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ABSTRACT 
 
Introducing robots to future construction sites will impose extra uncertainties and necessitate 
workers’ situational awareness (SA) of them. While previous literature has suggested that system 
errors, trust changes, and time pressure may affect SA, the linkage between these factors and 
workers’ SA in the future construction industry is understudied. Therefore, this study aimed to fill 
the research gap by simulating a future bricklaying worker-robot collaborative task where 
participants experienced robot errors and time pressure during the interaction. The results indicated 
that robot errors significantly impacted subjects’ trust in robots. However, under time pressure in 
time-critical construction tasks, workers were tended to recover their reduced trust in the faulty 
robots (sometimes over-trust) and reduce their situational awareness. The contributions of this 
study lie in providing insights into the importance of SA in future jobsites and the need for 
investigating effective strategies for better preparing future workers. 
 
INTRODUCTION 
 
Robots will be an integral part of the future construction industry, while workers will be in the 
loop to interact with robots. Although robots could enhance automation in construction, this 
incorporation might impose extra uncertainties (e.g., workers struck by a robot) in the workplace 
(e.g., Jeelani and Gheisari 2022). To ensure the safety of future construction sites, workers should 
perform situational awareness (SA) of newly-introduced robots during human-robot interaction. 
However, the present study discerned a research gap of insufficient discussion on the factors 
affecting workers’ SA in the future construction industry. 
 Literature has proposed a few factors that could potentially impact workers’ SA on future 
construction sites. For example, in the study investigating human-drone interaction, Lu and Sarter 
found that participants would decrease their trust in drones and pay more attention to them after 
knowing drones made mistakes in detection tasks (Lu and Sarter 2020). Hence, the errors of robots 
and changes in trust levels might affect workers’ attention allocation and SA of robots. On the 
other hand, in the research examining the effect of time pressure on workers’ risk-taking behaviors, 
Pooladvand and Hasanzadeh identified their tendency to overlook potential hazards under stress 
(Pooladvand and Hasanzadeh 2022). That is, time pressure might force workers to focus on tasks 
while disregarding being situationally aware of robots. However, the linkage between these factors 
and SA has not been investigated in the context of the future construction industry. Therefore, this 
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study aims to examine two factors (i.e., robot error with safety incident and time pressure) that can 
affect workers’ SA on future construction jobsites where they need to team up and work alongside 
robots. The findings of this study provide insights into the influential factors on human-robot 
teaming on future jobsites. 
 
BACKGROUND 
 
SA and Attention. The widely-accepted definition of SA was the perception of dynamic elements, 
the comprehension of their meaning, and the projection of their status in the future (Endsley 1988). 
Maintaining a high SA in dynamic environments can facilitate a rapid and accurate situation 
assessment that is assistive to safe decision-making. Previous studies have confirmed the linkage 
between SA and attention, and highlighted attention is an indispensable element for human 
information processing (Wickens et al. 2008). In other words, human attention reflects the 
information that is being sensed, processed, and interpreted (Hasanzadeh et al. 2018). In dynamic 
environments (e.g., construction sites), humans have to allocate their limited attentional resources 
to the information that should be perceived, comprehended, and projected to perform SA (Kaber 
et al. 2016). Humans’ SA can be indicated by understanding their attentional allocation, and 
previous literature has suggested eye-tracking is a reliable metric to measure an individual’s 
attention in the construction domain (e.g., Hasanzadeh et al. 2018). On future jobsites where the 
workers are required to work alongside robots and communicate with drones continuously, it is 
important to maintain SA, ensuring their safety. Accordingly, the present study used eye-tracking 
metrics to evaluate workers’ SA on future jobsites.  
 
