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ABSTRACT

Frontal polymerization (FP) is a promising alternative manufacturing method
for thermoset-based fiber-reinforced polymer composites (FRP) in comparison with
the traditional autoclave/oven-curing method, due to its rapid curing process, low
energy consumption, and low cost. Optimizing the weight contents of initiators
relative to the resin’s mass is needed to adjust the mechanical properties of FRPs in
industrial applications. This study investigates the effect of varying the photo-
initiator (PI) weight content on tensile properties and the frontal polymerization
characteristics, including the front velocity, front temperature, and degree of cure,
in the FP process of the epoxy resin. Specifically, a dual-initiator system, including
PI and thermal-initiator (TI), is used to initiate the polymerization process by
ultraviolent (UV) light. The weight content of the TI is fixed at 1 w%, and the
relative PI concentration is varied from 0.2 w% to 0.5 wt%. Results show that
increasing the PI amount from 0.2 wt% to 0.3 wt% significantly improves the front
velocity and the degree of cure by about two times. Increasing the PI content from
0.3 wt% to 0.4 wt% results in 15% and 26% higher degree of cure and front
velocity, respectively. Moreover, due to the different front velocity in the top and
bottom regions of the specimen, the specimens with 0.4 wt% PI exhibited a curved
shape. The specimen with 0.5 wt% PI is thermally degraded and foamed. By
comparing tensile properties, it is found that increasing the PI concentration from
0.2 wt% to 0.3 wt% improves the tensile strength and Young’s modulus by 3.91%
and 7%, respectively, while the tensile strength and the Young’s modulus of frontal
polymerized specimens are on average 8% and 14% higher than traditionally oven-
cured ones, respectively.
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INTRODUCTION

Nowadays, the growing demand for sustainable and additive manufacturing
processes for thermoset-based fiber-reinforced polymer (FRP) composites
continuously to drive emerging out-of-oven/autoclave manufacturing techniques.
Traditional manufacturing and repair of FRP composites require prolonged curing
duration and intensive energy consumption for cross-linking and consolidation,
which are typically achieved through the thermal curing method using an oven or
an autoclave. When compared to this traditional method, frontal polymerization
(FP) provides a promising alternative due to the rapid curing, reduction in energy
consumption that impacts the environment, and the ease of manufacturing [1-3]. FP
generates a self-propagating exothermic reaction zone, i.e., a curing front, using an
initial localized triggering mechanism, e.g., a thermal or UV-induced external
source, which converts the cold beyond monomer region to a hot-formed polymer.
The frontal polymerization characteristics, including the front velocity, degree of
cure, and polymer degradation, are highly affected by the weight contents of the
photo-initiator and the thermal-initiator in relative to the monomer [2, 4].

Due to their robust reactivities and low exothermicities, the acrylate resin
systems, which are extensively studied, naturally lend themselves to FP in contrast
to epoxide resin systems. Mariani et al. [5] investigated the FP characteristics of
poly(dicyclopentadiene) (pDCPD) via the frontal ring opening metathesis
polymerization (FROMP) process. Robertson et al. [6] studied the effect of
different fiber volume fractions of carbon FRPs on FP characteristics and tensile
strength compared to those fabricated through the thermal curing method. They
showed that the frontal polymerized specimens had comparable tensile and flexural
strengths with those of the traditionally oven-cured specimens. In another study,
Centellas et al. [7] demonstrated the effects of different boundary conditions and
multiple-triggering directions on FP characteristics. They indicated that insulated
boundary conditions and using two triggering points instead of one can reduce the
curing duration, when compared to using a single triggering point. Although many
studies have demonstrated the success of FRPs with DCPD resin, their use in
additive manufacturing and the industrial application of this material system are
limited due to its short pot life of a few hours [8].

