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Abstract

We rigorously quantify the improvement in the
sample complexity of variational divergence es-
timations for group-invariant distributions. In
the cases of the Wasserstein-1 metric and the
Lipschitz-regularized a-divergences, the reduc-
tion of sample complexity is proportional to
an ambient-dimension-dependent power of the
group size. For the maximum mean discrepancy
(MMD), the improvement of sample complexity
is more nuanced, as it depends on not only the
group size but also the choice of kernel. Numeri-
cal simulations verify our theories.

1. Introduction

Probability divergences provide means to measure the dis-
crepancy between two probability distributions. They have
broad applications in a variety of inference tasks, such as
independence testing (Zhang et al., 2018} |Kinney & Atwal,
2014), independent component analysis (Hyvarinen et al.,
2002), and generative modeling (Goodfellow et al., [2014;
Nowozin et al.,[2016; |Arjovsky et al.||2017;|Gulrajani et al.|
2017; Tolstikhin et al., 2018 Nietert et al., 2021).

A key task within the above applications is the computation
and estimation of the divergences from finite data, which
is known to be a difficult problem (Paninski, 2003; |Gao
et al.;[2015). Empirical estimators based on the variational
representations for the probability divergences are generally
favored and widely used due to their scalability to both
the data size and the ambient space dimension (Belghazi
et al., 2018; [Birrell et al.,2022b; Nguyen et al., 2007} |2010;
Ruderman et al., 2012; Sreekumar & Goldfeld, [2022; [Birrell
et al.| 2021} [2022d; |Sriperumbudur et al.; [2012; |Gretton
et al.| 20065 2007; [2012; Genevay et al., 2019).

Empirical computation of the probability divergences and
theoretical analysis on their sample complexity are typically
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Figure 1. The distribution of the whole-slide prostate cancer im-
ages (LYSTO data set (Ciompi et al.,|2019)) is rotation-invariant,
i.e., an image and its rotated copies are equiprobable.

studied without any a priori structural assumption on the
probability measures. Many distributions in real life, how-
ever, are known to have intrinsic structures, such as group
symmetry. For example, the distribution of the medical
images collected without preferred orientation should be
rotation-invariant, i.e., an image is supposed to have the
same likelihood as its rotated copies; see Figure [I. Such
structural information could be leveraged to improve the ac-
curacy and/or sample-efficiency for divergence estimation.

Indeed, the recent work by Birrell et al. (2022c)) shows
that one can develop an improved variational representa-
tion for divergences between group-invariant distributions.
The key idea is to reduce the test function space in the
variational formula to its subset of group-invariant func-
tions, which effectively acts as an unbiased regularization.
When used in a generative adversarial network (GAN) for
group-invariant distribution learning, Birrell et al. (2022c)
empirically show that divergence estimation/optimization
based on their proposed variational representation under
group symmetry leads to significantly improved sample
generation, especially in the small data regime.

The purpose of this work is to rigorously quantify the perfor-
mance gain of divergence estimation under group symme-
try. More specifically, we analyze the reduction in sample
complexity of divergence estimation in terms of the (finite)
group size. We focus, in particular, on three types of proba-
bility divergences: the Wasserstein-1 metric, the maximum
mean discrepancy (MMD), and the family of Lipschitz-
regularized a-divergences; see Section [ﬂ for the exact def-
inition. Our main results show that the reduction of samples
needed for guaranteed fidelity in statistical estimation of
divergences is proportional to a dimension-dependent power
of the group size; see Theorem for the Wasserstein-1
metric and Theorem for the Lipschitz-regularized a-
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divergences respectively. In the case of MMD, the reduction
in sample complexity due to the group invariance is more
nuanced and depends on the properties of the kernel; see
Theorem[4.10. As a byproduct, we also establish the consis-
tency and sample complexity for the Lipschitz-regularized
a-divergences without group symmetry, which, to the best
of our knowledge, is missing in the previous literature.

2. Related work

Empirical estimation of probability divergences. Prob-
ability divergences have been widely used, including in
generative adversarial networks (GANSs) (Arjovsky et al.|
2017;|Goodfellow et al.,|2014; Nowozin et al., 2016; [Birrell
et al.,|2022c; |Gulrajani et al.| 2017), uncertainty quantifi-
cation (Chowdhary & Dupuis} [2013; Dupuis et al., [2016),
independence determination through mutual information
estimation (Belghazi et al.}|2018)), bounding risk in probably
approximately correct (PAC) learning (Catoni et al., [2008;
McAllester, [1999; Shawe-Taylor & Williamson, [1997),
statistical mechanics and interacting particles (Kipnis &
Landim, [1999), large deviations (Dupuis & Ellis,[2011), and
parameter estimation (Broniatowski & Keziou, 2009).

A growing body of literature has been dedicated to the em-
pirical estimation of divergences from finite data. Earlier
works based on density estimation are known to work best
for low dimensions (Kandasamy et al., 2015;[Poczos et al.|
2011). Recent research has shown that statistical estima-
tors based on the variational representations of probability
divergences scale better with dimensions; such studies in-
clude the KL-divergences (Belghazi et al.|[2018)), the more
general f-divergences (Birrell et al., 2022b; Nguyen et al.,
2007; 2010; [Ruderman et al., [2012; |Sreekumar & Gold-
feld, 2022), Rényi divergences (Birrell et al., 2021;|2022d),
integral probability metrics (IPMs) (Sriperumbudur et al.,
2012; |Gretton et al.| 2006;2007;2012), and Sinkhorn diver-
gences (Genevay et al.,2019). Such estimators are typically
constructed to compare an arbitrary pair of probability mea-
sures without any a priori structural assumption, and are
hence sub-optimal in estimating divergences between distri-
butions with known structures, such as group symmetry.

Group-invariant distributions. Recent development in
group-equivariant machine learning (Cohen & Welling|
2016;|Cohen et al., 2019; [Weiler & Cesa,[2019) has sparked
a flurry of research in neural generative models for group-
invariant distributions. Most of the works focus only on
the guaranteed generation, through, e.g., an equivariant
normalizing-flow, of the group-invariant distributions (Bilos
& Glinnemann, 2021;|Boyda et al.| 2021; |Garcia Satorras
et al.,2021; Kohler et al.,[2019; [Liu et al., 2019; |Rezende
et al.,2019); the divergence computation between the gener-
ated distribution and the ground-truth target, a crucial step in
the optimization pipeline, however, does not leverage their

group-invariant structure. Equivariant GANs for group-
invariant distribution learning have also been proposed by
modifying the inner loop of discriminator update through
either data-augmentation (Zhao et al., 2020) or constrained
optimization within a subspace of group-invariant discrimi-
nators (Dey et al.,2021); the theoretical justification of such
procedures, as well as the resulting performance gain, have
been explained by Birrell et al. (2022c)) as an improved esti-
mation of variational divergences under group symmetry via
an unbiased regularization. The exact quantification of the
improvement, in terms of reduction in sample complexity,
is however still missing; this is the main focus of this work.

3. Background and motivation
3.1. Variational divergences and probability metrics

Let X be a measurable space, and P(X’) be the set of proba-
bility measures on X. Amap D : P(X) x P(X) — [0, c0]
is called a divergence on P(X) if

D(P,Q) =0 <= P=QePX), (1)

hence providing a notion of “distance” between probability
measures. Many probability divergences of interest can be
formulated using a variational representation

D(P,Q) =sup H(v; P,Q), )
yel

where I' C M(X) is a space of test functions, M(X) is
the set of measurable functions on X, and H : M(X) x
P(X) x P(X) — [—o0, 0] is some objective functional.
Through suitable choices of H(v; P, @) and T, formula
includes many divergences and probability metrics. Below
we list two specific classes of examples.