Human-Robot Trust and SA. Previous studies have mentioned the importance of trust-building 
in human-robot interaction and highlighted the multifaceted and dynamic nature of human trust 
(e.g., Demir et al. 2021). Humans would continuously calibrate their trust levels in robots based 
on human (e.g., gender), robot (e.g., transparency), and environmental (e.g., time pressure) factors 
(Hancock et al. 2011). During the trust calibration process, the trust level would fluctuate between 
different trust conditions, such as calibrated trust (ideal trust), overtrust (overreliance on robots), 
undertrust (under reliance on robots), untrust (information is needed to trust robots), and distrust 
(believing robots are unreliable) (de Visser et al. 2020). These trust conditions might compromise 
human-robot interaction. Moreover, literature has proposed the difference in trust levels would 
impact human attentional management and SA (e.g., Kunze et al. 2019). For example, in the study 
investigating the effect of transparency on drivers’ trust in an automated system, Kunze and his 
colleagues reported that drivers with a lower trust level would distribute much attention to the 
driving environment, maintaining their SA (Kunze et al. 2019). Extending to the future 
construction sector, workers with less trust might need to allocate more attentional resources to 
the robots. However, the effect of trust in robots on workers’ SA has not been sufficiently explored 
by construction studies yet. 
 
Time pressure and SA. The time-critical, demanding, and complicated construction tasks impose 
time pressure on workers to complete missions within a limited time. Literature has highlighted 
the importance of time pressure and productivity demand in construction and supported their 
adverse influence on workers’ SA (Pooladvand and Hasanzadeh 2022). Time pressure refers to the 
differences between the given amount of time for finishing a task and the required amount. This 
scheduling contradiction would drive the acceleration of human information processing and all the 
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steps of SA while compromising quality (Nepal et al. 2006). The embedded scheduling 
stress/productivity demand will still play an important role in the future construction industry. 
Therefore, this study considered the time pressure with productivity demand as an influential factor 
affecting workers’ SA on future jobsites. 
 
METHODOLOGY 
 
Experimental design. This study developed an immersive mixed-virtual-reality bricklaying task 
to simulate worker-robot teaming in future construction. Subjects had to execute bricklaying in 
collaboration with a bricklaying cobot (a.k.a. MULE), drones, and an AI assistant. MULE was 
designed to help workers with lifting/dropping heavy concrete blocks while human intervention 
was still necessary (i.e., workers must apply mortar and move MULE to the correct position). 
Three types of drones were involved in this experiment: (1) surveillance, (2) delivery, and (3) 
inspection drones. The surveillance drone aimed to either examine the status of the jobsite by 
surveying the environment or to convey a message to the worker (e.g., change orders). The delivery 
drone was employed to deliver materials (i.e., a new mortar bucket in this experiment) for the 
workers in an elevated workplace. The inspection drone helped monitor workers’ progress, safety 
behaviors, and productivity and reported to the manager. AI-assistant can provide information on 
dynamic objects (i.e., the type and direction of drones) to prepare workers for their approach. This 
research undertook a within-subject study in which participants were asked to complete three 
modules: (i) Baseline, (ii) Error, and (iii) Time Pressure modules. Each module would take 
approximately 7 mins. In the Error module, an inspection drone struck participants, and a delivery 
drone struck a co-worker. In addition, in the Time Pressure module, participants were informed 
that extra compensation would be available if finishing 25 blocks in 7 mins, referring to the 
combination of scheduling stress and productivity demand in construction. Figure 1 shows the 
research framework of this experiment. 
 
Experimental procedure. After signing a consent form, participants were asked to complete a 
demographic pre-survey, followed by an introduction to the experiment. Then, participants were 
equipped with a VR headset, two controllers, three motion trackers, and neuro-
psychophysiological wearable sensors. The training was provided for subjects to practice 
bricklaying in an immersive environment. Participants were then asked to complete three 
designated modules (i.e., Baseline, Error, and Time Pressure modules). A widely-used 5-point 
Likert-scale trust questionnaire (Muir 1994) was used to gauge the trust in drones at the beginning 
of the experiment (ti = initial trust before the Baseline module) and after each module (tb = trust 
after Baseline module; te = trust after Error module; tt = trust after Time Pressure module). The 
questionnaire included predictability (i.e., to what extent the drones’ behavior can be predictable), 
dependability (i.e., to what extent can you depend on the drones to do their job), and faith (i.e., 
what degree of faith do you have that the drones will be able to cope with similar situations in the 
future) to assess trust levels. During the experiment, eye-tracking data was collected to measure 
the SA of drones. This study focused on drones as the area of interest (AOIs) since they were the 
dynamic agents of which workers should be situationally aware. Dwell time (i.e., the total amount 
of time spent looking at an AOI) and run count (i.e., the number of times that participants returned 
their attention to an AOI) were selected as eye-tracking metrics to conduct the analysis. Finally, a 
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brief interview was used to obtain participants’ feedback on the experimental design. All the 
procedures were approved by the Purdue Institution Review Board (IRB).  
 

