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Abstract
We rigorously quantify the improvement in the
sample complexity of variational divergence es-
timations for group-invariant distributions. In
the cases of the Wasserstein-1 metric and the
Lipschitz-regularized ↵-divergences, the reduc-
tion of sample complexity is proportional to
an ambient-dimension-dependent power of the
group size. For the maximum mean discrepancy
(MMD), the improvement of sample complexity
is more nuanced, as it depends on not only the
group size but also the choice of kernel. Numeri-
cal simulations verify our theories.

1. Introduction
Probability divergences provide means to measure the dis-
crepancy between two probability distributions. They have
broad applications in a variety of inference tasks, such as
independence testing (Zhang et al., 2018; Kinney & Atwal,
2014), independent component analysis (Hyvarinen et al.,
2002), and generative modeling (Goodfellow et al., 2014;
Nowozin et al., 2016; Arjovsky et al., 2017; Gulrajani et al.,
2017; Tolstikhin et al., 2018; Nietert et al., 2021).

A key task within the above applications is the computation
and estimation of the divergences from finite data, which
is known to be a difficult problem (Paninski, 2003; Gao
et al., 2015). Empirical estimators based on the variational
representations for the probability divergences are generally
favored and widely used due to their scalability to both
the data size and the ambient space dimension (Belghazi
et al., 2018; Birrell et al., 2022b; Nguyen et al., 2007; 2010;
Ruderman et al., 2012; Sreekumar & Goldfeld, 2022; Birrell
et al., 2021; 2022d; Sriperumbudur et al., 2012; Gretton
et al., 2006; 2007; 2012; Genevay et al., 2019).

Empirical computation of the probability divergences and
theoretical analysis on their sample complexity are typically
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Figure 1. The distribution of the whole-slide prostate cancer im-
ages (LYSTO data set (Ciompi et al., 2019)) is rotation-invariant,
i.e., an image and its rotated copies are equiprobable.

studied without any a priori structural assumption on the
probability measures. Many distributions in real life, how-
ever, are known to have intrinsic structures, such as group

symmetry. For example, the distribution of the medical
images collected without preferred orientation should be
rotation-invariant, i.e., an image is supposed to have the
same likelihood as its rotated copies; see Figure 1. Such
structural information could be leveraged to improve the ac-
curacy and/or sample-efficiency for divergence estimation.

Indeed, the recent work by Birrell et al. (2022c) shows
that one can develop an improved variational representa-
tion for divergences between group-invariant distributions.
The key idea is to reduce the test function space in the
variational formula to its subset of group-invariant func-
tions, which effectively acts as an unbiased regularization.
When used in a generative adversarial network (GAN) for
group-invariant distribution learning, Birrell et al. (2022c)
empirically show that divergence estimation/optimization
based on their proposed variational representation under
group symmetry leads to significantly improved sample
generation, especially in the small data regime.

The purpose of this work is to rigorously quantify the perfor-
mance gain of divergence estimation under group symme-
try. More specifically, we analyze the reduction in sample
complexity of divergence estimation in terms of the (finite)
group size. We focus, in particular, on three types of proba-
bility divergences: the Wasserstein-1 metric, the maximum
mean discrepancy (MMD), and the family of Lipschitz-
regularized ↵-divergences; see Section 3.1 for the exact def-
inition. Our main results show that the reduction of samples
needed for guaranteed fidelity in statistical estimation of
divergences is proportional to a dimension-dependent power
of the group size; see Theorem 4.1 for the Wasserstein-1
metric and Theorem 4.8 for the Lipschitz-regularized ↵-
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divergences respectively. In the case of MMD, the reduction
in sample complexity due to the group invariance is more
nuanced and depends on the properties of the kernel; see
Theorem 4.10. As a byproduct, we also establish the consis-
tency and sample complexity for the Lipschitz-regularized
↵-divergences without group symmetry, which, to the best
of our knowledge, is missing in the previous literature.

2. Related work
Empirical estimation of probability divergences. Prob-
ability divergences have been widely used, including in
generative adversarial networks (GANs) (Arjovsky et al.,
2017; Goodfellow et al., 2014; Nowozin et al., 2016; Birrell
et al., 2022c; Gulrajani et al., 2017), uncertainty quantifi-
cation (Chowdhary & Dupuis, 2013; Dupuis et al., 2016),
independence determination through mutual information
estimation (Belghazi et al., 2018), bounding risk in probably
approximately correct (PAC) learning (Catoni et al., 2008;
McAllester, 1999; Shawe-Taylor & Williamson, 1997),
statistical mechanics and interacting particles (Kipnis &
Landim, 1999), large deviations (Dupuis & Ellis, 2011), and
parameter estimation (Broniatowski & Keziou, 2009).

A growing body of literature has been dedicated to the em-
pirical estimation of divergences from finite data. Earlier
works based on density estimation are known to work best
for low dimensions (Kandasamy et al., 2015; Póczos et al.,
2011). Recent research has shown that statistical estima-
tors based on the variational representations of probability
divergences scale better with dimensions; such studies in-
clude the KL-divergences (Belghazi et al., 2018), the more
general f -divergences (Birrell et al., 2022b; Nguyen et al.,
2007; 2010; Ruderman et al., 2012; Sreekumar & Gold-
feld, 2022), Rényi divergences (Birrell et al., 2021; 2022d),
integral probability metrics (IPMs) (Sriperumbudur et al.,
2012; Gretton et al., 2006; 2007; 2012), and Sinkhorn diver-
gences (Genevay et al., 2019). Such estimators are typically
constructed to compare an arbitrary pair of probability mea-
sures without any a priori structural assumption, and are
hence sub-optimal in estimating divergences between distri-
butions with known structures, such as group symmetry.

Group-invariant distributions. Recent development in
group-equivariant machine learning (Cohen & Welling,
2016; Cohen et al., 2019; Weiler & Cesa, 2019) has sparked
a flurry of research in neural generative models for group-
invariant distributions. Most of the works focus only on
the guaranteed generation, through, e.g., an equivariant
normalizing-flow, of the group-invariant distributions (Biloš
& Günnemann, 2021; Boyda et al., 2021; Garcia Satorras
et al., 2021; Köhler et al., 2019; Liu et al., 2019; Rezende
et al., 2019); the divergence computation between the gener-
ated distribution and the ground-truth target, a crucial step in
the optimization pipeline, however, does not leverage their

group-invariant structure. Equivariant GANs for group-
invariant distribution learning have also been proposed by
modifying the inner loop of discriminator update through
either data-augmentation (Zhao et al., 2020) or constrained
optimization within a subspace of group-invariant discrimi-
nators (Dey et al., 2021); the theoretical justification of such
procedures, as well as the resulting performance gain, have
been explained by Birrell et al. (2022c) as an improved esti-
mation of variational divergences under group symmetry via
an unbiased regularization. The exact quantification of the
improvement, in terms of reduction in sample complexity,
is however still missing; this is the main focus of this work.

3. Background and motivation
3.1. Variational divergences and probability metrics

Let X be a measurable space, and P(X ) be the set of proba-
bility measures on X . A map D : P(X )⇥P(X ) ! [0,1]
is called a divergence on P(X ) if

D(P,Q) = 0 () P = Q 2 P(X ), (1)

hence providing a notion of “distance” between probability
measures. Many probability divergences of interest can be
formulated using a variational representation

D(P,Q) = sup
�2�

H(�;P,Q), (2)

where � ⇢ M(X ) is a space of test functions, M(X ) is
the set of measurable functions on X , and H : M(X ) ⇥
P(X ) ⇥ P(X ) ! [�1,1] is some objective functional.
Through suitable choices of H(�;P,Q) and �, formula (2)
includes many divergences and probability metrics. Below
we list two specific classes of examples.

(a) �-Integral Probability Metrics (�-IPMs). Given � ⇢

Mb(X ), the space of bounded measurable functions on X ,
the �-IPM between P and Q is defined as

D�(P,Q) := sup
�2�

{EP [�]� EQ[�]} . (3)

Some prominent examples of the �-IPMs include the
Wasserstein-1 metric, the total variation metric, the Dud-
ley metric, and the maximum mean discrepancy (MMD)
(Müller, 1997; Sriperumbudur et al., 2012). Our work, in
particular, focuses on the following two specific IPMs.

