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Abstract

Suppose we are given access to n independent samples from distribution p and we wish
to output one of them with the goal of making the output distributed as close as possible
to a target distribution v. In this work we show that the optimal total variation distance
as a function of n is given by ©( %) over the class of all pairs v, u with a bounded f-
divergence D¢ (v||n) < D. Previously, this question was studied only for the case when the
Radon-Nikodym derivative of v with respect to p is uniformly bounded. We then consider
an application in the seemingly very different field of smoothed online learning, where we
show that recent results on the minimax regret and the regret of oracle-efficient algorithms
still hold even under relaxed constraints on the adversary (to have bounded f-divergence, as
opposed to bounded Radon-Nikodym derivative). Finally, we also study efficacy of impor-
tance sampling for mean estimates uniform over a function class and compare importance
sampling with rejection sampling.

Keywords: Rejection Sampling, Smoothed Online Learning

1. Introduction

Consider the following problem: given n independent samples from some base distribution
1, how can a learner generate a single sample from a target distribution ©? This simple
question dates back decades, with the first formal solution, rejection sampling, provided
already by Von Neumann (1951). Due to its simplicity, this sampling problem appears as a
primitive in numerous applications in machine learning, theoretical computer science, and
cryptography (Lyubashevsky, 2012; Liu, 1996; Naesseth et al., 2017; Ozols et al., 2013);
thus, constructing efficient solutions has filled many works (Grover et al., 2018; Gilks and
Wild, 1992; Martino and Miguez, 2011). Perhaps surprisingly, though, the original solution
of rejection sampling (Von Neumann, 1951) remains a popular method even today.

Given Xi,...,X,, ~ u, recall that rejection sampling takes as a parameter some M,

which is a uniform upper bound on the Radon-Nikodym derivative g—z, and for each 1 <

1 < n, accepts X; with probability ﬁ . %(Xi) and returns an arbitrary accepted X; as a

sample from v. It is an easy exercise to see that if M > ‘ , then any accepted sample
oo

dv
e
has distribution v. Furthermore, it is not hard to see that any sample gets accepted with
probability ﬁ independently of other samples and thus, if we want to have at least one
accepted sample with high probability, we require n = ©(M). While there has been quite

a lot of work in the information theory community dedicated to refining this bound (Liu
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and Verdu, 2018; Harsha et al., 2007) as well as developments in the statistical community
dedicated to improving sampling efficiency under strong structural assumptions (Gilks and
Wild, 1992; Gortir and Teh, 2011), the scope of most all of this work is limited by the

requirement that )

(Ci% . < oo. In many settings, this assumption is false (Block et al.,
2023); as a result, we focus on a similar problem without the stringent assumption on
a uniform upper bound. Unfortunately, it is not hard to see that there exist examples
where we simply cannot recover a sample exactly from v without this uniform upper bound
(see Theorem 30 for an example). Consequently, we relax our desideratum to consider

approximate sampling. Specifically, we ask the following question:

How many independent samples X1, ..., X, do we need from a source distri-
bution p such that we can select some j* € [n] in order for the law of X« to be
within total variation distance € of v?

Despite its simplicity, to the best of our knowledge this question has not been considered in
the literature to date. We emphasize several special cases in the related work in Appendix A.
In this work we give a complete answer to this question with essentially matching upper
and lower bounds for all superlinear f-divergences of practical interest. While the upper
bounds are achieved with a modified rejection sampler and the analysis follows without too
much difficulty from classical work, the lower bounds require a more technical approach.
In order to quantify how far apart v is from u, we use the information-theoretic notion of
an f-divergence, where for two measures v < pu defined on a common set and a convex
function f, we define

Dy () = B, [f (j:mﬂ |

We give a more formal definition below, but we observe here that the notion of f-divergence
generalizes common divergences including total variation, KL-divergence, Renyi divergences,
and &, divergence (Polyanskiy and Wu, 2022+; Van Erven and Harremos, 2014; Asoodeh
et al., 2021). We will make the assumption that for some convex f, the source and tar-
get measures satisfy D¢ (v||n) < oo and ask what the sample complexity of e-approximate
rejection sampling is under this constraint. Interestingly, the answer depends on the tail be-
havior of f; in particular, if sup f’(x) < oo then rejection sampling cannot work under only
this constraint (see Proposition 4). If we have an f-divergence constraint with f’(co) = oo,

however, we will see that
~ D

samples is both necessary and sufficient in order to generate a sample X+ that is e-close in
total variation. In fact, we show that von Neumann’s original rejection sampler is essentially
optimal for this problem and we do not require the more complicated samplers introduced
for exact sampling by Harsha et al. (2007); Liu and Verdu (2018). As mentioned above,
the upper bounds are relatively standard, with much of the technical effort involving the
construction of lower bounds.

While the above results are interesting in their own right, we emphasize one key use case
of our results in a seemingly unrelated field: smoothed online learning. We briefly recall
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the setup. For general online learning, we fix a set of contexts X, a set of targets ) and a
function class F : X — ) as well as a loss function ¢ : ) x Y — [0, 1]. For some horizon T,
online learning proceeds in rounds where for each time 1 < ¢ < T the following happens:

1. Nature chooses some context x; and label y;.
2. the Learner chooses some prediction y; € ).
3. The learner sees y; and suffers loss £(yy, y:).

As in Block et al. (2022); Haghtalab et al. (2022a), we distinguish between the proper and
improper settings. In the former, the Learner must choose some function f; € F before
seeing x; and then predicts 3y = fi(x¢). In the latter, the Learner observes z; and then
predicts an arbitrary y; € J;. The goal in both cases is to minimize the expected regret to
the best function in hindsight, where

T T
Regy = Zg@t,yt) - }gjfEZZ(f(xt), Yt)-
t=1 t=1

As stated, there is no restriction on Nature’s choice of the context and label, which is called
the adversarial setting. Despite its popularity due to the robustness of the regime and the
lack of assumptions, there are two major problems with the fully adversarial setting: first,
simple function classes like thresholds in one dimension that can be easily learned when the
data appear independently become unlearnable in the adversarial regime (Rakhlin et al.,
2015; Littlestone, 1988); second, even when function classes are learnable, they often cannot
be learned efficiently (Hazan and Koren, 2016). In order to solve the first issue, the notion
of smoothed online learning has recently gained traction (Rakhlin et al., 2011; Haghtalab
et al., 2022a,b; Block et al., 2022; Block and Simchowitz, 2022). Motivated by smoothed
analysis of algorithms, Rakhlin et al. (2011); Haghtalab et al. (2022b) consider the following
setting. For a fixed base measure p on some set X', we say that a measure v is o-smooth with

< % An adversary is o-smooth with respect to some fixed p if for
[e.9]

all ¢, it holds that the distribution p; of x; conditioned on all the history is o-smooth. One
motivation for this definition is to suppose that Nature is fully adversarial, but corrupted
by some small amount of noise. For example, if X = R%, we could imagine adding a small
amount of uniform or Gaussian noise to an adversarial input (Block et al., 2023). In Block
et al. (2022); Haghtalab et al. (2022b), the minimax optimal rates for smoothed online
learning were derived up to polylogarithmic factors. As an example, if we let vc (F) denote
the Vapnik-Chervonenkis dimension (Blumer et al., 1989) of some binary valued function
class F, then there exists some algorithm capable of achieving, with respect to the indicator

loss,
Eliess) =0 (y/1-ve) s (1))

Unfortunately, in many common settings, a uniform bound on (iTI,Jj may not be achievable.

respect to p if H%

For example, consider again the case of a small amount of Gaussian noise in R% being added
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to an adversarial input. A natural choice of 1 would be some fixed Gaussian, but there is no

Cfl—]:f is finite. Even when the Radon-Nikodym derivative is uniformly
bounded, it may be, as in many high dimensional settings, that this bound is too large for
the resulting implications to be meaningful. Thus, in Section 4, we propose a more general
notion, of an f-smoothed adversary, where the distribution p; of the contexts x; conditional
on the history satisfies Dy (p¢||) < 2. In this harder setting, the results of Block et al.
(2022); Haghtalab et al. (2022a,b) no longer apply due to the breakdown of a key technical
step used in the proofs of all of these results. In Section 4, we apply our bounds on the
sample complexity of approximate rejection sampling to generalize the approach of these
works and achieve upper bounds on the information theoretic rates of f-smoothed online
learning, which are tight for some f-divergences.

While the information theoretic rates provided in Block et al. (2022); Haghtalab et al.
(2022b) are important, the suggested algorithms that achieve these rates are computa-
tionally intractable and thus two oracle-efficient algorithms were also proposed, where the
learner has access to an Empirical Risk Minimization (ERM) oracle returning the minimizer
over F of a weighted cumulative loss function evaluated on some data set (see Definition 35
for a formal definition). Once again, the analysis of these two algorithms does not extend
beyond the standard smoothed setting; in Section 4, we again apply our rejection sampling
sample complexity bounds to demonstrate that, by modifying the hyperparameters of the
two proposed algorithms, we can still maintain a no-regret guarantee under the significantly
more general f-smoothed online learning setting.

We defer discussion of related work to Appendix A for the sake of space. We now
summarize our key contributions:

way to ensure that ‘

e In Theorem 3, we provide an upper bound on the complexity of approximately sam-
pling from some target measure v given access to samples from y. In particular, we

show that by modifying classical rejection sampling, 5 (( 1 <W)) samples

suffice to obtain a sample with total variation distance at most ¢ from the target.

e In Proposition 4 and Theorems 5 and 6, we show that the upper bound given by
rejection sampling is essentially tight. In particular, we show that rejection sampling
is in some sense generic in that “the best” way to use samples from p to produce
a sample from v is the approach described above. Furthermore, we show that if
f" is bounded above, then the approximate sampling problem is impossible; if f’ is
unbounded, we show in Theorems 5 and 6 that the sample complexity derived in
Theorem 3 is essentially tight as € | 0. In particular, Theorem 5 shows that for all n,

there exist distributions with bounded f-divergence such that Q (( Mt (W))

samples are necessary to produce an e-approximate sample from the target measure,
while in Theorem 6, we show that (for a slightly smaller class of f satisfying a mild
growth condition) there exist distributions such that the preceding lower bound holds
uniformly in n.

e In Section 4, we generalize previous results on smoothed online learning to the signif-
icantly more general setting of f-smoothed online learning. In particular, we derive
minimax upper bounds without regard to computation time as well as demonstrating
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that two oracle-efficient algorithms (one proper and one improper) proposed in Block
et al. (2022) remain no-regret even in the more general f-smoothed online learning
setting. Moreover, in Theorem 12, we answer an open question in Block et al. (2022)
by showing that an instance of FTPL has regret scaling like o~/4 as opposed to
o~1/2 where o is the smoothness parameter of the adversary; this generalizes a result
of Haghtalab et al. (2022a) to arbitrary context spaces.

e In Appendix B, we prove new bounds on the quality of importance sampling for
estimating means with respect to a target v uniformly over a function class F when
we have access to samples from p. We then compare these results to estimates using
rejection sampling assuming Dy (v||u) < oo for the special case of y?-divergence and
compare these results with earlier bounds from Chatterjee and Diaconis (2018); Cortes
et al. (2010).

