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Abstract

We consider the problem of empirical Bayes estimation for (multivariate) Poisson means.
Existing solutions that have been shown theoretically optimal for minimizing the regret (excess
risk over the Bayesian oracle that knows the prior) have several shortcomings. For example, the
classical Robbins estimator does not retain the monotonicity property of the Bayes estimator
and performs poorly under moderate sample size. Estimators based on the minimum distance
and non-parametric maximum likelihood (NPMLE) methods correct these issues, but are com-
putationally expensive with complexity growing exponentially with dimension. Extending the
approach of [BZ22], in this work we construct monotone estimators based on empirical risk min-
imization (ERM) that retain similar theoretical guarantees and can be computed much more
efficiently. Adapting the idea of offset Rademacher complexity [LRS15] to the non-standard
loss and function class in empirical Bayes, we show that the shape-constrained ERM estimator
attains the minimax regret within constant factors in one dimension and within logarithmic
factors in multiple dimensions.
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1 Introduction

At the heart of modern large-scale inference [Efr12], empirical Bayes is a classical topic and powerful
formalism in statistics and machine learning. Consider the Poisson model in one dimension as a
concrete example. In a Bayesian setting, the latent parameter 6 is drawn from a prior 7w and the
observation X is then sampled from Poi(#), the Poisson distribution with mean 6. In other words,
X is distributed according to the following Poisson mixture p, with mixing distribution :

0:17
pola) = [0S an(0), wez M
The Bayes estimator for # that minimizes the squared error is the posterior mean, which can be
expressed in terms of the mixture density as follows:

pr(x+1)

fr@) = @+ )P

(2)

In the empirical Bayes setting, the prior 7 is unknown but we have access to a training sample
X1,...,X,, drawn independently from the mixture p,. The goal is to learn a data-driven rule that
produces vanishing excess risk over the Bayes risk, known as the regret!

~

Regret,.(f) 2 E [(f(X) - 0)*] —E[(f*(X) - 0)7] . (3)
The problem of interest in this context is thus:

Can we construct computationally efficient and practically sound estimators of f* with
optimal regret over a class of priors?

Preliminary analyses of the Poisson empirical Bayes problem go back to [Rob51, Rob56], who
proposed the following rule as an empirical approximation of (2):

Np(X 4+ 1)

Fron(X) 2 Frab(X5 X1,y Xa) = (X + D57y

(4)
where Ny, () = Y 1| 1{x,=,} is the empirical count for each & € Z in the training sample. Such an
approach is termed “f-modeling” that focuses on approximating the mixture density [Efr14]. Recent
theoretical developments [BGR13, PW20] have established that the Robbins method achieves the
optimal rate of regret when 7 has either bounded support or subexponential tails. On the other
hand, in practice, it is well-recognized that the Robbins estimator suffers from multiple shortcomings
such as numerical instability (cf. e.g. [Mar68, Section 1], [ML18, Section 1.9], [EH21, Section 6.1])
and lack of regularity properties, including, notably, the desired monotonicity property of the Bayes
rule f* (see [HS83]).

Tn the literature there are multiple ways to formulate the regret in empirical Bayes estimation [Zha03]. As
opposed to the formulation (known as the individual regret) in (3), where the data are split into the training set
X1,..., X, and the test set X, one can consider the total excess risk of estimating the latent parameters 61, ...,0,
based on Xi,...,X, over the Bayes risk. This quantity, known as the total regret, in fact equals to n times the
individual regret (3) (with n replaced by n — 1) as shown in [PW21, Lemma 5].



In another approach to the empirical Bayes problem, known as “g-modeling” [Efr14], one tries
to mimic the structure of the Bayes estimator by substituting the prior in the posterior mean with
a suitable estimator. It has recently been shown that optimal regret can be attained by g-modeling
estimators based on the minimum distance methodology that first finds the best approximation pz
to the empirical distribution of the training data under suitable distances then applies the Bayes
rule with the learned prior 7. A prominent example is the nonparametric maximum likelihood
estimator (NPMLE)

n
TNPMLE = al‘gmaXHPQ(Xi) (5)
Q 5
which minimizes the Kullback-Leibler divergence. Thanks to their Bayesian form, these estima-
tors inherit the desired regularity of Bayes estimator (such as monotonicity) and lead to more
stable, accurate, and interpretable estimates in practice. Recently, [JPW22] has shown that a suite
of minimum-distance estimators, including the NPMLE, attain the optimal regret similar to the
Robbins estimator for both bounded or subexponential priors. In addition, when 7 has heavier
(polynomial) tails, the NPMLE achieves the corresponding optimal regret while Robbins estima-
tor provably fails [SW22]. However, the downside of g-modeling is its much higher computational
cost. For example, (5) entails solving an infinite-dimensional convex optimization. Although in one
dimension faster algorithms akin to Frank-Wolfe have been proposed [Lin83, JPW22], for multiple
dimensions existing solvers essentially all boil down to maximizing the weights over a discretized
domain [KM14] which clearly does not scale with the dimension.

1.1 Empirical Bayes via Empirical Risk Minimization

In this paper we propose a new approach for Poisson empirical Bayes by incorporating a framework
based on empirical risk minimization (ERM) and the needed technology from learning theory,
notably, the offset Rademacher complexity, refined via localization, to establish the optimality of
the achieved regret. In contrast to f-modeling and g-modelling that aim at approximating the
mixture density and the prior respectively, the main idea is to directly approximate the Bayes rule
by solving a suitable ERM subject to certain structural constraints satisfied by the Bayesian oracle.
We note that a similar technique has been applied earlier in [BZ22] to the Gaussian model; however,
the theoretical guarantees therein are highly suboptimal.
The benefits of the ERM-based methodology are manifold:

1. Unlike the Robbins method, the constrained ERM produces an estimator that enjoys the
same regularity as that of the Bayes rule, at a small permillage of the computational cost of
g-modeling methods such as the NPMLE and other minimum-distance estimators.

2. The ERM-based estimator is scalable to high dimensions and runs in time that is polynomial
in both n and the dimension d. In contrast, all existing algorithms for NPMLE are essentially
grid-based and scales poorly with the dimension as n®@.

3. The ERM approach invites powerful tools from empirical processes theory (such as Rademacher
complexity and variants) to bear on its regret.

4. The flexibility of the ERM framework allows one to easily incorporate extra constraints or
replace the function class by more powerful ones (such as neural nets) in order to tackle
more challenging empirical Bayes problems in high dimensions for which there is no feasible
proposal so far.



To summarize, the ERM can be seen as an alternative solution to the empirical Bayes problem,
that excels over the Robbins method in terms of retaining the regularity properties of the Bayes
estimator, and is computationally much efficient than the other existing non-parametric alterna-
tives. We will also show that theoretically it achieves the optimal regret for certain light-tailed
classes of priors. Whether these guarantees carry over to the heavy-tailed classes of prior, where
the Robbins method is known to be suboptimal and NPMLE is known to be optimal [SW22], is
beyond the scope of the current paper.

Next we describe the construction of the ERM-based empirical Bayes estimator in details. To
derive the objective function for the ERM, note that using f*(X) = E [0|X], we have

7 = argmin {(/(X) 0] = argmin B{(] (X))? ~ 20/ (X)

= argminE [f(X)* - 2X f(X — 1)],
!
where we get the last step applying the identity E[0f(X)] = E[X f(X —1)] for X ~ Poi(f). Since
f* is monotone, this naturally leads to the ERM-based estimator

farm € argmin E[f(X)? — 2X f(X — 1)), (6)

feF
where E[n(X)] £ 1 = > i1 h(X;) denotes the empirical expectation of a function h based on the
sample X1,... Xn, and the minimization (6) is over the class of monotone functions F = {f :

f(z) < f(x+1),Yx > 0}. We also note that the solution (6) is only uniquely specified on the set S =
{X1,..., X }U{X;—1,..., X,,— 1}, which can be easily computed by an algorithm akin to isotonic
regression (see Lemma 1). We then extend this solution to the whole Z in a piecewise constant
manner: for those z < min S, set ferm(z) = 0; for those x > max S = Xmax = max{Xi,..., X,},
set f(x) = f(Xmax); for the remaining « ¢ S, set ferm( ) = ferm(max{y € S :y < x}). This natural
piecewise constant extension clearly retains monotonicity.

We note that the above construction of the ERM-based empirical Bayes estimator can be done
in a principled way for other mixture models than Poisson (see Table 1). Indeed, [BZ22] was the
first to apply this approach to the Gaussian mixture model. However, only the slow rate of w\%(")
is obtained for the regret by applying standard empirical process theory. In addition, they use extra
constraints, such as the ones based on bounded derivatives, bounds on the parameter space, etc.
These constraints can be used to further improve upon the practical performances of the ERM
estimator we use for the Poisson model; however the corresponding analysis is beyond the scope of
the current paper. One of the major technical contributions of the present paper is to introduce a
suitable version of the offset Rademacher complexity [LRS15] that leads to the fast rate of %og(”)
(even with the optimal logarithmic factors!)

Mixture p(X10) Bayes estimator ERM Objective

Geo(0) 0% (1-0) 1- =5 [ E[f(X)? - 2f(X) + 2f (X — )1(x>0)]
NB(ro) | ("hha-oyet | SREE | B0 - 23 (X - D)
N(D,1) fe wp (050 | x4 Bl (X)? — 2X[(X) +2/'(X))
Exp(0) xp(—6X) ey B[f(X)? — 2f'(X)]

Table 1: ERM objectives for other mixture models: geometric, negative binomial, normal location,
and exponential distributions.