In contrast, epoxy-based monomers are extensively utilized in the fabrication of
FRPs in the industry [9, 10]. This type of monomer can be polymerized using the
FP technique, more specifically, the radical-induced cationic frontal polymerization
(RICFP) technique [11]. This method provides a longer resin pot life along with
more practical applications in industry, in contrast with acrylate-based resins, such
as DCPD. This is enabled due to the ability to use two separate initiator systems in
RICFP of epoxide systems. This configuration stabilizes the resin mixture so that it
remains intact for a month at a 50 °C dark-ambient temperature [12]. For instance,
Tran et al. [13] characterized the FP process and mechanical properties of carbon
fiber reinforced polymer (CFRP) composites using bisphenol A diglycidyl ether
(BADGE), diaryliodonium tetrakis (perfluoro-tert-butoxy) aluminate, and
benzopinacol as monomer, photo-initiator and thermal initiator, respectively. The
fiber volume fraction was 35%, and the mechanical properties were found to be
similar to those manufactured using the traditional thermal curing method. In
another study, 3.,4-epoxycyclohexylmethyl-3',4"-epoxycyclohexane carboxylate



(ECC) monomer, which has a similar molecular structure to industrial resin, and
sulfonium salts were employed for photo-curing of CFRP with 40% of the fiber
volume fraction [14]. They reported that the dual initiation system can increase the
front velocity up to 13 cm/min, when compared to using a single initiation system
with a reported front velocity of 5.3 cm/min [13].

As mentioned before, the weight contents of PI and TI in relative to the
monomer resin is critical in the FP process, which controls the front temperature
and the heat generation, and hence, the degree of cure and the frontal velocity.
Although existing studies have shown the frontal polymerization process of neat
resin and FRP cases corresponding to the different epoxide systems with various
single- or dual-initiator systems, the effects of initiator concentrations on the FP
process and the resulting mechanical properties still need to be investigated. Thus,
this study investigates the FP performance of epoxy resin. Standard tensile
specimens (i.e., ASTM D638-14 [15]) were fabricated using the UV-induced FP
process with varying weight contents of the PI. The tensile properties, FP
characteristics, including the temperature, front velocity, and degree of cure, were
characterized. Moreover, the tensile properties of frontal polymerized specimens
are also compared with properties of those fabricated via the traditionally oven
curing method.

METHODOLOGY AND EXPERIMENTAL TESTS
Materials

(3,4-epoxycyclohexane)-methyl-3,4-epoxycyclohexyl  carboxylate (ECC,
AAblocks, Inc.), p-(octyloxyphenyl)phenyl iodonium hexafluorostibate (IOC-8
SbF6), and benzopinacol are mixed as epoxy monomer, photo-initiator (PI), and
thermal-initiator (TI). Also, isopropylthioxanthone is used as a photosensitizer (PS).
This material system is employed for RICFP specimens. In order to produce oven-
cured specimens, the monomer is thermally cured with cycloaliphatic 4-
methylhexahydrophthalic anhydride (MHHPA) and Tertiary amine N,N-
dimethylbenzylamine (DMBA) as the curing agent and catalyst, respectively. The
material used for the mold of the epoxy resin specimens is silicone elastomer. The
frontal polymerization is initiated utilizing a mercury arc lamp UV source (500 W
with a spot size of 1 cm in diameter).

Sample Preparation

The initiators and photosensitizer are dissolved in the epoxy monomer using a
magnetic stirrer at a high shear rate. Then, the mixture was poured into the silicone
elastomer mold and degassed under high vacuum pressure for 18 hours at room
temperature before conducting the frontal polymerization. Based on [15], the mass
ratios of the TI and the photosensitizer were fixed at 1 wt% and 0.05 wt% relative
to the mass of the epoxy monomer, respectively. The mass ratio corresponding to
the PI was varied between 0.1 wt% and 0.5 wt%. It is noted that three grams of
epoxy monomer was used for each sample. For each specific mass ratio, three
replicate samples were fabricated. The sample identifications are described in Table



I. For fabrication of traditional oven-curing specimens, the epoxy monomer was
stirred with curing agent and catalyst for 20 minutes at room temperature, as
indicated in [16, 17]. Then, the liquid was cured at 80 °C for 15 hours in the oven.
The mass ratio between the MHHPA and ECC is 1.267:1. The catalyst DMBA was
mixed with the resin and MHHPA at a 0.0164:1 mass ratio [16, 17].