Notation In the sequel, we will always denote by u a base measure on the set X with
associated o-algebra .%#. We will denote by Xi., = (X1,...,X,) a vector of n independent
samples from p and we will let j* be a selection rule. We will reserve v for our target measure
and the letters €, §,y will all be reserved for small positive real constants. Furthermore, we
will reserve f for a convex function mapping the positive reals to the positive reals satisfying
f(1) = /(1) = 0. Furthermore, for such an f, we will let f~!(u) = inf {t > 0|f(¢) > u}
where we adopt the standard convention of taking the infimum of the empty set to be
infinite. For a given random variable Y, we will denote by Py the distribution of Y. We
use O(-), £)(-) to denote asymptotic big-oh notation and apply tildes to hide polylogarithmic
factors.

2. Problem Setup and Notation

In this section, we formally define the necessary information theoretic quantities and state
the problem. To begin, we define f-divergence. For more information on information
theoretic notions, see Polyanskiy and Wu (2022+)

Definition 1 Let f : [0,00] = R>oU{oo} be a convex function satisfying f(1) = f'(1) = 0.
For two probability measures v, i on some space X, define the f-divergence,

dv dv dv
D =E — ()T |—(Z2) < ! —(Z)=00].
Note that if v < p then we may ignore the second term.

Remark 2 As a technical aside, throughout the paper, we will be using f' and f” to denote
the first and second derivatives of the f appearing in Definition 1. By Rademacher’s Theo-
rem (Rademacher, 1919), f is differentiable almost everywhere, but for any points where f
is not differentiable, we will take f' to be the maximal subgradient. As f is increasing, f’
is mondecreasing and thus we can take f" to be the right derivative of f', which is always
well-defined.

We will phrase our results in terms of D¢ (v||u) for general f, but there are several important
examples that will come up throughout the paper. Before formally introducing the problem,
we will give several examples of well-known f-divergences:
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Example 1 (Total Variation) Consider f(z) = |z — 1| — (z — 1). In this case we have

Dy (v||p) = TV(v, 1) = sup |v(A) — p(A)]

AeF

the total variation distance, where % is the common o-algebra over X on which v, u are
defined.

Example 2 (KL Divergence) If we set f(x) = xlog(x) —x + 1 then we get Dy (v||u) =
Dk (v||p) the KL divergence.

Example 3 (Renyi Divergence) If we set f(x) = 2* — Az + X\ — 1, then we get that

Dy (v||p) = eA=1)DaA(v||p)

where Dy (v||p) is the Renyi divergence of order A. Special cases of Dy (v||u) include the
case where X\ | 1 in which case we have the KL divergence again and A = 2, in which case
we recover (a monotone transformation of ) the standard x* divergence.

Example 4 (£, Divergence) If, for v > 1, we set f,(x) = (v — )+, then denote
by E,(v||n) the divergence associated with this f. This divergence was originally defined
in (Polyanskiy, 2010, (2.141)) for the study of channel coding. Since then it appeared
prominently in the study of differential privacy (Asoodeh et al., 2021) and wiretap channels
(Liu et al., 2017). It will also be crucial in the proof of our lower bounds below.

We now define the primary object of study. Given X1., = (X1,...,X,) a tuple of elements
of X', we define a selection rule j* as any random variable taking values in [n] and depending
in any way on Xi.,. We are now ready to formally state the main problem:

Question: Suppose that X is an arbitrary set with o-algebra .%# and suppose
that u, v are probability measures with respect to .# satisfying, for some fixed
[, Dy (v||p) < oo. For fixed € > 0, how large does n have to be such that there

exists a selection rule j* ensuring that TV (PX].* , 1/) < e?

As an example, we consider traditional rejection sampling. We construct a random set
S C [n] by adding j to S with probability ;- Z—Z(X ), which is at most 1 by the assumption
that M > ‘ . If § is nonempty, we let j* be an arbitrary element and otherwise we
select j* uniformoloy at random. As we shall show for the sake of COT{npleteness (see Lemma
26 in Appendix D), the probability that S is empty is at most e~ and if S is nonempty

then X« is distributed according to v. Thus if n = M log (%), with probability at least
dv

L

dv
d

, we see that
(o)

1 -4, Xj« is distributed according to v. Because we required M >
dv

© (]| [

The necessity will be seen as a very special case of our lower bounds in the following section.

log (%)) samples are sufficient to exactly sample from v with high probability.
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3. Sample Complexity of Rejection Sampling

In this section, we state and sketch the proofs of our main results regarding rejection
sampling and fully answer the question raised in Section 2. We will divide our results into
two theorems, one providing an upper bound using a modified version of rejection sampling,
and the other giving an almost matching lower bound. We begin with the upper bound:

Theorem 3 (Upper Bound) Suppose that p,v are probability distributions on some set
X and suppose that X1,..., X, ~ p are independent. Fiz some f satisfying the conditions

in Definition 1. For e > 0, if
1 2 1 (2D¢ (v||p
g (2) g (22
—€ € €

then there exists a selection rule j* satisfying TV (PX].*,V> <e.

n >

We will split our discussion into two cases: the superlinear case, where f(t) T oo ast 1 oo
and the linear case, where f’(t) is bounded from above. In the former, we will see that as
n T 0o, we can always use rejection sampling to get an increasingly good approximation of
a sample from v because (f’)~! is finite on the entire positive real line. In the linear case,
however, we shall shortly prove that no selection rule can hope to get arbitrarily close to v
in total variation. Before sketching the proof of Theorem 3, we provide some examples.

Example 5 (Total Variation) Recall that total variation is the f-divergence such that
f(x) = |z —1] —x + 1. Note that f'(z) = 0 for all x > 1 and so (f')~1(M) is infinite
for M > 0. Thus Theorem 8 is vacuous when we only have control over total variation, as
expected.

Example 6 (KL Divergence) As we saw in Example 2, KL divergence is the f-divergence
where we set f(x) = xlog(x) — x + 1. In this case, we see that f'(x) = log(z) and so The-

orem 3 tells us that in order to be e-close in total variation, 0] (exp (M)) samples

suffice.
Example 7 (Renyi Divergence) Remember from Example 3 that f(x) = 2 = Az +A—1

for A > 1 defines the Renyi divergence. In this case we see that 9) <€D)‘(V|‘“)E_ﬁ) samples

suffice. As A 1 oo, we recover the standard rejection sampling bound by taking € | 0 and

noting that Do (v||p) = ‘ . In the special case of A = 2, we note that Reny: divergence
e.)

dv

dup
2

X° (v]lp)

recovers x2-divergence and note that O <f> samples suffice.

We now sketch the proof of the upper bound, deferring details to Appendix D:

Proof [Proof of Theorem 3| Let vy denote the measure v conditioned on the event that
% < M and let v denote the law of the sample produced by rejection sampling from vy, with
n samples. The standard analysis of rejection sampling tells us that if n = Q (log (%) M )
then TV (v,vyr) < e. We show in Lemma 27 that if M > 1, then
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Using this result, we show that TV (v, v) < Df,((';\‘/["; ) and conclude by applying the triangle
inequality. |

We now turn to our lower bounds. In particular, we show that for any f-divergence,
there exist distributions yu, v satisfying Dy (v||) < oo such that in order for there to exist

a selector rule guaranteeing that TV (PX].* , V) < g, we require n to be sufficiently large.

We will again split our discussion into the linear and superlinear cases. For the linear case,
we have the following lower bound:

Proposition 4 (Lower Bound, Linear Case) Suppose that f is a convex function as
in Definition 1 satisfying f'(t) < C < oo for all t > 1. Then there exist distributions ju,v
such that Dy (v||p) < oo and e = e(f, Dy (v||p)) > 0 such that for alln and Xi,... X, i L

inf TV (PX],* : ,,) > ¢
]*

where the infimum is over all selection rules j*.

Note that Proposition 4 matches the upper bound for linear f in Theorem 3 and reflect the
fact that for f that do not grow superlinearly, D¢ (v||u) < oo provides very weak control on
v. Intuitively this should be clear: note that if f is in the linear regime, then Dy (v||u) can
remain finite even when v is singular with respect to g and thus samples from @ can never
hope to approximate v to arbitrary precision. A full proof can be found in Appendix D.

Moving on to the more interesting case of superlinear f, we provide a lower bound that
matches the upper bound found in Theorem 3 for all superlinear f.

Theorem 5 (Lower Bound, Superlinear Case) Let f be a convex function as in Def-
inition 1 that grows superlinearly. Then for all 0 < ¢ < 1/4 and § > 2f(1/2), there
exists a pair of measures v, such that Dy (v||n) < 0 and any selection rule j* satisfying
TV(Px,.,v) < € requires

nZi'(f’)_1<5>- (1)

2

While we provide full details in Appendix D, we provide a sketch of the proof here:

Proof A simple computation found in Lemma 28 tells us that if v is the law of X,
then the Radon-Nikodym derivative of v with respect to p is uniformly bounded by n.
Another computation, found in Lemma 31 tells us that if 7 has likelihood ratio bounded
by n, then we can lower bound TV (7,v) by &,(v||p). Combining these facts, we see that
it suffices to exhibit two distributions p, v, such that Dy (v||n) < 6 and &, (v||u) > € for
all » not satisfying (1). Thus, we have reduced the proof to determining if the point (e, )
lies above some point in the joint range of p and v, i.e., the set {(E,(v||n), Dy (v||1))}
where p and v vary over all distributions. In Harremoés and Vajda (2011), it was shown
that the distributions extremizing the joint range are typically pairs of Bernoulli random
variables. We thus consider 1 = Ber (£) and v = Ber(2¢) and show that &, (v||p) = €, while

Dy (v||pn) < 6, unless n is sufficiently large so as to satisfy (1). The result follows. [ ]
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Note that Theorem 5 tells us that, up to logarithmic factors, the sample complexity
determined in Theorem 3 is optimal. There is one disadvantage to the above result, however:
as is clear from the proof, the distributions p and v depend on n and thus the order
of quantifiers in Theorem 5 is weaker than that in Theorem 3. In order to address this
shortcoming, we prove a slightly weaker lower bound under a mild growth condition on f:

Theorem 6 Let f be a convex function as in Definition 1 that grows superlinearly. Suppose
that f satisfies a mild growth condition (see Theorem 33 for formal statement). Then, for
any ¢ > 0, there exist distributions p,v with Dy (v||p) < oo such that for all sufficiently
large n € N, with X1,..., X, sampled independently from p, it holds that

. ¢ ( Dy wllw )
1]r'£fTV(PXj*,1/)Z 3 < F(n) ) (2)

where the infimum is taken over all selection rules.

We note that the mild growth condition required in Theorem 6 is purely technical and likely
could be removed with more elaborate analysis; on the other hand, this condition is satisfied
by all commonly used, superlinear f-divergences of which we are aware. By Theorem 3, we

see that if
-a(ir (242)

then rejection sampling suffices to generate an e-approximate sample from . On the other
hand, setting ¢ = o(1) as € | 0, Theorem 6 tells us that in the worst case, we require

n=a (0w ()

samples for the right hand side in (2) to be below €. Thus, as € | 0, these bounds essentially
match. In particular, because the f-divergences in Examples 6 and 7 satisfy the mild growth
condition, the sample complexity upper bounds derived in those examples are indeed tight
for all sufficiently large n.

We defer a detailed proof of Theorem 6 to Appendix D. The method is similar to that
of Theorem 5 in that we reduce to lower bounding &,(v||pn) for distributions v,y with
bounded f-divergence. The difference is that we exhibit a single pair (u,v), depending on
J but independent of n, such that the desired properties hold.

