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Abstract

Machine learning models are increasingly being trained

across multiple GPUs and servers. In this setting, data is trans-

ferred between GPUs using communication collectives such

as ALLTOALL and ALLREDUCE, which can become a signifi-

cant bottleneck in training large models. Thus, it is important

to use efficient algorithms for collective communication. We

develop TACCL, a tool that enables algorithm designers to

guide a synthesizer into automatically generating algorithms

for a given hardware configuration and communication collec-

tive. TACCL uses a novel communication sketch abstraction

to get crucial information from the designer to significantly

reduce the search space and guide the synthesizer towards

better algorithms. TACCL also uses a novel encoding of the

problem that allows it to scale beyond single-node topologies.

We use TACCL to synthesize algorithms for three collectives

and two hardware topologies: DGX-2 and NDv2. We demon-

strate that the algorithms synthesized by TACCL outperform

the Nvidia Collective Communication Library (NCCL) by up

to 6.7×. We also show that TACCL can speed up end-to-end

training of Transformer-XL and BERT models by 11%–2.3×

for different batch sizes.

1 Introduction

Machine-learning models have been dramatically increas-

ing in size over the past few years. For example, the lan-

guage model MT-NLG has 530 billion parameters [31] and

the Switch-C mixture-of-experts model has 1.6 trillion pa-

rameters [18]. Model sizes are expected to further grow to

increase model accuracy and perform more complex tasks.

These models are too large for the resources of a single GPU

and have to be distributed across multiple servers, each with

several GPUs, using different parallelism strategies like data,

model, pipeline, and expert parallelism [18, 27, 43] for train-

ing and inference. Intermediate data and parameters of the

model at each GPU are accumulated, shuffled, and transferred

over the network between other GPUs for distributed machine

learning, depending on the type of parallelism strategy used.

∗Work was partially done during an internship at Microsoft Research.

The inter-GPU communication bottleneck. Recent work

has shown that GPU idle time spent waiting for network com-

munication can be significant in practice [2, 19, 26, 28]. For

instance, BERT [15] and DeepLight [14] spent 11% and 63%

of time, respectively, with GPUs idle on a 100 Gbps Ethernet

cluster of P100 GPUs [2]. Newer generations of faster GPUs

will only make this problem worse. This inefficient use of

GPUs shows that there is significant model performance to

be gained by optimizing inter-GPU communication.

Collective communication primitives and algorithms. Ef-

ficient communication between GPUs is the key to enabling

fast distributed ML training and inference. Modern GPU

systems use message passing interface (MPI)-based collec-

tive communication primitives, such as ALLREDUCE, ALL-

GATHER, and ALLTOALL to perform inter-GPU communica-

tion (Figure 2 in §2). Collective algorithms implement collec-

tive communication primitives. They route data along various

paths in the network and schedule the necessary computation

(e.g., a sum in ALLREDUCE) while optimizing for latency

and bandwidth characteristics of each link in the network. For

example, a common collective algorithm for ALLGATHER

(all GPUs gather data from all GPUs) is a Ring algorithm,

in which all GPUs are logically arranged in a ring and each

GPU receives data from its predecessor in the ring and sends

a previously received data to its successor. Inefficiencies in

collective communication algorithms can cause poor network

utilization, causing GPUs to remain idle until inter-GPU trans-

fers complete [53], and thus reducing the overall efficiency of

distributed training and inference.

Challenges in designing GPU communication algorithms.

Designing algorithms for efficient collective communication

on GPU topologies is challenging. First, these algorithms have

to strike the right balance between latency and bandwidth op-

timality. For instance, the commonly used Ring algorithm for

ALLREDUCE is not efficient for small input sizes as it has a

high latency. Second, GPU communication algorithms have

to manage the heterogeneity of connectivity in the underlying

topology. For instance, GPUs within a machine (also referred

to as a node) are usually connected using fast NVLinks [38]

(up to 300 GBps aggregate bidirectional bandwidth per GPU)

while GPUs across nodes are connected using slow Infini-





2 Background and Motivation

Collective communication in distributed ML workloads.