TABLE I. SAMPLE IDENTIFICATION CORRESPONDING TO THE RICFP SPECIMENS.

Weight contents
No. Thermal-initiator (TT) Photo-initiator (PT) Photo-sensitizer (PS)
(Wt%) (Wt%) (Wt%)
1 1 0.2 0.05
2 1 0.3 0.05
3 1 0.4 0.05
4 1 0.5 0.05

Experimental Test

The temperature at distinct locations and at the curing front were measured
utilizing a FLIR One Pro thermal camera during the frontal polymerization process.
Although the polymerization was visible through the thermal camera, it is crucial to
also look into the mechanical characteristics of the cured specimens in order to
determine whether the frontal polymerization process may be employed as a
replacement for traditional autoclave or oven curing procedures. To investigate the
effect of the relative ratio of weight contents of PI and TI on the tensile strength and
Young’s modulus of neat resin specimens, ASTM D638-14 standard tensile tests
were conducted [15]. A silicone elastomer mold with a rectangular cavity was used
to produce a beam specimen with the same length, thickness, and major width as
the type V standard specimen (Fig. 1 (a)). After that, the type V dog-bone
specimen, as shown in Fig. 1 (b), is cut out of the beam specimen using waterjet
cutting. This procedure is followed for both the traditional oven curing and RICFP
specimens.




63.5 mm

9.53 mm

(a) 9.53 mm

(b) 3. 18 mm

Figure 1. Geometrical representation of (a) beam specimen in the silicone mold and (b) type V
standard tensile specimen fabricated after trimming the beam specimen using waterjet cutting.

Furthermore, the degree of conversion is evaluated using Fourier-transform
infrared spectroscopy (FTIR) at the top, bottom, and cross-section of the middle
part in each specimen. The signals are recorded in a range of 400-4000 cm™ at 2
cm’' rate over 64 scans. Then, the absorbance peak height ratios of oxirane (789 cm’
" and C=0 bound (1724 cm™) are calculated, which are related to the polymerized
(i.e., oven-cured and RICFP) specimens and uncured monomer. The below equation
is used to calculate the degree of cure [18]:

H7g9
H1724/

Degree of cure =1 —W , (1)
M

H1724

where H indicates the value of absorbance and subscripts P and M represent the
polymer and monomer, respectively.

RESULTS AND DISCUSSION

Recall that this study aims to investigate the effect of the PI weight fraction on
the frontal polymerization characteristics and tensile properties of epoxy specimens
manufactured by FP in comparison with the oven-cured traditional specimens. The
weight contents related to thermal initiator (TI) and photosensitizer (PS) were fixed
at 1 wt% and 0.05 wt%, respectively. The frontal polymerization characteristics,
including the average front velocity (measured at three points), the initiation time,
the total time, and the degree of cure, are shown in Table II.

The temperature was recorded at three different fixed locations at various times,
as shown in Fig. 2. The maximum temperature was also recorded, which
corresponds to the curing front temperature during the polymerization process.
Figure 2 illustrates the temperature history of the RICFP of a neat resin beam
specimen with 0.3 wt% PI using a thermal camera. Additionally, the average front
velocity is calculated at three different points, i.e., x = 21.00 mm, x = 31.75 mm,
and x = 63.50 mm. From Fig. 2,