(a) I'-Integral Probability Metrics (I'-IPMs). Given I C
My (X), the space of bounded measurable functions on X,
the I'-IPM between P and () is defined as

DY (P,Q) = sup{Ep[n] — Eq[1]} - 3)
el
Some prominent examples of the I'-IPMs include the
Wasserstein-1 metric, the total variation metric, the Dud-
ley metric, and the maximum mean discrepancy (MMD)
(Miiller} [1997; |Sriperumbudur et al., 2012). Our work, in
particular, focuses on the following two specific IPMs.
* The Wasserstein-1  metric,
DUPL(X) (P Q), ie.,

W(P, Q) =

W(P,Q):= sup {Ep[y]—Eqhl}, &

~ELipy, (X)

where Lip; (X') is the space of L-Lipschitz functions
on X. We note that the normalizing factor L~! has
been omitted from the formula.
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* The maximum mean discrepancy, MMD(P, Q) =
DB#(P,Q), ..

MMD(P, Q) := sup {Ep[y] — EQ[l},  (5)
YEBxn
where By, is the unit ball of some reproducing kernel
Hilbert space (RKHS) H on X.

(b) (f,T')-divergences. Let f : [0,00) — R be convex and
lower semi-continuous, with f(1) = 0 and f strictly convex
atz = 1. Given I' C M;(X) that is closed under the shift
transformations v — v + v, v € R, the (f,T')-divergence
introduced by Birrell et al. (2022a) is defined as

Dy (P|Q) = ilér;{Ep[v] —Eolf*M}, (6

where f* denotes the Legendre transform of f. For-
mula (6) includes, as a special case when I' = M,,(X), the
widely known class of f-divergences, with notable examples
such as the Kullback-Leibler (KL) divergence (Kullback
& Leibler, [1951), the total variation distance, the Jensen-
Shannon divergence, the y2-divergence, the Hellinger dis-
tance, and more generally the family of a-divergences
(Nowozin et al.,|2016). Of particular interest to us is the
class of the Lipschitz-regularized a-divergences,

¢ —1

Dy (P|Q), T =Lip(X), fa(z) = ala—1)’

@)

where o > 0 and o # 1 is a positive parameter.

An important observation that will be useful in one of our
results, Theorem , is that Djlza admits an equivalent rep-
resentation, which writes

Dy (PlQ)= sup {Eply+v]—Eqlfa(y+v)]} (8)

~yel',veR

due to the invariance of I" = Lip; (X') under the shift map
y—=v+vforvelR.

3.2. Empirical estimation of variational divergences

Given i.i.d. samples X = {z1,29, - , 2}t and Y =
{y1,y2, -, Yn } respectively, from two unknown probabil-
ity measures P, ) € P(X), it is often of interest—in appli-
cations such as two-sample testing (Bickel, |1969; Gretton
et al.,2006;2012; |Cheng & Xie, |2021) and independence
testing (Gretton et al.,[2007; 2012} [Zhang et al., 2018} |[Kin{
ney & Atwal, 2014)—to estimate the divergence between
P and @ (Sriperumbudur et al.,[2012; Birrell et al., 2021}
Nguyen et al., |2007; |2010). For variational divergences
D"(P,Q) and D} (P||Q) in the form of (3) and (6), their
empirical estimators can naturally be given by

DY(P, Qn) = sup {i 7(;’3) - an ”%’") } O

Vel Ui= i=1

ye

DE(Pm”Qn) = SuIE {Z % _
i=1

where P.m. = % Zgl&ﬁ and Q, = 1 Z?zl §yj represent
the empirical distributions of P and @), respectively.

The consistency and sample complexity of the empirical
estimators W (P,,,@,) and MMD(P,,, Q) in the form
of (9) for, respectively, the Wasserstein-1 metric and
MMD (5) between two general distributions P,Q € P(X)
have been well studied (Sriperumbudur et al., [2012; Gretton
et al.,2012). However, for probability measures with spe-
cial structures, such as group symmetry, one can potentially
obtain a divergence estimator with substantially improved
sample complexity as empirically observed by Birrell et
al. (2022c). We provide, in the following section, a brief
review of group-invariant distributions and the improved
variational representations for probability divergences under
group symmetry, which serves as a motivation and founda-
tion for our theoretical analysis in Section ]

3.3. Variational divergences under group symmetry

A group is a set 3 equipped with a group product satisfying
the axioms of associativity, identity, and invertibility. Given
agroup X andaset X,amap 6 : ¥ x X — X is called
a group action on X if 0, = 6(o,-) : X — X is an
automorphism on X forall o € ¥, and 0, 0 05, = 05,.5,,
Vo1, 09 € . By convention, we will abbreviate 6(o, x) as
oz throughout the paper.

A function v : X — R is called X-invariant if y o 6, =
v,Vo € . Let T be a set of measurable functions v : X —
R; its subset, I's;, of Y-invariant functions is defined as

I's={yel:y06, =7,Yo € X}. (1)

On the other hand, a probability measure P € P(X)
is called X-invariant if P = (0,).P,Yo € X, where
(0,)«P = P o (0,)"! is the push-forward measure of P
under 6,. We denote the set of all Y-invariant distributions
on X as Py (X) := {P € P(X) : Pis Z-invariant}.

Finally, for a compact Hausdorff topological group X
(Folland, [1999), we define two symmetrization operators,
Syt Mp(X) — My(X) and S*¥ : P(X) — P(X), on
functions and probability measures, respectively, as follows

Ssl)(x) = / Vow)us(do), Yy € My(X)  (12)

Esz[p]’y = EPSE[’Y], VP € 'P(X),V’}/ S Mb()() (13)

where py; is the unique Haar probability measure on Y. The
operators Sx:[y] and S*[P] can be intuitively understood,
respectively, as “averaging” the function ~y or “‘spreading”
the probability mass P across the group orbits in X’; one
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can easily verify that they are projection operators onto
the corresponding invariant subsets I'ss, C T and Px(X) C
P(X) (Birrell et al.,[2022c).

The main result by Birrel et al. (2022c), which we summa-
rize in Result is that for Y -invariant distributions, the
function space T in the variational formulae (3)) and (6) can
be reduced to its invariant subset I's; C T'.

Result 3.1 (paraphrased from (Birrell et al., 2022c)). If
Ss[l cTand P,Q € P(X), then

D'(S¥[P], $¥[Q]) = D™ (P,Q), (14)
Dy (S¥[P]|S™[Q]) = Dy (P||Q), (15)
where D" (P, Q) and D (P||Q) are given by (3) and (6).
In particular, if P,Q € Px(X) are X-invariant, then
D(P,Q) = D'*(P,Q), DY(P|Q) = D' (P|Q).
Result [3.1] motivates a potentially more sample-efficient

way to estimate the divergences D' (P, Q) and D} (P||Q)
between X-invariant distributions P, Q € P(X) using

D' (P, Q) = sup {Z ”(Tfj) - Z V(jf) } (16)
=1

vel's i1
DY (PallQe) = sup {Z 1) _$ °(alw) } |
= Li=1 i1

a7
Compared to Eq. (9) and (10), the estimators and

have the benefit of optimizing over a reduced space I's C T’
of test functions, effectively acting as an unbiased regular-
ization, and their efficacy has been empirically observed by
Birrell et al. (2022c) in neural generation of group-invariant
distributions with substantially improved data-efficiency.
However, the theoretical understanding of the performance
gain is still lacking.

The purpose of this work is to rigorously quantify the im-
provement in sample complexity of the divergence estima-
tions and for group-invariant distributions. To
contextualize the idea, we will focus our analysis on three
specific types of probability divergences, the Wasserstein-1
metric (@), the MMD (5), and the Lipschitz-regularized o
divergence (6)(7) between S-invariant P, Q € Ps(X),

W(P,Q) = W*(P,Q) ~ W (P, Qn), (18)

MMD(P, Q) = MMD*(P, Q) ~ MMD*(P,,, Q,,) (19)

Dy, (P|lQ) = Dy*(P||Q) ~ Dy (P | Qn), (20)
where

W3 (P, Q) = DMVl (P, ), @1)

MMD* (P, Q) := DP*l=(p,Q), (22)

and the definition of D;f (P||Q) is given by Equations (6)),
and (11).