 
Figure 1. Research framework. 

 
Participants. In total, 36 healthy subjects (23 males and 13 females, aged between 19 and 31, 
M=23.19, SD=3.0) were recruited to participate in this study. All the subjects were qualified as 
the construction industry's future workforce and were recruited from Civil Engineering and 
Construction Engineering and Management programs with work experience. All the subjects had 
normal or corrected-to-normal vision.  
 

Apparatus. HTC Vive Pro Eye (manufactured by HTC Corporation, Taoyuan, Taiwan) was 
employed in this study as the VR device because of its built-in Tobii eye-tracker with a refresh 
rate of 90 Hz and a field of view of 110o. The developed system in HTC Vive can calibrate eye-
tracking for each user to improve the accuracy of data. An Alienware PC with an AMD Ryzen 9 
5950X 16-Core processor and an NVIDIA GeForce RTX 3090 graphics card was used to execute 
this user study. 
 
RESULTS 
 
During the experiments, subjects were asked to report their trust level in drones in different 
modules, including ti (M=3.717, SD=0.671), tb (M=4.165, SD=0.705), te (M=3.160, SD=1.070), 
and tt (M=3.958, SD=0.715). Figure 2 shows a graphical overview of the changes in trust. 
According to the self-report, 72% of subjects (26 subjects) reduced their trust after Error module 
compared to the initial trust (i.e., T = te – ti < 0). This study conducted a mixed-design analysis 
of variance (ANOVA) to examine (1) the effect of system error on workers’ SA, (2) the effect of 
time pressure on workers’ SA, and (3) the effects of the interaction of trust change and time 
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pressure on workers’ SA. The data conformed to the assumptions of normality and homogeneity. 
Figure 3 provides an overview of the variables used in the hypotheses, and Table 1 presents the 
summary of the results. 
 

 
Figure 2. Graphical overview of trust changes in different modules. 

 

 
Figure 3. Overview of variables used in the mixed-design ANOVA. 

 
First, a t-test was carried out to support a significant difference between ti and te (t=3.211, 

p=0.002<0.05), caused by the system error. Further, to test the effect of system error on SA, a 
comparison between the subjects who reduced their trust in drones (T < 0) and the subjects 
without reducing their trust (T  0) was conducted. For the trust-reducing group, the mean and 
standard deviation (STD) of dwell time were 2.885s and 2.383s in Time Pressure module, while 
the counterparts for run count were 12.538 and 5.901. For the non-trust-reducing group, these 
values were 2.760s, 3.233s, 11.600, and 9.264, respectively. The result of ANOVA revealed that 
the system error (leading to trust change) did not significantly impact dwell time (f=0.161, 
p=0.691>0.05) and run count (f=0.132, p=0.719>0.05). Second, a within-subject comparison 
between Baseline and Time Pressure modules was undertaken to examine the effect of time 
pressure on SA. In Baseline module, subjects’ mean and STD of dwell time were 8.232s and 
7.314s, while the counterparts for run count were 26.694 and 15.120. In Time Pressure module, 
these values were 2.850s, 2.598s, 12.278, and 6.864, respectively. The statistical outcome 
indicated the significant effects of time pressure on dwell time (f=24.750, p=0.000<0.05) and run 
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count (f=37.649, p=0.000<0.05). Last, because there was no interaction effect between trust 
change and time pressure on dwell time (f=0.206, p=0.653>0.05) and run count (f=0.019, 
p=0.892>0.05), this study focused on the individual effect of two independent variables.  
 