TABLE I COMPARATIVE PARAMETERS OF FRONTAL POLYMERIZATION

CHARACTERISTICS.
Specimen No. Fro?rtn \rfg/l;))mty Imtlatz:)n time Total time (s) Degre(e(:%(;f cure
x=21.12 1.35
1 (PI=0.2 wt%) x=31.75 0.83 12 107 40
x=63.5 0.63
x=21.12 2.82
2 (PI=0.3 wt%)  x=31.75 1.67 9.5 57 81.9
x=63.5 1.08
x=21.12 4.7
3 (PI=0.4 wt%) x=31.75 2.28 3.5 40 93.47
x=63.5 1.61
x=21.12 5.27 Polymer
4 (PI=0.5 wt%) x=31.75 2.87 2 31 degraded and
x=63.5 2.04 foamed
1: 247°C,2:404 °C, 3: 26.8 °C, 1: 205°C 2:216°C 3:24.9°C
Max:253 °C Min: 26.7°C Max:242 °C Min: 24.9 °C

(2) t=13 s (b) =28 s

1: 178 °C, 2: 217 °C, 3: 26.6 °C, 1: 178°C, 2: 217°C, 3: 26.6 °C,
Max:255°C Min: 25.3 °C Max:255°C Min: 253 °C

(c) =45 5 (d) =64 5

Figure 2. Temperature history recorded from the top surface corresponds to 0.3 wt% PI weight
content (i.e., No. 2 specimen).

it can be seen that the front propagated uniformly through the longer dimension of
the specimen. Comparing the maximum temperature with the front temperature at ¢
= 13 s showed that the location of the initial maximum temperature remains
unchanged. This phenomenon is caused by exposing the UV light at one fixed spot,
which causes a concentration of exothermic heat at this location. After the curing
front propagated through the middle of the specimen, the maximum temperature
decreased to about 240 °C, followed by a uniform temperature distribution (Fig.
2(b)). As the curing front reached the end part of the specimen (i.e., the end part of
the mold), the maximum temperature started to increase to 250 °C. This can be
explained by the increased generation of exothermic heat concentration due to the
insulating boundary condition. Specifically, due to the low thermal conductivity of
the silicone elastomer mold, the generated exothermic heat is trapped in the end part
of the mold, which resulted in the aggregation of heat and an increase in the
temperature. This behavior was observed for all specimens containing different
amounts of PI.



By comparing the temperature evolutions at three prescribed points (i.e., x = 0
mm, x = 31.75 mm, and x = 63.5 mm) in Figs. 3(a)-3(c), the front temperature in
the left and right end areas of each specimen was higher than the middle of it (Fig.
3). For instance, in Fig. 3(a), the temperature of points x = 0 mm and x = 63.5 mm
rose to 241 °C and 234 °C. While the temperature increased to 223 °C at x = 31.75
mm. This trend can also be seen in curves of the front temperature, where the
temperature increased dramatically in a short period of time. Then, the front
temperature dropped to 226 °C and started to oscillate. After that, the front
temperature increased to 238 °C. As mentioned before, this phenomenon is caused
by the effect of the insulating boundary condition during the propagation process.
Specifically, the front collided with the left end of the mold, in which the generated
heat was trapped due to the insulating boundary condition, which led to the buildup
of the exothermic heat and an increase in the temperature.
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Figure 3. Evolution of temperature for different PI weight contents corresponding to three fixed
points and curing front temperature.

From Figs. 3(c) and 3(d) (specimens with 0.4 wt% and 0.5 wt% of PI), due to
the higher concentration of PI than other specimens, the front was initiated within a
higher temperature range and in a shorter period of time than other specimens.
Specifically, the initial temperatures of 0.4 wt% and 0.5 wt% of PI are on average