1.2 Regret optimality

In addition to its conceptual simplicity and computational advantage, the ERM-based estimator
comes with strong statistical guarantees which we now describe. Let P[0, h] denote the class of all
priors supported on the interval [0, h] and SubE(s) the set of all s-subexponential distributions on
R4, namely SubE(s) = {G : G([t,)]) < 2e~ts Vit > 0}. Our main result is as follows:

Theorem 1 (Regret optimality of ERM-based estimators). Let form be defined in (6), with F the
class of all monotone functions on Z. Then there exist s a constant C' > 0 such that for any
h,s >0,

~ C 1,5}
sup Regret, (ferm) < M(log n)3.
mESubE(s) n

sup Regretw(ferm) <
m€P([0,h]) n

Cmax{l,h}3< logn )2

loglogn

The regret bounds in Theorem 1 match the minimax lower bounds in [PW21, Theorem 2] up
to constant factors, thereby establish the strong optimality of the ERM-based empirical Bayes
estimators. Finally, as a side remark, we mention that, one can show that a monotone projection of
the Robbins estimator, given by fmOno Rob = argmin s » E[( f(X) - fRob( ))?], also attains similar
regret guarantees as in Theorem 1. This is outside the scope of the current paper.

1.3 Multiple dimensions

The ERM-based estimator (6) can be easily extended to the d-dimension Poisson model. For
clarity, we use the bold fonts to denote a vector, e.g., @ = (01,...,04),0; = (0i1,...,0;4), X =
(X1,...,X0), X = (Xi1,..., Xsa),x = (x1,...,24), etc. Let m be a prior distribution on }Ri.
Consider the following data-generating process

0.5 Xi;"Poi(6;;). (7)

Note that the marginal distribution of the multidimensional Poisson mixture is given by

/He i d7r ), wEZi.
Similar to (3), let us define the regret of a given estimator f : Zi — Ri as

Regret.(f) = E [ £(X) - 0[] —E [[lf*(X) - 6]*], (8)
where X ~ p; is a test point independent from the training sample Xi,..., X lflgpﬂ For each f,
let f =(f1, -, fq) where f; : Zi — R,. Denote by f* the Bayes estimator, Whose i-th coordinate
fi is given by

6, e=0: % g (o :
fg H] 1 z;! () :($i+1)fm, i=1,...,d,
pr(@) pr(x)

fi(x) = E[0;|] =

where e; denote the i-th coordinate vector. Using Cauchy-Schwarz, one can show that the Bayes
estimator for the i-th coordinate is increasing in the i-th coordinate of the input if all other coor-
dinates are fixed, i.e.,
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(a) Latent 6;’s. (b) Observations X;’s. (c) Denoised Ferm.

Figure 1: A two-dimensional experiment with n = 10%: Left: 6;’s are sampled uniformly from a
triangle. Middle: the observations X;’s are drawn independently from Poi(8;), with their empirical
distribution shown on the grid Z%r (notice that this is also the MLE estimator for €, hence very
different from the empirical Bayes solution). Right: the empirical Bayes denoised version obtained
by applying ferm in (10) to X;’s.

This leads to the following ERM procedure.

d
ferm = argmin B || F(X)P -2)_ X; /(X —e) |,
feF j=1

F={f:7¢ - RL: fi(x) < filx +e),Vi=1,--,d Ve cZl}. (10)

We again note that fe,m is not uniquely defined for all x € Zi. To specify a minimizer, note
that (ﬂrm)j, the j-th coordinate of ferm, is uniquely defined on S £ {X;} U {X; — e;}. We
may extend it to Zi in the same manner as the one-dimensional case of (6) in a piecewise con-
stant manner. That is, for each © ¢ S, if there exists y > 0 such that £ — ye; € 5, we set

(Ferm)j () = (form);(min 50 @ — ye;). Otherwise, set (ferm)j(z) = 0. By convention, we also
mfyejES

define (ﬁrm)j(—ej) =0.
Theorem 2. The ERM estimator (10) satisfies the following regret bounds whenever n > d:

1. If 7 is supported on [0,h]%, then Regret (fem) < O(%max{cl,CQh}d”(%)dH) ;

2. If all marginals of m are s-subexponential for some s >0, then
Regret, (ferm) < O(%(max{c;z,, cy5}log(n))4+?),

where c1,ca,c3,cq4 > 0 are absolute constants.

We conjecture these regret bounds in Theorem 2 are nearly optimal and factors like (log n)? are
necessary. Indeed, for the Gaussian model in d dimensions, the minimax squared Hellinger risk for
density estimation is shown to be at least O((logn)?/n) for subgaussian mixing distributions and
the minimax regret is typically even larger. A rigorous proof of matching lower bound for Theorem
2 will likely involve extending the regret lower bound based on Bessel kernels in [PW21] to multiple
dimensions; this is left for future work.

Remark 1 (Time complexity). For the statistical rate of ERM in multiple dimensions to be mean-
ingful, we require d to be significantly smaller than n. Nomnetheless, even in the dimensions where



the regret in Theorem 2 is vanishing, the ERM method is computationally much more scalable,
compared with the conventional approach based on NPMLE or other minimum-distance estimators.

To elaborate on this, ERM is a linear program and has a dedicated solver due to its special
form. NPMLE is an infinite-dimensional convex optimization, and the prevailing solver either
discretizes the domain (at least \/n level in order to be statistically relevant, thus requires a grid of
size ne(d)) or runs Frank-Wolfe style iteration, which is only known to converge slowly at % rate
[Lin83] and requires mode finding that is expensive in multiple dimensions. In contrast, the ERM
approach scales much better with the dimension. To evaluate the d-dimensional ERM (10), as we
will demonstrate in Remark 4, if £ is the number of distinct vector-valued observations Xy, ..., Xp,
our algorithm runs in O(df?) < O(dn?) time (apart from reading the sample of size n). An almost
linear time O(dllogl) algorithm (which is how we implemented in the simulations), exists but is
beyond the scope of this paper. (We will describe the basic idea in Appendixz B.)

On the empirical side, we demonstrate the multidimensional feasibility of ERM by running
a simulation with 01, ...,0, sampled uniformly from a triangle with n = 10° and compute the

empirical Bayes denoiser ferm in (10) to Xil%i'Poi(Hi). Here, we see that ferm can recover the
triangular structure of the prior, as in Fig. 1.3. To further compare the computational costs of
ERM and minimum distance methods, we did a comparison in the statistical software R with the
popular package “REBayes” [KG17] and the results are as follows. With the prior Unif(4,30) and
sample sizes n = 50,500, 5000, 50000, we ran both REBayes and ERM 100 times and found that
on average the ERM is respectively 21,50,212,588 times faster. This improvement is even more
pronounced (25,58,227.5,2160 times) if we supply the empirical distribution to the ERM instead of
the full sample.

Remark 2 (Comparison with f-modelling). While both f-modelling (i.e. the Robbins estimator)
and the ERM estimator ,]/c;rm are asymptotically optimal, we demonstrate more concretely the ad-
vantage of ferm over Robbins. The shortcomings of the Robbins method have been widely observed
in practice and discussed in the existing literature. Most recently, it has been demonstrated in
[JPW22] extensively through both simulated and real data experiment. Ezrpanding on Fig. 1(a),
which compares the performance of the multidimensional Robbins method and ,]/f;rm under a uniform
prior on the 2d triangle, for n = 10, k = 4,5,6,7, we found that the Robbins method achieved a re-
gret of 0.356,0.0575,0.00771,0.00116 and ferm achieved a regret of 0.0748,0.0161,0.00276, 0.000463,
suggesting a much better performance. On another experiment, we also compared the methods in
dimensions 1,2, 3,4 using a product of Exp(2) distributions as prior, fizing n = 10000. The Robbins
method achieved regrets 0.0125,0.0607,0.185,0.427; ]?e,m achieved regrets 0.00422,0.0208, 0.0660, 0.161.

1.4 Related work

Empirical Bayes estimation for the Poisson means incorporating shape constraint has a long research
thread. However, the majority of the work relies on approximating the Robbins estimator using
monotone functions. For example, [Mar66] used linear approximation to the Robbins estimator and
[Mar69] represented the marginal distribution p, based on a monotone ordinate fit to the Robbins
and then used it to compute a maximum likelihood estimation of the ordinates. Both of these
papers focus on numerical comparison of the corresponding error guarantees; see [ML18, Section
3.4.5] for a concise exposition. In recent work, [BGR13] discussed the numerical benefits of first
performing a Rao-Blackwellization on the Robbins estimator and then using an isotonic regression
to impose the monotonicity of the final estimator. An important theoretical contribution to the
monotone smoothing of any given empirical Bayes estimator has been proposed in [VH77]. Using
the monotone likelihood ratio property of the Poisson distribution, it is shown that any estimator



(e.g., the Robbins estimator) can be made monotone without increasing the regret. In contrast, our
main estimator is computed directly via minimizing an empirical version of the regret. It might be
possible to use the monotone smoothing of [VH77] to further improve the ERM-estimator which is
not pursued in this work.

As mentioned in Section 1.1, the application of empirical risk minimization in empirical Bayes
has been introduced in the one-dimensional normal mean model by [BZ22]. Using the monotonicity
of the posterior mean, they construct an empirical Bayes estimator by solving the ERM under
monotonicity constraint (see Table 1). However, the regret bound they establish is of the slow
rate %jg(”) which is highly suboptimal, compared with the nearly optimal rate of O(M) by

n

[JZ09] (based on the g-modeling approach via NPMLE) and O(M) by [LGLO5] (based on the
f-modeling approach of polynomial kernel density estimates). As mentioned earlier, the NPMLE
is computationally expensive, especially in multiple dimensions due to the reliance on grid-based
approximation [KM14, SGS21]. In contrast, as mentioned before, ERM-based estimators algorithm
can be easily constructed for multiple or high dimensions.