3.4. Further notations and assumptions

For the rest of the paper, we assume the measurable space
X C R%is a bounded subset of R? equipped with the Eu-
clidean metric ||- ||2 and the group X acting on X is assumed
to be finite, i.e., |X| < oo, where |X| is the cardinality of
>.. The Haar measure px is thus a uniform probability mea-
sure over 3, and the symmetrization Sx;[y] [Eq. (12)] is an
average of v over the group orbit. We next introduce the
concept of fundamental domain in the following definition.
Definition 3.1. A subset Xy C X is called a fundamental
domain of X under the Y-action if for each x € X, there
exists a unique xy € Xy such that x = ox( for some o € 3.

1 1
05 o.s/
0 0
4 4

-1 -0.5 0 0.5 1 -1 -0. 0 0.5 1

sl

: =

Figure 2. The unit disk X C R? with the action of the (discrete)
rotation groups > = C,, n = 1,4,16,64. The fundamental
domain Xy for each C, is filled with yellow color.

Figure [2 displays an example where X’ is the unit disk in
R2, and ¥ = C,,n = 1,4,16, 64, are the discrete rota-
tion groups acting on X’; the fundamental domain X; for
each ¥ = (), is filled with yellow color. We note that the
choice of the fundamental domain X is not unique. We
will slightly abuse the notation X = ¥ x A&} to denote &)
being a fundamental domain of X" under the X-action. We
define Ty : X — &)

To(z) =y € Xy, if y = ox for some o € X, (23)

i.e.,, Tp maps © € X to its unique orbit representative in Xj.
In addition, we denote by Py, € P(Xp) the distribution
on the fundamental domain Xj induced by a X-invariant
distribution P € Px(X) on X; that is,

Px, = (To)s P. 24
The diameter of X C R? is defined as
diam(X) = sup [z — 2. (25)
z,yeX

Finally, part of our results in Section @] relies heavily on the
concept of covering numbers which we define below.
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Definition 3.2 (Covering number). Let (X, p) be a metric
space. A subset S C X is called a d-cover of X if for
any v € X there is an s € S such that p(s,z) < 6. The
d-covering number of X is defined as

N(X,8,p) :=min{|S] : Sis ad-cover of X'}.

When p(z,y) = ||z — y||2 is the Euclidean metric in R,
we abbreviate N (X, 4, p) as N'(X, 9).

4. Sample complexity under group invariance

In this section, we outline our main results for the sample
complexity of divergence estimation under group invariance.
In particular, we focus on three cases: the Wasserstein-
1 metric (18), the MMD and the (f,,T)-divergence
(20). While the convergence rate in the bounds for the
Wasserstein-1 metric and the ( f,, I')-divergence depends on
the dimension of the ambient space, that for the MMD case
does not. In all the numerical experiments, for simplicity, we
choose X = {z1,z9, - ,xpm}andY = {y1,y2, - ,yn}
to sample from the same X-invariant distribution P = @)
for easy visualization and clear benchmark.

4.1. Wasserstein-1 metric,

W(P,Q)

In this section, we set I' = Lip, (X) to be the set of L-
Lipschitz functions on X'; see Eq. (). We further assume
that the Y-actions on X’ is 1-Lipschitz, i.e., ||ox — oy||2 <
|z — yll2, Vo € E,Va,y € X, so that Sy[I'] C T (see
Lemma for a proof). Due to Result we have
W(P,Q) = WX(P,Q) for S-invariant probability mea-
sures P, Q) € Px(X).

To convey the main message, we provide a summary of
our result in Theorem {.T]for the sample complexity under
group invariance for the Wasserstein-1 metric. The detailed
statement and the technical assumption of the theorem as
well as its proof are deferred to Appendix Readers are
referred to Section 3] for the notations.

Theorem 4.1. Let X = X x X, be a subset of R¢ equipped
with the Euclidean distance. Suppose P, Q € Px(X) are X-
invariant distributions on X. If the number m,n of samples
drawn from P and Q) are sufficiently large, then we have
with high probability,

1) when d > 2, forany s > 0,
|W(PuQ) - WE(PmaQn)|

1 1

1 d+s 1 d+s

— — 26

(|zm) *(mn) ] 2o

where C' > 0 depends only on d, s and X, and is indepen-
dent of m and n;

2) for d = 1, we have

W (P, Qn)|

< C' - diam(Xp) (\/1% + \/15> , 27

where C' > 0 is an absolute constant independent of
X, Xy, m and n.

Remark 4.2. In the case for d > 2, the s > 0 in
Theorem means the rate can be arbitrarily close to

—é. If we further assume that Aj is connected, then the
bound can be improved to |[W (P, Q) — W¥(P,,,Qy)| <

C’[(lz1 )llnm—i—(‘zl )élnn} for d =

1 1
W(RQ) - W (P @)l < € ()" + ()]
for d > 3, without the dependence of s, which matches the

rate in (Fournier & Guillin, [2015). See Remark [A.7] after
Lemma[A.6in the Appendix.

2, and

Sketch of the proof. Using the group invariance and the map
To defined in , we can transform the i.i.d. samples on
X to i.i.d. samples on X, which are effectively sampled
from Py, and Qu, [cf. Eq. (24)]. Hence the supremum
after applying the triangle inequality to the error can be
taken over L-Lipschitz functions defined on the fundamental
domain Xy, i.e., Lip, (X)), instead of over the original space
Lip, (X). We further demonstrate in Lemma |A 4] that the
supremum can be taken over an even smaller function space

= {v € Lip, (%) : [llloc <M} C Lip, (%), (28)

with some uniformly bounded L°°-norm M due to the
translation-invariance of v in definition (). Using Dud-
ley’s entropy integral (Bartlett et al.,2017), the error can be
bounded in terms of the metric entropy of Fy with m i.i.d.
samples,

inf {Sa—i—/ VN (Fo,6, 1. )dé} (29)

For d > 2, we establish the relations between the metric en-
tropy, In N (Fo, 6, ||-|| . )» of Fo and the covering numbers
of Xy and X via LemmalA.6and Lemma[A.8}

1) M
A (Fo, 0, [-ll) € N (X, 22 (), (30)
m < |—;|, for small enough §,  (31)

which yields a factor in terms of the group size |X| in
Eq. (26). The dominant term of the bound based on the
singularity of the entropy integral at & = 0 is shown in
Eq. (26). For d = 1, the entropy integral is not singular
at the origin, and we bound the covering number of F
by diam(X)) instead. The probability bound is from the
application of the McDiarmid’s inequality.

Remark 4.3. Even though we present in Theorem .1 only
the dominant terms showing the rate of convergence for
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the estimator, our result for sample complexity is actually
non-asymptotic. See Theorem[A.2]in Appendix [A.T|for a
complete description of the result.

Remark 4.4. When |X| = 1, i.e., no group symmetry is
leveraged in the divergence estimation, our result reduces
to the case considered in, e.g., (Sriperumbudur et al.| [2012),
for general distributions P, Q € Ps(X) = P(X).

Remark 4.5. The factor diam(AX}) in the case for d = 1
is not necessarily directly related to the group size |X|.
We refer to Example [4.6below and its explanation in Re-
mark@for cases where we can achieve a factor of \Z|_1
in the rate.