16.5 °C and 26.5 °C higher than those in 0.2 wt% and 0.3 wt% of PI. The initiation
time of 0.4 wt% and 0.5 wt% of PI is 10 seconds lower than 0.2 wt% and 0.3 wt%
of PI. This phenomenon caused the front to start with a higher velocity and
initiation temperature on the top surface. This type of propagation pattern resulted
in homogeneous front temperatures on the top surface, where the front temperatures
oscillated around 256 °C and 261 °C (Figs. 3(c) and 3(d)), compared to other
specimens, which had temperature peaks in the left and right regions. The thermal
images, illustrated in Figs. 4(a)—4(c), show that the front propagation pattern had a
sloped shape corresponding to a specimen with 0.4 wt% PI. As the curing front
reached the left end of the mold, it started to propagate from the top through the
bottom side of the specimen (Fig. 4(d)). In this way, the upper surface was
polymerized with a higher velocity and cooled down faster than the region on the
bottom side. This forms a wave-like pattern on the top surface (Fig. 5(a-1)), where

Polymer
deformation

(b-1) top view

(a-2) side view Curved surfaces (b-2) side view

Figure 5. Frontal polymerization morphology corresponding to the specimens with (a) PI=0.4 wt%
and (b) PI=0.5 wt%.

the propagation pattern exhibited a small slope (as indicated in black lines in Figs.
4(b), 4(c)). Additionally, the difference in top and bottom surface velocity caused
the top surface to shrink, thereby resulting in curve surfaces (Fig. 5(a-2)). This
behavior was observed in the specimen with 0.5 wt% PI (Fig. 5(b-2)). Additionally,
the higher weight content of PI in this specimen resulted in thermal degradation and
foaming due to the much higher exothermic heat generated inside the specimen
during the polymerization process (Fig. 5(b-1)). The 0.5 wt% PI specimen had a
maximum temperature of 278 °C, whereas the other specimens only had a
maximum temperature of lower than 268 °C, as shown in Fig. 3.



The frontal polymerization characteristics for specimens with different weight
contents of PI are summarized in Table II. Note that the average front velocity is
calculated at three different locations. As can be seen, increasing the weight content
of PI increases the front velocity and degree of cure. Comparing the temperature
evolution and characteristics of each specimen revealed the relation between the
effect of weight contents on the generated exothermic heat and FP characteristics. It
is found that increasing the PI weight content from 0.2 wt% to 0.3 wt%
significantly reduced the polymerization time and increased the front velocity and
degree of cure, both, by two times. This difference in thermal behavior also resulted
in different tensile properties of these specimens, as presented in Fig. 6. Increasing
the weight content of PI improved the ultimate tensile strength and Young’s
modulus. From Fig. 6(a) and 6(b), the ultimate tensile strength and Young’s
modulus related to the 0.3
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Figure 6. Comparative evaluation of the tensile properties in terms of (a) tensile strength, (b)
Young's modulus, and (c) failure strain corresponding to specimens with 0.2 wt% and 0.3 wt% of PI
and traditional specimen.

wt% PI specimen increase by 3.91% and 7%, respectively, when compared to the
0.2 wt% PI specimen. Moreover, increasing the PI weight content makes the



specimen more brittle. Specifically, the failure strain of the 0.3 wt% PI specimen is
0.16% lower than that of the 0.2 wt% PI specimen. Based on Table II, increasing
the amount of PI to 0.4 wt% improved the front velocity and degree of cure.
However, the polymerization process of this PI weight content caused the surface of
the specimen to be curved. Due to this, it was not possible to conduct the tensile test
on this specimen.

Based on Table II, the degree of cure improved from 40% to 93% by increasing
the PI concentration from 0.2 wt% to 0.4 wt%. Comparing the degree of cure of 0.2
wt% with 0.3 wt% PI specimen showed that the degree of cure has been improved
by two times. However, this increasing pattern was not observed when the 0.3 wt%
PI specimen was compared with 0.4 wt% PI specimen where the degree of cure was
increased from 80% to 93%, respectively. Increasing the PI concentration from 0.4
wt% to 0.5 wt% resulted in overcuring and foaming of the specimen.