• The Wasserstein-1 metric, W (P,Q) :=
DLipL(X )(P,Q), i.e.,

W (P,Q) := sup
�2LipL(X )

{EP [�]� EQ[�]}, (4)

where LipL(X ) is the space of L-Lipschitz functions
on X . We note that the normalizing factor L�1 has
been omitted from the formula.
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• The maximum mean discrepancy, MMD(P,Q) :=
DBH(P,Q), i.e.,

MMD(P,Q) := sup
�2BH

{EP [�]� EQ[�]}, (5)

where BH is the unit ball of some reproducing kernel
Hilbert space (RKHS) H on X .

(b) (f,�)-divergences. Let f : [0,1) ! R be convex and
lower semi-continuous, with f(1) = 0 and f strictly convex
at x = 1. Given � ⇢ Mb(X ) that is closed under the shift
transformations � 7! � + ⌫, ⌫ 2 R, the (f,�)-divergence
introduced by Birrell et al. (2022a) is defined as

D�
f (PkQ) = sup

�2�
{EP [�]� EQ[f

⇤(�)]}, (6)

where f⇤ denotes the Legendre transform of f . For-
mula (6) includes, as a special case when � = Mb(X ), the
widely known class of f -divergences, with notable examples
such as the Kullback-Leibler (KL) divergence (Kullback
& Leibler, 1951), the total variation distance, the Jensen-
Shannon divergence, the �2-divergence, the Hellinger dis-
tance, and more generally the family of ↵-divergences
(Nowozin et al., 2016). Of particular interest to us is the
class of the Lipschitz-regularized ↵-divergences,

D�
f↵(PkQ), � = LipL(X ), f↵(x) =

x↵
� 1

↵(↵� 1)
, (7)

where ↵ > 0 and ↵ 6= 1 is a positive parameter.

An important observation that will be useful in one of our
results, Theorem 4.8, is that D�

f↵
admits an equivalent rep-

resentation, which writes

D�
f↵(PkQ) = sup

�2�,⌫2R
{EP [�+⌫]�EQ[f

⇤

↵(�+⌫)]} (8)

due to the invariance of � = LipL(X ) under the shift map
� 7! � + ⌫ for ⌫ 2 R.

3.2. Empirical estimation of variational divergences

Given i.i.d. samples X = {x1, x2, · · · , xm} and Y =
{y1, y2, · · · , yn}, respectively, from two unknown probabil-
ity measures P,Q 2 P(X ), it is often of interest—in appli-
cations such as two-sample testing (Bickel, 1969; Gretton
et al., 2006; 2012; Cheng & Xie, 2021) and independence
testing (Gretton et al., 2007; 2012; Zhang et al., 2018; Kin-
ney & Atwal, 2014)—to estimate the divergence between
P and Q (Sriperumbudur et al., 2012; Birrell et al., 2021;
Nguyen et al., 2007; 2010). For variational divergences
D�(P,Q) and D�

f (PkQ) in the form of (3) and (6), their
empirical estimators can naturally be given by

D�(Pm, Qn) = sup
�2�

(
mX

i=1

�(xi)

m
�

nX

i=1

�(yi)

n

)
, (9)

D�
f (PmkQn) = sup

�2�

(
mX

i=1

�(xi)

m
�

nX

i=1

f⇤(�(yi))

n

)

(10)

where Pm = 1
m

Pm
i=1 �xi and Qn = 1

n

Pn
j=1 �yj represent

the empirical distributions of P and Q, respectively.

The consistency and sample complexity of the empirical
estimators W (Pm, Qn) and MMD(Pm, Qn) in the form
of (9) for, respectively, the Wasserstein-1 metric (4) and
MMD (5) between two general distributions P,Q 2 P(X )
have been well studied (Sriperumbudur et al., 2012; Gretton
et al., 2012). However, for probability measures with spe-
cial structures, such as group symmetry, one can potentially
obtain a divergence estimator with substantially improved
sample complexity as empirically observed by Birrell et
al. (2022c). We provide, in the following section, a brief
review of group-invariant distributions and the improved
variational representations for probability divergences under
group symmetry, which serves as a motivation and founda-
tion for our theoretical analysis in Section 4.

3.3. Variational divergences under group symmetry

A group is a set ⌃ equipped with a group product satisfying
the axioms of associativity, identity, and invertibility. Given
a group ⌃ and a set X , a map ✓ : ⌃ ⇥ X ! X is called
a group action on X if ✓� := ✓(�, ·) : X ! X is an
automorphism on X for all � 2 ⌃, and ✓�2 � ✓�1 = ✓�2·�1 ,
8�1,�2 2 ⌃. By convention, we will abbreviate ✓(�, x) as
�x throughout the paper.

A function � : X ! R is called ⌃-invariant if � � ✓� =
�, 8� 2 ⌃. Let � be a set of measurable functions � : X !

R; its subset, �⌃, of ⌃-invariant functions is defined as

�⌃ := {� 2 � : � � ✓� = �, 8� 2 ⌃}. (11)

On the other hand, a probability measure P 2 P(X )
is called ⌃-invariant if P = (✓�)⇤P, 8� 2 ⌃, where
(✓�)⇤P := P � (✓�)�1 is the push-forward measure of P
under ✓� . We denote the set of all ⌃-invariant distributions
on X as P⌃(X ) := {P 2 P(X ) : P is ⌃-invariant}.

Finally, for a compact Hausdorff topological group ⌃
(Folland, 1999), we define two symmetrization operators,
S⌃ : Mb(X ) ! Mb(X ) and S⌃ : P(X ) ! P(X ), on
functions and probability measures, respectively, as follows

S⌃[�](x) :=

Z

⌃
�(�x)µ⌃(d�), 8� 2 Mb(X ) (12)

ES⌃[P ]� := EPS⌃[�], 8P 2 P(X ), 8� 2 Mb(X ) (13)

where µ⌃ is the unique Haar probability measure on ⌃. The
operators S⌃[�] and S⌃[P ] can be intuitively understood,
respectively, as “averaging” the function � or “‘spreading”
the probability mass P across the group orbits in X ; one
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can easily verify that they are projection operators onto
the corresponding invariant subsets �⌃ ⇢ � and P⌃(X ) ⇢
P(X ) (Birrell et al., 2022c).

The main result by Birrel et al. (2022c), which we summa-
rize in Result 3.1, is that for ⌃-invariant distributions, the
function space � in the variational formulae (3) and (6) can
be reduced to its invariant subset �⌃ ⇢ �.
Result 3.1 (paraphrased from (Birrell et al., 2022c)). If

S⌃[�] ⇢ � and P,Q 2 P(X), then

D�(S⌃[P ], S⌃[Q]) = D�⌃(P,Q), (14)

D�
f (S

⌃[P ]kS⌃[Q]) = D�⌃
f (PkQ), (15)

where D�(P,Q) and D�
f (PkQ) are given by (3) and (6).

In particular, if P,Q 2 P⌃(X ) are ⌃-invariant, then

D�(P,Q) = D�⌃(P,Q), D�
f (PkQ) = D�⌃

f (PkQ).

Result 3.1 motivates a potentially more sample-efficient
way to estimate the divergences D�(P,Q) and D�

f (PkQ)
between ⌃-invariant distributions P,Q 2 P(X ) using

D�⌃(Pm, Qn) = sup
�2�⌃

(
mX

i=1

�(xi)

m
�

nX

i=1

�(yi)

n

)
, (16)

D�⌃
f (PmkQn) = sup

�2�⌃

(
mX

i=1

�(xi)

m
�

nX

i=1

f⇤(�(yi))

n

)
.

(17)

Compared to Eq. (9) and (10), the estimators (16) and (17)
have the benefit of optimizing over a reduced space �⌃ ⇢ �
of test functions, effectively acting as an unbiased regular-

ization, and their efficacy has been empirically observed by
Birrell et al. (2022c) in neural generation of group-invariant
distributions with substantially improved data-efficiency.
However, the theoretical understanding of the performance
gain is still lacking.

The purpose of this work is to rigorously quantify the im-
provement in sample complexity of the divergence estima-
tions (16) and (17) for group-invariant distributions. To
contextualize the idea, we will focus our analysis on three
specific types of probability divergences, the Wasserstein-1
metric (4), the MMD (5), and the Lipschitz-regularized ↵
divergence (6)(7) between ⌃-invariant P,Q 2 P⌃(X ),

W (P,Q) = W⌃(P,Q) ⇡ W⌃(Pm, Qn), (18)

MMD(P,Q) = MMD⌃(P,Q) ⇡ MMD⌃(Pm, Qn) (19)

D�
f↵(PkQ) = D�⌃

f↵
(PkQ) ⇡ D�⌃

f↵
(PmkQn), (20)

where

W⌃(P,Q) := D[LipL(X )]⌃(P,Q), (21)

MMD⌃(P,Q) := D[BH]⌃(P,Q), (22)

and the definition of D�⌃
f↵

(PkQ) is given by Equations (6),
(7) and (11).