The rest of the paper is organized as follows. Section 2 provides a regret upper bound on the
ERM-based estimator in one dimension in terms of the offset Rademacher complexities, and a proof
sketch for Theorem 1. Section 3 contains the analysis for the multidimensional ERM-estimator and

a proof sketch of Theorem 2. Omitted proofs are provided in the appendices.

2 Regret guarantees for the ERM estimator via Offset Rademacher
complexity

2.1 The ERM algorithm

As mentioned in the last section, our proposed estimator is based on ERM framework. In many
statistical problems, the statistician intends to find a function f that approximates a target statistic
s(X) in order to minimize the error E [£ (s(X), f(X))] for some suitable loss function ¢. In the ERM
framework, the population average is replaced by the empirical average E [¢ (s(X); f(X))] over the
training sample. There is a rich literature on using such methods to approximate nonparametric
target functions. See, for example, [Nem85, VAG9I0] for regression problems, [Bar91, BC91, Bar94]
for penalized empirical risk minimization, [BM93, LZ95] for consistency results of general non-
parametric ERM-estimators, etc. In this paper, we aim to approximate the nonparametric target
function f* (the Bayes rule) by minimizing E [(f*(X) — f(X))?]. As shown in Section 1.1, in the
Poisson mixture model, this can be equivalently expressed as minimizing E [ f(X)? — 2X f(X — 1)]
and we minimize the corresponding empirical loss over the class of all monotone functions. Isotonic
minimization of such quadratic loss is easy to compute; [BC90] showed that monotone projection
can be done in linear time. In the following lemma we present one such minimization algorithm
that we use in numerical analyses. The proof is deferred to Appendix B.

Lemma 1. Let a1 < --- < a, be a sequence of non-negative integers and {v;}1,, {w;}l'_, be two
non-negative sequences with vy, > 0 and max{v;,w;} > 0 for all i. Consider the iterative b;

1 1 =20
Lk
bi = ;:bifl w;

I+argming, <pcp = — 21
- Zi=bz‘—1 Vi

where the fraction is +0o0 whenever the denominator is 0, and where tie exists at argmin, choose



biggest such i*. We stop at by, =n + 1. Then the solution to

jA’erm = argmin Z vif(ai)Q —2w; f(a;)

fer 3

18 gilven as

b 1—1
2l Wi

br1—1
> il Vi
Remark 3. Making the restriction v; > 0 and vy, > 0 ensures that our solution will be well-formed.
To apply this algorithm to estimate ferm, let {a1, -+ ,ar} € {1, -, Xmax} be such that either
N(a;) >0 or N(a; +1) > 0. Here, v; = N(a;) and w; = (a; + 1)N(a; + 1). Our choice of a;’s for
i=1,...,k ensures that max{v;,w;} > 0, and also vi > 0.

Vi=1,--- ,m,Vo:by <z <bpyt: fe,m(am) =

Remark 4. Lemma 1 can be applied to compute the ERM estimator (10) for the multivariate
case. Recall that the function class F dictates the following form of monotonicity: for each vector

x = (af, - ,x;-_l,x;-+1,-‘~ ,xq) of length d — 1, we define

Cj(z) & {x e RY : z; = 2, Vi # j} (11)
Here are several examples for d = 3:
CO((Ovo)) = {(07070)7 (1’0’0)’ (27 0, O)a e } Cl((0,0)) = {(0’0’0)’ (07 L, O)’ (07 2, 0)7 o }

02((070)) = {(0’070)7 (Ov 0, 1)a (07 0, 2)7 o }

Then f € F if and only if for each j € [d], f; restricted on each Cj(x) is monotone in the j-th
coordinate of the argument. Since the objective function E[||f(X)|* — 22;1:1 X;fi(X —ej)] is
separable, for each j we may determine (]/”;rm)j by partitioning the samples X1, --- , X, into classes
of Cj(z'), and then apply Lemma 1 to each class.

To bound the regret of such ERM-estimators, we used the technique of Rademacher com-
plexities. The Rademacher analysis, popularized by [Kol01, Men(02, BBL02|, etc., uses a sym-
metrization argument to bound the error using the supremum of an empirical process of the form
SUpge r % o €g(X;), where €, ..., €, are iid Rademacher random variables, and F is some suit-
able function class. The complexity of such a function class is often characterized by the VC
dimension or the covering numbers. An immediate bound on the complexity is produced by the
uniform convergence bound when F is chosen to be the class of all possible candidate functions,
however, this has been shown to guarantee only a slow rate of regret (ﬁ), which is the case in
the prior work [BZ22] that applies the ERM approach to the Gaussian model. An improvement
on this is made by restricting F to be a smaller class, for example using the techniques of local
Rademacher complexities [BBM05, KP04, LW04] which analyzes the complexity within a small
ball around the target function, the empirical minimizer, etc. We employ a similar technique of
using function classes with smaller complexity. Note that the empirical minimizer in (6) satisfies
the following regularity property.

Lemma 2. Let ferm be the ERM-estimator defined in (6). Let Xpax = max{Xi,...,X,}. Then
MAX0<2< Xynax Jerm (T) < Xmax-



Proof. Recall that ferm is characterized by piecewise constancy, where for each maximal interval
on which ferm is constant (maximal in the sense we cannot extend I further), we have

er[ a:N(x)

Now that we have defined ﬁ,m(x) = ferm(XmaX) for all x > Xjax, it suffices to show that
ferm(Xmax) < Xmax. Indeed, there exists an i* < Xjax such that

Xmax i .
Fo(h) = i ((F DN(i 4 1)

Vl’o cl: ferm(wo) =

Xmax '
D N(i)
@ T ING) DS XeeNG) _ N(*)
- Xmax N = Xmax . - maX( o ki) < Xmax (12)
> N(i) 2ol N(4) > iir N (@)
where (a) is due to N(Xpax +1) =0. O
When Xi,..., X, are generated from the Poisson mixture with either a compactly supported

or subexponential prior, the above result implies that the value of ERM-estimator is at most
©(polylog(n)) with high probability. This, in essence, dictates the required complexity of the
function class.

2.2 Risk bounds for ERM via Rademacher complexities

Lemma 2 shows that J/‘;rm coincides with the ERM over the following more restrictive class
Fi. 2 {f: f is monotone, f(Xmax) < max {Xmax, f*(Xmax)}}- (13)

Note that F is a (random) class that depends on the sample maximum. Furthermore, since it
depends on the unknown ground truth f*, it is not meant for data-driven optimization but only for
theoretical analysis of the ERM (6). In addition, our work utilizes the quadratic structure of the
empirical loss to obtain a stronger notion of the Rademacher complexity measure, which closely
resembles and is motivated by the offset Rademacher complexity introduced in [LRS15].

Theorem 3. Let F be a convex function class that contains the Bayes estimator f*. Let X1, ..., X,
be a training sample drawn iid from pr, €1,..., €, an independent sequence of iid Rademacher ran-
dom variables, and f the corresponding ERM solution. Then for any function class F,, depending

1 o 0x, that includes f and f* we have

on the empirical distribution p, =

Regret, (f) < %Tl (n) + %Tg(n) (14)
where
Ti(n) =& [ s Y (e - )(FX) - f*(Xm?] , (15)
fG}—an]'—p/n i=1
Ty(n)=E| sup {26¢(f*(Xz)(f*(Xz) = [(X3) = Xi(f*(Xs — 1) = f(Xi = 1))
fE}—an]:p;l i=1
1
- () - f<xi>>2}] , (16)
and Fy is defined in the same way as Fp, with respect to an independent copy of Xi,..., Xn.

10



Proof. Define
R(f) =E[f(X)?—2Xf(X - 1)], R(f)=E[f(X)*-2Xf(X-1)]. (17)
We first note that f satisfies the following inequality, thanks to the convexity of F:
R(h) =R(f) = E[(h— f)?], VheF. (18)

To show this claim, since F is convex,for any € € [0, 1], (1 — e)f+ eh is inside the class F, so with

~ o~

R(f) < R((1 — €)f + eh) we have

TR0~ F +eh) = 2B[(A(X) — X))~ FX) + eh(X)) = X(h(X 1) = F(X ~ 1))

By the ERM minimality of f, such derivative must be nonnegative when evaluated at 0. That is,
E[(h(X) — F(X))F(X) = X (h(X —1) = f(X = 1))] > 0 (19)

Therefore, evaluating the difference gives us

R(h) — R(f) — E[(M(X) — f(X))?]
= E[(h(X)? — F(X)?) — 2X (h(X — 1) — f(X —1))] - E[(h(X) — (X))
= 2E[1(X) f(X) - F(X)? = X(h(X — 1) = (X = 1))] > 0 (20)

as desired. Then using Regret_(f) = R(]?) — R(f*) we get

~

Regret, (f)

<E[R() = R() + R = RO — B = )]

—E|(R(J) = RU™) = EI(f* = [ + RU™) = R() + Bl = )
+E((f* — /)7 - 2E[(f* ~ f)7]

~ ~

= E [BR2/"(X)(f*(X) — F(X)) = 2X(*(X ~ 1) = F(X ~ 1))

SB[ (X)(F*(X) — F(X)) = 2X(F(X — 1) = FX — )] - (Bl ~ P2+ B0~ P
(21)
+E BE[(f*(X) ~ OO - TR0 - Fop)| (22)

We separately bound the two terms (21) and (22) in the above display in terms of the Rademacher
complexities using the following symmetrization result.