Combining Theorems 3, 5 and 6, we have shown that © ((f')~"(Dy (v||u))/e) samples
are both necessary and sufficient to generate an e-approximate sample from v. One im-
mediate application of these results is to the problem of estimating means according to
v uniformly over some function class F when given samples from u. In Appendix B, we
compare estimators using Theorem 3 to the classical importance sampling approach. For
the sake of space, this is deferred to the appendix; we now proceed to our main application
regarding smoothed online learning.

4. Smoothed Online Learning

Our most important immediate application is to the question of generalizing smoothed
online learning as outlined in the introduction. In this section, we extend results proved for
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smoothed adversaries (Rakhlin et al., 2011; Block et al., 2022; Haghtalab et al., 2022b,a)
described in the introduction to allow for a more powerful Nature. To do this, we employ
the following definition:

Definition 7 Fiz a base measure o on some set X. We say that a measure v is (f,0)-
smooth (or f-smooth) with respect to p if Dy (v||p) < % An adversary is (f, o)-smooth with
respect to p if for all 1 <t < T, the distribution p; of x¢, conditioned on all the history, is
(f,0)-smooth.

Definition 7 motivates an obvious question: can we achieve improvement over the fully
adversarial setting even when we only require Nature to be f-smooth? The answer will, of
course, depend on what f we choose. For the case of eventually linear f, for example, we
see that no improvement is possible in general:

Proposition 8 Suppose that F = {x — I[z > 6]|0 € [0, 1]} is the class of thresholds in one
dimension. Let f be a convex function as in Definition 1 that is eventually linear, in the
sense that f' is bounded above. For all 0 < o < 1 there is a (f,0)-smooth adversary such
that any learner experiences E [Regy| = Q(T).

This result, proved in Appendix E, is not surprising in light of the fact that fully adver-
sarial online learning of F is impossible; if f is linear, then Nature can mix the worst-case
adversary with a base distribution and still incur linear regret with finite D (v||x). More
interesting is the case of stronger f-divergences. Before we present our results, we state our
main technical tool, which generalizes a technique introduced in Haghtalab et al. (2022b)
and extended in Block et al. (2022). In those works, the authors introduced a coupling
between the sequence contexts produced by a smooth, adaptive adversary and a larger set
of independent sampled drawn from the base measure. Using the tools developed in Sec-
tion 3, we extend this technique beyond the case of uniformly bounded Radon-Nikodym
derivatives:

Lemma 9 Let X be a set and p some measure on X. Suppose that an adversary is (f,o)-
smooth with respect to p for some f satisfying the conditions of Definition 1 such that
sup f/(t) = oco. For any T and any €,6 > 0, if

1 T 1
> 1 - n—1 _
n_1_€0g<6>(f) (50)
then there exists a coupling between (z1,...,z7) and {Z; ;|1 <t <T and 1 < j <n} such
that the (x1,...,z7) are distributed according to the adversary, the Z; j ~ p are independent,

and, with probability at least 1—9, there are selection rules j; such that TV (Pmt, Pz, j*> <e.
Yt

We defer the construction of the coupling to Appendix E; for now we focus on the im-
plications. Our first result extends Block et al. (2022, Theorem 3) and Haghtalab et al.
(2022b, Theorem 3.1) to the case of f-smoothed online learning. While we state the result
for general real-valued function classes in Appendix E, for the sake of simplicity we restrict
our focus to binary-valued F here.

10
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Theorem 10 Suppose F — {£1} is a binary valued function class and let vc (F) denote
its Vapnik-Chervonenkis dimension. Suppose that (x¢,y;) are generated by a ( f,0)-smoothed
adversary in the sense of Definition 7 such that f'(00) = co. Then there exists an algorithm
such that

E [Regr] S V/Tlog(T) - ve (F) + inf T+ \/Tvc (F)log <T(f’)1 <1)>

E0T

We remark that Theorem 10 is a special case of the more general Theorem 34 applying to
arbitrary real-valued function classes, which we state and prove in Appendix E. The proof
follows the approach of Block et al. (2022) with the modification of applying the more general
coupling in Lemma 9 and is deferred to the appendix. Here, we consider two instantiations
of f-divergences. First, for the case of Renyi divergence (see examples 3 and 7), we see

that for a Renyi-smoothed adversary, regret of the order 0] ((1 + ﬁ) \/ Tve (F)log ( ))

1

g
is attainable. Observe that when A 1 oo, we recover the results of Block et al. (2022). On
the other hand, if A is bounded away from 1, which covers the case of an adversary bounded
in x? divergence, we see that the cost of assuming only D) (ps||u) < oo is only on the order
of a constant more than in the standard setting. The situation is different if we assume that
the adversary is f-smoothed in the sense of KL divergence: in this case, we are only able to

recover regret scaling like O (T2/ 3 (ve (F) Jo)Y 3). While the results for Renyi divergence

are optimal up to polylogarithmic factors, we leave as an interesting open direction the
question of whether the regret against a KL-smoothed adversary can be improved.

While Theorem 10 is important insofar as it gives the information theoretic rates of f-
smoothed online learning, the algorithms, where provided, are computationally intractable.
We now demonstrate that two algorithms proposed by Block et al. (2022); Haghtalab et al.
(2022a) for smoothed online learning remain no-regret even if we weaken our assumptions
to include (f, o)-smoothed adveraries. These algorithms are oracle-efficient, i.e., they make
few calls to an Empirical Risk Minimization (ERM) oracle for the function class F; an
ERM oracle, formally defined in Appendix E (see Definition 35), returns the minimizer of
a weighted, cumulative loss function defined over the function class F. Once again, for the
sake of simplicity, we state our results for the case of binary valued F and defer the more
general statement and proof to the appendix.

Theorem 11 Suppose that F : X — {1} is a function class with VC dimension vc (F)
and that £ : [—1,1] x [=1,1] — [0, 1] is a loss function that is convex and 1-Lipschitz in the
first argument. Then there is an improper algorithm requiring 2 calls to the ERM oracle per
time t such that if the adversary is (f,o)-smoothed, then the regret is bounded as follows:

E [Regy] < inf {aT + \/VC (F)-T -log(T) - (f)~1 <1> } . (3)

a>0 o
We prove Theorem 11 in Appendix E, where we apply Lemma 9 to the argument of Block
et al. (2022). We instantiate the bound in (3) in two cases, Renyi divergence (Example 3)
and KL Divergence (Example 2). If we assume that our adversary is smoothed in the sense of
Renyi divergence, then optimizing « leads us to an oracle-efficient algorithm attaining regret

11
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< (0')~! then we may
o0

take 0 = (0/)*~!, we observe that in the limit as A 1 oo, we recover the O <\/VC (F)- T/O'/>

rate from Block et al. (2022, Theorem 7). In the special case where A = 2, we see that
the regret scales like O ((ve (F) Jo)i/3 . T2/3). On the other hand, if we make the weaker
assumption that the adversary is only smoothed in the KL sense, then Theorem 11 only

recovers a regret that scales as O (log(d)T /(o log(T'))), which is sublinear in T but very
slow.

scaling like O (VC (F)% T 072;771) Noting that if H%

We turn now to the case of proper algorithms. As in Block et al. (2022), we instantiate
Follow the Perturbed Leader (FTPL) with a perturbation by a Gaussian process; again, we
apply our Lemma 9 to the proof techniques found in Block et al. (2022, Appendix E). For
the sake of simplicity, we restrict our focus to binary valued function classes with linear
loss.

Theorem 12 Suppose that we are in the situation of Theorem 11, with the loss function ¢
being linear, i.e., L(y,y) = (1 —y-y)/2. Suppose further that our adversary is (f,o)-smooth
in the sense of Renyi Divergence, i.e., for some A > 2, Dy (p¢||n) < 1/o for all p;. Then
there is a proper algorithm requiring only 1 call to the ERM oracle per round such that the
regret is bounded as follows:

=~ 22+1 1
E[Regr] = O ( ve(F)-TH»-1 -0 4)\71) )

Note that our regret in Theorem 12 actually improves on that of (Block et al., 2022, Theorem
10) in the case where we take A 1 0o. Indeed, if we are in the strongly smooth regime such
that the Radon-Nikodym derivative of the adversary’s distribution is uniformly bounded by

0’1, then in the limit we recover an expected regret scaling like O (\/VC (F)-T- (o )_%),

which matches that of the instantiation of FTPL found in Haghtalab et al. (2022a) for
discrete X. Thus, by examining f-smoothed adversaries, we anwer an open question of
Block et al. (2022) on improving the dependence on ¢’ of the expected regret of FTPL with
a Gaussian perturbation.

We leave as an interesting further direction the question regarding the tightness of
the regret of the algorithms in Theorems 11 and 12. As shown in Block et al. (2022);
Haghtalab et al. (2022a), even in the case of strongly smoothed adversaries, there is a
statistical-computational gap wherein the dependence of the expected regret for an oracle-
efficient algorithm on ¢ must be polynomial, but Theorem 10 yields a statistical rate that
is polylogarithmic in the same. Even in the adversarial setting, however, it is unknown if
such an exponential gap exists for oracle-efficient improper algorithms (Hazan and Koren,
2016).

Finally, we observe that Theorem 12 only applies to f-smoothed adversaries in the Renyi
sense for A > 2. Our proof proceeds by a change of measure argument, wherein we replace
an expectation over the base measure p by an expectation over the adversary’s distribution
pt; for a weaker f-divergence like KL, the analogous statement would require bounding
an exponential moment, which would require significantly stronger analysis. We leave the
question of existence of oracle-efficient proper algorithms for KL smoothed adversaries as
yet another interesting further direction.
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Appendix A. Related Work

Rejection Sampling As mentioned in the introduction, rejection sampling was pioneered
by Von Neumann (1951) and has received much attention due to its simplicity and general
application, with far too many references to list (Gilks and Wild, 1992; Liu, 1996; Flury,
1990; Harviainen et al., 2021; Bauer and Mnih, 2019). More recently, the information theory
community has been interested in improving the bounds on the sample complexity of exact
rejection sampling under assumed additional structure, such as a Renyi divergence bound
(Liu and Verdu, 2018; Harsha et al., 2007).
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Perhaps surprisingly, approrimate rejection sampling has received relatively little atten-
tion. Several works have proposed a tradeoff between the sample complexity of approximate
rejection sampling and the accuracy of the produced sample; one example is Grover et al.
(2018), which demonstrated a qualitative monotonicity property that describes this trade-
off in a particular family of distributions, without providing any quantitative guarantees.
Some works in cryptography (Lyubashevsky, 2012; Zheng et al., 2021; Agrawal et al., 2022)
have provided upper bounds on the sample complexity in the particular case of the dis-
crete Gaussian family on a lattice. Even more recently, a concurrent work (Devevey et al.,
2022) demonstrates upper and lower bounds for ezact rejection sampling as well as some
upper bounds for approximate rejection sampling for probability distributions on the dis-
crete hypercube. In contradistinction to these previous works, our results hold for arbitrary
probability distributions and significantly more general f-divergences.

Smoothed Online Learning The study of online learning dates back decades with too
many references to list here. A good introduction to the general field can be found in Cesa-
Bianchi and Lugosi (2006). More recently, there has been a surge of interest in sequential
analogues of statistical learning phenomena (Rakhlin et al., 2015, 2012; Block et al., 2021).
Due to the statistical and computational challenges of this regime, however, several works
have proposed the smoothed online learning setting (Rakhlin et al., 2011; Haghtalab et al.,
2020), with Haghtalab et al. (2022b); Block et al. (2022) providing statistical rates defining
the difficulty of a smoothed online learning problem and Block et al. (2022); Haghtalab
et al. (2022a); Block and Simchowitz (2022) providing oracle-efficient algorithms. In this
work, we generalize the results of Block et al. (2022); Haghtalab et al. (2022a) to what we
call the f-smoothed online learning setting, where the adversary is constrained to only be
smooth in a weaker sense.