3.4. Further notations and assumptions

For the rest of the paper, we assume the measurable space
X ⇢ Rd is a bounded subset of Rd equipped with the Eu-
clidean metric k ·k2 and the group ⌃ acting on X is assumed
to be finite, i.e., |⌃| < 1, where |⌃| is the cardinality of
⌃. The Haar measure µ⌃ is thus a uniform probability mea-
sure over ⌃, and the symmetrization S⌃[�] [Eq. (12)] is an
average of � over the group orbit. We next introduce the
concept of fundamental domain in the following definition.
Definition 3.1. A subset X0 ⇢ X is called a fundamental

domain of X under the ⌃-action if for each x 2 X , there
exists a unique x0 2 X0 such that x = �x0 for some � 2 ⌃.
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Figure 2. The unit disk X ⇢ R2 with the action of the (discrete)
rotation groups ⌃ = Cn, n = 1, 4, 16, 64. The fundamental
domain X0 for each Cn is filled with yellow color.

Figure 2 displays an example where X is the unit disk in
R2, and ⌃ = Cn, n = 1, 4, 16, 64, are the discrete rota-
tion groups acting on X ; the fundamental domain X0 for
each ⌃ = Cn is filled with yellow color. We note that the
choice of the fundamental domain X0 is not unique. We
will slightly abuse the notation X = ⌃⇥ X0 to denote X0

being a fundamental domain of X under the ⌃-action. We
define T0 : X ! X0

T0(x) := y 2 X0, if y = �x for some � 2 ⌃, (23)

i.e., T0 maps x 2 X to its unique orbit representative in X0.
In addition, we denote by PX0 2 P(X0) the distribution
on the fundamental domain X0 induced by a ⌃-invariant
distribution P 2 P⌃(X ) on X ; that is,

PX0 = (T0)]P. (24)

The diameter of X ⇢ Rd is defined as

diam(X ) = sup
x,y2X

kx� yk2. (25)

Finally, part of our results in Section 4 relies heavily on the
concept of covering numbers which we define below.
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Definition 3.2 (Covering number). Let (X , ⇢) be a metric
space. A subset S ⇢ X is called a �-cover of X if for
any x 2 X there is an s 2 S such that ⇢(s, x)  �. The
�-covering number of X is defined as

N (X , �, ⇢) := min {|S| : S is a �-cover of X} .

When ⇢(x, y) = kx � yk2 is the Euclidean metric in Rd,
we abbreviate N (X , �, ⇢) as N (X , �).

4. Sample complexity under group invariance
In this section, we outline our main results for the sample
complexity of divergence estimation under group invariance.
In particular, we focus on three cases: the Wasserstein-
1 metric (18), the MMD (19) and the (f↵,�)-divergence
(20). While the convergence rate in the bounds for the
Wasserstein-1 metric and the (f↵,�)-divergence depends on
the dimension of the ambient space, that for the MMD case
does not. In all the numerical experiments, for simplicity, we
choose X = {x1, x2, · · · , xm} and Y = {y1, y2, · · · , yn}
to sample from the same ⌃-invariant distribution P = Q
for easy visualization and clear benchmark.

4.1. Wasserstein-1 metric, W (P,Q)

In this section, we set � = LipL(X ) to be the set of L-
Lipschitz functions on X ; see Eq. (4). We further assume
that the ⌃-actions on X is 1-Lipschitz, i.e., k�x� �yk2 

kx � yk2, 8� 2 ⌃, 8x, y 2 X , so that S⌃[�] ⇢ � (see
Lemma A.3 for a proof). Due to Result 3.1, we have
W (P,Q) = W⌃(P,Q) for ⌃-invariant probability mea-
sures P,Q 2 P⌃(X ).

To convey the main message, we provide a summary of
our result in Theorem 4.1 for the sample complexity under
group invariance for the Wasserstein-1 metric. The detailed
statement and the technical assumption of the theorem as
well as its proof are deferred to Appendix A.1. Readers are
referred to Section 3 for the notations.
Theorem 4.1. Let X = ⌃⇥X0 be a subset of Rd

equipped

with the Euclidean distance. Suppose P,Q 2 P⌃(X ) are ⌃-

invariant distributions on X . If the number m,n of samples

drawn from P and Q are sufficiently large, then we have

with high probability,

1) when d � 2, for any s > 0 ,

��W (P,Q)�W⌃(Pm, Qn)
��

 C

"✓
1

|⌃|m

◆ 1
d+s

+

✓
1

|⌃|n

◆ 1
d+s

#
, (26)

where C > 0 depends only on d, s and X , and is indepen-

dent of m and n;

2) for d = 1, we have

��W (P,Q)�W⌃(Pm, Qn)
��

 C · diam(X0)

✓
1

p
m

+
1
p
n

◆
, (27)

where C > 0 is an absolute constant independent of

X ,X0,m and n.

Remark 4.2. In the case for d � 2, the s > 0 in
Theorem 4.1 means the rate can be arbitrarily close to
�

1
d . If we further assume that X0 is connected, then the

bound can be improved to
��W (P,Q)�W⌃(Pm, Qn)

�� 

C

⇣
1

|⌃|m

⌘ 1
2
lnm+

⇣
1

|⌃|n

⌘ 1
2
lnn

�
for d = 2, and

��W (P,Q)�W⌃(Pm, Qn)
��  C

⇣
1

|⌃|m

⌘ 1
d
+
⇣

1
|⌃|n

⌘ 1
d

�

for d � 3, without the dependence of s, which matches the
rate in (Fournier & Guillin, 2015). See Remark A.7 after
Lemma A.6 in the Appendix.

Sketch of the proof. Using the group invariance and the map
T0 defined in (23), we can transform the i.i.d. samples on
X to i.i.d. samples on X0, which are effectively sampled
from PX0 and QX0 [cf. Eq. (24)]. Hence the supremum
after applying the triangle inequality to the error (26) can be
taken over L-Lipschitz functions defined on the fundamental
domain X0, i.e., LipL(X0), instead of over the original space
LipL(X ). We further demonstrate in Lemma A.4 that the
supremum can be taken over an even smaller function space

F0 = {� 2 LipL(X0) : k�k1  M} ⇢ LipL(X0), (28)

with some uniformly bounded L1-norm M due to the
translation-invariance of � in definition (4). Using Dud-
ley’s entropy integral (Bartlett et al., 2017), the error can be
bounded in terms of the metric entropy of F0 with m i.i.d.
samples,

inf
↵>0

(
8↵+

24
p
m

Z M

↵

q
lnN (F0, �, k·k1) d�

)
. (29)

For d � 2, we establish the relations between the metric en-
tropy, lnN (F0, �, k·k1), of F0 and the covering numbers
of X0 and X via Lemma A.6 and Lemma A.8:

lnN (F0, �, k·k1)  N (X0,
c2�

L
) ln(

c1M

�
), (30)

N (X0, �)

N (X , �)


1

|⌃|
, for small enough �, (31)

which yields a factor in terms of the group size |⌃| in
Eq. (26). The dominant term of the bound based on the
singularity of the entropy integral at ↵ = 0 is shown in
Eq. (26). For d = 1, the entropy integral is not singular
at the origin, and we bound the covering number of F0

by diam(X0) instead. The probability bound is from the
application of the McDiarmid’s inequality.
Remark 4.3. Even though we present in Theorem 4.1 only
the dominant terms showing the rate of convergence for
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the estimator, our result for sample complexity is actually
non-asymptotic. See Theorem A.2 in Appendix A.1 for a
complete description of the result.
Remark 4.4. When |⌃| = 1, i.e., no group symmetry is
leveraged in the divergence estimation, our result reduces
to the case considered in, e.g., (Sriperumbudur et al., 2012),
for general distributions P,Q 2 P⌃(X ) = P(X ).
Remark 4.5. The factor diam(X0) in the case for d = 1
is not necessarily directly related to the group size |⌃|.
We refer to Example 4.6 below and its explanation in Re-
mark A.10 for cases where we can achieve a factor of |⌃|�1

in the rate.