Lemma 3. Let ey, --- , €, as independent Rademacher symbols. Let T, U be two operators mapping
f(z) to Tf(z) and U f(x). Then

n

sup Z &1 f(Xi) — Uf(Xy)

fE]'—pn U]:p% i=1

E

sup B[T ()] BT ()] - (B0 ()] + E[Uf(X)])]] <2g

where p), is an independent copy of the empirical distribution py,.

11



Proof. Here, we note that the symmetrization technique has been introduced in [LRS15, p.11-12].
However, given that we are taking a supremum over a data-dependent subclass of F, some extra
care needs to be taken.

+T(9)(Xi) = T(9)(X;) = U(g)(Xs) — U(g)(X7)]

<R s 3 T()(X) - T — UR)(X) — Ulgr) (X))

T 2n g 1€ Fp, UF i1

siEl, 0 ST - Tl () ~URID - Ul (X))
OLlp sy ST = TN — UH(Xs) — Ulg) (X))
N fgeFp UF, i

c) 2 n
< EE[K];SBF% ; &T(f)(Xi) = U(f)(Xi)] (23)

—

where (a), (b) are symmetry and (c) is Jensen’s inequality. O

As f € Fp,, applying the last lemma to previous display above, with the choice for the first
expectation (21)

Tf(z) = =2 (@)(f* (=) = fx) = 22(f*(x = 1) = fle = 1))], Uf(x) = i(f*(ﬂﬁ) — f(@))?,

and the choice for the second expectation (22) T'f(z) = 3(f*(z)— f(2))%, Uf(z) = 3(f*(z)— f(z))?,
we get the desired result. O

2.3 Controlling the Rademacher complexities

To prove Theorem 1, we apply Theorem 3 with the function class F,,, = F, defined in (13). Denote
by F,. = F. its independent copy based on a fresh sample X7, ... ,X;L. Let us define the following

12



generalization of (15) and (16): For b > 1,

n 1 .
T1(b,n) =E Leitigﬂ ;(ei - 5)(f(X@-) —f (Xz))2] , (24)
Ty(b,n) =& LS ; 26 (f*(X0) (f*(X3) — f(X)))
XK1 FOG - 1) - () - f(Xi))Ql . (25)

Then we have the following bound on the complexities.

Lemma 4. Let m € P[0, h] with h being either a constant or h = slogn for some s > 0. Let
M := M(n,h) > h be such that

o SUprep(o,n)) Pxmps [X > M] < L.

o For X; " p,, B [XE

max

] < c(k)MF* for k=1,...,4 and absolute constant ¢ > 0.
Then there ezists a constant co(b) > 0 such that
Ty (b,n), To(b,n) < co(b) (max{1,h*} M + max{1, h}M?) . (26)

The first condition on the probability is an artifact of the proof. In general, any tail bounds on
the random variable X that decay polynomially in n, such as the ones satisfied by bounded priors
or priors with subexponential tails, are good enough for our proofs to go through.

Proof of Lemma 4. We consider the following notations.

n n
N@) =) lx— @)= elix—a (27)
i=1 i=1
where €1, - -+ , €, are independent Rademacher symbols.

Bound on T5(b,n): Using f(—1) = 0 we note that

326X (X0) — S(X0) = X7 (X = 1) = FX; = 1)) = (7 (X)) — F(X0)?
=1
= 37 2e@) (@) (@)~ £&) 2l (@ = 1)~ Flae 1)~ D (@)~ fla)?
x>0
= 37 2(elw) (@) — r+ el + D)) — 1) — () — pa))? (28)
x>0

In view of the above, we can bound T5(b,n) using the sum of the following two terms

i) 2B sup (32 2(ew) (@)~ (o Do+ 1) (@)~ )~ (7 (@) )P

FEFRUFL 550

to(n) £ E{fes;igﬂ [;:] —2(z + De(z + D)(f* (=) = f(@) 1N (2)=0}}-

13



For analyzing the term t1(n), since N(x) > 0, using 2az — bx? < % for any a,x and b > 0 we get

e(x)f*(x) — (z e(x 2
ti(n) <b-E {2 )] ]Er(;; Helet 1) 1{N(x>>0}] (29)
x>0

Using E {¢(x)|X1,..., Xy} =0 and E [(e(2))?|X1,..., Xn] = N(z) we get

*(2)e(x) — (x + De(z + 1))2 z+1)*N(z +1
([ (z)e(x) ]\([(;) Jelw+ 1)) 1{N(x)>o}] ZEK(J”*(@’))“F( - gv(xg . )>1{N(z)>0}]

Using the results that

(P1) N(z) ~ Binom(n,pr(x)) and for absolute constant ¢ > 0 [PW21, Lemma 16]

(P2) conditioned on N(z), N(x 4+ 1) ~ Binom(n — N(x), fi(;;ag ),

(P3) f*(x) = (w‘i‘l)w&r)l) E[0|X =] < h for all z > 0,

(P4) Since for every x > 0, zye' < yy;j!—y < \/QITy (Stirling’s), we have

1
V2ry’

pr(y) < y>1, (30)

we continue (29) to get

*tl < E [Zf 1{N )>0}

x>0

2np7r(fv +1) - [ L{N@)>0)
E
*Z%x* 1—%@)[ N(x)

< R2E[1 + Xmax] + 1”_]?;(1(2))151 [1{]]\\’%;0}} +n> (2 + 1)?pa(z + DE [1{]];(‘(2;0}]
& z>1
C/pﬂ(l)

2
S PR+ Xoa] + 5= 10)pm0)

+ch Z(m + 1) min { (npx(2))%, 1} .

r>1

Let M > h be as in the lemma statement. For the second term notice that % <
max {1, h}. For the third term, we use the bound

hZ(a: + 1) min {(np,r(x))2, 1} < hM? + h Z (z + 1) min {(npw(fﬂ))z, 1}
x>1 x>M
< hM? 4 2n%h Z z(pr(x))? (<) hM? + 2n2h*Px ) [X > M] < 2(hM?* + 2—hg) (31)
x>M

where (a) is due to that xp;(x) = f*(z — 1)py(x — 1) < h for all z > 1. We finally note that since
h is either constant or in the form O(slogn) for some constant s, the term Z—i can be neglected.
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Next, we evaluate to(n). As |e(z +1)| < N(zx+1) and N(z+ 1) =0 for x > Xpax we get

to(n) <E 2+ 1)N(x+1) sup |f"(x) — f(2)| Lin(z)=
o(n) ;} (@ + 1)N( )fef*uﬂl (2) = f(@)| L{n(@)=0}
-Xmax_l
SE Z 2(1‘+1) (f*<$)+XmaX+X1{nax) N(x+1)1{N(x):0}] . (32)
L x=0

Let M > 0 be as in the lemma statement and A = {Xyax < M, X/ .. < M}. Then P[A°] < % via

max
the union bound argument. Thus we have, for some absolute constant ¢ > 0,

E

Xmax_l
D 20+ 1) (f(®) 4+ Xmax + Xinax) N(@ + D1y )=o) - l{AC}]
=0

<E

Xmax_l
Xmax(h + Xmax + Xpax) Y Nz + 1>1{N(x>=0}1{Ac}]
=0

(b) 2
< nE [(Xmax) - (b4 Xmax + Xipax) 1{acy] < n\/E [(h + Xmax + ernax)ﬂ /PA] < cM? (33)

n2

with (a) due to that Zf;‘é"‘_l N(z+1) <> 2, N(x) =n, and (b) the Cauchy-Schwarz inequality
and E [X1,,] < 2M*.

max

For each & < M, define g vr(x) £ 5—L={{=. Note that P [N(z) = 0[A] = (1 - gr u(x))" and

conditioned on the set A and {N(z) = 0}, the random variable N(z + 1) has Binom <n, ‘f’:;”i%)
distribution. This implies ’

Xmax—1

E| Y 2@+1) (f(2) + Xmax + Xiax) N(@ + D 1{n()—oy | A
et

< N 20z +1)(h+2M)E[N(z + 1)|N(z) = 0, A]P[N(z) = 0| 4]
x=0

nQW,M($ + 1)

L g (A

<Y 2w+ 1)(h+2M)
=0
= 2(h + 2M) f* (2)nge s (@) (1 — grar (@)™ " (%) 2Mh(h +2M).

where (a) uses f*(z) < h for all z, and also nw (1 — w)"~! < (1 — Lyn=1 <1 for all w € [0,1]. We
conclude our proof by combining the above with (33).

Bound on Ti(b,n): Denote my, = b+ 1. Conditional on the sample Xi,..., X,, and X1,...,X,,
given any f € F, U F, define

v(f) =min{min{z : f(x) < mph}, Xmax} -

15



Then using the above definition we get for each f € F, U F., conditional on the samples,

S = U~ PN = Y (o)~ N@)(F(a) — f(@)

i=1 x:N(x)>0
Xmax

v(f)
= [T+ Y ) ) - g N@@) - @)

7=0  z=v(f)+1

Xmax
< mih? max e(:):)—lN(x),O (34)
e 3 max{de) — Vw0
powd s {3 ) - AN@) @) - £ @) (35)
UZIS mbhgfgxmx = ‘ b '

For the first term (34), we invoke the following lemma, to be proven in Appendix B.