Out-of-Distribution Learning Importance sampling was introduced in Kloek and Van Dijk
(1978) and studied extensively thereafter due to its wide applicability. Again, there are far
too many references in this popular field to include here, but a few standard treatments
are Liu and Liu (2001); Srinivasan (2002); Tokdar and Kass (2010). Most similar to our
work are Chatterjee and Diaconis (2018); Cortes et al. (2010). In the first work, the authors
precisely compute the sample complexity of importance sampling to estimate the mean of
a given function f under some target measure v. They observe that 5) (eD KL H/‘)) samples
are both necessary and sufficient to do this and provide several instantiations of their main
bound. Unfortunately, their bounds are too weak to apply to the problem of estimating
means uniformly over a large function class, as is required for learning theory. In Cortes
et al. (2010), the authors prove upper bounds on the sample complexity of importance sam-
pling assuming that the function class F has finite pseudo-dimension, under both bounded
likelihood and bounded Renyi constraints. They also prove a lower bound.

Appendix B. Comparison to Importance Sampling for Uniform Mean
Estimation

In this appendix, we apply our main result to uniform mean estimation. More specifically,
suppose that the learner has access to Xi,..., X, ~ u independent samples and, for some
other measure v, wishes to estimate Ey., [f(Y)] for all functions f in some class F. A
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natural quesiton is how large n must be and how close v has to be to u in order for our
estimates to be within € of E [f(Y)] with high probability. In this section, we will compare
two common approaches. The first uses importance sampling, where we take our estimate
to be
1« dv

while the second is to use rejection sampling to generate n’ independent samples from v and
then simply use the empirical mean of these samples to estimate Ey ., [f(Y)]. We begin by
considering importance sampling.

In the special case where F = {f} is a singleton, the following theorem of Chatterjee
and Diaconis (2018) fully answers the question of sample complexity:

Theorem 13 (Theorem 1.1, Chatterjee and Diaconis (2018)) Suppose that X1, ..., X, ~
w are independent and suppose that n > exp (Dgr, (v||n)). If f is a real-valued, measurable
function, then it holds that

ePrrvlln) 1 dv
E{l5(f) = B [f (O] < 11200y <n> + 2\/IF’YN,, <du(Y) >V eDPrrlln n)

Moreover, if n < ePxeWIK) then with probability at least 1 — 6,

- P <%(y) < VeDrL 0l n)

Drol) -3

I,(1) <

Thus Theorem 13 shows that © (exp(Dxr (v||p))) samples are necessary and sufficient in
order for importance sampling to generate an estimate that is close in expectation to the
true mean. Unfortunately, the above guarantee is too weak to be applied to large func-
tion classes. While Cortes et al. (2010) provides several bounds on importance sampling
that hold uniformly in a function class with bounded pseudo-dimension, we provide here
a generalization of their result that holds for most Donsker function classes. Before doing
this, we need to define the relevant notion of complexity of the function class: that of the
bracketing number. For more details, see Giné and Nickl (2021).

Definition 14 Let F : X — [—1,1] be a real-valued function class. Given real-valued
functions f_, fi, we define the bracket [f_, f1] as the set of functions f € F such that f— <
f < f4 pointwise. We say that [f—, f+] is an € bracket with respect to p if || f+ — f*”L?(u) <

e. We define the bracketing number N (F,e) as the minimal number of e-brackets such that
F is contained in the union of these brackets. Finally, we say that F has finite bracketing

integral if
2
/ \/log Njj (F,€)de < oo.
0

While there are more general complexity assumptions under which our conclusions hold,
for the sake of simplicity, we consider the bracketing integral. We have the following result:
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Theorem 15 Suppose that F : X — [—1,1] is a real-valued function class with finite
bracketing integral with respect to p. Suppose further that x? (v||u) < co. Then the following

mequality holds:
14 x2 2
SV 1+ 2 (v]|p) - max <n_1/3, —i_Xn(VH'UJ) / \/log Nj (F, a)da) .
0

The proof of Theorem 15 rests on the following result. For future reference, we denote by
P,, the empirical measure on n independently sampled points from pu.

E [sup [I,(f) — E, [f(Y)]]
feF

Theorem 16 (Theorem 1.1 from Bercu et al. (2002)) Suppose that F is a real val-
ued function class with finite bracket numbers satisfying

Er =supE

n>0 feF

sup max (P, (f —E,[f]) ,O)] < 0.

For any 6 > 0 and o > \/2, there exist constants 0, ng depending on § and o such that

Pn(f_Eu[f]) >=7;+E}' 2

< e 402(1+6)

P | sup =
e F P (f B VT

for alln > ny and x < 6/n.

We observe that Giné and Nickl (2021, Theorem 3.5.13) tells us that, up to a constant, F
is bounded by the bracketing integral of F. We are now ready to prove our importance
sampling bound:

Proof [Proof of Theorem 15] We will apply Theorem 16 to the function class

]?:cm-f:{xwfl:(m)-f(x)lfe]:}.

We first note that Cauchy-Schwarz tells us that if [f_, fi] is an e-bracket for p then
[Z—Z - f-, Z—Z . f+] is a (\/1+ x? (v||u) - €)-bracket for u. We further note that

L(f) = P, (fl: ~ f) E, [f(V)]E, [j: ‘ f] |

Now note that it suffices to prove an upper tail bound and symmetry will imply a lower tail
bound as well. We will apply Theorem 16, but first we must bound the relevant quantities.
Observe that Giné and Nickl (2021, Theorem 3.5.13) implies that Er is bounded by the
bracketing integral of F; combining this with our observation on the relationship between
e-brackets of F and those of F , we see that

2
Ez SV14+x2(v||p) -/0 \/logNH (F, ) da.
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We further observe by Cauchy-Schwartz that

VP —Ef)? <2 | P, W 2+Eu
dp

(%)

2
<. \/Pn () P2+ (L4 X2 (1) - By [f2)

dp

dv?
<2-4/P, [ — 1 2
< \/ (du >+ +x2 (v]|p),

where we used the fact that F is uniformly bounded. We further note by Markov’s inequality

that
dv\>? 1+ 2 (vin)
PP, [ — 2| < A IR 4
( (du) >u>_ u? @

By Theorem 16, it holds that

dv 2 2
P(?EEI”“)‘E” > tana 2, (57 <“2> o (‘C (Viva o '~ #) )

Now, setting

we see that as long as

it holds that

dv 2 ) n2/3t2/3
P (;E_I;In(f) _]EI/ [f] >t and Pn <) Su ) = Cexp <_C(1+X2(VHM))> '

Applying (4), we see that

P I E i< 1 C C n?/3e2/
WD) =B [f)>t) < s+ O |
sup In(f) ~ v [ wis i OO\ ~C )

The same result holds for the lower tail by applying the identical argument to —F. To
conclude, we observe that

[ <sup () — B [f]] > t> dt
0 feF
< 1+x2(VHM)‘Ef+\/1+xj(1/\|u)

~ n ns
2 2
S V14 X2 (v]|p) - max <n1/3, \/ 1+Xn(V|M) / \/log N (F, a)da>
0
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as desired. n

Note that as n 1 0o, the rates given by Theorem 15 scale like O (n_l/ 3). One improve-
ment on these rates follows from the work of Cortes et al. (2010), where they assume that the
function class F has finite pseudo-dimension and obtain rates that scale like O (n‘3/ 8); note
that the property of a class having finite bracketing integral is distinct from that of having
finite pseudo-dimension; indeed van Handel (2013, Proposition 1.7) shows that bracketing
numbers can be arbitrarily large even for classes of finite VC dimension, whereas Giné and
Nickl (2021) shows that classes with infinite VC dimension such as Sobolev spaces still may
have small bracketing numbers. In Cortes et al. (2010, Proposition 2), the authors show
a lower bound for importance sampling assuming that STVL is uniformly bounded and the
sample size is large relative to this uniform bound. In essence, this shows that if x? (v||u)
is infinite, then we cannot hope to get an importance sampling estimator that converges
to the population mean at a © (n_%) rate. We leave as an interesting direction for future

research the problem of closing the gap between these two rates.

We now turn to our second estimator: using rejection sampling to produce independent
samples from v and taking the sample mean. More precisely, given Xi,..., X, ~ p inde-
pendent and for some m € N dividing n, suppose we partition [n] into sets of size m and
conduct the rejection sampling procedure of Theorem 3 on each subset, generation n/m
independent samples X7,..., X/ Jm ~ VM independent with probability at least 1 —nd for
some d. For given m,n, let

n/m

m
Tmn(f) = — > (X)) (5)
i=1
denote the rejection sampling estimate of E, [f(Y)]. We have the following result:

Corollary 17 Suppose that F : X — [—1,1] is a real-valued function class with finite
bracketing integral with respect to p and that Dy (v||p) < co. Suppose further that for some

i>e>o0,
() o ()

Then it holds that

5(/02\/mda).\/f+2e

Proof We begin by invoking Theorem 3 and observing that we may choose X1, ..., X Jm
v independent for some v satisfying TV (v,v) < e. Observe that by Giné and Nickl (2021,

Theorem 3.5.13), it holds that
' 2
S </ ,/logNH (f,oz)da).
n 0

21

. [sup mn(9) — B [g(V)]
geF

E

Slel?-" Jm,n(g) —E; [Q(?)] ‘
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Now, noting that g takes values in [—1, 1], we see that

E |sup |B; [o(7)] ~ o [o(v)]

geF

<2.-TV(7,v) < 2.

The result follows. [ |

Rescaling, we see that Theorem 17 tells us that if we wish to apply the estimator (5), we
need

Dy (v||w)

oo (L) . (1 ( Z£WMIK)
n=0 log () (f; ( ° >,</02,/logN[](]:,a)doz>2

samples in order for our estimate to be within € of the true population mean, uniformly
in the function class F. In the special case where our f-divergence is x* (v||u), we see
that © (x? (v||p) - €7?) samples suffice to recover a uniform estimate of the mean within
¢ error. Note that this matches the rate given by importance sampling: according to
Theorem 15, O (x* (v||p) - €~3) samples suffice to recover e-accurate uniform estimates in
expectation in the same situation. On the other hand, Theorem 17 applies to arbitrary
f-divergences and thus is significantly more general; we defer to future work the question
of when Theorem 15 can be extended to more general f-divergences. We observe, however,
that the analysis of the rejection-sampling estimator is essentially tight while that of the
importance sampling estimator is potentially loose. One case where importance sampling
improves on rejection sampling is when F has finite pseudo-dimension; in this case, the

results of Cortes et al. (2010, Theorem 3) tell us that O (\/XQ (v||p) - 5_8/3) samples suffice

for importance sampling, which is strictly better than the rate for rejection sampling derived
above.