Multi-GPU ML workloads typically communicate using MPI-

style collectives like ALLGATHER, ALLTOALL, and ALLRE-

DUCE shown in Figure 2. These primitives capture the applica-

tion’s intent behind the communication, thus allowing collec-

tive communication libraries to optimize for specific hardware

configurations. In ALLGATHER, every GPU receives the data

buffers of all other GPUs (left diagram in Figure 2). In ALL-

TOALL, every GPU receives different parts, or chunks, of the

data buffers present on all GPUs. This effectively transposes

the data chunk from buffer index to GPU index as can be

seen in center diagram in Figure 2. In ALLREDUCE, every

GPU ends up with a data buffer that has the results of per-

forming a point-wise computation (e.g., sum in right diagram

in Figure 2) over the same data index of all GPUs.

The parallelism strategy for the distributed ML workload

determines which collective communication primitive is used.

Data parallelism and some tensor model parallelisms [43]

make use of the ALLREDUCE collective to aggregate gradi-

ents and intermediate data respectively from multiple GPUs.

Expert parallelism [18, 27] and common deep learning rec-

ommendation models (DLRM) [32] make use of the ALL-

TOALL collective to shuffle intermediate data between experts

and embedding lookup data between GPUs respectively. DL-

RMs [32] also make use of the ALLGATHER collective and

another REDUCESCATTER collective to perform embedding

lookups from embedding tables sharded over multiple GPUs.

Existing approaches to collective algorithms. Collective

algorithms must be designed considering the target input sizes

and the heterogeneity of the target topology. However, most

collective communication libraries used for distributed ML

today, including the state-of-the-art NCCL, use pre-defined

templates of collective algorithms superimposed onto a tar-

get topology. For example, for collectives like ALLGATHER

and REDUCESCATTER, NCCL identifies rings in the target

topology and uses the Ring algorithm. For n GPUs, this algo-

rithm requires n−1 link transfer steps per data chunk and is

not ideal for smaller data sizes where link transfer latencies

dominate. Further, this algorithm treats the slow inter-node

and fast intra-node links similarly, scheduling equal number

of data transfers across both. The communication is thus bot-

tlenecked on the slower inter-node links, when it could have

benefitted by sending more node-local data (i.e. data of GPUs

local to the node) over the faster intra-node links instead.

For the ALLTOALL collective, NCCL implements the col-

lective algorithm as peer-to-peer data transfers between all

pairs of GPUs. This algorithm is topology-agnostic and often

inefficient. For the ALLREDUCE collective, NCCL chooses

between two algorithms — Double-Binary-Tree [34] and

Ring. This decision is made according to the communica-

tion input size and number of nodes, but might not be most

accurate, as it is based on hardcoded latency and bandwidth

profiling done previously by Nvidia on their machines.

Designing efficient collective algorithms requires careful

analysis of the topology and its performance with different

buffer sizes. Recent work [9, 51] has shown that synthesis

is a promising approach for generating collective algorithms

for different topologies and to achieve bandwidth and latency

optimality. However, scaling these approaches to multi-node

(i.e. multi-machine) distributed GPU topologies has been a

challenge. We measured the synthesis time for ALLGATHER

and ALLTOALL collectives on topologies of two Azure NDv2

nodes and two Nvidia DGX2 nodes (Figure 5) using SCCL [9,

30]. We modified the codebase to include both topologies

and attempted to synthesize the collectives with a 24-hour

time limit set for each synthesis query. Given a 24-hour time

limit, SCCL’s pareto-optimal solver strategy did not finish

synthesis for any combination of collective and topology. The

only algorithm that SCCL could synthesize within the time

limit was a latency optimal algorithm for ALLGATHER on

two NDv2 nodes.

Low-effort inputs from algorithm designers. The search

space of possible algorithms to implement a collective is

intractably large and cannot be explored via brute-force. De-

ciding whether or not to route data chunks from n GPUs over

l links in a topology has O(2n×l) combinations. As we scale

to multi-node topologies, n as well as l will also scale, increas-

ing the exponent quadratically. The search space explodes

further if we consider the problem of ordering data sends at

each link along with deciding routing for the data. We ar-

gue that high-level inputs from a human algorithm designer

help reduce the search space to make algorithm synthesis

more tractable. In the most extreme case, the designer would

hand-write the entire algorithm. However, handcrafting data

routing and scheduling over links to implement a collective

is complex and requires many design choices. Instead, de-

signers only provide input in the form of a communication

sketch around which TACCL synthesizes an algorithm. Our

goal is to ensure that providing inputs is a low-effort activ-

ity, but can discard large parts of the search space to achieve

improvements in running-time of the synthesis engine.