Lemma 5. For each x and b > 1, conditioned on X{* we have

1 1-1
E[max{e(z) — EN(JJ),O}] < 1—+g
e D(—5"3)
1
For brevity, we denote Ny £ 11+ b%——. This gives us
e-D(—" 3
Xmax 1
E |mgh? ) max {e(x) - bN(x),O}‘X{L] < NymPh?E[(1 4 Xmax)]- (36)
=0

For the second term (35), we note that for any f with values in [mph, Xmax|, we have m&—;l f<
f— f* < f and hence

(e(a) N @) () ~ () < max { (- 2@ ) (") (e - v } oS

Now given that —N(z) < e(z) < N(z), define function g : [-1,1] — R given by

- (o5 ()

Since ¢ is the maximum of two linear functions, it is convex, and therefore bounded by the line
2
joining their endpoints, (-1, —(3 + 1) - (mb—_l) ) and (1,1 — 7). Now define:

(o) () (0-0)] oma (o) () - (3) =3
(39)

using the fact that m; = b+1. Note that 0 < 8 < . Then we have g(z) < ax—pf for all z € [-1,1].
Hence, we have

1
o= =
2

(e(z) - %N(x))(f(x) — f*(@))* < (ae(z) — AN (2)) f(2)? (40)
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Hence (35) can be bounded by, modulo a constant multiplicative factor cz(b) depending on b,

Xmax 1
sup{ sup {Z(e(x)—bN(fc))(f( }}

v>0 mbhgfgxmax >v

o By
e
g

Note that the above f-based maximization problem is a linear programming of the form
sup szazv mbh <arp - <ag< (Xmax)2)
at,.. 7ak

with & = Xnax + 1. The optimization happens on the corner points of the above convex set, that
are given by X.x + 1 length vectors of the form

{(mbh)2, e (mph)?, (Xmas)? s - (XmaX)Z} .

This implies we can bound (41) by

Kmax Xmax
(mui? > max { (o) - 2N 0 + <Xmax>2sup{ O §N<x>>}. (12)

=0 v20 r>v

The bound of the first term, conditional on the data, is given as per Lemma 5 as m§h2Nb(1 + Xiax)-
For the second term, we first note the following result.

Lemma 6. Let ¢ > 0 be given. For e = (€1, - ,€,) n independent Rademacher symbols, denote
J
Lc(e) = Jnax, {Z} € — Cj} (43)
1=

Then E[Lc(e)] < M. where M, =1+ (1 —exp(—D(<5|3))) 2

The proof of the above result is provided in Appendix B.
Therefore, using Lemma 6, we have

Xmax ,6
E [sup{ 3 (elw) - aN(x))H Xy

<E[ sup (ept1+- - +€n)— é(n —w)] < ¢(b)
v20 | z>o a

w:0<w<n

for some constant ¢(b) > 0 via Lemma 6. Thus we get

E

Xmax
(Xmax)zsup{ > () - iN(x))} ‘Xl, ... ,Xn] < e(b)(1 + Xmax)?. (44)

v=0 x>0

Combining (41), (42), and (44) we get

Xmax
E[sup{ sup {Z<e<x>—ZN(x))(f(x)—f*(m»Z}}

'UZO mthfSXmax T>v

(45)

for a constant c3(b) depending on b. Then taking expectation on both the sides and using the
definition of M in the lemma statement we finish the proof.
O
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2.4 Proof of Regret optimality (Theorem 1)

We use the above result to first prove the regret bound for bounded priors in P([0, h]). Note that

by Lemma 10 and Lemma 12, there are constants ¢y, ca > 0 such that for any fixed A > 0 such that

max{1,h%} , 1 2
n (logoﬁ)rgbn) )

M = max{ca,c1h}- 1og01%) gn satisfies both conditions in Lemma 4, and we get O(
bound on the regret, which is optimal up to constants that possibly depend on h.

Next we extend the above proof to the subexponential case. Given m € SubE(s) define the
truncated version m.,[0 € -] = w[@ € - | § < clogn] for ¢ > 0. Then we have the following

reduction.

Lemma 7. There exists constants ¢y, co,c3 > 0 such that

~ ~ max{ca, €35
Regret. (ferm) < Regretﬂclsyn (ferm) + {7123}
Proof. Let m € SubE(s), then there exists a constant c(s) = 11s by the definition of SubE(s) such
that

1
nlo’

=P[0 > c(s)logn] < 0~m (46)

Denote, also, the event E = {0; < ¢(s)logn,Vi = 1,--- ,n}; we have P[E] < n~?. Let m() ,, as the
truncated prior 7. [0 € ] = 7[0 € - | 8 < c¢(s)logn]. Define mmse(w) £ ming Eg[(f(X) — 6)?]
(i.e. the error by the Bayes estimator). Then we may use [PW21, Equation 131] to obtain

Regretw(fe,m) < Regretwc’n(ﬁ_rm) + mmse(7,,) — mmse(r) + Eﬂ[(fe,m(X) - 9)21{Ec}] (47)

By [WV12, Lemma 2], mmse(r.,) — mmse(r) < 1S mmse(r) < 2 whenever ¢ < . In ad-

dition, Lemma 2 entails that ferm(X) < Xmax, which means that E[ﬁrm(X)] < E[X2,.] <

O(max{l,s4}(logAn)4) as per Lemma 13. Meanwhile, for all m € SubE(s) we have E.[6%] € O(s?).
This means E,[(ferm — 0)%] <s (logn)*. Thus by Cauchy-Schwarz inequality

max{1, s?}

En(Frm () — 0)°1(50y] < \/PIEIE [(Jarm(X) — 0)4] < \/n-9Bn[(Form (X) — 0)1] <

n

O]

Given this lemma, it suffices to bound Regret, . (ﬁrm). Then by Lemma 11 and Lemma 12

there exist constants c1,ca > 0 such that M = max{c1, cas}logn satisfies both the requirements in

(max{l,SS}(log n)3 )

Lemma 4. Hence we get the desired regret bound of O -

3 Regret bounds in multiple dimensions

To prove the regret bound for the multidimensional estimator f = (]?1, ceey fd) we use the approxi-
mation error for the different coordinates. In particular, similar to (17) we define

R(f ) E|[lF(X H _22sz _6117 ﬁ( ) H.f _ZZsz —e;) (48)

and note that

Regret, (fum) = E |R(fam) = R(F)| (49)
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As mentioned before, in the multidimensional setup our estimator is produced by optimizing over
the class of coordinate-wise monotone functions F in (10) and f* € F as well. Using the quadratic
structure of the regret and the convexity of F, we can mimic the proof of (18) to get

R -RAH=E[IF-F?|. fer (50)

Then following a similar argument as in (21), (22), using (49) we have

/]

d
25X - ) 2,5 (X — )~ HX - e)

~

Regrety (Fum) < B [R(F) - RU)+ R(P) - R - B 1

)

d
—E[Z2fj(X)(ff(X)—ﬁ(X))—2Xj(f;"(X e;) — Fi(X —e]»}

j=1
— 2E [ - FIP] =) - f<X>u?]>] (51)
E | E#() - FOOIP - (Bl (0 - FOlP]) (52)
As Lemma 3 is still directly applicable in the multidimensional setting, applying it with
d
T(f() =~ S F (@) (f (@) (@) 205 (F (—e))~fi(@—e;)], U(F(@)) = 1)~ (@)
j=1

to bound (51) and with T(f(@)) = 3| f*(x) - f()|*, U(f(=)) = 3l|#*(x) - f(@)|I* to bound
(52) we get: for any function class F,, depending on the empirical distribution p,, of the sample
Xi,..., X, that includes ferm and f* and its independent copy F,, based on an independent
sample X1,..., X,

N 3 " 1 .
Regret, (ferm) < ;]E fefs,:B}'p/ ;(fz - 6)(fj(Xz‘) = f; (Xz))2]
2 %
+E fefspligfp/ ; 26;(f7 (X)) (f] (X)) — f3(X0)) — Xis(f5 (X — €;)
— [i(Xi —ej))) — i(f;(Xi) - fj(Xi))2] (53)

To achieve the best possible bound we choose F,,, with low complexity. Note that the objective
function R defined in (48) is separable into sum of individual loss functions. Thus, given the
definition of F in (10), for each coordinate j and each class Cj(2') defined in (11), we have

(ferm); ;) = al;grjrrlmE [f(X) —2X,£/(X —e;)|X € Cj(x)], V&' e RT.
1

where Fj is the class of all one-dimensional monotone function from Z, — R,. Considering this
for all classes Cj(«’) and from Lemma 2, we have

(]/C;rm)j(Xi) < Xj,ma)h Xj,max = I?ElXXZja ] = 17 L) d. (54)
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Given the sample X7, ..., X, define the sample based function class

2{feF: f;(Xi) <max{f(Xi), Xjmax}, Jj=1...,di=1,....,n}. (55)

Let F’, be an independent copy of F,. Then simplifying (53) with F,, = F.,F,, = F, we get

d
Z 3U1 ja +4U2(]7n))
1

Regret . ( ferm ) <

3\'—‘

Jj=

A su _ : 9

o Lef}jf; >_(e = U0~ F5(X0) ]

cF [feas'-}?u)f* ;62 Xi)(f; Xi) — fi(Xy)) — Xij(f;(Xi —e))
e %UJ*(X» - 1% (56)

We bound these 2d Rademacher complexities to arrive at the results. Note that as we want to
analyze the supremum over all possible prior distributions whose marginals are subject to the same
tail assumption (either supported on [0, h] or s-subexponential), by the inherent symmetry on the d
coordinates, it suffices to consider only a single coordinate, say, the j-th, when bounding the offset
Rademacher complexity. The final regret bound then includes an extra factor of d over this single
instance of Rademacher complexity. Note that in our problem the function class F, is supported
over the hypercube H?Zl[(), Xjmax). The high-level idea for our analysis is that the effective size
of this hypercube, corresponding to different classes of priors, controls the Rademacher complexity
and hence the regret upper bound.