Appendix C. Sequential Complexities and Minimax Regret

In this section, we recall some basic definitions of different notions of complexity of an online
learning problem and how they relate to the regret. These results will be used throughout
Appendix E. Many of the adversarial complexities were introduced in Rakhlin et al. (2015)
and we closely follow the presentation in that work as well as that in Block et al. (2022).
We begin by recalling the definition of scale-sensitive VC dimension from Bartlett et al.
(1994):

Definition 18 Let F : X — R be a function class. For any o > 0 and points X =
{z1,...,2m} C X, we say that the set of points X shatters F at scale a with witnesses
S1y--y8m € R if for all m-tuples of signs € = (£1,...,&m), there exists some f. € F such
that for all 1 <i < m:

gi( fe(mi) — s3) >

|9

We let ve (F,a) denote the maximal m such that there exists a set X of size m shattering
F and let v (F) = sup, ve (F,a).
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It is well known from Kearns and Schapire (1994); Bartlett et al. (1994) that vc (F,«)
charaterize the learnability of F when the data are independent and identically distributed
(i.e., the batch setting). Another related quantity is the Rademacher complexity, defined
for some set x1,...,x, € X to be

n

sup > & f ()

feri=

R (F) = Ee : (6)

where the ¢; are independent Rademacher random variables. The following result can be
found in Rudelson and Vershynin (2006):

Proposition 19 Let F: X — [—1,1] be a function class. Then it holds that

1
R (F) < ir;%’yn—l— \/ﬁ/ v ve (F,0)do.
v v

A similar result applying to the fully adversarial setting was proved in Block et al. (2021).
In order to state the analogue precisely, we first recall the notion of distribution-dependent
sequential Rademacher complexity from Rakhlin et al. (2011). For a given depth T, full
binary tree x, with vertices labelled by elements of some space X and a path € € {:l:l}T,
we denote by x;(g) the vertex at step t of the path given by e starting at the root that
takes the right child at time s if ¢, = 1 and the left child otherwise. For a given adversary
producing z1,...,z7, let P, , denote the join distribution of x1,..., 27 and let p; denote
the distribution of x; conditional on the history. Define the measure pp,, . on an ordered
pair (x,x’) of depth T binary trees with labels in X recursively as follows. First sample
X0, X(, ~ po indpeendently. Now suppose that ¢ > 0 anda for any s < t, let

) xs(e) es=1
wes {x;@ =1

Sample x¢(g),x;(¢) ~ p(-|x1(€), ..., xt—1(¢)) independently and proceed until two depth
T binary trees are constructed. We now define the distribution-dependent sequential
Rademacher complexity:

Definition 20 (Definition 2 from Rakhlin et al. (2011)) Let F : X — [-1,1] be a
function class and fix a distribution Py, . on tuples (x1,...,z7). We define the distribution-
dependent sequential Rademacher complexity as follows:

T
up Zetf(xt(e))” .

seq =
fRT (f, PZELT) - E(xvx/)NpPII:T [EE ]Sce}— t=1

For a given class of distributions 9 = {Py, ..}, define

m;fq (.F7 .@) = sup %sTeq ('F7 P$1:T) :
le:Te'@

Note that if 2 is the set of all distributions on X then the notion of standard, sequential
Rademacher complexity from Rakhlin et al. (2015) is recovered. The reason for introducing
this admittedly technical notion of complexity is the following result:
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Theorem 21 (Theorem 3 and Lemma 20 from Rakhlin et al. (2011)) Let F : X —
[—1,1] be a function class and € : [—1,1] x [-1,1] — [0,1] a loss function Lipschitz in the
first argument. Suppose that we are in the online learning setting described in Section 4
and the adversary is constrained to choose x1.7 according to some distribution in 9. Then
there exists an algorithm such that

E[Regr] S R74(F, 2).

Returning to combinatorial notions of complexity, Rakhlin et al. (2015) introduced the
following sequential analogue of the scale-sensitive VC dimension:

Definition 22 Let F : X — R be a function class. For any o > 0 and complete binary tree
x of depth m, we say that F is shattered by x with witness (complete binary) tree s € R
if for all m-tuples of signs € = (e1,...,en), there exists some f. € F such that for all
1 <i<m, it holds that

ei (fe(xi(e)) —si(e)) =

| R

We let fat (F, ), the sequential fat-shattering dimension, denote the maximal m such that
there exists a tree x of depth m that shatters F.

Note that in general fat (F, «) > ve (F, ) and the difference can be infinite, as is the case
for thresholds on the unit interval for example. For finite domains X, however, a reverse
bound is possible. We make use of the following result:

Lemma 23 (Lemma 21 from Block et al. (2022)) Let F: X — [—1,1] be a function
class and let fat (F, o) denote the sequential fat-shattering dimension at scale . Then there
exist universal constants C, c such that for any B > 0, the following inequality holds:

C x|
< . . 1 /6 PR S .
fat (F,a) < C - ve (F,cfa) - log < o (F, ca) )

In order to relate these notions of complexity back to the problem at hand, we make use of
the following result:

Proposition 24 (Corollary 18 from Block et al. (2021)) Let F : X — [—1,1] be a
function class. For any distribution Py, ., the following bound holds:

1
REV(F, Poyyp) S ;1;% VT + \/T/ Vfat (F,)dé.
o

Combining Proposition 24 and Lemma 23 implies the following result from Block et al.
(2022):

Lemma 25 Suppose that we are in the situation of Proposition 24 and, furthermore,
|X| < 0o. Then for any Py, ., the following holds:

Se 3 ' 1
Ry (F Payr) S TV '10g1+’8(|/’\’|)/ \/VC (F,cBo) - log" ™" <vc( .7-‘c5)5>d5'
) Yy ?
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Appendix D. Proofs from Section 3
D.1. Upper Bounds

In this section, we prove the main upper bound, Theorem 3. We begin by stating and
proving the standard gaurantees for rejection sampling for the sake of completeness.

Lemma 26 Let pu,v be two measures on (X, %) and suppose that X ~ u. Suppose that

Z—Z < M. Let & be a binary-valued
o0
random variable such that, conditional on X, the probability that £ = 1 is given by ﬁ%(X)

Then P(§ =1) = ﬁ and for any A € F, it holds that

w, v satisfy the condition that for some M < oo,

P(X € Al¢ = 1) = v(A).

Thus, if X1,..., X, are sampled independently from w and &1, ...,&, are constructed as
above, with probability at least 1 — e~ at least one of the &; is equal to 1.

Proof To prove the first statement, by the tower property of conditional expectation, we
see that

M

Ple=1)=E |3 00| = 5

by the definition of the Radon-Nikodym derivative. To prove the second statement, we see
that

P<X€Al€=1)=P<XGPéa:n%5:1>

=M -P(XeAand {=1)
1 dv

=M -E|I[X € A]M@(X)

=v(A)
as desired. Finally, the last statement follows because

P (& =1 for some j) =1 —P (& =0 for all j)

n

=1-JJa-prE=1)

j=1
1 n
=1—-(1—-—
(1-31)
>1—e 0
as desired. [ |

Unfortunately, Lemma 26 requires a uniform bound on the likelihood ratio, which is precisely
what we are hoping to avoid. To proceed, we prove a key change of measure lemma:
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Lemma 27 Let u,v be probability measures on some set X and let Y ~ v. For any f
satisfying the conditions in Definition 1 and for any M > 1, the following inequality holds:

dv Dy (v||p)
(50> ) = i

Proof [Proof of Lemma 27] Note that Lemma 27 does not follow from Markov’s inequality
because we are interested in bounding the probability under v that the likelihood ratio
is large, while the f-divergence is defined as an expectation under u. Instead, we apply
Fubini’s theorem to account for this change of measure.

If f/(M) = 0 then there is nothing to prove. Otherwise, f'(M) > 0 by our assumptions
and, as f’ is monotone increasing, we have that f’ is injective on [M,o0). We now note
that the definition of a Radon-Nikodym derivative and Fubini’s theorem ensure that

dv dv dv & dv
Pl—Y)>M)=E(1|—(X)>M| —(X :/ P<X>t)dt
<du( ) ) < {du( ) }du( )> M du( )

where X ~ p. We compute:

f'(M)P <Z:(Y) > M) = f' (M) /OOIP’ (ZZ(X) > t> dt

< /MOO f’(t];/[IE” (ZZ(X) > t> dt

< /100 f'(t)P @:(X) > t> dt

[ (o) )
-efs (o) [t |
D)

= Dy (v]lp)

where the first inequality follows from the fact that f’ is nondecreasing for t > M > 1,
the second inequality follows from the fact that f/(¢) > 0 for ¢ > 1, the equality follows by
noting that f is nondecreasing for ¢ > 1 and setting v = f(t), the second equality follows
by Fubini’s theorem, the last inequality follows from the fact that f(¢) > 0 for all ¢ and the
final equality follows from Definition 1. Hence, proved. |

We are now ready to prove our main upper bound
Proof [Proof of Theorem 3| Recall that for any M > 1, we define vjs to be a measure on
X such that

dv 1 dv dv
Tf(X) - B0 1[0 <] FACR. [dM(X) < M} .
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Supposing that Y ~ v, we see that by construction and Lemma 27,

‘ dvar H M _ M ,
- v - Dy (v -
dillos ™ P (20v) < M)~ 1 Z

Thus, by Lemma 26, if we run rejection sampling on vy with samples from y for n >
M'log (%), it holds with probability at least 1 — § that we will have at least one accepted
sample and that accepted sample will be distributed according to v,;. By representing total
variation as half the L' distance between densities, explicit computation tells us that if E is
measurable and v¥ denotes the measure v conditioned on the event E, then TV (1/, vE ) =
v(E°). Combining this fact with Lemma 27 and simplifying, we see that

dv D; (v]|n)
TV (vpar,v) =P —Y)> M | < —— .
) =2 (00 > ) < 258
Setting
D
b= gy (22
€
and noting that this implies that
M
M =
1—¢’
we conclude the proof. |

We remark here that our proof above actually proves a slightly stronger statement, which
is to say that for any § > 0, there exists a “success” event E such that u®"(E) > 1—§ and
the law of X+ conditioned on the event E has total variation distance at most e from the
target measure v, as long as 4, e, n are such that

o () (B).

In fact, it is this formulation of the upper bound that will be useful in our applications.

n >

D.2. Lower Bound

In this section, we prove our main lower bound, Theorem 5, as well as the alternative
version, Theorem 6. We begin by observing that any selection rule j7* has a Radon-Nikodym
derivative that is bounded above with respect to u:

Lemma 28 Suppose that X1,..., X, ~ p are independent and let j* be a selection rule
such that Px. = v. Then it holds that

Hdﬂ Lo (p
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Proof Let A € % be a measurable set and let 7 denote the law of X j+. We then observe

7(A) =) P(X; € Aand j* =)
j=1
=Y wA) P =j|X; € A)

[y

= u(A) .Zp(j* =jlX; € A)
=1
<n-pu(A).

<
3

<

The above computation holds for all A € .% and so the result holds. |

With Lemma 28 proved, we see that it suffices to turn our attention to those distributions
with bounded likelihood ratios with respect to the base measure. To prove our lower bounds,
we will separate our analysis into two cases. The easier case is that of linear f, i.e., those
f with bounded f’. We have the following bound:

Lemma 29 Suppose that f is a convex function as in Definition 1 satisfying
. / _
tlgglof(t)—0<oo.
For any 0 < A < C + f(0), there exists some € > 0 depending only on C,A, and f such

that there exist distributions satisfying Dy (v||p) = A and

inf TV (7,v) > e.
v such that ‘

v
E <oo

Proof Fix some nonatomic v and, for some ¢ < 1 to be determined, fix A € .% such that
v(A) = e. Define p such that

du _ 1
E(X)—]I[ZgA]l_g.

Observe that this defines a valid likelihood ratio and note that by definition,

Dy (wllp) = f(1—¢e)+ef'(00) = f(1 —¢) +eC.