Example 4.6. Let X = [0, 1) and � = LipL ([0, 1)),
i.e., d = 1. We consider the ⌃-actions on X gener-
ated by the translation x 7! (x + 1

r ) mod 1, where
r = 1, 4, 16, 64, 256, so that |⌃| = r is the group size. We
draw samples xi ⇠ P = Q 2 P⌃(X ) on X in the following
way: xi = r�1⇠1/3i + ⌘i, where ⇠i are i.i.d. uniformly dis-
tributed random variables on [0, 1) and ⌘i take values over
{0, 1

r , . . . ,
r�1
r } with equal probabilities. One can easily

verify that P = Q are indeed ⌃-invariant. The numeri-
cal results for the empirical estimation of W (P,Q) = 0
using W⌃(Pn, Qn) with different group size |⌃| = r,
r = 1, 4, 16, 64, 256, are shown in the left panel of Fig-
ure 3. One can clearly observe a significant improvement of
the estimator as the group size |⌃| increases. Furthermore,
the right panel of Figure 3 displays the ratios between the
adjacent curves, all of which converge to 4, which is the
ratio between the consecutive group size. This matches our
calculation in Remark A.10; see also Remark 4.5.

Example 4.7. We let X = R2, i.e., d = 2. The proba-
bility distributions P = Q are the mixture of 8 Gaussians
centered at

�
cos( 2⇡r8 ), sin( 2⇡r8 )

�
, r = 0, 1, . . . , 7, with the

same covariance. The distribution has C8-rotation symme-
try, but we pretend that it is only C1, C2 and C4; that is,
the ⌃ used in the empirical estimation W⌃(Pm, Qn) does
not reflect the entire invariance structure. Even though in
this case the domain X is unbounded, which is beyond our
theoretical assumptions, we can still see in Figure 4 that
as we increase the group size |⌃| in the computation of
W⌃(Pm, Qn), fewer samples are needed to reach the same
accuracy level in the approximation. The ratios between
adjacent curves in this case are slightly above the predicted
value

p
2 ⇡ 1.414 according to our theory (see Remark 4.2),

suggesting that the complexity bound could be further im-
proved. For instance, in (Sriperumbudur et al., 2012), a
logarithmic correction term can be revealed for d = 2 after
a more thorough analysis.

4.2. Lipschitz-regularized ↵-divergence, D�
f↵
(PkQ)

The Lipschitz-regularized ↵-divergence is used in the
symmetry-preserving GANs (Birrell et al., 2022c), where it
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Figure 3. Left: the Wasserstein-1 distance with different group
sizes on [0, 1), averaged over 10 replicas. Right: the ratio of the
average of the Wasserstein-1 distance between different group
sizes: |⌃| = 1 over |⌃| = 4 (blue), |⌃| = 4 over |⌃| = 16 (red),
|⌃| = 16 over |⌃| = 64 (orange), |⌃| = 64 over |⌃| = 256
(purple). The black horizontal dashed line refers to the ratio equal
to 4, which is the value theoretically predicted in Theorem 4.1 for
d = 1. See Example 4.6 and Remark A.10 for the detail.
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Figure 4. Left: The Wasserstein-1 distance assuming different
group sizes in R2, averaged over 10 replicas. Right: the ratio
of the average of the Wasserstein-1 distance between different
group sizes: |⌃| = 1 over |⌃| = 2 (blue), |⌃| = 2 over |⌃| = 4
(red). The black horizontal dashed line refers to the ratio equal top
2, which is the value theoretically predicted in Theorem 4.1 for

d = 2. The ratios are slightly above the reference line, suggesting
that the complexity bound could be further improved. See Exam-
ple 4.7 and Remark 4.2 for the detail.

allowed them to systematically include symmetries and gave
a vastly improved performance on real data sets. The space
� in this section is always set to � = LipL(X ); see Eq. (7).
We only consider ↵ > 1, as the case when 0 < ↵ < 1 can
be derived in a similar manner. For ↵ > 1, the Legendre
transform of f↵, which is defined in (7), is

f⇤

↵(y) =

✓
↵�1(↵� 1)

↵
↵�1 y

↵
↵�1 +

1

↵(↵� 1)

◆
1y>0.

We provide a theorem for the sample complexity for the
(f↵,�)-divergence under group invariance, whose detailed
statement and proof can be found in Appendix A.2. We note
that this is a new sample complexity result for the (f↵,�)-
divergence even without the group structure, which is still
missing in the literature.
Theorem 4.8. Let X = ⌃⇥X0 be a subset of Rd

equipped

with the Euclidean distance. Let f↵(x) =
x↵

�1
↵(↵�1) , ↵ > 1

6
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and � = LipL(X ). Suppose P and Q are ⌃-invariant

distributions on X . If the number of samples m,n drawn

from P and Q are sufficiently large, we have with high

probability,

1) when d � 2, for any s > 0 ,

���D�
f↵(PkQ)�D�⌃

f↵
(PmkQn)

���

 C1

✓
1

|⌃|m

◆ 1
d+s

+ C2

✓
1

|⌃|n

◆ 1
d+s

, (32)

where C1 depends only on d, s and X ; C2 depends only on

d, s, X and ↵; both C1 and C2 are independent of m and

n;

2) for d = 1, we have

���D�
f↵(PkQ)�D�⌃

f↵
(PmkQn)

���

 diam(X0)

✓
C1
p
m

+
C2
p
n

◆
, (33)

where C1 and C2 are independent of X0, m and n; C2

depends on ↵.

Sketch of the proof. The idea is similar to the proof of
Theorem 4.1. The only difference is that we need to tackle
the f⇤

↵(�) term separately, since it is not translation-invariant
in �. Using the equivalent form (8), we can obtain a different
Lipschitz constant associated with f⇤

↵, as well as a different
L1 bound M than that in Eq. (28) by Lemma A.12. This
results in the ↵ dependence for C2.

4.3. Maximum mean discrepancy, MMD(P,Q)

Though one can utilize the results on the covering number
of the unit ball of a reproducing kernel Hilbert space, e.g.
(Zhou, 2002; Kühn, 2011), to derive the sample complex-
ity bounds that depend on the dimension d, we provide a
dimension-independent bound as in (Gretton et al., 2012)
without the use of the covering numbers. In the MMD case,
we let BH represent the unit ball in some reproducing kernel
Hilbert space (RKHS) H on X ; see Eq. (5). In addition, we
make the following assumptions for the kernel k(x, y).

Assumption 4.9. The kernel k(x, y) for H satisfies

• k(x, y) � 0 and k(�(x),�(y)) = k(x, y), 8� 2

⌃, x, y 2 X ;

• Let K := maxx,y2X k(x, y), then k(x, y) = K if and
only if x = y;

• There exists c⌃,k 2 (0, 1) such that for any � 2 ⌃
and � is not the identity element and x 2 X0, we have
k(�x, x)  c⌃,kK.

Intuitively, the third condition in Assumption 4.9 suggests
uniform decay of the kernel on the group orbits. See Re-
mark 4.12 and Example 4.13 for more details and a related
example.

From Lemma C.1 in (Birrell et al., 2022c), we know
S⌃[�] ⇢ � by the first assumption. Below is an abbrevi-
ated result for the sample complexity for the MMD, whose
detailed statement and proof can be found in Appendix A.3.

Theorem 4.10. Let X = ⌃⇥ X0 be a subset of Rd
. H is a

RKHS on X whose kernel satisfies Assumption 4.9. Suppose

P and Q are ⌃-invariant distributions on X . Then for m,n
sufficiently large, we have with high probability,

��MMD(P,Q)� MMD⌃(Pm, Qn)
��

< O

✓
C⌃,k

✓
1

p
m

+
1
p
n

◆◆
, (34)

where C⌃,k =
q

1+c⌃,k(|⌃|�1)
|⌃|

, and c⌃,k is the constant in

Assumption 4.9.

Sketch of the proof. Based on Result 3.1, we use the equality
MMD⌃(Pm, Qn) = MMD(S⌃[Pm], S⌃[Qn]) to expand
the divergence over all the orbit elements. The error bound
is controlled in terms of the Rademacher average, whose
supremum is attained at some known witness function due
to the structure of the RKHS using Lemma A.14. Since the
Rademacher average is estimated without covering numbers,
the rate is independent of the dimension d. Then we use the
decay of the kernel to obtain the bound.
Remark 4.11. When |⌃| = 1, the proof is reduced to that in
(Sriperumbudur et al., 2012).
Remark 4.12. Unlike the cases for the Wasserstein metric
and the Lipschitz-regularized ↵-divergence in Theorem 4.1
and Theorem 4.8, the improvement of the sample complex-
ity under group symmetry for MMD (measured by C⌃,k in
Theorem 4.10) depends on not only the group size |⌃| but
also the kernel k(x, y). For a fixed X and kernel k(x, y),
simply increasing the group size |⌃| does not necessarily
lead to a reduced sample complexity beyond a certain thresh-
old; see the first four subfigures in Figure 5. However,
we show in Example 4.13 below that, by adaptively pick-
ing a suitable kernel k depending on the group size |⌃|,
one can obtain an improvement in sample complexity by
C⌃,k ⇡

1p
|⌃|

for arbitrarily large |⌃|.