Example 4.6. Let ¥ = [0,1) and ' = Lip, ([0,1)),
ie., d = 1. We consider the »-actions on X gener-
ated by the translation  +— (z + 1) mod 1, where
r =1,4,16, 64,256, so that |X| = r is the group size. We
draw samples x; ~ P = @ € Px(X) on X in the following
way: T; = r‘lfil/?’ + n;, where &; are i.i.d. uniformly dis-
tributed random variables on [0, 1) and 7); take values over
{0, %, ..., =1} with equal probabilities. One can easily
verify that P = (@) are indeed X-invariant. The numeri-
cal results for the empirical estimation of W(P,Q) = 0
using W*(P,,Q,) with different group size |X| = 7,
r = 1,4,16,64,256, are shown in the left panel of Fig-
ure[3] One can clearly observe a significant improvement of
the estimator as the group size |X| increases. Furthermore,
the right panel of Figure [3 displays the ratios between the
adjacent curves, all of which converge to 4, which is the
ratio between the consecutive group size. This matches our
calculation in Remark[A.10} see also Remark [4.5]

Example 4.7. We let ¥ = R?, ie., d = 2. The proba-
bility distributions P = () are the mixture of 8 Gaussians
centered at (cos(23”),sin(25%)),r = 0,1,...,7, with the
same covariance. The distribution has Cg-rotation symme-
try, but we pretend that it is only C7,Cy and Cy; that is,
the X used in the empirical estimation W*(P,,, Q,,) does
not reflect the entire invariance structure. Even though in
this case the domain X is unbounded, which is beyond our
theoretical assumptions, we can still see in Figure [4] that
as we increase the group size || in the computation of
W*(Py,, Qy), fewer samples are needed to reach the same
accuracy level in the approximation. The ratios between
adjacent curves in this case are slightly above the predicted
value /2 ~ 1.414 according to our theory (see Remarkléﬁ),
suggesting that the complexity bound could be further im-
proved. For instance, in (Sriperumbudur et al., 2012), a
logarithmic correction term can be revealed for d = 2 after
a more thorough analysis.

4.2. Lipschitz-regularized o-divergence, D}:ﬂ (PllQ)

The Lipschitz-regularized a-divergence is used in the
symmetry-preserving GANs (Birrell et al.,|2022c), where it

@ 0 8
3 =1
3-1P. 712\ =4
o N T—— | [%[=16
Sl T p=a
o | — || = 256
o -
S S~
(o2}
o4
=
85
0 100 200 300 0 100 200 300

number of samples number of samples

Figure 3. Left: the Wasserstein-1 distance with different group
sizes on [0, 1), averaged over 10 replicas. Right: the ratio of the
average of the Wasserstein-1 distance between different group
sizes: |X| = 1 over |X| = 4 (blue), |X| = 4 over |X| = 16 (red),
|X| = 16 over |X| = 64 (orange), |X| = 64 over |X| = 256
(purple). The black horizontal dashed line refers to the ratio equal
to 4, which is the value theoretically predicted in Theorem 4.1 for
d = 1. See Example[4.6/and Remark[A.10]for the detail.
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Figure 4. Left: The Wasserstein-1 distance assuming different
group sizes in R?, averaged over 10 replicas. Right: the ratio
of the average of the Wasserstein-1 distance between different
group sizes: |X| = 1 over [X| = 2 (blue), |X| = 2 over |X] = 4
(red). The black horizontal dashed line refers to the ratio equal to
v/2, which is the value theoretically predicted in Theoremlﬂfor
d = 2. The ratios are slightly above the reference line, suggesting
that the complexity bound could be further improved. See Exam-
ple[d.7 and Remark [4.2 for the detail.

allowed them to systematically include symmetries and gave
a vastly improved performance on real data sets. The space
T in this section is always set to I' = Lip, (X); see Eq. (7).
We only consider a > 1, as the case when 0 < o < 1 can
be derived in a similar manner. For o > 1, the Legendre
transform of f,, which is defined in , is

Fi) = (orl(a 1)yt a(al_1>> 1,0

We provide a theorem for the sample complexity for the
(fa,T')-divergence under group invariance, whose detailed
statement and proof can be found in Appendix[A.Z] We note
that this is a new sample complexity result for the (f,,I’)-
divergence even without the group structure, which is still
missing in the literature.

Theorem 4.8. Let X = X x X; be a subset of R equipped

with the Euclidean distance. Let fo(x) = ax((;j), a>1
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and T' = Lip; (X). Suppose P and Q are Y-invariant
distributions on X. If the number of samples m,n drawn
from P and Q are sufficiently large, we have with high
probability,

1) when d > 2, forany s > 0,

D5 (PIIQ)  DJ* (PullQn)

C ! i +C L s 32
< [ E—
=1 <E|m> 2 <Z|n) ’ (32)

where C1 depends only on d, s and X; Cy depends only on
d,s, X and «; both Cy and Cy are independent of m and

n,

2) for d = 1, we have

DY (P|Q) = D}*(Prl|Qn)
1 Csy
NN \/ﬁ) |

where C1 and Cs are independent of Xy, m and n; Co
depends on .

< diam(Xy) ( (33)

Sketch of the proof. The idea is similar to the proof of
Theorem The only difference is that we need to tackle
the £ () term separately, since it is not translation-invariant
in ~y. Using the equivalent form (8), we can obtain a different
Lipschitz constant associated with f, as well as a different
L% bound M than that in Eq. by Lemma[A7T2] This
results in the o dependence for Co.

4.3. Maximum mean discrepancy, MMD(P, Q)

Though one can utilize the results on the covering number
of the unit ball of a reproducing kernel Hilbert space, e.g.
(Zhou, [2002; |Kiihn} 2011), to derive the sample complex-
ity bounds that depend on the dimension d, we provide a
dimension-independent bound as in (Gretton et al.; [2012)
without the use of the covering numbers. In the MMD case,
we let By, represent the unit ball in some reproducing kernel
Hilbert space (RKHS) H on X’; see Eq. . In addition, we
make the following assumptions for the kernel k(x, y).

Assumption 4.9. The kernel k(z,y) for H satisfies

e k(z,y) > 0 and k(o(z),0(y)) =
Y,x,y € X,

k(z,y),Yo €

o Let K := max, yex k(z,y), then k(z,y) = K if and
only if z = y;

* There exists ¢z, € (0,1) such that for any 0 € ¥
and o is not the identity element and x € &), we have
k(ox,z) < cs K.

Intuitively, the third condition in Assumption[4.9]suggests
uniform decay of the kernel on the group orbits. See Re-

mark and Example for more details and a related
example.

From Lemma C.1 in (Birrell et al., 2022c), we know
Sx[[] C T by the first assumption. Below is an abbrevi-
ated result for the sample complexity for the MMD, whose
detailed statement and proof can be found in Appendix

Theorem 4.10. Let X = X x X, be a subset of R%. H is a
RKHS on X whose kernel satisfies Assumption[4.9. Suppose
P and Q are X-invariant distributions on X. Then for m,n
sufficiently large, we have with high probability,

IMMD(P, Q) — MMD(P,,,, Q)|
1 1
<o(en ()

1 S-1 . .
where Cs, ), = 4/ %, and cs. ; is the constant in

Assumption

Sketch of the proof. Based on Result[3.T, we use the equality
MMD?*(P,,,Q,) = MMD(S>[P,,], S¥[Q.]) to expand
the divergence over all the orbit elements. The error bound
is controlled in terms of the Rademacher average, whose
supremum is attained at some known witness function due
to the structure of the RKHS using Lemma[A.14] Since the
Rademacher average is estimated without covering numbers,
the rate is independent of the dimension d. Then we use the
decay of the kernel to obtain the bound.

Remark 4.11. When |X| = 1, the proof is reduced to that in
(Sriperumbudur et al., 2012).

Remark 4.12. Unlike the cases for the Wasserstein metric
and the Lipschitz-regularized a-divergence in Theorem [4.1]
and Theorem[4.8] the improvement of the sample complex-
ity under group symmetry for MMD (measured by Cs; 1, in
Theorem depends on not only the group size |%| but
also the kernel k(z,y). For a fixed X and kernel k(z,y),
simply increasing the group size || does not necessarily
lead to a reduced sample complexity beyond a certain thresh-
old; see the first four subfigures in Figure 5. However,
we show in Example below that, by adaptively pick-
ing a suitable kernel k depending on the group size |X|,
one can obtain an improvement in sample complexity by
Cs ) ~ \/ﬁ for arbitrarily large ||.