As f is continuous as € | 0 and f(1) = 0, it holds that Dy (v||u) traverses continuously
between C'+ f(0) and 0 as € moves between 0 and 1. Thus, the intermediate value theorem
tells us that there exists some e such that Dy (v||n) = A. For this e, we note that 7(4) =0
for any v that is absolutely continuous with respect to p. Thus,

TV (v,v) > |[v(A) —v(A)|=e>0
and the result follows. [ |

We can now state and prove the formal version of Proposition 4:
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Theorem 30 Suppose that f is a convex function as in Definition 1 satisfying

lim f'(t) = C < cc.

t—o00

For any 0 < A, < C + f(0), there exists some € > 0 depending only on C,A, and f such
that there exist distributions p,v with Dy (v||p) = A satisfying the following property: if
X1, ..., X, ~ p are independent, then

inf TV (PX].* , y) >
J*

where the infimum is over all selection rules j*.

Proof By Lemmas 28 and 29, it holds that

v such that H%H<oo

inf TV (PX]_* : y) > inf TV (7,v) > e.
]*

The result follows. |

Note that Theorem 30 implies that if Dy (:||-) is too coarse a notion of similarity then
approximate sampling from v using p can be impossible.

We turn now to the more complicated case, that of superlinear f. We begin by showing
that the &, -divergence, defined in Example 4, provides a lower bound on the total variation
between the law of a selection rule and the target measure:

Lemma 31 Let pi,v be measures and for some v > 1, let £, denote the divergence given
in FExample 4. Then it holds that

Proof Observe that for any v satisfying ’

inf TV (v,v) > E,(v||n).

dv
<v
Lo ()

dp

dv
dv

< 7, it holds that
TV (v,v) = sup |v(A) —v(A)]

- p e 1 e (o - oo ) |

x| (b

| () ]

= & (vlln).

We are now prepared to prove Theorem 5:
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Proof [Proof of Theorem 5] We observe that by comining Lemmas 28 and 31, it suffices
to exhibit two measures p,v such that &,(v||u) > € and Dy (v||p) is bounded. We let
i = Ber(q) and v = Ber(p), for

q= ; p:2€

9
n

We observe that

1-p 1-2 1
P STt
1 ¢ 1-¢°[2

n
by the assumption that ¢ < i. Thus, for n > 1, we see that
p
el =a (2 n) ==

We similarly compute that

Dyl =a-£ (1) + -0 (122) < S sem+ 1 (5).

q

where the inequality follows by the convexity of f and the above computation. We now
observe that by convexity of f, we have

0=f(1)> f(z)+ (1 —x)f(x)

implies that % < f/(z) for all x > 1. Thus,

Dy 0l < 265" () + 1 5.

<y ()

then Dy (v||n) < 0 and so we have exhibited a pair (v, 1) as desired. The result follows. W

Note that if

We turn now to the proof of Theorem 6. As stated in the main paper, the method is
similar up to the point of exhibiting distributions u, v with large &, (v||n). We have the
following result:

Lemma 32 Suppose that f is a convex function as in Definition 1 such that f(0) < oo
and for some ( > 0, the function

tf"(t)

t— ———

(f/(&)r+e

1s decreasing for sufficiently large t and tends to 0 as t 1 co. Then for sufficiently large n,
there exist distributions p, v such that Dy (v||n) < oo and

1 (ch <u|ru>>1+<'

Eulln) = 5 (“r

8
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Proof We first provide a rough intuition for the result. Ideally, we want to construct a
pair of distributions such that D(v||u) < oo and for all v > vy we have

&) = 7

Note that Polyanskiy (2010, (2.144)) shows that %Sv(uﬂ,u) = P (g—Z(X) > 7), where
X ~ p. Thus, we see that our goal is to construct a pair of distributions such that

dv ")
v (dM(X) = 7) =¢ (f'(m)*

Though by a simple change of variable we see that the expression on the right-hand side
is integrable at oo, it does not have to be monotone (hence the extra assumption on f).
Even if it is monotone, however, it can be seen that Dy(v||u) is not finite. Thus, we slightly
tweak this construction below.

Fix 9, 6,¢ > 0 with 0 < n and let

0 t<0
1" \—1 §
Py =31- LU0 g << ().
1- (f[/g(c))(;lc t> (fl)il(&

We claim that F' is a valid cumulative distribution function for properly chosen 3,4, > 0.
To begin with, we note that F' is right continuous by construction. It is similarly clear that
F(t) L 0ast ] 0. If § is sufficiently large such that

tf"(t)

L

[ORE

is decreasing for all ¢ > ¢ (such a § always exists by the assumption in the statement), we
see that F(t) is nondecreasing. Finally, to see that F'(t) T 1 as t T oo, note that

[ 200 0 (e g )
(1) S0 Nroo \ (T+¢)8HC (14 ) (f)H(N)H¢

__ B
(1+¢)ot+e
by the assumption that f/(¢) 1 oo as t 1 oo. In particular, it holds that
1
LB

and so F(t) is a cumulative distribution function. Note further that if a random variable
on the nonnegative real line Z is distributed according to F', then by Fubini’s theorem,

B 00 f”(t)
£l = /(f/)—l(zi) ’ (f'(2))**< o

B
(1+Q)ot+e
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Thus if 8 = (1+¢)d'*¢ then E[Z] = 1. Thus with this choice of 3, we let ;1 be nonatomic on
some set X and let %(X ) be distributed according to F', where X ~ p. We first compute
the f-divergence between v and p using Fubini’s theorem:

Dy 0l = | (50)) |

=E[f(2)]
:ﬂmmzzm+/‘ P (Z >t)dt
(f)=19)
,3 1" NnN—1 5 [e'9) 1"
:ﬂm<k—f(gﬁ(n>+/%1 ﬁawdt
,3 1" NnN—1 5
- 0) (1— ph D) * o
f(0)+“c‘C 5

where we used the fact that the second derivative of a convex function is nonnegative and
out computation of B = (1+¢)5'*¢ above. If we take 6, such that f(0) < % -0, then we
have

1
Dy (vl ><2*gC

Again by Fubini’s theorem, using the fact that n > J§, we see that
dv_ [dv / < Bf(t)
E I n|| = dt
[du [du }} n (F1(0)%

_ B
T+ O ()=

Finally, note that

dv _ nBf"(n)
(> 7) = e

Putting everything together, we see that

B nsf"(n)
0 = g e~ P
B S¢ n(l + C)él-&-(f//(n)
AR

(e i) (=50

v
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By the assumption in the statement, for sufficiently large n, we have

nf'n) 1
frn)t+e ~ 4
and thus the result holds. [ |

We remark that the requirement that f(0) < oo is relatively weak, but does not hold
for some important f-divergences. This requirement, however, could be easily removed by
placing the atom at % instead of at 0 in the above proof; for the sake of simplicity we do
not expand on this here, as it leads to a more intricate proof with little additional clarity.
We now state and prove a formal version of Theorem 6:

Theorem 33 Let f be a convex function as in Definition 1 with f(0) < oo and let ( > 0
be arbitrary. Suppose that there is some ty > 0 such that the function

L)
RS VIOEE "
is non-increasing for all t > tg and
tf"(t
im0

thoo (f(8))1FC

Then there exist distributions p,v with Dy (v||pn) < oo such that if X1,..., X, ~ p are
independent then

: 1 (¢Dy (v]|w) '
1]1(£f TV (PXj*,V) > 3 (f’(n) >

where the infimum is over all selection rules.

Proof The result follows by combining Lemmas 28 ,31, and 32. |

We observe that for essentially all common suplerlinear f-divergences, such as KL-divergence
and Renyi divergences, the assumptions on the function defined in (7) hold.

Appendix E. Proofs from Section 4
E.1. Proof of Proposition 8

Let u denote the uniform measure on the unit interval and for each ¢, let p; = (1 — )+ dq:
for some ¢ to be defined. Suppose that f’(co) = C' < oo. Note that independent of ¢, it
holds that

Dy (v]|p) < 6f'(00) = 6C

Thus if the adversary samples z; from p;, and 6 < ¢/C, the adversary is (f,o)-smooth.

Now, define Z; for 1 < ¢t < oo as follows. Let Z; = 1 and let €1,¢e9,... be independent

2
Rademacher random variables. Let
1 t—1
jt = 5 —+ 21632_5_1
sS=
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and note that z; € [0,1] for all £ almost surely. Furthermore, note that z; — Z almost
surely and define 0* = Zo,. Let y; = [[xy > 6*] for all ¢ and note that this adversary is
realizable, i.e.; there exists some f € F that attains zero regret. Let ¢; denote an atom at
Z; and suppose that the adversary plays x; ~ p;. As mentioned above, this adversary is
f-smooth. Note that whenever x; = Z;, it holds that y; = % By independence of &,
then, it holds for any 7" that

E P(x; = Z) P (yr # ye|we = T4)

E

T
Zﬂ[yt # @t]] 2

t=1

I
A

Il
SER\E
: <9

N =

The result follows.

E.2. Proof of Lemma 9

We proceed as in Haghtalab et al. (2022b); Block et al. (2022), but apply our Theorem 3
instead of the standard rejection sampling bound. We begin by sampling Z; ; independently
forall 1 <¢<T and 1 < j <n. Applying Theorem 3 on the distribution of x; conditioned
on the history and then using Definition 7 to bound Dy (P, ||i) concludes the proof.

E.3. Minimax Regret for f-Smoothed Online Learning

In this section we prove a generalization of Theorem 10 to arbitrary function classes. We
follow the proof technique of Block et al. (2022) with the exception of using our new rejection
sampling coupling from Lemma 9. We have the following result:

Theorem 34 Let F : X — [—1,1] be a real-valued function class and let vc (F,«) denote
its scale-sensitive VC dimension. Suppose that £ : [—1,1] x [—1,1] — [0,1] is a loss function
that is Lipschitz in the first argument. Further, let f be a convex function as in Definition 1
such that f'(00) = oo. If an adversary is (f, o)-smooth in the sense of Section /, then there
are unwversal constants ¢,C > 0 such that there exists an algorithm with E [Regp| bounded
above by the following expression:

1
C- 5,fiyr,l€f>0(6 +9)T + \/Tlogprﬁ <T(f’)—1 (015>> [/ \/VC (F,cB0) - logtt? <vc (]__1, ) 6>d5.

Proof Applying Theorem 21, we see that it is enough to control E)‘i;?q(}" , 7), where 7 is

the class of (f,o)-smooth adversaries. Fix some % >, > 0 and let II denote a coupling

between z1,...,z7 and {Z; ;|1 <t <T,1 < j < n} guaranteed by Lemma 9 such that

wziog (5) 07 (o).
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the Z; ; ~ p are independent, and with probability at least 1 — d, there are selection rules

ji such that TV (th, Pth*) < «a. Denote by £ the event that these selection rules exist
Wt

and note that P(£) > 1 —§. We now fix some P,, ,, and compute:

T
R (F, Porr) = Epry g [sungtg@t(&-))

S
T
= En, [sup Z erg(xe())
geEF —1
T T
= Ene (I[€]sup ) erg(xe(e)) | +Ene |TETsup ) erg(x4(e))
geF =1 geF =1
For the second term, note that almost surely,
T
sup ) erg(xe(e)) < T
geF —1
and thus
T
Ene [T[Esup Y eg(xi(€)) | < 0T. (8)
geF —1
For the other term, we observe that
T T
Erc |I[&€] sup Z etg(x¢(¢))| < Eme |I[E] sup Z etg(x¢()) —evg (Zv5;)
T
+ En e |I[€] sup Z €tg (th*)
9€F 14
For thefirst term, we see that
T
Em e |I[E] sup Z erg(x¢()) — erg (Zejr) Z e |supeg(xi(e)) — erg (Zejr)
9€F v 4 —1 geF
< T max TV (P Pr )
<aT 9)