Example 4.13. Let X = {(r cos ✓, r sin ✓) 2 R2 : r 2

[0, 1], ✓ 2 [0, 2⇡)} be the unit disk centered at the origin,

and let ks(x, y) = e�
kx�yk

2
2

2s2 , x, y 2 X , be the Gaussian
kernel. Consider the group actions generated by a rotation
(with respect to the origin) of 2⇡

l , l = 1, 4, 16, 64, 256, so
that |⌃| = l is the group size. The fundamental domain X0

under the ⌃-action is X0 = [0, 1] ⇥ [0, 2⇡
l ) (see Figure 2
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Figure 5. MMD simulations with Gaussian kernels ks(x, y) =

e�
kx�yk

2
2

2s2 . From left to right, top to bottom: s = 2⇡
1⇥6 , s = 2⇡

4⇥6 ,
s = 2⇡

16⇥6 , s = 2⇡
64⇥6 , s = 2⇡

6|⌃| . The first four subfigures (top
two rows) show that the Gaussian kernel with a fixed bandwidth
s > 0 satisfies the third condition in Assumption 4.9 up to a group
size of |⌃| = l, l = 1, 4, 16, 64, and thus an improvement of
sample complexity of order C⌃,k ⇡ |⌃|�1/2 persists till |⌃| = l;
when |⌃| > l, no further reduction in sample complexity can be
observed. The last subfigure demonstrates that with an adaptive
bandwidth s inversely scaled with |⌃|, nonstop improvement of the
sample complexity can be achieved as the group size |⌃| increases.
See Example 4.13 for the detail and explanations.

for a visual illustration). We draw samples xi ⇠ P = Q 2

P⌃(X ) in the following way,

xi =
p
⇠i

✓
cos


2⇡

l
✓1/3i + ⌘i

2⇡

l

�
, sin


2⇡

l
✓1/3i + ⌘i

2⇡

l

�◆

where ⇠i and ✓i are i.i.d. uniformly distributed random
variables on [0, 1) and ⌘i take values over {0, 1

l , . . . ,
l�1
l }

with equal probabilities. We select the kernel bandwidth
s > 0 in different ways:

• Fixed s with changing group size |⌃| = l. We intu-
itively follow the “three-sigma rule” in the argument di-
rection to pick different s. Since the angle of each sec-
tor is 2⇡

l , we select s = 2⇡
6l , l = 1, 4, 16, 64. Smaller

bandwidth s corresponds to faster decay of the kernel
ks(x, y), such that for a fixed bandwidth s = 2⇡

6l , the
third condition in 4.9 is satisfied with a small ck for

any group ⌃ such that |⌃|  l, i.e., C⌃,k ⇡ |⌃|�1/2.
On the other hand, it is difficult to observe the improve-
ment by further increasing the group size |⌃| beyond
|⌃| > l, since the third condition in 4.9 is not satisfied
with any uniformly small c. See the top two rows in
Figure 5 for the results for s = 2⇡

l⇥6 , l = 1, 4, 16, 64.
Notice that the sample complexity improvement stops
right at |⌃| = l, perfectly matching our theoretical
result Theorem 4.10.

• s inversely scales with |⌃|, i.e., s = 2⇡
6|⌃|

. Unlike
the fixed s discusses previously, with these adaptive
selections of kernels, we can observe nonstop improve-
ment of the sample complexity as the group size |⌃|
increases; see the last row of Figure 5. This numerical
result is explained by the third condition in Assump-
tion 4.9; that is, in order to continuously observe the
benefit from the increasing group size |⌃|, we need to
have a faster decay in the kernel ks (i.e., smaller s) so
that c⌃,ks is uniformly small for all |⌃|.

Remark 4.14. The bound provided in Theorem 4.10 for the
MMD case is almost sharp in the sense that, by a direct
calculation, one can obtain that

EX MMD⌃(P, Pn)2

EX MMD(P, Pn)2
⇡ C2

⌃,k,

if the kernel bandwidth s /
p

2c⌃,k⇡

|⌃|
.

5. Conclusion and future work
We provide rigorous analysis to quantify the reduction in
sample complexity for variational divergence estimations be-
tween group-invariant distributions. We obtain a reduction
on the error bound by a power of the group size. The expo-
nent on the group size depends on the ambient dimension
for the Wasserstein-1 metric and the Lipschitz-regularized
↵-divergence; that exponent, however, is independent of the
ambient dimension for the MMD with a proper choice of
the kernel.

This work also motivates some possible future directions.
For the Wasserstein-1 metric in R2, one could potentially
derive a sharper bound in terms of the group size. For the
MMD with Gaussian kernels, it is worth investigating how
to choose the bandwidth to make as much use of the group
structure as possible. Further applications of the theories
on machine learning, such as neural generative models or
neural estimations of divergence under symmetry, are also
expected.
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A. Theorems and Proofs
In this section, we provide detailed statements of the theorems introduced in the main text as well as their proofs.

A.1. Wasserstein-1 metric

Assumption A.1. Let X = ⌃⇥ X0 ⇢ Rd. Assume that there exists some �0 > 0 such that

1) k�(x)� �0(x0)k2 > 2�0, 8x, x0
2 X0,� 6= �0

2 ⌃; and

2) k�(x)� �(x0)k2 � kx� x0
k2, 8x, x0

2 X0,� 2 ⌃,

where k · k2 is the Euclidean norm on Rd.

Example 4.6 provides a simple example when this assumption holds.

Theorem A.2. Let X = ⌃ ⇥ X0 be a subset of Rd
satisfying the conditions in Assumption A.1. Suppose P and Q are

⌃-invariant probability measures on X .

1) If d � 2, then for any s > 0, ✏ > 0 and m,n sufficiently large, we have with probability at least 1� ✏,

��W (P,Q)�W⌃(Pm, Qn)
�� 

 
8 +

24

(d+s
2 � 1)

!2

4
 
9D2

X ,L

|⌃|m

! 1
d+s

+

 
9D2

X ,L

|⌃|n

! 1
d+s

3

5

+ D̄X0,L

✓
24
p
m

+
24
p
n

◆
+ L · diam(X0)

r
2(m+ n)

mn
ln

1

✏
,

where DX ,L depends only on X and L; D̄X0,L depends only on X0 and L, and is increasing in X0, i.e., D̄A1,L  D̄A2,L

for A1 ⇢ A2;

2) If d = 1, then for any ✏ > 0 and m,n sufficiently large, we have with probability at least 1� ✏,

��W (P,Q)�W⌃(Pm, Qn)
��  cL · diam(X0)

✓
1

p
m

+
1
p
n

◆
+ L · diam(X0)

r
2(m+ n)

mn
ln

1

✏
,

where c > 0 is an absolute constant independent of X and X0.

Before proving this theorem, we have the following lemmas.

Lemma A.3. Suppose the ⌃-actions on X are 1-Lipschitz, i.e., k�x� �yk2  kx� yk2 for any x, y 2 X and � 2 ⌃, then

we have S⌃[�] ⇢ �, where � = LipL(X ).

Proof. For any x, y 2 X and f 2 �, we have

|S⌃(f)(x)� S⌃(f)(y)| =

�����
1

|⌃|

X

�2⌃

f (�x)�
1

|⌃|

X

�2⌃

f (�y)

�����


1

|⌃|

X

�2⌃

|f (�x)� f (�y)|


1

|⌃|

X

�2⌃

L k�x� �yk2


1

|⌃|

X

�2⌃

L kx� yk2

= L kx� yk2 .

Therefore, we have S⌃(f) 2 �.
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Lemma A.4. For any � 2 LipL(X0), there exists ⌫ 2 R, such that k� + ⌫k
1

 L · diam(X0).

Proof. Suppose � 2 LipL(X0) and k�(x)k
1

> L · diam(X0). Without loss of generality, we can assume supx2X0
�(x) >

L · diam(X0). Since � is L-Lipschitz on X0, we have supx2X0
�(x)� infx2X0 �(x)  L · diam(X0), so that

inf
x2X0

�(x) � sup
x2X0

�(x)� L · diam(X0) > 0.