Example 4.13. Let X = {(rcosf,rsinf) € R? : r €
[0,1],6 € [0,27)} be the unit disk centered at the origin,

l=—yll3

and let ks(z,y) = e 22, x,y € X, be the Gaussian
kernel. Consider the group actions generated by a rotation
(with respect to the origin) of 27” I =1,4,16,64, 256, so
that |X| = [ is the group size. The fundamental domain Xy
under the Y-action is Xy = [0,1] x [0, 27) (see Figurelz

(34)
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Figure 5. MMD simulations with Gaussian kernels ks(x,y) =

IIT U”Q

e . From left to right, top to bottom: s = 12X 5> S = 42;6,
s = 162%, s = 642W’ s = 6|ZJ| The first four subfigures (top

two rows) show that the Gaussian kernel with a fixed bandwidth
s > 0 satisfies the third condition in Assumption[éﬁ]up to a group
size of |X| = I,1 = 1,4,16,64, and thus an improvement of
sample complexity of order Cx, , ~ |%|~ /2 persists till |S| = [;
when || > [, no further reduction in sample complexity can be
observed. The last subfigure demonstrates that with an adaptive
bandwidth s inversely scaled with ||, nonstop improvement of the
sample complexity can be achieved as the group size || increases.
See Example[4.13|for the detail and explanations.

for a visual illustration). We draw samples z; ~ P = Q €
Px(X) in the following way,

2 2 2
xi:\/gi <cos {;93/3+ni;},sin[ 91/3 lﬂ-})

where ¢; and 6; are i.i.d. uniformly distributed random
variables on [0, 1) and n; take values over {0, 1,..., FTI}
with equal probabilities. We select the kernel bandwidth
s > 0 in different ways:

* Fixed s with changing group size |X| = I. We intu-
itively follow the “three-sigma rule” in the argument di-
rection to pick different s. Since the angle of each sec-
tor is 2l”, we select s = %’;, l =1,4,16,64. Smaller
bandwidth s corresponds to faster decay of the kernel

ks(x,y), such that for a fixed bandwidth s = 27, the

third condition in is satisfied with a small ¢;, for

any group ¥ such that |X| < [, ie., Cx = |E|_1/2.
On the other hand, it is difficult to observe the improve-
ment by further increasing the group size || beyond
|X| > 1, since the third condition in[4.9]is not satisfied
with any uniformly small c. See the top two rows in
Figure Efor the results for s = ™ 6,l = 1,4,16,64.
Notice that the sample complex1ty improvement stops
right at |X| = [, perfectly matching our theoretical
result Theorem

e, s = g Unlike
the fixed s discusses previously, with these adaptive
selections of kernels, we can observe nonstop improve-
ment of the sample complexity as the group size ||
increases; see the last row of Figure[5] This numerical
result is explained by the third condition in Assump-
tion 4.9} that is, in order to continuously observe the
benefit from the increasing group size |%|, we need to
have a faster decay in the kernel k; (i.e., smaller s) so
that cx, i, is uniformly small for all |X|.

Remark 4.14. The bound provided in Theorem .10 for the
MMD case is almost sharp in the sense that, by a direct
calculation, one can obtain that

ExMMD*(P, P,,)?
ExMMD(P, P,,)?

2
~ CE,kv

if the kernel bandwidth s 7V2|CEEIM

5. Conclusion and future work

We provide rigorous analysis to quantify the reduction in
sample complexity for variational divergence estimations be-
tween group-invariant distributions. We obtain a reduction
on the error bound by a power of the group size. The expo-
nent on the group size depends on the ambient dimension
for the Wasserstein-1 metric and the Lipschitz-regularized
a-divergence; that exponent, however, is independent of the
ambient dimension for the MMD with a proper choice of
the kernel.

This work also motivates some possible future directions.
For the Wasserstein-1 metric in R2, one could potentially
derive a sharper bound in terms of the group size. For the
MMD with Gaussian kernels, it is worth investigating how
to choose the bandwidth to make as much use of the group
structure as possible. Further applications of the theories
on machine learning, such as neural generative models or
neural estimations of divergence under symmetry, are also
expected.
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Sample Complexity of Probability Divergences under Group Symmetry

A. Theorems and Proofs

In this section, we provide detailed statements of the theorems introduced in the main text as well as their proofs.

A.1. Wasserstein-1 metric

Assumption A.1. Let X = ¥ x Xy C RY. Assume that there exists some dy > 0 such that

D |lo(z) —o'(2')|ly > 200, Vz,2’ € Xy, 0 # ¢’ € 3; and

2) |lo(x) —o(@’)|y > ||z — ||y, Vo, 2" € Xy, 0 € X,

where || - || is the Euclidean norm on R,

Example [4.6] provides a simple example when this assumption holds.

Theorem A.2. Let X = X x X, be a subset of R satisfying the conditions in Assumption Suppose P and Q) are
Y.-invariant probability measures on X.

1)Ifd > 2, then for any s > 0,e > 0 and m,n sufficiently large, we have with probability at least 1 — e,

1

_1
24 gDif'L d+s 9D‘2X‘L d+s
P,Q) - W*(P, < —_ : :

24 n 24
vm o /n
where Dy 1, depends only on X and L; DXO,L depends only on Xy and L, and is increasing in X, i.e., BAI,L < DAZ,L

for Ay C Aas
2) If d = 1, then for any € > 0 and m, n sufficiently large, we have with probability at least 1 — e,

2(m+n) lnl

+ Dt < mn €

> + L - diam(Xp)

2(m+n) ln}

mn €

|W(P,Q) — W* (P, Qn)| < cL - diam(X,) ( ) + L - diam(Xp)

1 1
N
where ¢ > 0 is an absolute constant independent of X and X,.

Before proving this theorem, we have the following lemmas.

Lemma A.3. Suppose the X-actions on X are 1-Lipschitz, i.e.,
we have Sx,[') C T, where I = Lip (X).

or —oylly < ||z —ylly forany x,y € X and o € X, then

Proof. Forany z,y € X and f € T, we have
Ss()(a) = SN = |57 2 £ lox) = 5 3 F )
ogEX cEX

1
< 5 2 If (o) = £ (o)

ocex
1
S 5 Z Loz —oyll,
%l &
1
< fZLHx_y”z
| |a€2
= Lz =yl
Therefore, we have Sx(f) € T O
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Lemma A.4. Forany~ € Lip; (Xy), there exists v € R, such that ||y + v||, < L - diam(Xp).

Proof. Suppose y € Lip; (Xp) and [|y(x)||,, > L - diam(Xp). Without loss of generality, we can assume sup,, ¢ y, () >
L - diam(Xp). Since v is L-Lipschitz on X, we have sup,.¢ y, 7(x) — infiex, v(z) < L - diam(Ap), so that

inf v(x) > sup y(z) — L - diam(Xxp) > 0.

TEXy TEX,

Hence we can select v = —M, so that ||y + V|| < [[7]l - -

We provide a variant of the Dudley’s entropy integral as well as its proof for completeness.

Lemma A.5. Suppose F is a family of functions mapping the metric space (X, p) to [—M, M| for some M > 0. Also

assume that 0 € F and F = —F. Let £ = {&1,...,&m} be a set of independent random variables that take values on
{1, 1} with equal probabilities, i = 1,...,m. 21,2, ...,y € X. Then we have
E¢ su iiﬁf(x) < inf 4a+12/Mq/1nN(}' 5, 1IIl..) do
jer|m &S = 0T U, o

The proof of Lemma[A.3]is standard using the dyadic path., e.g. see the proof of Lemma A.5. in (Bartlett et al.| 2017).