35



BLOCK POLYANSKIY

by construction. For the second term, we use Jensen’s inequality and the tower property of
conditional expectations to compute:

T T
En. |I[€] supzestg (Zijr) | <Eme susztg (Zej;)
9€F v 4 geF
r T
=Ez,; |Ee susztg (Zejr) {245}
9€F v 1

T

9eF. Zy 5} t=1

Noting that [{Z;;}| = T'n, we may now apply Lemma 25 to conclude that this last display
is upper bounded by:

inf YT +4/T - logHﬁ(nT)/
By>0

Y

1
\/vc (F,cB9) - logt? <W> do. (10)

Setting § = & and combining (8), (9), and (10) concludes the proof. [ ]

E.4. Oracle-Efficient Algorithms

In this section, we turn to computationally tractable algorithms. In particular, we are
interested in algorithms that make only polynomially many calls to an Empirical Risk
Minimization (ERM) oracle defined below. Note that ERM oracles are common models of
computational access in the online learning community (Kalai and Vempala, 2005; Hazan
and Koren, 2016; Block et al., 2022; Haghtalab et al., 2022a) due both to the fact that
they suffice for learning in the statistical setting (where data appear independently) and
because there are popular computational heuristics for implementing these oracles in many
problems of interest. We will consider two algorithms: an improper algorithm requiring two
oracle calls per round achieving regret that scales with the Rademacher complexity (see (6))
and a proper algorithm requiring one oracle call per round. Both of the algorithms were
proposed in Block et al. (2022) and we use a similar analysis to bound their regret, with
the modification of replacing the coupling from Block et al. (2022) with our more general
version, Lemma 9. We begin by defining the ERM oracle:

Definition 35 We assume that the learner has access to ERMOracle, which, given a set of
tuples (x1,91), -+, (Tm,Ym) € X x [=1,1], a list of weights w1, ..., w, € R, and a sequence
of [0, 1]-valued loss functions £y, ..., Ly, returns some g € F satisfying

sz % xz yz < 1nf sz 7 )73/1)

A slightly weaker assumption allows for some approximation, where ERMOracle returns
some g that is e-close to the actual minimizer. For the sake of simplicity, we restrict our
focus to exact oracles here, but all of our results apply to the more general setting up to an
additive €T" with essentially no modification of the proofs.
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E.4.1. IMPROPER ALGORITHM THROUGH RELAXATIONS

We now turn to the first oracle-efficient algorithm, motivated by the relaxations framework
of Rakhlin et al. (2012). We closely follow the presentation of Block et al. (2022). To begin,
we define a relaxation:

Definition 36 For a fized horizon T, function class F, context space X, and measure (i,

we say that a sequence of relazations Rely (Flzi1,y1 ..., 24, y) : X x [-1,1]*F = R is a
relaxation if for any sequence x1, ...,z and for any 1 <t < T, the following two properties
hold:
T
—;ngT U(g(xt),yt) < Relp (Flzy,y1 ..., 27, Y1)
t=1
supEg,~p,  inf sup  {Eg, g, [0, y1)] + Relp (Flzi,yi ..., 25, y;) } < Relp (Flzi,yr ... @1, ye—1)
P @ €A([=11]) yre[—1,1]

where the first supremum is over (f,o)-smooth distributions with respect to u and infimum
is over distributions on [—1,1].

The key property of relaxations, as proven in Rakhlin et al. (2012, Proposition 1), is that any
strategy q; that guarantees the second inequality in Definition 36 achieves regret bounded
above by Relr(F|0). Our first result shows that, with minor modifications, the relaxation
proposed in Block et al. (2022) remains a valid relaxation in the f-smoothed regime.

Lemma 37 Suppose that the adversary is (f,o)-smoothed and that the loss function £ is
convexr and Lipschitz in the first argument. Let 0 < a < % and suppose that

w = s1og(r)() ! (o).

ao
Then
n T t T _t
Rely (Floi,yr - on ) =B |25up > 0 > 1 e0jg(Zeg) = D Ug(ws)vs) | +Ta+ —r
geEF 1 = _
j=1s=t+1 s=1

is a relaxation, where the expectation is with respect to Zs j ~ p and independent Rademacher
random variables.

Proof We follow the proof technique of Block et al. (2022, Proposition 6), replacing their
Block et al. (2022, Lemma 14) with our Lemma 9. We introduce the same convenient
shorthand:

Lt(g) - Zg(g(xs)a ys)
s=1

for all ¢ € F. We now note that the first condition of Definition 36 is immediate as
Rely (Flz1,y1...,2p,yr) is in fact equal to the infimum on the left hand side of the
defining inequality. Thus it suffices to demonstrate that for all ¢ and all realizations
T1,Y1y- -+, Tt—1,Yt—1, the second inequality in Definition 36 holds. We fix some (f,0)-
smoothed p; and argue for this arbitrary smoothed distribution. Because the loss function /¢
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is convex in the first argument, we may replace the distribution ¢ from which 7 is sampled
by its expectation, i.e.,

inf  sup  {Eguq[l(Ti,y))] + Rely (Flz1, 91 ..., 2}y
ntA([_l’lDyge[—l,l]{ Yt~q [ (yt yt)] T( ‘ 1, Y1 t yt)}

= inf sup {g(@\tay{f) +Re1T (‘F|$17yl ,ﬁg,yé)}
geel-11] yre[—1,1]

Now, arguing as in Block et al. (2022), we see that for any =} € X,

n T
inf sup § (T, v1) + Epe [sup2d Y e39(Zs5) — Li(g)
Yt 9EF =1 s=t+1

n T
=infsupE,c ¢ sup2Y > e4;9(Zsg) — Lia(g) + LT y) — Lg(x}h), )

vr oy 9€F i1 s=t+1
n T
< infsupE, . ¢ sup 2 Z Z £6j9(Zsj) — Li—1(g) + 0L(@e, yr) (e — 9(x}))
vty 9€F i1 s=t4+1
n T
<inf max E,. SUPQZ Z €5,j9(Zs,5) — Li—1(g9) + (G — g(x1)) ¢
O vee{£l} 9EF =1 s=t+1

where the first inequality follows from the fact that ¢ is convex in the first argument and the
second inequality follows from the fact that ¢ is Lipschitz in the same. We now apply the
minimax theorem, where we are forced to invoke a supremum over distributions on {41}
due to the lack of convexity of this set. Following again the argument of Block et al. (2022),
we let d; denote a distribution on {£1} and sample v ~ d;. We compute:

n T
inf max E sup 2 €siq(Zs i) — Ly + (@ — g(x!
nf max By sup2d D cajo(Zeg) = Lioa(9) + (@ — g(ot))

j=1 s=t+1
n T
= supinf By g 4 sup2> > e;9(Zs ;) — Lio1(g9) + (G — g(a}))
dy Yt 9EF 21 s=t+1
n T
<supEpcq, S f By g, [v8] +s5up2> 0 Y eaig(Zes) — Lia(g) — - glaf)
de Yt 9€F =1 s=t+1
n T
<supEpcq, dsup2) 0 > e059(Zay) — Lea(9) + Bopa, [Vig(m)] — 3 - g(2})
dy 9EF =1 s=t+1
n T
<supEpea, (5up2) | D €59(Zsg) — Lioa(g) + 2607 - g(at)
di 9€F 1 s=t+1
n T

< Eu,a,dt sup 2 Z Z 6s,jg(Zs,j) - Ltfl(g) + 24 - g(x;) s
9€F =1 s=t+1
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where the penultimate inequality follows from symmetrization and the final inequality fol-
lows from contraction. We now observe that because

nz st () ().

oo

we have

1

> 4log(nT)(f)~ [ —
w2 tog(ur) (1) (o)
by the fact that 2log(n) < n for all n > 0. We now apply Lemma 9 and note that by
the definition of n, we have a coupling between z; and Z; ; for 1 < j < n such that with

probability at least 1 — (nT)~2, there exists some j* such htat TV (pt, PZt,j*) < a;let £

denote the event that such a j* exists. We now use the fact that p; is smooth and take
expectations with respect to the previously arbitrary z} ~ p;. The above work then implies

nf up {Eﬂt"’% [g(/y\ta yllf)] + RelT (.F|$1, yr--- )x£7 yé)}

E / i S
@ €A([=11]) yre[—1,1]

Ty~Pt

n T

e B U020 D" €059(Zeg) = Lima(g) + 221 - g(at)
9€F =1 s=t+1

<E

n T
= E.I;NptE,LL,E,dt I[€] sup 2 Z Z 5s,jg(Zs,j) — Li—1(g) + 2e¢ - g(x:‘,)
9€F =1 s=t+1
n T
+ Ex%wptEu,s,dt [[&] sup 2 Z Z 5s,jg(Zs,j) — Li—1(g) + 2e¢ - g(‘ré)
9EF =1 s=t+1

Note that for the second term above, the expression in the integrand is at most n(7T' —t+1)
and thus

n T
Eotop By, S LETsup 2>~ >~ e459(Zsj) — Li-1(g) + 24 - g(})
9EF =1 s=t+1

1
<PEY) n(T—t+1) < —
<P(E) n(T—1+1) < —
For the first term, we have

n T

EwgwptEu,s,dt [[&] sup 2 Z Z Es,jg(Zs,j) — Li—1(g) + 2e - g(l’;)
9€F 1 s=t+1

n T

= BafpBpe.a | 1€]sup 2 SN eaio(Zog) = Licalg) + 280 9(Zoge) + 2e0(g(ah) — 9(Zi+))
95 =1 s=t+1
j=1s

n T
<27V (pt Ps,,. ) + Eapop By 23" D euiolZeg) — Lea(9) + 220 9(Zg)
ge © 1 o—
j=1s=t+1

39



BLOCK POLYANSKIY

The first term above is at most 2. For the second term, we apply Jensen’s inequality and
get

n T
EméNPtEM:&dt Sup 2 Z Z €S7jg(Zs’j) - Lt_l (g) + 2€t ’ g(Zt’j*)
9EF  j=1 s=t+1

IN

B o B dy sup2z Z €5j9(Zs) — Lio1(9) + 260 - 9(Zeje) + > 2Bler j9(Ze ;)]
j=1s=t+1 J#ET*

IN

]Ex;NPtENy&dt SUPQZ ng,]g 5] Lt—l(g)

J=1 s=t

Thus we see that

B p B e de SUP2Z Z €5,79(Zs,j) — Li—1(g) + 2¢¢ - g(x})
9€5 i1 s=t+1

n(T'—t+1)
SE%NM 14,€,d¢ Sup2z:1;&75]g sg Lt—l(g) +2Q+W
J

Plugging in the definition of our relaxation from the statement of the lemma concludes the
proof. |

While Lemma 37 provides an algorithm for achieving low regret, it is not clear that it is
oracle efficient, due to the necessity of evaluating the expectation. Thus, as is done in
Block et al. (2022), we use the random playout idea of Rakhlin et al. (2012) to give an
oracle efficient algorithm. Before we proceed, we recall the classical observation that, due
to the convexity in the first argument of the loss function ¢, it suffices to suppose that ¢ is
linear; indeed, we can simply replace the loss by the gradient of the loss at each time step
and the regret of an algorithm with this latter feedback upper bounds the regret with the
original loss function due to convexity. For more details on this classical argument, see, for
example, Rakhlin et al. (2012, Section 5) or Haghtalab et al. (2022a, Appendix G.2). Thus,
we restrict our focus to linear loss and have the following result:

Theorem 38 Suppose that £ is a loss function convex and Lipschitz in the first argument
and let F : X — [—1,1] denote a function class. Consider an algorithm that at each time
t, samples Zs; ~ p fort +1<s<T and 1 < j <n and plays

n t
Uy = argmin  sup (Y, yt) + sup 122 Z €s9(Zsj) — Zaﬁ(g(afs)jys) - g(xs)
ye[-1,1] yie[-1,1] 9€9g j=1 s=t+1 s=1

Suppose that

w2 stog(r) - (1) (1)

o
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and the adversary is (f,o)-smoothed. Then the learner experiences
E [Regr] < 2E, [Rpr(F)] + T + 1. (11)
Moreover, y; can be evaluated with 2 calls to ERMOracle per round t.