Hence we can select ⌫ = �
infx2X0 �(x)

2 , so that k� + ⌫k
1

< k�k
1

.

We provide a variant of the Dudley’s entropy integral as well as its proof for completeness.
Lemma A.5. Suppose F is a family of functions mapping the metric space (X , ⇢) to [�M,M ] for some M > 0. Also

assume that 0 2 F and F = �F . Let ⇠ = {⇠1, . . . , ⇠m} be a set of independent random variables that take values on

{�1, 1} with equal probabilities, i = 1, . . . ,m. x1, x2, . . . , xm 2 X . Then we have

E⇠ sup
f2F

�����
1

m

mX

i=1

⇠if(xi)

�����  inf
↵>0

4↵+
12
p
m

Z M

↵

q
lnN (F , �, k·k

1
) d�.

The proof of Lemma A.5 is standard using the dyadic path., e.g. see the proof of Lemma A.5. in (Bartlett et al., 2017).

Proof. Let N be an arbitrary positive integer and �k = M2�(k�1), k = 1, . . . , N . Let Vk be the cover achieving
N (F , �k, k·k1) and denote |Vk| = N (F , �k, k·k1). For any f 2 F , let ⇡k(f) 2 Vk, such that kf � ⇡k(f)k1  �k. We
have

E⇠ sup
f2F

�����
1

m

mX

i=1

⇠if(xi)

�����

 E⇠ sup
f2F

�����
1

m

mX

i=1

⇠i (f(xi)� ⇡N (f)(xi))

�����+
N�1X

j=1

E⇠ sup
f2F

�����
1

m

mX

i=1

⇠i (⇡j+1(f)(xi)� ⇡j(f)(xi))

�����

+ E⇠ sup
f2F

�����
1

m

mX

i=1

⇠i⇡1(f)(xi)

����� .

The first on the right hand side is bounded by �N . Note that we can choose V1 = {0}, so that ⇡1(f) is the zero function. For
each j, let Wj = {⇡j+1(f)� ⇡j(f) : f 2 F}. We have |Wj |  |Vj+1| |Vj |  |Vj+1|

2. Then we have

N�1X

j=1

E⇠ sup
f2F

�����
1

m

mX

i=1

⇠i (⇡j+1(f)(xi)� ⇡j(f)(xi))

����� =
N�1X

j=1

E⇠ sup
w2Wj

�����
1

m

mX

i=1

⇠iw(xi)

����� .

In addition, we have

sup
w2Wj

vuut
mX

i=1

w(xi)2

= sup
f2F

vuut
mX

i=1

(⇡j+1(f)(xi)� ⇡j(f)(xi))
2

 sup
f2F

vuut
mX

i=1

(⇡j+1(f)(xi)� f(xi))
2 + sup

f2F

vuut
mX

i=1

(f(xi)� ⇡j(f)(xi))
2



q
m · �2j+1 +

q
m · �2j

=
p
m(�j+1 + �j)
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= 3
p
m�j+1.

By the Massart finite class lemma (see, e.g. (Mohri et al., 2018)), we have

E⇠ sup
w2Wj

�����
1

m

mX

i=1

⇠iw(xi)

����� 
3
p
m�j+1

p
2 ln |Wj |

m


6�j+1

p
ln |Vj+1|

p
m

.

Therefore,

E⇠ sup
f2F

�����
1

m

mX

i=1

⇠if(xi)

�����  �N +
6

p
m

N�1X

j=1

�j+1

q
lnN (F , �j+1, k·k1)

 �N +
12
p
m

NX

j=1

(�j � �j+1)
q
lnN (F , �j , k·k1)

 �N +
12
p
m

Z M

�N+1

q
lnN (F , �, k·k

1
) d�.

Finally, select any ↵ 2 (0,M) and let N be the largest integer with �N+1 > ↵, (implying �N+2  ↵ and �N = 4�N+2 

4↵), so that

�N +
12
p
m

Z M

�N+1

q
lnN (F , �j , k·k1) d�  4↵+

12
p
m

Z M

↵

q
lnN (F , �, k·k

1
) d�.

We can easily extend Lemma 6 in (Gottlieb et al., 2017) to the following lemma by meshing on the range [�M,M ] rather
than [0, 1].

Lemma A.6. Let F be the family of L-Lipschitz functions mapping the metric space (X , k·k2) to [�M,M ] for some

M > 0. Then we have

N (F , �, k·k
1
)  (

c1M

�
)N (X ,

c2�
L ),

where c1 � 1 and c2  1 are some absolute constants not depending on X , M , and �.

Remark A.7. If X is connected, then the bound can be improved to N (F , �, k·k
1
)  eN (X ,

c2�
L ) by the result in (Kol-

mogorov, 1961).

Lemma A.8 (Theorem 3 in (Sokolic et al., 2017)). Assume that X = ⌃⇥ X0. If for some � > 0 we have

1) k�(x)� �0(x0)k2 > 2�, 8x, x0
2 X0,� 6= �0

2 ⌃; and

2) k�(x)� �(x0)k2 � kx� x0
k2, 8x, x0

2 X0,� 2 ⌃,

then we have

N (X0, �)

N (X , �)


1

|⌃|
.

In addition, we provide the following lemma for the scaling of covering numbers.

Lemma A.9. Let X be a subset of Rd
and �̄ > 0. Then there exists a constant Cd,�̄ that depends on d and �̄ such that for

� 2 (0, 1) we have

N (X , �)  Cd,�̄ ·
N (X , �̄)

�d
.

Proof. Let N := N (X , �̄). Then X can be covered by N balls with radius �̄. From Proposition 4.2.12 in (Vershynin, 2018),
we know that each ball with radius �̄ can be covered by (�̄+�/2)d

(�/2)d balls with radius �. This implies that X can be covered by

N ·
(�̄+�/2)d

(�/2)d balls with radius �, so that N ext(X , �)  N ·
(�̄+�/2)d

(�/2)d , where N ext(X , �) is the exterior covering number of X

with radius �. Therefore, N (X , �)  N
ext(X , �/2)  N ·

(�̄+�/4)d

(�/4)d = N · ( 4�̄� + 1)d  N ·
(4�̄+1)d

�d .
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Proof of Theorem A.2.

��W (P,Q)�W⌃(Pm, Qn)
��

=

���� sup
�2�⌃

{EP [�]� EQ[�]}� sup
�2�⌃

{EPm [�]� EQn [�]}

����

 sup
�2�⌃

�����EP [�]�
1

m

mX

i=1

�(xi)�

 
EQ[�]�

1

n

nX

i=1

�(yi)

!�����

= sup
�2�⌃

�����EP [�]�
1

m

mX

i=1

� (T0(xi))�

 
EQ[�]�

1

n

nX

i=1

� (T0(yi))

!�����

(a)
 sup

�2LipL(X0)

�����EPX0
[�]�

1

m

mX

i=1

� (T0(xi))�

 
EQX0

[�]�
1

n

nX

i=1

� (T0(yi))

!����� (35)

:= f(x1, . . . , xm, y1, . . . , yn),

where inequality (a) is due to the fact that EP [�] = EPX0
[�|X0 ] and EQ[�] = EQX0

[�|X0 ] since P and Q are both
⌃-invariant and � 2 �⌃, and the fact that if � 2 �⌃, then �|X0 2 LipL(X0), where �|X0 is the restriction of � on X0.