Proof. Let N be an arbitrary positive integer and 6, = M2~ =D L = 1,... N. Let V, be the cover achieving

N(F, 0k, ||-|,) and denote |Vi| = N(F, 6, |||l )- Forany f € F,let my(f) € Vi, such that || f — 7 (f)|| o < 0. We
have

Be sup Zgl z;)
N-1 1 m
<Egsup Zfz ) — 7 () () +ZE51§1613 mZ&(WjH(f)(%)—Wj(f)(ﬂfi))‘
j=1 i=1
B[ emir)

The first on the right hand side is bounded by § . Note that we can choose Vi = {0}, so that 1 (f) is the zero function. For
each j, let W; = {m; 1 (f) — m;(f) : f € F}. Wehave |W;| < |V 11| |V;] < |Vj+1\2. Then we have

Z Ee Sup . Zfz (41 (f) (i) — | Z E¢ sup
Jj=1 i:l

weW;
In addition, we have

m

=1

sup

weW;

= sup ; (i1 () (i) — w5 (f) (@)

<o |32 (1)) — S + sy 320w = m)e)’
<\ Jme o+ \/m 52

= vm(dj+1+9;)

13



Sample Complexity of Probability Divergences under Group Symmetry

- 3\/%(;]4_1 .

By the Massart finite class lemma (see, e.g. (Mohri et al.,|[2018)), we have

. m 3\/%5j+1 2ln|WJ| 6(5j+1 1n|‘/j+1|
¢ sup Zgz .131 — < .
weW; m \/m
Therefore,
6 N—1
EE sup Zfl z)| <6 T 5j+1\/ln./\/(]:,5j+1,||'||oo)
j=1
12 &
§5N+ﬁ§::(5_ j+1 \/hl./\/]: 5]7””00)

<5N+—/ JInN(F, 6, ||

N+1

Finally, select any o € (0, M) and let IV be the largest integer with 41 > «, (implying dn42 < cand Oy = 4042 <

4a), so that
M
6N+— lnN(]:,dl,H-H )d5<4a+—/ In N (F,d,| oo
il N v

N+1

O

We can easily extend Lemma 6 in (Gottlieb et al., 2017) to the following lemma by meshing on the range [— M, M] rather
than [0, 1].

Lemma A.6. Let F be the family of L-Lipschitz functions mapping the metric space (X, ||-||5) to [—M, M) for some
M > 0. Then we have

cd )

oM
N(F,8 o) < (S5 )V

where ¢; > 1 and co < 1 are some absolute constants not depending on X, M, and 0.

Remark A.7. If X is connected, then the bound can be improved to N (F, 0, ||| ) < N (X0 by the result in (Kol+
mogorov, |1961).

Lemma A.8 (Theorem 3 in (Sokolic et al.,[2017)). Assume that X = % x Xy. If for some § > 0 we have

1) |lo(z) —o'(z")]], > 20, Vz,2' € Xy, 0 # o' € X; and

2) lo(z) —o(@)|y > ||z — 2’|y Va,2’ € Xy, 0 € %,

then we have

In addition, we provide the following lemma for the scaling of covering numbers.

Lemma A.9. Let X be a subset of R% and § > 0. Then there exists a constant C,.5 that depends on d and d such that for
9 € (0,1) we have

N(X,5)

N(X,(S)Scdj 6‘1

Proof. Let N := N'(X,6). Then X can be covered by N balls with radius 6. From Proposition 4.2.12 in (Vershynin| 2018},

we know that each ball with radius § can be covered by (5(_;;52/)2 d) ‘ balls with radius §. This implies that X' can be covered by
N - (5(;?2/)2,1) balls with radius 4, so that N*'(X',§) < N - (5&%)22 ’ , where N'**'( X, 0) is the exterior covering number of X’
with radius . Therefore, N'(X,0) < N*(X,§/2) < N - (S(;%fd)d =N (475 +14<N- M O
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Proof of Theorem
[W(P,Q) = W (P, Qn)]

sup {Eply] = Bobl} = sup {Ep, b~ Fo, [v]}‘

Eply] — — ZW <EQM - ;ZV(%)) ‘

= Sélrp - Z’Y To(z;)) (EQM - %Z’y (To(yi))> |
(%) SuIzX ) EPX() [’Y] - % Z’y (TO(CCz)) - <EQX0 [’7] - % Z Y (To(yl))> ‘ (35)
y€Lip (Xo P pat

= f(‘r17"'7ajmay17"'7yn)7

where inequality (a) is due to the fact that Ep[y] = Ep, [v|x,] and Eg[y] = Eq,, [v|x,] since P and @ are both
Y-invariant and v € T'y;, and the fact that if v € 'y, then v|x, € Lip, (Xp), where 7|y, is the restriction of v on Ap.

Note that the quantity inside the absolute value in (35) will not change if we replace v by v + v and we still have
v+ v € Lip; (Xp) for any v € R. Therefore, by Lemma the supremum in can be taken over y € Lip; (X)), where
I7]lo < L - diam(AXp). The denominator in the exponent when applying the McDiarmid’s inequality is thus equal to

, 2 ,
. <2L : d1am(X0)> . <2L - diam(Xp) amtn

(36)

m n

2
) =4L?% - diam(X,)
mn

Denoting by X’ = {z},25,...,2,,} and Y' = {y], 45, ...,y } the i.i.d. samples drawn from Py, and Q x,. Also note that
To(z1)y ..., To(zm) and To(y1), - - -, To(yn ) can be viewed as i.i.d. samples on X drawn from Px, and Q) x, respectively,

such that the expectation

EX,Yf(xth;"'7xm7y15y27'"7yn)

Epyylb] = — 32 5(To(a)) - <EQXO IEESY v(%(yi))) ‘
i=1 1=1

can be replaced by the equivalent quantity

=FExy sup
'YELiPL (XO)

1 & 1<
Exy sup |Epy [V — =) (@) — | EQu V] — =) W) ||
vevip, (%) | m ; XO " ;
where X = {z1,22,..., 2} andY = {y1, 92, ..., yn} are are i.i.d. samples on Xy drawn from Py, and Q x, respectively.

Then we have

Exy sup

Epy [V] - %Zv(%) (EQXO Zv ) )

v€Lip;, (Xo) i—1
=Exy sup |Ex (1 iv(d)) L Zv(zi) — By <1 Zv(yé)) i1 znjv(yi)
y€Lipy, (Xo) mai3 mi4 nia i3
<Exyxiy swp |~ zm: A (@) — — iv(aﬁi) _— iv(yé) +1 anw(yi)
~y€Lip, (Xo) | T i mi3 nia i

=Exyx/y e  Sup
~v€Lipy, (Xo)

S SLACIEARTEn)

%Zfi (v(}) — (@) — % PRACIAR v(yz-))‘
=1
LS ¢ i) >>|

1=1

< Ex x'e sup

+ Eyyr e sup
~y€Lip, (Xo)

€L1pL(Xo)
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M M
< 1nf8a+7/ \/an\/ F0,0, ||l oo )d6+1nf 8a—|——/ \/lano,é Nlo) dé

where Fo = {7y € Lip; (X)) : [[7]l < M} and M = L - diam(X,) by Lemma

Ford > 2, fromLemmaB we have In N (Fo, 4, ||| o) < N (o, <22) In(2M). We fix a § > 0 such that (X, ‘225) =1,
and select 9* such that 625 <1and 625 < §p; that is, 6* < min ( L L5°> so that by Lemmaﬂand. we have

02(5 ClM N( C25)

Cd§ M
7)n(=—) < B

) |E| dédl( 5 )7

./\/(XQ, ln(

when § < 0*. Therefore, for sufficiently small o, we have

M
[ uxE ) e
: 6 M
= [ N Ea @+ [ anF ) as

C,sL M M
/\/|zT§d5d a d6+/ \/m/\/fo,au |.)ds 37)

) < 5= when § < §*. Therefore, if we

For any s > 0, we can choose §* to be sufficiently small, such that we have In( 615

Cy ng .
let Dy 1 = T, We will have
2

Cagl! )ds < D ds
/a DL () “/ BT

1 d+a

T dr ’
|E| 2 =1
Notice that the second integral in (37) is bounded while the first integral diverges as « tends to zero, so we can optimize the
majorizing terms
1t

24 DX,L (6%

8a 4 —— - -
vm o8] 42 -1

with respect to «, to obtain
9.1+ Dy

T

S—
$

)+bv

so that

, 24 (M
s+ = [ (R L s

9 . D%, . 24 9 . D%, . 24 (M
< 8()aFs - , s 7 (Zya+s - : s 1 5 1I- ds
<8(—) T - ( )T +(d;s_ (=)@ - ( )T +\/ﬁ/5* \/nN(fo» e lloo)

Therefore, for sufficiently large m and n, we have

Epy, ] - — Zv(ﬂci) - (EQXO ] - in(w)) |

Exy sup
v€ELip (Xo)
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24 9D2 ﬁ 9D2 ﬁ
8+ — i - In
( d+s 1) \E|m |Z|n
24 24 (M
il 1 :
+<m+\/ﬁ> |V mNF L as

For d = 1, the first integral in (37) in the one-dimensional case does not have a singularity at &« = 0. On the other hand,
replacing the interval [0, 1] by an interval of length diam(Xp) in Lemma 5.16 in (Van Handel, 2014), there exists a constant
¢ > 0 such that

cL- dmm(XO)

N(Fo,0,|ll) <e for 6 < M = L - diam(Ap).