Proof We begin by noting that it suffices to consider linear loss ¢(y,y) = % Indeed
this is the standard reduction from online convex optimization to online linear optimization
found throughout the literature. For more details on this classical argument, see, for exam-
ple, Rakhlin et al. (2012, Section 5) or Haghtalab et al. (2022a, Appendix G.2). Thus, we
restrict our focus to linear loss and assume that 90(g(xs),ys) = —ys - 9(xs) = £(g(xs)). We
now observe that two oracle calls suffice in order to evaluate 7, as noted in Rakhlin et al.
(2012) or Block et al. (2022, Lemma 26). Thus, it suffices to show that for all (f, o)-smooth
p¢, it holds that

n T t
Euop, | SUD S L(G,wn) +5up |6 > eag(Zay) — Y 0lg(xs),ys) - g(s)
s=1

yee[-11] 9€9 | j=1s=t+1
< Relr (Flz1,y1-- -, Tt—1,Yt-1)

for Rely (Flx1,y1 ..., %—1,y:—1) defined as in Lemma 37. Indeed, if this holds, then Rakhlin
et al. (2012, Proposition 1) ensures that the final regret is bounded by Relp(F|0), which is
exactly the expression given in (11). The bound in the above display, however, holds from
applying the proof of Block et al. (2022, Theorem 7) and Lemma 37. The result follows. B

We can now show that Theorem 11 holds as a special case:
Proof [Proof of Theorem 11] Note that it is a classical fact (Wainwright, 2019) that if F
is a binary valued class, then

E, [Rr(F)] £ Ve (F) T

The result then follows by applying Theorem 38. |

E.4.2. PROPER ALGORITHM THROUGH FTPL

We now turn to a proper algorithm, the suggested instantiation of Follow the Perturbed
Leader (FTPL) from Block et al. (2022). Due to the technical difficulties of the proof, we
restrict our focus to binary valued function classes F with linear loss 4(y,y) = 1—2y 4. Recall
that we denote by L;(g) the cumulative loss of function g € F on the data x1,y1,..., T, Yt
The algorithm proposed in Block et al. (2022) proceeds by, at each round, sampling ¢ 1, ..., Ve.m
independent standard Gaussian random variables as well as Z; 1,..., Z;» ~ 1 and calling
the oracle to evaluate

gt € argmin L;_1(g) + nwe,m(g) (12)
geF

where

1 m
wim(9) = NG Z’Yt,z‘g(Zt,i).
i=1
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Note that this procedure is proper as it does not depend on x;. The player then plays g (x¢).
We will show that this algorithm achieves no regret against a Renyi-smoothed adversary.

Theorem 39 Suppose that F : X — {1} is a binary valued function class and ¢ is the
linear loss function. Suppose that for some X\ > 2, the adversary is (f, o) smoothed for Renyi
divergence of order \, i.e., e ADPAWlIL) < % If the learner plays the improper algorithm
(12), then

2241

E [Regy] = O ( ve (F) - Tt -07T{1> .

Before proving the main result, we need to recall several intermediate facts. As in the case
of the improper algorithm, we will modify the technique of Block et al. (2022) to our setting
and apply Lemma 9. The first result that we need is the classic Be-the-Leader lemma from
Kalai and Vempala (2005); we will state it in the following form:

Lemma 40 (Lemma 32 from Block et al. (2022)) Suppose that we are in the situ-
ation of Theorem 39 and let (x,v}), ..., (z%, y7) be tuples such that, conditional on the
history, (z¢,yt) and (x},y;) are independent and identically distributed (in other words, the
x},y; form a tangent sequence). Then the expected regret of the learner playing as in (12)
s upper bounded by

T T

+ ZE [g(gt(aj;)v y;) - E(gm(mé),yé)] + ZE [f(gtﬂ(xé),yé) - E(QtJrl(xt)’yt)] .

t=1 t=1

2nE lsup wi,m(9)
geF

The first term controls the size of the perturbation, the second term is called the stability
term in Block et al. (2022), and the last term is referred to as the generalization error. The
first term can be easily controlled:

Lemma 41 Suppose we are in the situation of Theorem 39. Then

N

E lsup wLm(g)] ve (F).

geEF

Proof We are controlling the supremum of a Gaussian process indexed by elements in F.
An elementary chaining argument found, for example, in Wainwright (2019); Van Handel
(2014) immediately yields the claim. [ |

For the second term, we need to modify an argument of Block et al. (2022) in order to
account for our weaker assumption. We first use the following fact:

Lemma 42 (Lemma 33 from Block et al. (2022)) Suppose we are in the situation of
Theorem 39 and let jiy, denote the empirical distribution of Zyi,...,Zsm. Then for any
a >0, it holds that

SUp W m (g)] .

1 1
P <sup Hgt - gt—l—lHLz(ﬁm) > a) ,S aTT]Q + OzTT]]E s

Tt,Yt
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We now apply Lemma 42 to prove a modified version of Block et al. (2022, Lemma 34),
allowing for f-smoothed adversaries.

Lemma 43 Suppose that we are in the situation of Theorem 39. Suppose further that for
some A > 0, it holds that

2 2
g?g‘}gf‘”g—g’ﬂm(m - HQ—QIHLQ(ﬁm)‘ < A.

Then

E [ﬁ(gt(l‘t), yt) — U(ge1(2}), y;)} SE eF

1+ sup wtym(g)] log(n)criﬁ : +o T -ATY

Proof We apply the technique of Block et al. (2022). By the fact that (x}, ;) is identically
distributed as (x¢,y;), the fact that g; is independent of (x4, y;), and the linearity of expec-
tation, it suffices to prove the result replacing (x¢,y;) with (z},y;). For any 0 < 8 < a, we
compute

Eagrope [£00(0), 1) — g1 () 901 [B < gt = gl o,y < 0

< Europ, [‘Qt(xi) — gera(ay)| T [5 < gt = g1l 2,y < a”

d
= Bz, [f;f(z'” 19:(20) = g (ZOIL[B < llge = gl 2z, < a]]

A—1

A

< ePaelle) . (Eztw [L%(Zt) — g (Z) T [ﬁ <llgt = g1l 2,y < a”)

=0 1. (Eztw [|gt(Zt) — g1 (Z)*T [5 <llgt = ge+1ll 2z, < a”>x_l
A—1
=<

SU?H'P<Hgt_gt+1HL2(ﬁm)>B)'(a2+A) ;

where the first inequality follows by Lipschitzness, the second by Holder’s inequality, and
the last by our assumptions; the second equality follows because g:, g:11 take values in
{0,1}. We now apply the summing argument from Block et al. (2022) and compute, letting
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S = [log min (\/ﬁ, ﬁﬂ and o = 217%

ACACARTARS (gt+1($t) y1)]
[(5 gt ﬂft f(gt+1($2),y£)) I [Hgt - gt+1HL2(ﬁm) < OéSH
-1

|—|

+ ) E [(C(ge(ah), wp) — €(ger1 (1), wp)) Taigr < llge — gral] < ]

1, A1 = 1 1
<o 3T (af+A) N +CY o T ——+—5—F
Qi1 Qi

p wt,m<g>] ) NETUNE S

geF

sup wt,m(g)]

ac1 1 1
<o (aZ +A) > +2C§ oA + E
geF

2 2
— o2 or
i= g i+17

1 _
log ()™ x-T - -+ Olo~ 3T . AN

n_i

< C'E |1+ supwim(9)

geF

where we used the fact that o > A and — < V. The result follows. [ |

Ol’l7_

A standard empirical process theory approach allows us to bound A; we will simply cite
Block et al. (2022, Lemma 36). Finally, we need to bound the generalization error. The
following lemma does this:

Lemma 44 Suppose that we are in the situation of Theorem 39 and n > /m. Suppose
further that there is some k € N satisfying

1

m > 4klog(T) - (o)™ >-T.

Then

2

E [((gunn (), ) — gus (1), )] < 2ke + 2 (F) +

Proof We begin by noting that by the assumption on m and Lemma 9, with probability at
least 1 — (mT')~2, there exist k indices i1, ..., such that i; € {1 +(G-=1-2. %}
and TV (PZt,ij ,pt) <eforall 1 <j <k. To see this, note that if

1

m > 4klog(T) - (o)™ *1
then

m > 2klog(mT) - (e0) >,
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by the fact that 2log(m) < m. Let Wy, denote the Gaussian process wy,, modified such
that Z; ;; is replaced with Z{M, where Zt,i; ~ p¢; now, let

Gt+1 = argmin Li(g) + W m.
geF
Note that a union bound tells us that

TV (Pyir» P5

gt+1

)Sk‘e.

By Block et al. (2022, Lemma 38), it holds that if n > y/m, we have

2 2m+T
%SR k (F)+ (mT)E

gt+1>

E [0(Ger1(x), yp) — £(g(xe), )] <

Thus, putting everything together, we have

E [£(ge1(x), u1) — Lge1(ze), y0)] = E [€ger1(xt), y1) — €(Ger1(h),91)]

+E [£(§t+1 (CE;), yé) - g(fgv(xt% yt)] +E [€(§t+1 ('rt)a yt) - g(gt-f—l(xt)? yt)]
2

2
< 2he + 2R (F) + -

The result follows. |

We are now ready to combine our lemmata and prove the main result:
Proof [Proof of Theorem 39] We begin by appealing to Lemma 40, which tells us that the
expected regret is bounded by

T
+ ZE (g¢(x), y1) — Lgeg (), yp)] + ZE [(ge1(x), up) — Ugea(ze), )] -

t=1

2nE | sup wLm
geF

By Lemma 41, the first term is O (17 ve (F )) For the second term, we first observe that
by Block et al. (2022, Lemma 36), we may take with probability at least 1 — 71,

1 1
A< b igqmu:)Jr og (5) \/VC ) +log (T)

~ym\m m m

in Lemma 43, where the latter inequality follows from Proposition 19. Thus, applying
Lemma 44, we see that the expected regret satisfies

A—1

T 1 T A
E [Regy] S nv/ve (F) + v/ve (F) - log(n)o > - AT o <\/vc ) + log ( ))

m

T

,Sn\/vc( +\/VC ) - log( )a_ﬁ- r

S \/VC(]:)—FlOg(%) * ' v (F)
klog(T) - (e0)” 31 k
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where the last step again came from Proposition 19. Setting

61—6 3

kzsfg n=+vm m:k:log(T).(gg)—ﬁ e=T 4-1.g Tn-1

and plugging in concludes the proof.
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