3.1 Bounding Rademacher Complexity for Bounded Prior

Here we first prove a bound for the generalization of the Rademacher complexities in (56) for b > 1:

in) = su ne‘—1~'—*'2
Ul(b7]7 ) E fG}_*B}_; ;( 1 b)(fJ(XZ) f] (Xz)) ]
Uz (b, j,n) = E fe.i}ig}';;%l [ () (fF (X6) = f3(X6)) — Xi; (ff (Xs — €)
(X~ ) - 2<f;<xi>—fj<xi>>2] (57)

We have the following result similar to Lemma 4.

Lemma 8. Let m € P[0, h] with h being either a constant or h = slogn for some s > 0. Given
X1,..., X, beiid observations from py, let M := M(n,h) > h be such that

e [or each coordinate j =1,--- ,d, we have the j-th coordinate X; of X satisfying

1
sup  Pxp, [X; > M] < —.
m€P([0,h])? "
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e For f=1,2,3,4, constants c1() depending on B and absolute constant ¢ > 0

d
E [(Xjmax)'] <M’ B |(1+ X max) H 1+ Xpmax) | < c1(8) MO0,

Then there exists a constant r(b) > 0 such that for all n > d,
Uy (b, ,n), Ua(b, 4, n) < r(b) {max{1,h*} + max{1, b} M} (1+ M)". (58)

Proof. At a high level, using the monotonicity of F, for a target coordinate j we partition the sam-
ples Xi,---, X, such that samples in the same class differ by (possibly) only the j-th coordinate.
Then for each class, using monotonicity, we mimic the proof for the one-dimensional case. Before
proceeding with the proof we define the following notations for all j = 1,...,d and 2’ € Z‘i‘l

Ci(x)2{xecZl wy=a}Vi<j—1land o, =2}, Vi>j+1},
Nj(il?l) == Z N(x)l{a:ECj(w’)}- (59)

d
xELY

In addition, we will use multiple times that by union bound we have

d

d
sup  Pxop, | X € [0, M])?| < sup  Pxp, [Xj > M] < —

reP(OR)E [ } ;wemo,h})d e n’

Bound on U (b, j,n). Denote mj = 1+b and note that for each f € F, and for each class Cj(x’),
as f; is monotone over the j-th coordinate of all z-s in Cj(z'), there exists v £ v(f;, #') such that
for all x € Cj(x'), f;(x) < myh if and only if z; < v. Using the above we can write

3 (a- 1) G- B = s S (de) - N @) (e) - @)’

FEFUF, 14 FEFUF, ©:N(z)>0

=YY (elw) - N — f @)

feF..UF, x':Nj(x')>0 xeC)(x’)

— s Y >+ (c() ~ s N(@)(fy (@) — f; @)

!
fe}-*uy:*m’:]\/j(a:’)>0 zeCj(x),z;<v xeCj(x’)x;>v

< sup > (mihQ Y max{0,e(z )—*N N+ > —*N( x))(fi(z) - fj (= )))

fej:*uf; :D/ZN]‘(J!/)>0 (vGC]-(:c/), z€C ('),

@;<v rc]->v

<min? 3 max{0,e(x) - %N(m)}

N(x)>0

N sup s Y (e(w) — 3 N@) ()~ F (@) (60)

FEF«UFL, v(x’)>0
@/ iNj(@/)>0 y SR (@20 pec; (@),
J Js zj>'u(z’)
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As there are at most H?Zl(l + X max) vectors & with N(x) > 0, we apply Lemma 5 to bound
the expectation of the first term in the above display as

mEh?E] Y maX{O,e(x)—%N(m)}]Xl,...,Xn]

N(x)>0
(@) d
<mph®E[ > 1UXy,..., Xp] < ri(0)mih? [[(1+ Xjmax)- (61)
N(z)>0 Jj=1

1-1/b
eD(H523)’

For the second term in (60), note that for the vectors in the set Cj(2’), the only coordinate that
takes different values is the j-th coordinate, and the function f; is monotone when we condition on
the coordinates {1,...,7 —1,7+1,...,d}. It follows that conditional on Xj,..., X, for this class
Cj(z'), we can mimic the proof for (45) in one dimensional case of T7(b,n) to bound the innermost
term as

where (a) followed from Lemma 5 with 7 (b) =

Elswp sup {3 max{0, (@) — ; Nw)(f(w) — () |X?
v fEFLUF, weC; (@),

<ra(0) (B2(1 + Xjmax) + (1 + Xjmax)?)
(

for a constant ¢(b) depending on b. Finally, the number of such classes with N;(2’) > 0 is bounded
above by Hk 1( + Xj max). Therefore, summing over all classes and taking the expectation, and

including (61) we get the bound

- 1
Ul(b7.jan):E sup <€i_>( j
FEF.UF! Z b

* =1
d d
< r1(b)ymZn*E H (1+ Xjmax) | +r20E | JT + Xrmax) + (B2Xmax + X7 max)
= i
< (r1(b) + 72()) (1 (1)R% 4 ¢ (2) M) M<. (62)

Bounding Us(b,j,n). As per the one dimensional case, we bound the Rademacher complexity
term Us(b, j,n) with to(n) + t1(n), where

n) 2E| s S (2(cl@) @) — (o + Vel + )5 @)~ ()
FEFUF,
N (@) - @) o (63)
o) 2B | sup 3 a2(e; + Vel + ) (f; (@) — () Lo 0}] (649)
FEF.UF,

We first analyze t1(n). Using the inequality 2az — bx? < % for any b > 0 we have

e(x)fr(x) — (x; e(x +e;))?
3 ()0 e ) 1{N(m)>0}] )

%tl(n) <E [

x
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Using the facts
o Ele(x)| X1q,...,X,] =0, Ele(x)e(x + ;)| X1,...,X,] =0
o Ele(x)?|X1,...,X,] = N(x), and,

n—N(z))pr(x+e; npn(TTe;
¢ E[N(x +e;) | N()] = BN@lrloten) o mpslote)

we continue the last display to get

i) < B (5 BN Y1y
E[zm: W2 L{n(@)>0p] + E[zm: oy + 11 )_QZT((;) ) 1{]]\\;((”” EO}]
ROSUETRERIEYEDS M min{L, (nps (@))%}
9 g E[ X )] f_f p +¢ Solas + Do) mindh ()} (0

(here ¢’ is an absolute constant), where:
e (a) is due to Property (P1) in the analysis of T»(b, n);

. . * e + .
e (b) is using f(z) = (z; + 1)% =E[§;|X =] <Ny
e (c): for the first term, we use the fact that the number of vectors & with N(x) > 0 is bounded
by H;l:l(l + X max); for the third term, for each & # 0 we may choose a coordinate k with
x> 0. Thus setting pr, as the marginal distribution of x;, we have by Stirling’s inequality,
again,

GTee=0  xTke Tk 1 1
x) < i) < sup Py poia)|X = 21| = su =k < <
pﬂ( ) pmc( ) 0213 X P01(9)[ ] 9218 o ! oray om

1 1
and therefore (@) = [ < O(1).

Now, the first term in (66) is bounded by h%¢(1)M?. For the second term, using p,(e;) < 1 —p.(0)
;0 [0
1=p=(0) = pr(ej) — pr(0)’
*(0 *(0
O i { O 1
1- pﬂ'(O) 1- pﬂ'(O) pw(o)
given that f* is bounded by h in each coordinates. Finally, the third term in (66) has the following
bound:

we have

} < 2max{f;(0),1} <2max{h,1} (67)
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Y (xj+ 1) ff (@) - min{1, (npa(x))*}

x#0
<h > (@i+D+n*h Y (zj+ 1) pe(a)?
Q:E[O,M}d mQ[O,M]d

(a) (b)
< h(1+ M)™ 4 n2hPx.,. [X ¢ [0, M]d} Exp, [X; + 1] < h(1+ M) 4 hdn (1 + 1 (4)/*M)

(68)

where (a) followed as there are (14 M)? elements in [0, M]¢, and (b) is due to the assumptions in
Lemma 8 and E[X max + 1] < {E[(X}max + 1) ]}1/4. Thus, summarizing (66),(67),(68), we have

ti(n) <’ -b (h2c1(1)Md + max{h,1} + (1 + M)+ + hdn—4M)

< 2" (max{l, hY(L + M) 4 max{1, A2}ey (1) (1 + M4 + hdn*“M)

for an absolute constant ¢”, as desired. Since d < n, hdn=*M < hn™3M < h(1 + M)? and can
therefore be negleected.
Next we analyze to(n). Since we have |e(x +e;)| < N(x+e;) and N(x +e;) = 0 for all © with

r+te & ngl[o, Xk max], we get

to(n) = E r sup D 1205+ De(e + ) (f (@) — f5(2)L (v @)= 0}]]
EF.UF. 3

<E Z 2(x; +1)N(x +ej) sup

_m+€jEHZ:1[U,X;¢’max] FEFUF

fi (@) = fi(@)] 1{n(2)=0)

<E Z 2(IE] + 1) (f]* (.’13) + Xj,max + X]/ max) N(m + ej)l{N(w):O} (69)
_m+ej enzzl[ovxk,max]
where X J’ max 18 the maximum of j-th coordinate on n samples independent of Xy, --- , X,.