Note that the quantity inside the absolute value in (35) will not change if we replace � by � + ⌫ and we still have
�+ ⌫ 2 LipL(X0) for any ⌫ 2 R. Therefore, by Lemma A.4, the supremum in (35) can be taken over � 2 LipL(X0), where
k�k

1
 L · diam(X0). The denominator in the exponent when applying the McDiarmid’s inequality is thus equal to

m

✓
2L · diam(X0)

m

◆2

+ n

✓
2L · diam(X0)

n

◆2

= 4L2
· diam(X0)

2m+ n

mn
. (36)

Denoting by X 0 = {x0

1, x
0

2, . . . , x
0

m} and Y 0 = {y01, y
0

2, . . . , y
0

n} the i.i.d. samples drawn from PX0 and QX0 . Also note that
T0(x1), . . . , T0(xm) and T0(y1), . . . , T0(yn) can be viewed as i.i.d. samples on X0 drawn from PX0 and QX0 respectively,
such that the expectation

EX,Y f(x1, x2, . . . , xm, y1, y2, . . . , yn)

= EX,Y sup
�2LipL(X0)

�����EPX0
[�]�

1

m

mX

i=1

�(T0(xi))�

 
EQX0

[�]�
1

n

nX

i=1

�(T0(yi))

!�����

can be replaced by the equivalent quantity

EX,Y sup
�2LipL(X0)

�����EPX0
[�]�

1

m

mX

i=1

�(xi)�

 
EQX0

[�]�
1

n

nX

i=1

�(yi)

!����� ,

where X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} are are i.i.d. samples on X0 drawn from PX0 and QX0 respectively.
Then we have

EX,Y sup
�2LipL(X0)

�����EPX0
[�]�

1

m

mX

i=1

�(xi)�

 
EQX0
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m
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m

mX
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�(xi)� EY 0

 
1

n

nX

i=1

�(y0i)

!
+

1

n

nX

i=1

�(yi)

�����

 EX,Y,X0,Y 0 sup
�2LipL(X0)
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�(x0
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�2LipL(X0)
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⇠i (�(x
0
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n

nX
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⇠0i (�(y
0
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�����

 EX,X0,⇠ sup
�2LipL(X0)
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1

m

mX
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0
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n
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 inf
↵>0

8↵+
24
p
m

Z M

↵

q
lnN (F0, �, k·k1) d� + inf

↵>0
8↵+

24
p
n

Z M

↵

q
lnN (F0, �, k·k1) d�,

where F0 = {� 2 LipL(X0) : k�k1  M} and M = L · diam(X0) by Lemma A.4.

For d � 2, from Lemma A.6, we have lnN (F0, �, k·k1)  N (X0,
c2�
L ) ln( c1M� ). We fix a �̄ > 0 such that N (X , c2�̄

L ) = 1,

and select �⇤ such that c2�
⇤

L  1 and c2�
⇤

L  �0; that is, �⇤  min
⇣

L
c2
, L�0

c2

⌘
, so that by Lemma A.8 and A.9, we have

N (X0,
c2�

L
) ln(

c1M

�
) 

N (X , c2�
L )

|⌃|
ln(

c1M

�
) 

Cd,�̄L
d

|⌃| cd2�
d
ln(

c1M

�
),

when � < �⇤. Therefore, for sufficiently small ↵, we have

Z M

↵

q
lnN (F0, �, k·k1) d�

=

Z �⇤

↵

q
lnN (F0, �, k·k1) d� +

Z M

�⇤

q
lnN (F0, �, k·k1) d�



Z �⇤

↵

s
Cd,�̄L

d

|⌃| cd2�
d
ln(

c1M

�
) d� +

Z M

�⇤

q
lnN (F0, �, k·k1) d�. (37)

For any s > 0, we can choose �⇤ to be sufficiently small, such that we have ln( c1M� )  1
�s when �  �⇤. Therefore, if we

let DX ,L =

r
Cd,�̄L

d

cd2
, we will have

Z �⇤

↵

s
Cd,�̄L

d

|⌃| cd2�
d
ln(

c1M

�
) d�  DX ,L

Z �⇤

↵

s
1

|⌃| �d+s
d�

 DX ,L

Z
1

↵

s
1

|⌃| �d+s
d�

=
DX ,Lp

|⌃|
·
↵1� d+s

2

d+s
2 � 1

.

Notice that the second integral in (37) is bounded while the first integral diverges as ↵ tends to zero, so we can optimize the
majorizing terms

8↵+
24
p
m

·
DX ,Lp

|⌃|
·
↵1� d+s

2

d+s
2 � 1

with respect to ↵, to obtain

↵ = (
9

m
)

1
d+s · (

D2
X ,L

|⌃|
)

1
d+s ,

so that

inf
↵>0

8↵+
24
p
m

Z M

↵

q
lnN (F0, �, k·k1) d�

 8(
9

m
)

1
d+s · (

D2
X ,L

|⌃|
)

1
d+s +

24

(d+s
2 � 1)

(
9

m
)

1
d+s · (

D2
X ,L

|⌃|
)

1
d+s +

24
p
m

Z M

�⇤

q
lnN (F0, �, k·k1) d�.

Therefore, for sufficiently large m and n, we have

EX,Y sup
�2LipL(X0)

�����EPX0
[�]�

1

m

mX

i=1

�(xi)�

 
EQX0

[�]�
1

n

nX

i=1

�(yi)

!�����
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

 
8 +

24

(d+s
2 � 1)

!2

4
 
9D2

X ,L

|⌃|m

! 1
d+s

+

 
9D2

X ,L

|⌃|n

! 1
d+s

3

5

+

✓
24
p
m

+
24
p
n

◆Z M

�⇤

q
lnN (F0, �, k·k1) d�.

For d = 1, the first integral in (37) in the one-dimensional case does not have a singularity at ↵ = 0. On the other hand,
replacing the interval [0, 1] by an interval of length diam(X0) in Lemma 5.16 in (Van Handel, 2014), there exists a constant
c > 0 such that

N (F0, �, k·k1)  e
cL·diam(X0)

� for � < M = L · diam(X0).

Therefore, we have

8↵+
24
p
m

Z M

↵

q
lnN (F0, �, k·k1) d�  8↵+

24
p
m

Z M

↵

r
cL · diam(X0)

�
d�,

whose minimum is achieved at ↵ = 9cL·diam(X0)
m . This implies that

inf
↵>0

8↵+
24
p
m

Z M

↵

q
lnN (F0, �, k·k1) d� 

72cL · diam(X0)

m
+

48L
p
c · diam(X0)
p
m

�
144cL · diam(X0)

m

=
48L

p
c · diam(X0)
p
m

�
72cL · diam(X0)

m
.

Hence, we have

EX,Y sup
�2LipL(X0)

�����EPX0
[�]�

1

m

mX

i=1

�(xi)�

 
EQX0

[�]�
1

n

nX

i=1

�(yi)

!�����


48L

p
c · diam(X0)
p
m

�
72cL · diam(X0)

m
+

48L
p
c · diam(X0)
p
n

�
72cL · diam(X0)

n
.

Finally, by a simple change of variable for the probability provided in (36), we prove the theorem.

Remark A.10. Though we do not directly observe the effect under the group invariance in the case when d = 1 in
Theorem A.2, the upper bound can be improved in some special cases. Here we analyze Example 4.6 as an example.
Replacing the interval [0, 1] by X0 = [0, 1

|⌃|
) in Lemma 5.16 in (Van Handel, 2014), there exists a constant c > 0 such that

N (F0, �, k·k1)  e
cL
|⌃|� for � < M = L · diam(X0).

Therefore, we have

8↵+
24
p
m

Z M

↵

q
lnN (F0, �, k·k1) d� = 8↵+

24
p
m

Z M

↵

s
cL

|⌃| �
d�,

whose minimum is achieved at ↵ = 9cL
m|⌃|

. This implies that

inf
↵>0

8↵+
24
p
m

Z M

↵

q
lnN (F0, �, k·k1) d� =

72cL

|⌃|m
+

48L
p
c

|⌃|
p
m

�
144cL

|⌃|m
=

48L
p
c

|⌃|
p
m

�
72cL

|⌃|m
.

Hence, we have

EX,Y sup
�2LipL(X0)

�����EPX0
[�]�

1

m

mX

i=1

�(xi)�

 
EQX0

[�]�
1

n

nX

i=1

�(yi)

!����� 
48L

p
c

|⌃|
p
m

�
72cL

|⌃|m
+

48L
p
c

|⌃|
p
n
�

72cL

|⌃|n
.