2% (M 24 (M [cL - diam(Xp)
- 1 . < - - 7
o+ \/m/a \/nN(.70,5, [-lo.) do < 8a+ \/RL 5 dé

9cL-diam(Xp)
m

Therefore, we have

whose minimum is achieved at o = . This implies that

1nf 80+ 7/ \/ln/\/ (For 0,1l ) do < 72cL - diam(Xp) n 48L/c - diam(Xp)  144cL - diam(X)p)

m vm m
_ 48Ly/c-diam(&p)  T72cL - diam(Xp)
N vm m '

Hence, we have

Exy sup

1 & 1<
Epy V= =) (@) = | Eqax, 0] — = > v(wi)
L vy V] - ; Qx, V] - ;

ASL\/c - diam(Xy)  72cL - diam(Xy)  48L+/c - diam(Xy)  72cL - diam(Xp)
< - + - :
- vm m \/ﬁ n
Finally, by a simple change of variable for the probability provided in (36), we prove the theorem. O

Remark A.10. Though we do not directly observe the effect under the group invariance in the case when d = 1 in
Theorem [A.2] the upper bound can be improved in some special cases. Here we analyze Example 4.6 as an example.
Replacing the interval [0, 1] by X = [0, \EI) in Lemma 5.16 in (Van Handel, [2014), there exists a constant ¢ > 0 such that

N (Fo, 6, ||-]l) < e (Xo)-

o4 M 24 M | L
St [N (R a5 =0+ o= [ [ as

whose minimum is achieved at o« = 73%‘ . This implies that

Therefore, we have

T2cL | ASLVC 14dcl _ ASLVE T2l
Sm T EVm  Slm [Slvm [Zm

lnf8a+—/ VN (Fo, 6,10 d6 =

Hence, we have

Exy sup
~€ELip; (Xo)

1 = 48L+/c ~ T2cL  48L+/c T2cL
E — )-|E - - .
pao bl = 5 2 () (Q% Z >‘ Slvm  Sm T SVE Sl

This matches the numerical result in Figure E where the ratio curves are around 4, since our group sizes are || =
1,4, 16, 64, 256, increasing by a factor of 4,
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A2. (fu,T)-divergence

We assume Assumption [A.T]also holds in this case.
Theorem A.11. Let X = ¥ x X, be a subset of R? equipped with the Euclidean distance, f(x) = fo(z) = % a>1
andT' = Lip; (X). Suppose P and Q) are X-invariant distributions on X. We have

1)ifd > 2, then for any s > 0 and m, n sufficiently large, we have with probability at least 1 — ¢,

1

_1
(g, 9D% | d+s+ 903 .\
- (5% -1 X[ m IZIn

24Dy, 1, N 24Dy, 1/
vm vn
+\/2(M12m+M02n) 1

D5 (P|Q) = Dy> (Pl Qn)

In

mn €

)

where D 1, depends only on X and L, and Dx 1 depends only on X, L and o; Dyx, 1, depends only on Xy and L, and
Dy, 1+ depends only on Xy and L and o, and both are increasing in Xy; Mo and M, both only depend on X, L and o;

2)ifd = 1, for any € > 0 and m, n sufficiently large, we have with probability at least 1 — «,

48 L+/c - diam( X 72cL - diam(X| 48L'\/c - diam(X, 72¢L’ - diam(X,
DY (PQ) — DY (P]|Qu)| < 28Eve- diam(o) (%) | 48L//c- diam(%Xo) (o)
\/m m \/ﬁ n

+\/2(M12m+Mgn) 1

In —

mn €

)

where ¢ > 0 is an absolute constant independent of Xy; L' depends only on X, L and «; Mo and My both only depend on
X, L and o.

Before proving this theorem, we first provide the following lemma.
Lemma A.12. D?a (PQ) = Di (P]|Q), where

F={veLip,(X): |y <(a—1)""+L-diam(X)},

and P and Q are probability distributions on X that are not necessarily Y-invariant.

Proof. For any fixed v € T', let h(v) = Ep[y + v] — EqQ[fi(y + v)]. We know that sup, .y v(z) — infzexr v(z) <
L - diam(X), so interchanging the integration with differentiation is allowed by the dominated convergence theorem:
W (v) = 1 - Eqlfs/ (7 +v)), where

* 1 1
fa/(y) = (a—1)a=Tya=T1l,5o.

If infex v(z) > (v — 1)7%, then 1/(0) < 0. So there exists some vy < 0 such that Ep[y + vo] — Eq[fi(y + vo)] =
h(ro) > h(0) = Ep[y] — Eg[fi(~)]. This indicates the supremum in DE (P||@) is attained only if sup, ¢, y(z) <
(a—1)~'+L-diam(X). On the other hand, if sup, ¢ » () < 0, then there exists v, > 0 that satisfies sup, c » v(x)+vo < 0
such that Ep[y + 1] — EQ[fi (v +v0)] = Ep[y] +vo > Ep[y] = Ep[y] — Eg[fZ(v)]. This indicates that the supremum
in D}:(PHQ) is attained only if inf,cx y(x) > —L - diam(X"). Therefore, we have that the supremum in D}:(PHQ) is
attained only if |||, < (o — 1)~ + L - diam(X). O

oo —

Proof of Theorem Similar to the beginning of the proof of Theorem we have by Lemma that

D5, (PIQ) = DF¥ (P, Qu)

=| s {Er[y] — Eqlfa(} — sup {Ep, [7] — Eq, [£2(7)]}
H’Yﬁloo SEMO ”'Y‘Tao SZ]LIO
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m

—*vaz (EQfa —*Zfa yz>|

< sup
v€l's
171l oo <Mo

= Ep[y] - %ZW (To(z:)) — (EQ[fi(V)] -1 >t (V(TO(yi)))> ‘
7l <Mo =t

n
i=1

< sup

v€Lip;, (Xo)
17l o Mo

=g(T1, Ty Y1y - o Yn),

Bpyy bl = = 3" (Tolw:) - (EQXO TGS (w(%(yz-)») ‘
i=1 =

where Tj is the same as defined in (23). The denominator in the exponent when applying the McDiarmid’s inequality is thus
equal to
(ZMO ) 2 (2M1 ) *4AMZ AM?
m|——|] +n = + )
m n m n

where My = (o — 1)~' + L -diam(X), M; = f(My), since for any -y such that ||y|| ., < My, we have || o | < M;.
Denoting by X' = {x}, 25, ..., m} and Y’ = {y}, 5, ...,y,} theiid. samples drawn from Py, and Q x,. Also note that
To(x1)y ..., To(zm) and To(y1), - - -, To(yn ) can be viewed as i.i.d. samples on Xy drawn from Py, and Q) x, respectively,
such that the expectation

EX,Y!]($1,172a e Imy Y1, Y25 - - vyn)

Erg b = = 3" 2(To(a) - (EQXO TS S <7<To<yi>>>> ‘

=FExy sup -

v€Lip; (Xo)
171l oo <Mo

can be replaced by the equivalent quantity

Exy sup |-EPXO ['7] - % Z 7(1'1) (EQXO - Z f* )

v€Lipy, (Xo) i=1
171l oo < Mo
where X = {z1,22,...,zn}andY = {y1, 92, ..., yn} are are i.i.d. samples on Xy drawn from Py, and Q x, respectively.