Additionally, by comparing the tensile properties of oven-cured specimens with
RICFP specimens, as shown in Fig. 6, the tensile strength of thermal-cured
specimen is 1.76 (5%) and 3.07 MPa (9%) lower than 0.2 wt% and 0.3 wt% of PI
specimens, respectively. The Young’s modulus of the thermal-cured specimen is
about 14 % lower than that of RICFP specimens. The failure strain for the thermal-
cured specimen was higher than the frontal polymerized specimens.

When compared to the results reported by [18] corresponding to the FP
characteristics of the neat epoxy resin specimen with the same silicone elastomer
mold, it was revealed that the size of the specimen affected the FP process. Due to
the smaller specimen dimensions in this study, for example, the front velocity of PI
= 0.5 wt% (2.04 mm/s) is much higher than the velocity mentioned in [18] (0.99
mm/s). Additionally, the front temperature related to this study is about 20 °C
higher than the temperature mentioned in [18]. Moreover, the dimension of the
specimen also affects the degree of cure. Specifically, although 0.5 wt% of PI
caused the specimen to be degraded and foamed in this study, the same PI weight
content actually leads to 77 % of the degree of cure in the neat resin specimen of
[18].

CONCLUSION

With the increasing demands towards the in-situ curing technique for additive
manufacturing of thermoset-based FRPs, emerging the frontal polymerization gains
incentive as a promising rapid-curing out-of-autoclave method in comparison with
the thermal oven-curing fabrication method. This study aimed to investigate the
frontal polymerization process of epoxy-based monomer with a dual-initiator
configuration. The material system consisted of ECC epoxy resin, IOC-8 SbF6 and
benzopinacol as photo- initiator (PI) and thermal-initiator (TT). By fixing the weight
content of the TI, neat ECC resin beam specimens with various weight contents of
PlL, ie., 0.2 wt% to 0.5 wt%, were fabricated. Then, the tensile standard specimens
were cut out of beam specimens, whose degree of cure was characterized using
FTIR and the temperature history was recorded by a thermal camera.

It was found that increasing the weight content of PI from 0.2 wt% to 0.5 wt%
raised the average temperature from 220 °C to 270 °C. During the FP process, the
temperature at the right and left ends of the specimen exhibited higher values than



the middle part due to the thermal insulation of the silicone mold at both ends.
Thus, there were two temperature peaks at the left and right ends of each specimen.
Additionally, increasing the PI concentration from 0.2 wt% to 0.3 wt% improved
the FP characteristics, specifically the degree of cure, from 40% to 80%.
Nevertheless, the FP characteristic did not considerably improve when the PI
weight content was increased from 0.3 wt% to 0.4 wt%. Also, the front propagated
from the top and bottom surfaces of the specimens with 0.2 wt% and 0.3 wt% of PI
at the same time. The FP characteristics of a specimen with 0.3 wt% of PI,
including the front velocity and the degree of cure, were two times higher than
those of a specimen with 0.2 wt% of PI. However, the results for 0.4 wt% of PI
showed that the front propagated from the top surface faster than the bottom side,
which resulted in forming a curved shape of the specimen. This curved shape was
also observed in the specimen with 0.5 wt% PI. Moreover, the high concentration of
the 0.5 wt% PI caused the specimen to be degraded and foamed (i.e.,, generated
numerous bubbles within the epoxy specimen).

Additionally, the specimens with 0.2 wt% and 0.3 wt% of PI were tested to
evaluate the effect of PI weight content on the tensile properties. The results
showed that using 0.3 wt% PI increased the tensile strength and Young’s modulus
by 3.91% and 7%, respectively, compared to specimen using 0.2 wt% PI. However,
the average elongation reduced from 3.35% to 3.09% by increasing the PI
concentration. Moreover, the comparison of the tensile properties between oven-
cured specimen and RICFP specimens showed that the frontal polymerization
yielded 8% higher tensile strength and 14% higher Young’s modulus on average,
respectively. The polymerization time reduced from 15 hours to only 31-107
seconds.
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