Table 1. Results of hypotheses tests. 
Variable Dwell time (s) Run count (times) 
 SS MS F P SS MS F P 
Trust change 6.536 6.536 0.161 0.691 24.269 24.269 0.132 0.719 
Time pressure 521.402 521.402 24.750 0.000* 3741.125 3741.125 37.649 0.000* 
Interaction  4.331 4.331 0.206 0.653 1.848 1.848 0.019 0.892 

*p<0.05; SS=sum of squares; MS=mean squares  
 
DISCUSSION 
 
Introducing robots (especially different types of drones) to future construction sites will create new 
challenges and uncertainties that the future workforce needs to be ready for. Specifically, robot 
errors might unintentionally happen to future jobsites and jeopardize construction safety so that 
workers will have to maintain their SA of robots. One of the uncertainties is how the robot errors 
will impact workers’ trust in robots. The results supported a significant effect of drone errors on 
decreasing trust levels, which aligned with previous studies reporting trust violation (i.e., unmet 
expectations concerning robot’s behaviors) (e.g., Salem et al. 2015). For example, Abd and his 
colleagues found subjects reduced their trust in a bottle-delivery robot once the robot dropped a 
bottle (Abd et al. 2017). This violation could influence trust change and workers’ SA because more 
attentional resources should be allocated to robots to guarantee their safety. 

While the findings showed no significant impacts of trust changes after interacting with 
the faulty robot (safety incidents of drone striking workers) on subjects’ SA, Figure 3 (dash lines) 
presents that the trust-reducing subjects tended to spend more attentional resources (higher dwell 
time and more frequent run count) to scan the surrounding environment after experiencing the 
errors to maintain their SA. Previous literature argued the linkage between trust in automation and 
SA (e.g., Kunze et al. 2019; Lu and Sarter 2020; Lu et al. 2020). For instance, the study conducted 
by Lu and Sarter demonstrated that subjects allocated more attentional resources to a detection 
drone after discerning its errors and decreasing their trust levels (Lu and Sarter 2020).   

In the future construction industry, workers will need to calibrate their trust in robots during 
interactions while experiencing different construction contexts. Although it is readily assumed that 
workers with a lower trust level will allocate much attention to robots, this assumption might be 
violated by some task stressors, such as time pressure/productivity demand, which are integral 
business aspect of the construction. Further, the results supported a dominating role of time 
pressure in influencing workers’ SA over the trust change. This finding could be explained by 
previous literature suggesting time pressure would provoke attentional tunneling (i.e., allocating 
attention to a single goal, given the potential cost of ignoring other events) and overtrust (i.e., 
overreliance on robots after experiencing errors) (Wickens 2005; Robinette et al. 2017). 
Specifically, in this study, the extra compensation available in the Time Pressure module could 
encourage participants to concentrate more on the bricklaying for completing the mission (i.e., a 
single goal) while disregarding checking drones’ behaviors (i.e., potential cost). On the other hand, 
in the study examining overtrust in a faulty robot, Robinette and his colleagues found participants 
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tended to overtrust the faulty robot in a time-critical scenario (i.e., evacuation) (Robinette et al. 
2017). This finding can explain that time pressure helped subjects quickly recover their trust in 
(even overtrust) faulty drones, leading to a lower SA of drones. This explanation was endorsed by 
an increasing trust of tt, as shown in Figure 2. 

While the findings contributed greatly to the body of knowledge, there are some limitations 
worth noting. First, this research only focused on participants’ SA toward drones. Due to the 
dynamic and complex nature of the construction environment, the overall SA of workers toward 
all surrounding environment workers is worth exploring in future studies. Second, all the recruited 
subjects in this experiment were students because they referred to the next generation of 
construction workforces. However, the current workers are recommended to be considered as 
subjects of future studies because they might manifest different propensities to interact with robots. 
 
CONCLUSION 
 
While robots (drones) are set to have tremendous potential to revolutionize the construction 
industry, human-robot interactions and influential factors need to be further studied. The findings 
of this study demonstrated that the robot’s system errors might impose extra hazards (e.g., workers 
struck by drones) on future jobsites and adversely affect workers’ trust levels in robots. Their 
decreasing trust led to more checking on drones to ensure their safety. However, the results 
demonstrated that time pressure might cause attentional narrowing, reflecting on over-focusing on 
the bricklaying task and their prompt recovery from reduced trust in drones after observing the 
errors. This outcome supported a dominating role of time pressure in affecting workers’ SA over 
the trust change in human-robot interaction. The findings of this paper shed light on (1) factors 
that can affect worker performance and safety in human-robot teaming, including trust in robots 
and time pressure; (2) factors that may be influenced by the adoption of robots on construction 
sites, e.g., workers’ SA. Also, this study provided insights into the need to explore more effective 
strategies for training and preparing future workers to maintain their SA in time-critical 
construction tasks.  
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