asic_reg/dcn/dcn_1_0_sh_mask.h
https://github.com/torvalds/linux/blob/master/drivers/gpu/drm/amd/include/asic_reg/dcn/dcn_1_0_sh_mask.h

46:18

695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730

731

Efficient Parallel Output-Sensitive Edit Distance

44

45

46

47

48

49

50

51

52

53

54
55

56

57

58

59

Samuel McCauley. Approximate Similarity Search Under Edit Distance Using Locality-
Sensitive Hashing. In 2/th International Conference on Database Theory (ICDT 2021), volume
186, pages 21:1-21:22. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2021.

Municipal history of Quebec on Wikipedia. https://en.wikipedia.org/wiki/Municipal_
history_of_Quebec.

Eugene W Myers. An o (nd) difference algorithm and its variations. Algorithmica, 1(1-4):251—
266, 1986.

Eugene Wimberly Myers. Incremental alignment algorithms and their applications. University
of Arizona, Department of Computer Science, 1986.

Jean-Frédéric Myoupo and David Seme. Time-efficient parallel algorithms for the longest
common subsequence and related problems. J. Parallel Distrib. Comput., 57(2):212-223, 1999.
Gonzalo Navarro. A guided tour to approximate string matching. ACM computing surveys
(CSUR), 33(1):31-88, 2001.

Mike Paterson and Vlado Dancik. Longest common subsequences. In International Symposium
on Mathematical Foundations of Computer Science, pages 127-142. Springer, 1994.

Jane Peterson, Susan Garges, Maria Giovanni, Pamela McInnes, Lu Wang, Jeffery A Schloss,
Vivien Bonazzi, Jean E McEwen, Kris A Wetterstrand, Carolyn Deal, et al. The nih human
microbiome project. Genome research, 19(12):2317-2323, 2009.

Zheqi Shen, Zijin Wan, Yan Gu, and Yihan Sun. Many sequential iterative algorithms can be
parallel and (nearly) work-efficient. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2022.

Julian Shun. Fast parallel computation of longest common prefixes. In International Conference
for High Performance Computing, Networking, Storage, and Analysis (SC), pages 387-398.
TIEEE, 2014.

Diomidis Spinellis. Git. IEEFE software, 29(3):100-101, 2012.

Vianney Kengne Tchendji, Armel Nkonjoh Ngomade, Jerry Lacmou Zeutouo, and Jean Frédéric
Myoupo. Efficient cgm-based parallel algorithms for the longest common subsequence problem
with multiple substring-exclusion constraints. Parallel Computing, 91:102598, 2020.

Esko Ukkonen. Algorithms for approximate string matching. Information and Control,
64(1-3):100-118, 1985.

Liang-Jiao Xue and Chung-Jui Tsai. Ageseq: analysis of genome editing by sequencing.
Molecular plant, 8(9):1428-1430, 2015.

Jiaoyun Yang, Yun Xu, and Yi Shang. An efficient parallel algorithm for longest common
subsequence problem on GPUs. In World Congress on Engineering, volume 1, pages 499504,
2010.

Hongyu Zhang. Alignment of blast high-scoring segment pairs based on the longest increasing
subsequence algorithm. Bioinformatics, 19(11):1391-1396, 2003.

https://en.wikipedia.org/wiki/Municipal_history_of_Quebec
https://en.wikipedia.org/wiki/Municipal_history_of_Quebec
https://en.wikipedia.org/wiki/Municipal_history_of_Quebec

	1 Introduction
	2 Preliminaries
	3 BFS-based Algorithms
	3.1 Overview of Existing Sequential and Parallel BFS-based Algorithms
	3.2 Algorithm Based on String Hashing (BFS-Hash)
	3.3 Algorithm Based on Blocked-Hashing (BFS-B-Hash)

	4 The Divide-and-Conquer Algorithms
	5 Implementation Details
	5.1 Implementation Details of BFS-based Algorithms
	5.2 Implementation Details of the DaC-SD Algorithm

	6 Experiments
	7 Conclusion and Discussions