This matches the numerical result in Figure 3 where the ratio curves are around 4, since our group sizes are |⌃| =
1, 4, 16, 64, 256, increasing by a factor of 4,
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A.2. (f↵,�)-divergence

We assume Assumption A.1 also holds in this case.
Theorem A.11. Let X = ⌃⇥ X0 be a subset of Rd

equipped with the Euclidean distance, f(x) = f↵(x) =
x↵

�1
↵(↵�1) , ↵ > 1

and � = LipL(X ). Suppose P and Q are ⌃-invariant distributions on X . We have

1) if d � 2, then for any s > 0 and m,n sufficiently large, we have with probability at least 1� ✏,

���D�
f↵(PkQ)�D�⌃

f↵
(PmkQn)

��� 
 
8 +

24

(d+s
2 � 1)

!2

4
 
9D2

X ,L

|⌃|m

! 1
d+s

+

 
9D2

X ,L0

|⌃|n

! 1
d+s

3

5

+
24D̄X0,L
p
m

+
24D̄X0,L0

p
n

+

r
2(M2

1m+M2
0n)

mn
ln

1

✏
,

where DX ,L depends only on X and L, and DX ,L0 depends only on X , L and ↵; D̄X0,L depends only on X0 and L, and

D̄X0,L0 depends only on X0 and L and ↵, and both are increasing in X0; M0 and M1 both only depend on X , L and ↵;

2) if d = 1, for any ✏ > 0 and m,n sufficiently large, we have with probability at least 1� ✏,

���D�
f↵(PkQ)�D�⌃

f↵
(PmkQn)

��� 
48L

p
c · diam(X0)
p
m

�
72cL · diam(X0)

m
+

48L0
p
c · diam(X0)
p
n

�
72cL0

· diam(X0)

n

+

r
2(M2

1m+M2
0n)

mn
ln

1

✏
,

where c > 0 is an absolute constant independent of X0; L0
depends only on X , L and ↵; M0 and M1 both only depend on

X , L and ↵.

Before proving this theorem, we first provide the following lemma.
Lemma A.12. D�

f↵
(PkQ) = DF

f↵
(PkQ), where

F =
�
� 2 LipL(X ) : k�k

1
 (↵� 1)�1 + L · diam(X )

 
,

and P and Q are probability distributions on X that are not necessarily ⌃-invariant.

Proof. For any fixed � 2 �, let h(⌫) = EP [� + ⌫] � EQ[f⇤

↵(� + ⌫)]. We know that supx2X
�(x) � infx2X �(x) 

L · diam(X ), so interchanging the integration with differentiation is allowed by the dominated convergence theorem:
h0(⌫) = 1� EQ[f⇤0

↵ (� + ⌫)], where

f⇤0

↵ (y) = (↵� 1)
1

↵�1 y
1

↵�11y>0.

If infx2X �(x) > (↵ � 1)�1, then h0(0) < 0. So there exists some ⌫0 < 0 such that EP [� + ⌫0] � EQ[f⇤

↵(� + ⌫0)] =
h(⌫0) > h(0) = EP [�] � EQ[f⇤

↵(�)]. This indicates the supremum in D�
f (PkQ) is attained only if supx2X

�(x) 

(↵�1)�1+L·diam(X ). On the other hand, if supx2X
�(x) < 0, then there exists ⌫0 > 0 that satisfies supx2X

�(x)+⌫0 < 0
such that EP [� + ⌫0]�EQ[f⇤

↵(� + ⌫0)] = EP [�] + ⌫0 > EP [�] = EP [�]�EQ[f⇤

↵(�)]. This indicates that the supremum
in D�

f (PkQ) is attained only if infx2X �(x) � �L · diam(X ). Therefore, we have that the supremum in D�
f (PkQ) is

attained only if k�k
1

 (↵� 1)�1 + L · diam(X ).

Proof of Theorem A.11. Similar to the beginning of the proof of Theorem A.2, we have by Lemma A.12 that
���D�

f↵(PkQ)�D�⌃
f↵

(Pm, Qn)
���

=

�������
sup
�2�⌃

k�k
1

M0

{EP [�]� EQ[f
⇤

↵(�)]}� sup
�2�⌃

k�k
1

M0

{EPm [�]� EQn [f
⇤

↵(�)]}

�������
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 sup
�2�⌃

k�k
1

M0

�����EP [�]�
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�(xi)�
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↵(�)]�
1

n
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!�����
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1

n
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 sup
�2LipL(X0)
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1
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�����EPX0
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�(T0(xi))�

 
EQX0
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1

n

nX
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f⇤

↵ (�(T0(yi)))

!�����

:= g(x1, . . . , xm, y1, . . . , yn),

where T0 is the same as defined in (23). The denominator in the exponent when applying the McDiarmid’s inequality is thus
equal to

m

✓
2M0

m

◆2

+ n

✓
2M1

n

◆2

=
4M2

0

m
+

4M2
1

n
,

where M0 = (↵� 1)�1 +L · diam(X ), M1 = f⇤

↵(M0), since for any � such that k�k
1

 M0, we have kf⇤

↵ � �k
1

 M1.
Denoting by X 0 = {x0

1, x
0

2, . . . , x
0

m} and Y 0 = {y01, y
0

2, . . . , y
0

n} the i.i.d. samples drawn from PX0 and QX0 . Also note that
T0(x1), . . . , T0(xm) and T0(y1), . . . , T0(yn) can be viewed as i.i.d. samples on X0 drawn from PX0 and QX0 respectively,
such that the expectation

EX,Y g(x1, x2, . . . , xm, y1, y2, . . . , yn)

= EX,Y sup
�2LipL(X0)
k�k

1
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can be replaced by the equivalent quantity
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!����� ,

where X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} are are i.i.d. samples on X0 drawn from PX0 and QX0 respectively.
Then we have
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p
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p
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where F0 = {� 2 LipL(X0) : k�k1  M0} and F1 = {� 2 LipL0(X0) : k�k1  M1}, since for any � 2 F0,
kf⇤

↵ � �k
1

 M1 and
��� d
dyf

⇤

↵(y)
���  (↵ � 1)

1
↵�1 (M0)

1
↵�1 for |y|  M0 such that f⇤

↵ � � is L0-Lipschitz, where

M1 = f⇤

↵(M0) and L0 = L(↵� 1)
1

↵�1 (M0)
1

↵�1 . Then the rest of the proof follows from the proof of Theorem A.2.

A.3. MMD

We assume the kernel k(x, y) satisfies Assumption 4.9. Furthermore, let �(x) be the evaluation functional at x in H:
h�(x),�(y)iH = k(x, y), 8x, y 2 H.
Theorem A.13. Let X = ⌃⇥ X0 be a subset of Rd(d � 1) and H be a RKHS on X whose kernel satisfies Assumption 4.9.

Suppose P and Q are ⌃-invariant distributions on X . Then for m,n sufficiently large and any ✏ > 0 we have with

probability at least 1� ✏,

��MMD(P,Q)� MMD
⌃(Pm, Qn)

�� < 2K
1
2 [1 + c(|⌃|� 1)]
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r
1

m
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1

n
,

where K and c are the constants in Assumption 4.9.

Before proving the theorem, we provide the following lemma.
Lemma A.14. Suppose the kernel in an RKHS satisfies Assumption 4.9, and ⇠ = {⇠1, . . . , ⇠m} is a set of independent

random variables, each of which takes values on {�1, 1} with equal probabilities. Then we have

E⇠ sup
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H
1

������
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p
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.

Proof. Since the witness function to attain the supremum is explicit, we can write
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1
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p
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.

Proof of Theorem A.13. The proof below is a generalization of the proof of Theorem 7 in (Gretton et al., 2012), which does
not need the notion of covering numbers due to the structure of RKHS.

��MMD(P,Q)� MMD⌃(Pm, Qn)
��
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=
��MMD(P,Q)� MMD(S⌃[Pm], S⌃[Qn])
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=
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:= f(x1, x2, . . . , xm, y1, y2, . . . , yn).

Now we estimate the upper bound of the difference of f if we change one of xi’s.

|f(x1, . . . , xi, . . . , y1, . . . , yn)� f(x1, . . . , x̃i, . . . , y1, . . . , yn)|
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The upper bound of the difference of f if we change one of yi’s can be derived in the same way. To apply the McDiarmid’s
inequality, the denominator in the exponent is thus

m ·

4
h
|⌃| ·K +

⇣
|⌃|2 � |⌃|

⌘
· cK

i

m2 |⌃|2
+ n ·

4
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n2 |⌃|2

 4K(
1

m
+

1

n
) ·

1 + c(|⌃|� 1)

|⌃|
.

Moreover, we can extend inequality (16) in (Gretton et al., 2012) to take into account the group invariance. Denoting
by X 0 = {x0

1, x
0

2, . . . , x
0

m} and Y 0 = {y01, y
0

2, . . . , y
0

n} the i.i.d. samples drawn from P and Q, and ⇠ = {⇠1, . . . , ⇠m},
⇠0 = {⇠01, . . . , ⇠

0

n} sets of independent random variables, each of which takes values on {�1, 1} with equal probabilities, we
have

EX,Y f(x1, x2, . . . , xm, y1, y2, . . . , yn)
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where the last inequality is due to Lemma A.14. Therefore, by the McDiarmid’s theorem, we have
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By a change of variable, we have with probability at least 1� ✏,
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