Define A = {XZ-,XI»/ cl0, M Vi=1,--- ,n}. We have P[A°] < % via union bound. Then we
have for an absolute constant ¢j > 0

E > 2(xj + 1) (£7 () + Xjmax + X max) N (@ + €)1 (v (@)=0} - 1{ac}
_:I:—‘re]'GHZ:l[O;Xk,max]

< E |2(Xjmax + 1) (b + Xjmax + X max) > N(@+e;)1(n@)=op - Lary
r+e; EHZzl[nyk,max}

< nE [(Xj,max + 1) (h + Xj,max + X] max) 1{Ac}]

, hd'2M? (©) ¢ hM?
c < ,

n? - n (70)

2
< n\/IET [(h o Xmax + X ) (Xama + 1)2] P[A] <
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where (a) is using Zm+ejeHZ,1[0,Xk ] N(z + €)1 {n@)=0} < Do N(x) = n, (b) is via Cauchy-
Schwarz inequality and E[(X; max)*], E[(X/ ,a)?] < cM*%, and (c) is because d < n by our assump-

j,max
tion.
Next, we condition on the event A. Similar to the proof of bound on 75(b,n) in the one-
dimensional setup, we define g, r(z) £ —— Ppr@® ___ We have P [N(z) =0|A] = (1—grm(x))",

 Px ey, [X€E[0,M]9]

and conditioned on the set A and {N(x) =0}, N(z + e;) ~ Binom (n, %). Therefore:

E Z 2(%_7 + 1) (fj*(w) + Xj,max + X]/',max) N(m + 63)1{N(w):0} A
$+Ejenz:1[07Xk,max]
< > 20+ )(h+2M)E[N(z + €))[{N(x) = 0}, A|P[N(z) = 0]4]
xe] i, [0,M]4

< Y 2(xj+1)(h+2M)1_qﬂM(w)

ze[]¢_,[0,M]4

(1 = gr ()"

a

= > b+ 2M) ff(@)nge (@) (1= grpr(®)" ™ < 2(M + 1)h(h + 2M).
wEHﬁzl[OM]d

—
N

where (a) followed using f;(x) = (z; + 1)%&?) and the definition of ¢r (2 + €;), and for the

last inequality, we used the fact that nx(1 —z)" ! < (1 — %)”_1 < 1 forall z with 0 < z < 1 and
[7(z) < h. Collecting terms and using M > h, we therefore have

hdl/2 M2
to(n) < & ——5— +h(M + 1) < hh(M +1)3! (71)
for absolute constants ¢}, ¢, as required. O

3.2 Proof of Regret bound in the multidimensional setup (Theorem 2)

We start by describing the bounds on E[H;l:l (1+ X, max)™] in this multidimensional setting, which
we claim the following.

Lemma 9. Given any s,h > 0 and integer > 0 there exist constants c¢(f3), c1,ca,c3,¢4 > 0 such
that

d—143

1. Forallm € P([0,h]Y), E [(1 + Xj7max)ﬁ H%ﬂ (1+ Xk,max)} < ¢(B) (max{cl, CQh}lolgoi(g"&J ;
P

2. Forallm € P([0,slogn]), E [(1 + Xjmax)® 4= (1 + Xk,max)] < ¢(B)(max{cs, cys} log(n))4—1+5.
ki

We will defer the proof to Appendix A.
For m € P([0,h])% by Lemma 9, there exist constants cj,cp such that we may take M =

lolof’(n) into Lemma 8. Note that This gives the overall regret bound as
g log(n)

log(n
max{cy, Czh}dw(%)dﬂ'

Now assume that each marginals of m; are of SubE(s) for some s > 0. We now show that the
multidimensional version of Lemma 7 applies here.

max{cy, coh}
d

n
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Here, we choose ¢ = ¢(s) £ 11s such that for each j = 1,--- ,d, we have P[X; > c(s)log(n)] <

ﬁ. This means that we now have

L (72)

d
= PIX [0, e(s) log(n)}] < D" PLX; > e(s)logn] < -5
j=1

the middle inequality via union bound on each coordinate.

Define the event E = {X; € [0,c(s)log(n)]¢,Vi = 1,--- ,n}, and we have P[E°] < dn~?. Again
we define the truncated prior 7. ,[X € ] = n[X € - | X € [0, ¢(s)log(n)]9]. Then, similar to (47)
in the one-dimensional case, the following equation applies:

Regretﬂ(ferm) < Regret, (ferm) + mmse(7,, ) — mmse(m) + ]Emc[errm (X)— 0||21{Ec}] (73)

Given that f]() < X max, we have ]E[(E)ﬂ < E[X;lmax] < O(s*(logn)*) by Lemma 11, and

Ex [0?] < O(s*log*n) from the properties of subexponential priors. The logic E[( fi = 0,)4 <
O((slogn)*) and

82d1/2
Eﬂ'[(ferm,j( ) 1{EC \/P EC fermJ(X)iej)Zl] S 77 V]: 172a"' vd

then follows from there. This gives E; | f. (X) — 0H21{ gyl < dz# by considering all the d
coordinates.

The identity mmse(7.) —mmse(7) < ;=-mmse(r) < 2de < 27%2 still applies here in the following

sense. Let f* be the Bayes estimator corresponding to . Then denoting M = ¢(s)log(n) here we
have

mmse(r) = E[| f*(X) - 6]%]
= Egrr [Ex~poi(e) Il f*(X) — 6]%]/6]
> Eprr [Ex ~poi(e)[I| £ (X) — 0”2]1{06[0,M]d}|m
= P[0 € [0, M][Eg-x[Ex ~poi(e) || F*(X) — 9||2]1{96[0,M]d}|9]
> (1 — e)mmse(mc,p) (74)

and that mmse(7) < d given that the naive estimation of fiq(x) = x achieves an expected loss of d
(i.e. 1 for each coordinate). This shows that we also have Regret, (f*) < Regret, (f*) 4—O(d2 2)
Regret,  (f*)+ O(%) in this multidimensional case (given that d < n). Thus, it suffices to work
on prior 7, supported on [0, clog(n)]? for some ¢ = c(s).

Now under this truncated prior, by Lemma 9 there exist absolute constants c3, ¢4 such that we

may take M = max{cs, cys}logn and substitute into Lemma 8. This gives an overall regret bound
of %(maX{Cg,, cy5} log(n))4+2.
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A Properties of Poisson mixtures

Lemma 10. There exist constants c1,co such that for all h > 0,k > 1 and © € P([0,h]), Xmax on
n > 3 samples have the following bound:
1
P[1 4+ max X; > max{cy, c1h} - ]{;ﬂ] <nk
loglogn

Proof. Consider A € [0,h]. Then for x > h we have the following approximation for X ~ Poi(})
via Chernoff’s bound [MUO05, p.97-98]:

eX)Te < (eh)Te™"

P[X > z] < ( (75)

xit

Therefore for X ~ pr and x > h we have P(X > z) < (eh);f_h

Now choose ¢ such that ¢y > max{4, h}, and for all n > 3,

‘,LJZ‘

1
loglogn + log ¢y — logloglogn —logh — 1 > iloglogn

That is, denoting L = sup,,>3 {log loglogn — %log log n}, we take logcyg > logh + 1 + L. Notice

that this mean we may take cp = max{4, max{1l,exp(1+ L)} -h}. Then for all kK > 1, coklolgol% >

co log)ﬁ)gn > ¢op > h given that n > logn for all n > 1, so the tail bound in (75) can be applied.
Setting = coklog’ﬁ) gn, we have
h)*e " 1
log(w) =—h+ cokﬂ(l + log h — log ¢y — log k — loglog n + logloglogn)
z loglogn
logn 1

< —-h+4k——(—=logl

- * loglogn( 2 8 og )

< 2klogn, (76)
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which implies that P[X > coklog)ign] < n~2k, Finally, taking ¢ = 2¢p = max{8, max{2,2exp(1 +
L)} - h}, we have

1 (a) 1 (b) 1 (c)
P[1 + Xmax > ch—2 ' ] < nPl + X > ch—2" ] < nP[X > coh—2 ] < n*
log log n loglogn loglogn
where (a) is union bound on X7, -+, X,,, (b) is using 101gfgog > 1for allm > 3 and logﬁ)gnk(c—co) >
cok > co>1forall k> 1, and (c) is 2k — 1 > k for all k£ > 1. O

Lemma 11. There exist constants c1,co > 0 such that for all s > 0,k > 1 and m € P([0, slogn]),
Xmax onn > 2 samples has the following bound:

IP)[)(max > maX{C2, ClS}klOg TL] < n_k

Proof. Again, consider the following argument via Chernoff’s bound [MUO05, p.97-98]: for = >
slogn and X ~ p, we have

(eX)Te A < (eslogn)®e=slosn

PIX >2]<  sup

- = exp(—slogn + z(1 + log(slogn) — log x))
0<A<slogn z

ml’
Now, choose ¢y = max{2 + s,e?s}. Then for k > 1 and z = kcglogn we have

— slogn + (keglogn) (1 + log(slogn) — log(keglogn))

(logn)(—s + kco(1 + log s — log k — log ¢y))

(logn)(—s + kco(1 — logk — 2))

< (logn)(—s — k(2 +s)) < (logn)(—2k) < (logn)(—(k +1)) (77)