Synthesis technique. TACCL synthesizes a collective al-

gorithm by deciding the route that each data chunk in the

collective should take in the topology as well as the ordering

of chunks at every link. Even with communication sketches

which reduces the search space for the synthesizer, this deci-

sion problem is NP-hard and the complexity increases expo-

nentially with number of GPUs. To make the problem more

tractable, we first relax the synthesis problem to solve just

the routing of all data chunks and then heuristically order

chunks sent over the same links according to bandwidth con-

straints. TACCL’s synthesizer design along with communi-

cation sketches help TACCL synthesize efficient collectives

for multi-node topologies.









CPU memory over potentially shared PCIe links. Further, vir-

tualization obscures the true PCIe topology (all 8 GPUs and

the NIC appear directly connected to one CPU) and NUMA

node and GPU IDs are not assigned consistently from VM

to VM. This means that, without additional information, soft-

ware cannot avoid contention over shared PCIe links, creating

interference and high variance in performance.

To determine the PCIe topology, TACCL’s profiler sends

bandwidth and latency probes between the two CPUs, be-

tween pairs of GPUs, and between CPUs and the NIC. It

answers the following questions:

• Which CPU is nearest to the NIC? We answer this using

the latency of loopback operations between the NIC and

each CPU.

• Which GPUs share a PCIe switch? We find all pairs of

GPUs that get low bandwidth in a simultaneous copy to

the CPU, indicating contention.

• Which GPUs share a PCIe switch with the NIC? We find

which GPUs get low GPU to CPU bandwidth while the

CPU is doing a loopback with the NIC. The CPU in this

case is the one that is closer to the NIC.

With this profiling information we were able to deduce the

PCIe topology (Figure 5b). Each CPU has two PCIe switches

connecting to two GPUs each, and the Infiniband NIC is

connected to one of these switches. Additionally, by running

the profiler on every new NDv2 VM TACCL is able to select

one of the NVLink topology’s four automorphisms and set

the CUDA_VISIBLE_DEVICES environment variable such that

the NIC is always placed close to GPU 0.

5 TACCL Synthesizer

Once the user has written a communication sketch, they are

ready to call TACCL’s synthesizer. This section describes

the synthesis process TACCL uses, as well as additional

hyperparameters available to the user.

5.1 Problem Formulation

GPUs participating in a communication collective partition

their initial data into C equal chunks where C is a hyperpa-

rameter selected by the user. TACCL’s synthesizer routes and

schedules these chunks. Given a communication sketch and a

collective, the synthesizer decides chunk transfer schedules

across every link in the network, such that each chunk reaches

its destination GPUs as specified by the collective.

TACCL encodes this problem as a mixed integer linear pro-

gram (MILP) with binary and continuous decision variables.

The encoding has a continuous variable called start_time for

every chunk and GPU to indicate when a chunk is available at

a GPU. A binary variable is_sent for all chunk and link pairs

denotes if a chunk is sent over a link. Another continuous

variable send_time indicates when a chunk is sent over a link.

The encoding has bandwidth and correctness constraints to

ensure the correctness of a chunk transfer schedule. The ob-

jective of the MILP is to minimize time which is a continuous

variable indicating the maximum time among all chunks that

must reach their destination GPUs. Details of these variables

and constraints are in Appendix B.

Additionally, TACCL’s synthesizer also decides if it should

merge some chunks and transfer them contiguously as one

large buffer over a link. Sending n chunks contiguously in one

send instruction over a link requires paying only one α latency

cost whereas sending n chunks one after the other requires

paying n×α latency costs. Note that this does not change the

β bandwidth cost. However, sending n chunks separately over

a link enables TACCL to order them such that subsequent

dependent sends from the destination of the link could be

scheduled earlier. TACCL’s synthesizer navigates this trade-

off to minimize the time. TACCL uses this feature only for IB

transfers due to their high α cost and ignores it for NVLinks

due to their lower latency.

MILP problems in general are NP-hard. Luckily, there are

solvers such as Gurobi [20] that apply heuristics to solve

MILPs in a feasible way. However, this requires careful con-

sideration regarding the number of variables and constraints

in the formulation. In TACCL’s formulation, transferring

chunks over a link cannot overlap and an ordering among

them is required. Therefore, potentially a binary decision is

needed for every pair of chunks that may traverse a link. If we

assume there are C chunks for a collective problem, there are

O(C2) such decisions per link. Moreover, as the number of

nodes increase, the number of links increase linearly (larger

topology) and the number of chunks for a collective increases

linearly (ALLGATHER) or even quadratically (ALLTOALL).