Then we have

Exy sup
v€Lip;, (Xo)
171l oo <Mo

Epy, 7] — %Zv(xz) (EQXO -= Z £ ) ’

i=1

=FExy sup
v€Lipy, (Xo)

Ex (; Zm;)) — 3w - By (jl > 1 (7(1/2))) 23R <v<yi>>‘

=1
171l oo <Mo
<Bxvxy s |23 - 23 ) - 23 ) + 13 ()
> R EP. ~eLip, (Xo) m p 7 m g n g « 7 n g «
171l oo Mo
= Exyx/yee  Sup Zﬁ Y(@i) — = Zf — fa (v(¥:)))
~y€ELipy, (Xo) | T
171l (o Mo
< Exx/¢ sup & (v()) ()| + Ey,yr e sup & ( — fa (v(y:)))
~y€Lipy, (Xo) Z vELipy (Xo) | T ;
(171l o <Mo 17l oo <Mo
M,y
<1nf8a+— In N (Fo, 0, ||| o )d5+1nf8a+—/ InN(F1,46, ||| ) dd
oty V
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where 7o = {v € Lip;(Ap) : |7l < Mo} and Fi = {y € Lip.,(Xp) : ||| < M1}, since for any v € Fo,
If2oxll. < M and ‘%f;(y)‘ < (a — 1)1 (My)=7 for |y| < M, such that f* o is L'-Lipschitz, where
My = fi(Mp) and L' = L(a — 1)ﬁ (Mo)ﬁ. Then the rest of the proof follows from the proof of Theorem O

A.3. MMD

We assume the kernel k(x,y) satisfies Assumption Furthermore, let ¢(x) be the evaluation functional at = in H:

(¢(x), p(y))n = k(z,y), Vo, y € H.

Theorem A.13. Let X = ¥ x X, be a subset of R%(d > 1) and H be a RKHS on X whose kernel satisfies Assumption@
Suppose P and Q are X-invariant distributions on X. Then for m,n sufficiently large and any ¢ > 0 we have with
probability at least 1 — ,

|MMD(P, Q) — MMD* (P,,,Qy,)| < 2K [1 4 ¢(|S] — % ( ! )

VIE \/|E|n
+\/2K(1+C(E|—1))ln(i) 11

|2 m n’

where K and c are the constants in Assumption4.9|

Before proving the theorem, we provide the following lemma.

Lemma A.14. Suppose the kernel in an RKHS satisfies Assumption and & = {&1,...,&n} is a set of independent
random variables, each of which takes values on {—1, 1} with equal probabilities. Then we have

m =] 1
(X 1) K>
E &i 'YU] S .

i<t \EIZ Z VIE[m

Proof. Since the witness function to attain the supremum is explicit, we can write
. b m X
B¢ sup TZ&ZV(%‘%) S Z&Z¢Uﬂ?z
i<t | M2 | =

[N

1=

= § gzgz/ § O—jm’ua-]/xl
i,i'=1 7,7'=1

1=

1
< —= E{ Z é.zé.z Z k O-uno'j’xz
m|2‘ i,/ =1 J], 1
L[ =) z
= —— k(ojx;, 002;)]
] | e 26 2 ko,
1 9 3
< sy [ (91 + e = 9K |
K31+ (%] - 1))?

O

Proof of Theorem The proof below is a generalization of the proof of Theorem 7 in (Gretton et al.,[2012), which does
not need the notion of covering numbers due to the structure of RKHS.

IMMD(P, Q) — MMD*(P,,,, Q)|
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— |MMD(P, Q) — MMD(S”[P,.], S*[Q.])]

=| sup {Ep[y] = EQY]} — sup {Egs=p, 11 — Ess(q,. 01}
Iv1l5 <1 Iyl <1
m |2 n %]
=| sup {Ep[y] - Eq[]} - V(oji) V(ojyi)}
Il <1 ekt m|2\;jzl ’ |E|;jz1 ’
m X n |2
< sup |Ephy] - STDIDIRIGE R D D BRICET)
vl <1 | ‘ i=1 j=1 | | =1 j=1

= f(xtha"~7xm7y17y27"'7yn)~

Now we estimate the upper bound of the difference of f if we change one of x;’s.

[f(@1yeo o @iy oy YtyeeosYn) — f(@1y ey Ty ooy YLy ooy Yn)|
1=

|2| Zry ijl J ’L)

1=

= —= Z(b(ajxi) — ¢(0;74) (38)

IMI <1

Jj=1 u Jj= x

we have

To bound HZIJZ:H o(o;2;) 2

N|=

1= =]

Zd}(ajzi) = Zk O, 0T, +Zk 0T, 01T;)

Jj=1 H J#l

Nl=

[ =]

= Zk(ajxi,ajxi)—i— Z k‘(ajxi,xi)
J=1

O'j?éid

< [_2| K+ (|2|2 - \z|) .CKF .

The upper bound of the difference of f if we change one of y;’s can be derived in the same way. To apply the McDiarmid’s
inequality, the denominator in the exponent is thus

4 [m K+ (|z|2 - |2\) .CK] 4 [\E| K+ (|z|2 - |z|) .cK}
m2 [P o w2 |52
L, 1 lhe(S 1)

<AK(—+—) -
- <m+n) |2

Moreover, we can extend inequality (16) in (Gretton et al., 2012) to take into account the group invariance. Denoting

by X' = {z},x},...,2, Yand Y’ = {y},v5,...,y. } the i.i.d. samples drawn from P and Q, and £ = {&1,..., &),
1>+2 m 1592 n

={¢,...,&,} sets of independent random variables, each of which takes values on {—1, 1} with equal probabilities, we

have
EX,Yf(-'I;l,:EQ; ey Tmy Y1, Y2, - 7yn)
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m |2 n |3
1 1
=Exy sup |Ep[y] - EQh]~ —r ZZ’Y(JJII.Z')—'_iZ 3N A(ow)
Ivll5 <1 m (¥ i=1 j=1 n |z i=1 j=1
1 m |3 1 n |2 1 m |2
:EX,Y sup Ex | ——= ’Y(O"CE;) —Ey | —= 'Y(U'yé) - T w— V(U'xi)
Il <1 m 3| ;; ’ n|%| ;; ’ m |2 ;; ’
1 & p2]
JFWZZ’Y(UJ%)
i=1 j=1
1 m |Z 1 n |3
< Exyxnyr Sup | ZZ(V(ijé)—V(Ujmi))—iz S> (voyh) = v(osui))
vl <1 m (%] i=1 j=1 n[2| i=1 j=1
1 m P 1 n B3]
= Exyxiyiee SUP | ey ZfiZ(V(W?)—V(Uﬂ?i))—iz >8> (voyh) —v(osui)
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m ] n =]

1
> &> (vojal) = (o) | + Evyre sup | —
Iyl <1 | T i=1  j=1

< Ex,xr¢ sup p—]

i<t |2

2 K314 (|3 1)}%]

K21+ (|8 —1)]
2
= l VIZ|m * VIEln

where the last inequality is due to Lemma[A.14] Therefore, by the McDiarmid’s theorem, we have
: ) )
> €

P<|MMD(p,Q)_MMDE(Pm,Qn)|_2Ké [HC('E_DP(\/I;WjLJW

exo [ — e2mn |3
= p( 2K(m+n)(1+c(|2|1))>'

™l

By a change of variable, we have with probability at least 1 — ¢,
1 1 )

[MMD(P, Q) — MMD* (P,,, Qy,)| < 2K [1+ (|3 — 1)]% ( +
X[ m %[ n

+\/M((1+c(|z|_1))1n(§) 11

b3 m n
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