Therefore P[X > coklogn] < n~*++1),
Take ¢35 = ¢o(1 + @), we have 1 + cpklogn < csklogn for all £ > 1. Therefore, union bound
gives P[1 + Xpax > csklogn] < nP[l + X > czklogn] < nP[X > coklogn] < n~F. It then follows

that we can take c; = (1 + 103%2) and ¢ = 6(1 + @) O

Lemma 12. Consider a random variable W. If there exists a function p(n) such that for all
integers ¢ > 1, P(W > ep(n)) < n~¢, then for each integer m > 1 there exists a constant ¢(m) such
that for allm > 2,

3"m) p(n)™
E[w™ 1{W>p(n)}] (2 +<]Ogn)m+1> n

Proof of Lemma 12. Denote the event Ei = {kp(n) < W < (k + 1)p(n)}, then for all n > 2, we
consider the expansion of P(m,n) as per the claim to get

m°°k+1 ) e (k= 1)
BV L] = S Iy < oy 3 EEA” < ) ( gy )
k=2

k=1 =1

Using the Gamma integration we bound the last term in the above display using

(e 9]

k—1ym o !
27( = 1) S/ "' dr :/ gmeTlosngy = T I
= v 0 0 (log n)™+

Plugging this bound back in (78) finishes the proof. O
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Lemma 13. Given Xy, , X, %lpw = Poiomw. Let k > 1 be an integer. Then there exist constant

co(k), 1, ca,c3,cq4 such that:

e E[(1+ Xmax)¥] < co(k)(max{ey, cah} log)lgogn)k for all m € P([0, h]).

e E[(1+ Xmax)¥] < co(k)(max{ecs, cas}logn)¥ for all m € P(]0, slogn]).
Proof. For m € P([0, h]), choose c1, c2 according to Lemma 10 and use Lemma 12 to obtain the con-
stant co(k) 2 (2842Fk!) with p(n) £ max{ci, coh} —2" and W = 14X pax. For m € P([0, slogn)),

choose ¢3,c¢4 according to Lemma 11 and use Lemma 12 with p(n) £ max{cs,c4s}logn and
W =14 Xnax- O

log log n

Proof of Lemma 9. We note that conditioned on 6y, --- , 04, the coordinates Xi,--- , X4 are inde-
pendent (distributed as X; ~ Poi(6;)). It then follows that

d d
E 1+X]max H 1+kaax ‘ 017 7071, :HE |:(1+Xi,max)ﬁi|91i7"' aem'
i=1

where here ; is 8 if : = 7 and 1 otherwise.
For the bounded prior case, i.e. = € P([0,h])¢ for some h > 0, we may mimic the proof of
Lemma 10 to obtain, for some absolute constant ¢(h) £ max{ci, c2h}, P[14 X max > ke(h) m2n |

= loglogn
014, ,0ni] < n 7 (given that @ < h). Thus we may then adapt Lemma 12 to yield E[(1+X; max)? |
015, 0] < CO(Bi)(C(h)log)lgogn)Bi for some absolute constant co(/3;) that depends only on the
exponents ;. Since this inequality holds regardless of 01;,- - ,0,; (so long as they are in the range

[0, h]), the desired bound now becomes

d i log 1 d—1+p
E [ (14 Xjmax) H + Xkmax) | < co(B)co(1) C(h)m
;
log n d—1+p8

Likewise, for the case 7 € ([0, slogn]?), we may mimic the proof of Lemma 11 to obtain, for
some absolute constant ¢/(s) = max{cs, c4h}, P14 X max > kc(s)logn | 614, -+ ,0pi] < n~F. Using
Lemma 12 again, E[(1 + Xi’max)ﬁi | 015, ,0ni] < co(Bi)(c'(s)logn)P. Considering all 8y,--- ,8,
we then get

d
d—
E 1 +Xg max H +Xk max < 00(6) (C,(S) max{l,co(l)}logn) o

k=1
kj
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B Proof of technical results

Proof of Lemma 1

t
%@ZS?, where m(s,t) = oo if v; = 0

for s < < t. Denote, also, the cost function G(f) £ S°I, v;f(a;)? — 2w; f(a;). We restrict our
attentlon to estabhshlng ferm (a1); the rest follows similarly. Let io be the maximum index such

Throughout the solution, for s < t we denote m(s,t) =

that fe,m (a1) = ferm (a;,) for some ig > 1.
We first claim that ferm(a1) = m(1,a;,). Indeed, for each real ¢, and integer j = 1,--- , k, we
i t 1<1<yg
define the following function f;(a;) = ]ierm(al) + ="=J Then by the maximality of is,

ferm(as) otherwise
for some small € > 0, f;,; is still monotone for some t € (—¢,€). In addition,

J
IG( f]t Zz (Vi( ferm(ai) + 1) — w;) . (79)

8G(fm t)

lt=0 = 0. Therefore,

f/;rm (al) Z V; = Z ferm az U; = Z wj . (80)
=1

Since fe,m = argmin G(f),

Since max{v;, w;} > 0 and each v;, w; is nonnegative, we cannot have E 2ivi =y 2w =0. It

then follows that ferm(al) é@% =m(1,is).
v;

It now remains to show that m(1,i2) < m(1,5) for all j =1,--- ,k, and the inequality is strict
for j > is. Now for any j with 1 < j < k, for some small € > 0, fjt is still monotone for some

t € (—e,0]. Given also ferm = argmin G(f), oG( f“ lt=0 < 0. Since ferm(al) > ferm(al) for all i, we

have R
ferm(al) Z v; < Z ferm CL@ vy < Z wj , (81)

1<i<j 1<i<j 1<i<j

which implies that m(1,j) > J?erm(al) = m(1,42). To show that m(1,5) > m(1,i2) for all j > is,
suppose otherwise that m(1, j) = m(1, i) for some j > i5. This means the inequality in (81) is an
equality for this j. In particular,

J J
Jerm (al) Z U = Z Jerm (ai)vi (82)
i=1 i=1

In view of (80), from 25:1 ﬁrm(ai)vi = 25:1 w; we have
Z ferm az Vi = Z w - (83)
i=io+1 i=19+1

By the maximality of i9, we have ]?e,m (a;) > ]?e,m (a1) for all i > ip. Given that v; > 0 for all 4, (82)
then implies v; = 0 for ¢ =i + 1,--- , 5. This would imply that Zg:iz-i-l w; = 0, i.e. w; =0 for all
i =1y +1,---,j. This contradicts max{v;, w;} > 0 for each i =1,--- | n.
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Proof of Lemma 5

Recall that conditioned on X7, €(x) ~ 2 Binom(N(z), 1) — N(z). Since b > 1, it then follows that

Elmax{e(r) — 1 N(2), 0}] = El(c(z) ~ - N(2) 105 1wy

< (1= DN @Ple(z) > T N(@)

(2 Pl ®_ 1-3

< (1- %)N(m) exp(—N(%')D(lg : H%)) ; 11—+Ii
D(—*|I3)

where (a) is from [PW22, Example 15.1, p.254] and (b) is using the fact that for all a > 0 and
y >0, yexp(—ay) < ..

O(Xmax log X112x) Time Complexity Optimization

We now describe an algorithm based on stack that reduces the computation in Lemma 1 from
O(X2,.) to O(Xmax log Xiax), with this log factor only used in sorting {(X, N(X))} for X =
0,1, , Xmax-

Let Wy < -+ < Wy be the distinct elements in {Xy,- -, X, } U{X; —1,---, X, — 1}. We
consider a stack S, initialized as (), with each element being the triple (I, w,t) where I denotes the
interval of piecewise constancy, w =3, N(Wg) and t = 3, (Wj +1)N(Wj +1). The invariant
we are maintaining here is that the ratio % is nondecreasing (this ratio is considered as +oo if
w = 0).

At each stept =1,--- |k we do the following:

e Initialize a = ([t,t], N(W,), (W; + 1)N(W; + 1)), the active element;

e Suppose, now, a = (I,w,t). While the stack is nonempty and the top (most recent) element
d = (I,w,t) w't < wt' (in particular, when w,w’ > 0 we have the ratio £ < qi—/,), we pop a’
from the stack, and set a = (I UI',w+w',t +t).

e Push a onto the stack.

Then for each element in the form ([a,b], w, ) we have ferm(z) = L for all z = Wy, - -, W,. Notice
that the largest element, Wy, has N(W}) > 0, so the solution will always be well-formed.

To justify the time complexity, we see that there are at most k pushes into the stack. Each pop
decreases the stack size by 1, so that cannot appear more than k times either. Assuming that each
elementary computation (e.g. calculating w't and wt’) is O(1), this stack operation takes O(k).
Since k < Xpax, the claim follows.

Proof of Lemma 6

We will bound P[L.(¢) > k] for each integer k € [0,n]. First, we see that Zgzl e—cj < (1—c)j (ie.
we’ll only consider j > k) and for this sum to be positive we need > 7_; €; > ¢j. If X; ~ Binom(j, %)
we have

J
P e > ] = PX; > (S5 0] < exp(—iD(C 1))

i=1
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by (i.e. Lemma 5). Now denoting D(<5(|3) = ¢1 > 0, we have

PLo() > K = PEj 2 k> = cj >

i=1
“3"p j > k] < exp(—cik) 4
< Z [Z € —¢j ZeXp —je1) < Tp() (84)
i=k =1 j=k
Therefore we have
- exp(—ci1k) 1
E[L.(6)] <1 ) >k <1 <1 .
[Le(O)) <1+ Z [Le + Z 1 —exp(—c1) + (1 —exp(—cy))?

as desired.
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