This large set of variables and constraints leads to infeasible

solver time and memory requirements.

To solve this problem, we divide the synthesis into three

parts. First, the synthesizer solves an optimization problem

to determine the path used by every chunk without fixing any

ordering among chunks, then it heuristically orders the chunks

over every link, and finally, it solves another optimization

problem to determine chunk contiguity. Complete formal

descriptions of each step are in Appendix B.

Step 1: Routing solves a MILP for finding the path of each

chunk independent of other chunks, allowing chunks sent over

a link to overlap. The objective of this MILP is to minimize

the time, which we constrain to be the maximum of two sets

of variables. (1) for each link, the number of chunks that tra-

verse that link multiplied by the transfer time of a chunk over

that link. (2) for the path of each chunk, the summation of

transfer times of the chunk along every link in the path. Note

that this is only a lower bound on the time since we do not

consider link contention or chunk ordering. TACCL also con-

strains each chunk’s path to be via GPU ranks that are on the

shortest paths from their sources to their destinations using

the links the user decided to include in the logical topology. If



the communication sketch specifies an algorithm symmetry,

TACCL adds the constraints for the symmetric sends. Replac-

ing switches with switch-hyperedges is also applied in this

step. For each switch-hyperedge, a user-provided policy on

the number of unique connections to/form a switch is applied

(see Section 5.2).

TACCL uses Gurobi [20] to solve this MILP and the so-

lution gives every chunk a start_time for each GPU along

its path. Clearly this step solves chunk routing, but only par-

tially solves the chunk scheduling and contiguity problem

and requires follow-up steps (explained next) to account for

ordering the chunks sent over a link as well as minimizing α
costs of sends. However, by using this technique, TACCL’s

synthesizer is able to reduce binary variables needed from

O(C2) to O(C) per link.

Step 2: Heuristic Ordering decides the chunk ordering sent

on each link based on a heuristic. Note that this step is not an

MILP and solely solved by a greedy algorithm. Regardless

of when each chunk becomes available at a GPU, this step as-

signs a total order on the chunks sent over a link l = (src,dst).
This is decided by two heuristic functions. (1) chunks which

need to traverse the longest path from src to their final GPU,

have higher priority. (2) In case there is tie in (1), chunks

which have traversed the shortest path from their initial GPU

to src, have higher priority. This ordering will be used in Step

3 to assign the final schedules.

Step 3: Contiguity and Exact Scheduling solves an MILP

problem to decide which chunks to send contiguously and

gives the exact schedule. The path to be taken by chunks and

their ordering over links have already been determined by the

previous steps which are added as constraints to this MILP.

The start_time and send_time variables are reassigned in this

step by considering both the α and β costs for each transfer.

In this step, the synthesizer allows either sending one chunk

at a time or sending multiple chunks contiguously. This offers

a trade-off between (1) sending the chunks that are available

at the same time for a link according to the ordering in step

2 so that the subsequent sends can be scheduled earlier or

(2) sending the chunks contiguously in one send instruction

to save the latency cost. The objective of this MILP is to

minimize the total time by enforcing all constraints which in

TACCL solved by Gurobi [20]. The solution gives the exact

schedule for each chunk. The details of these constraints and

their formulation are in Appendix B.

5.2 Synthesizer Hyperparameters

TACCL’s synthesizer has some additional parameters that

control the synthesis process. These are provided by the user

to the synthesizer (see Figure 1) through the communication

sketch. Details of each parameter is described in Appendix A.

Buffer Size. TACCL needs the size of input/output buffers

of a collective for the α-β cost model. In ML workloads the

input/output buffer size is a known fixed value.

Chunk Partitioning. The data buffer at each GPU at the start

of the collective can be partitioned into multiple equal chunks.

Each chunk is considered as an atomic scheduling unit by the

synthesizer and different chunks of the same data buffer can

be routed over different links. The semantics of a collective

forces a minimum number of chunks such as ALLTOALL

which needs at least as many chunks as the number of GPU

for each buffer. On one hand, using the minimum number

of chunks is often times ideal for finding latency-optimal

algorithms. On the other hand, providing a higher number of

chunks allows the synthesizer to better utilize the links that

might be idle otherwise which is better for finding bandwidth-

optimal algorithms.

Switch-Hyperedge Policy. TACCL can enforce policies for

the number of connections established over a set of links

in a switch-hyperedge by counting links utilized for data

transfer and setting this count as a part of the MILP objective.

The uc-max policy will maximize the number of connections,

which performs best for small data sizes, while uc-min will

minimize the number of connections, which works well when

the data size is large and congestion is a concern.

5.3 Synthesizing combining collectives

TACCL synthesizes combining collectives (i.e., collectives

that combine chunks like REDUCESCATTER and ALLRE-

DUCE) by utilizing synthesis of non-combining collectives,

similar to the technique used by SCCL [9]. REDUCESCATTER

can be implemented as an “inverse” of ALLGATHER— a send

from a source GPU in ALLGATHER is instead received and

reduced on the source GPU. However, simply inverting the

sends does not work — a GPU may simultaneous send on

different links in an ALLGATHER, but it cannot reduce all re-

ceives together in the inverse case. We thus order the inverse

sends using heuristic ordering followed by contiguity encod-

ing in order to synthesize REDUCESCATTER. ALLREDUCE

is synthesized directly by concatenating REDUCESCATTER

with an ALLGATHER algorithm.

6 Backend

The synthesizer described above generates an abstract algo-

rithm that specifies the order in which the nodes communicate

the various chunks. The goal of the backend is to implement

this abstract algorithm. To do so, we extend NCCL [37] with

an interpreter which we call TACCL runtime. While any

communication algorithm can be trivially implemented using

NCCL’s point-to-point sends and receives, TACCL runtime

enables us to execute the entire algorithm in a single kernel

launch, eliminating multiple launch overheads. In addition,

by reusing NCCL transport mechanisms, TACCL runtime is

able to support all of NCCL’s communication backends such

as IB, Ethernet, NVLink, and PCIe.



6.1 TACCL runtime

The input to TACCL runtime2 is a TACCL-EF program,

which is an XML format for representing collective algo-

rithms. TACCL-EF programs operate on three buffers: input,

output and scratch. For each buffer, the program specifies the

number of chunks it will be sliced into such that all chunks

are equal size. Every step of the algorithm is expressed in

terms of these chunks.

The program is divided into a set of GPU programs made

up of threadblocks. Each threadblock is made up of a se-

ries of steps that are executed sequentially, with each step

specifying an instruction and operands as indices into the

input/output/scratch buffers. The current instruction set in-

cludes sends, receives (with optional reduction), and local

copies. To simplify the implementation of TACCL runtime,

each threadblock can send to and receive from at most one

GPU. Additionally, threadblocks within a GPU can synchro-

nize by indicating that one step depends on another step,

which will cause the interpreter to wait until the dependency

has completed before executing the dependent step.

The TACCL runtime extends NCCL and it is backward

compatible with its API. Therefore, integrating TACCL run-

time into machine learning frameworks such as PyTorch is a

single line change wherein that change swaps the third-party

NCCL library for TACCL runtime. This allows TACCL to

dynamically swap in collective algorithms generated for any

training/inference workload using torch.distributed.

6.2 Lowering to TACCL runtime

To target TACCL-EF, abstract algorithms are lowered to the

executable format. The sets of sends operating on abstract

chunks that comprise the steps of the algorithm are trans-

formed into pairs of send and receive operations operating

on concrete buffer indices. Furthermore, these operations are

placed sequentially into threadblocks and any necessary de-

pendencies recorded between them.

Buffer allocation. Input and output buffers are preallocated

by the user and passed to the collective. Scratch buffers are

allocated by the TACCL runtime per TACCL-EF. Chunks

are indices in the input, output and scratch buffers. For chunks

that are common for both the input and the output buffers (e.g.

as in ALLGATHER) a local copy from input to the output

buffer is performed at the end.

Instruction generation. The operations of the abstract algo-

rithm are split into two instructions for the sender and receiver

GPU, and chunks are translated into buffer references and in-

dices according to the buffer allocation.

Dependency insertion. TACCL transforms a synthesized

algorithm into the asynchronous execution model of TACCL-

EF and dependencies for each buffer index are inserted to

2Link to code: https://github.com/microsoft/msccl

ensure that the data dependencies present in the abstract algo-

rithm are honored.

Threadblock allocation. Instructions are grouped such that

all of them are either sending to at most one GPU and/or re-

ceiving from at most another GPU (possibly different). Order

of the instructions inside a group should follow the order of

the abstract algorithm. TACCL allocates a threadblock for

each group of instructions.

Instances. NCCL and consequently TACCL runtime cannot

saturate the bandwidth of a link in a topology using a single

threadblock. Thus, TACCL generates multiple instances of

the algorithm to maximize the performance. This is done by

subdividing each chunk into n subchunks that follow the same

path as the parent chunk. All groups of instructions and their

threadblocks are duplicated n times and executed in parallel.

§7.2 explores the performance implications of choices of n.

7 Evaluation

We evaluate algorithms obtained with TACCL for ALL-

GATHER, ALLTOALL, and ALLREDUCE collectives on a clus-

ter of 32 GPUs comprised of two Nvidia DGX-2 nodes or up-

to four Azure NDv2 nodes. To compare performances, algo-

rithm bandwidth [33] measurement is used which is calculated

by input buffer size divided by execution time. We synthesize

TACCL algorithms by exploring different communication

sketches and compare them against the popular Nvidia Collec-

tive Communication Library (NCCL) (v.2.8.4-1). This section

analyzes how different communication sketches impact the

performance of the algorithms synthesized by TACCL. In par-

ticular, we perform ablation studies by varying the inter-node

connections in the logical topology, changing synthesizer hy-

perparameters, and changing the number of instances used

when lowering to TACCL-EF. To evaluate how TACCL’s

speedups translate to end-to-end performance, we use algo-

rithms generated by TACCL in two large language models,

Transformer-XL and BERT. Finally, we discuss the synthesis

time required by TACCL to generate these algorithms.

We believe our focus on up to 32 GPUs covers a large

section of important use cases: in an internal cluster of DGX-

2 nodes at Microsoft, the sum of GPUs in jobs of at most 32

was 93.7% of all jobs in the second half of 2021.

7.1 Standalone Experiments

All our communication sketches for DGX-2 and NDv2 use a

hierarchical symmetry like the one in Example 3.4.

7.1.1 ALLGATHER

ALLGATHER on DGX-2. Figure 6(i) shows the algorithm

bandwidth for TACCL’s synthesized algorithms on two DGX-

2 nodes for each output buffer size and plots it against that of









AllGather

Sketch Time(s)

dgx2-sk-1 35.8

dgx2-sk-2 11.3

ndv2-sk-1 2.6

AlltoAll

Sketch Time(s)

dgx2-sk-2 92.5

ndv2-sk-1 1809.8

ndv2-sk-2 8.4

AllReduce

Sketch Time(s)

dgx2-sk-1 6.1

dgx2-sk-2 127.8

ndv2-sk-1 0.3

Table 2: Synthesis time for TACCL algorithms for different

collectives using different communication sketches.

into TACCL-EF with 1 and 8 instances, and show the per-

formance of both against NCCL. Figure 10a and Figure 10b

show the training throughput obtained by using TACCL’s

collective algorithms for communication instead of NCCL for

Transformer-XL and BERT respectively for different batch

sizes. TACCL speeds up training of Transformer-XL by

11%− 1.94× on 2 nodes and by 2%− 1.44× on 4 nodes.

The speedup for BERT is 12% − 2.36× on 2 nodes and

7%−1.74× on 4 nodes. Depending on the memory available

per GPU and on how the batch size affects model accuracy,

any of these batch sizes might be chosen for use in practice.

We also use algorithms synthesized by TACCL for ALL-

TOALL and ALLREDUCE collectives for training an inter-

nal Microsoft’s mixture-of-experts workload on two NDv2

nodes. The ALLTOALL and ALLREDUCE sizes required for

this model are ≈ 6MB and ≈ 256MB, respectively. TACCL

improves the end-to-end throughput of this model by 17%.

7.4 Synthesis Time

Table 2 shows the total time it takes for TACCL to synthe-

size algorithms for different collectives using some of the

communication sketches mentioned in Section 7.1. In most

cases synthesis takes from seconds to a few minutes, making

it amenable to a human-in-the-loop approach. When synthe-

sizing an ALLTOALL collective using some communication

sketches, TACCL’s contiguity encoding may take more time

in proving the optimality of a feasible solution. We put a time

limit of 30 minutes on the contiguity encoding in these cases.

The contiguity encoding for sketch ndv2-sk-1 reaches this

timeout, but a feasible solution was already found in 4min

14s. We have also been able to synthesize an ALLGATHER

for 80 GPUs (10 NDv2 nodes) in under 8 minutes.

8 Related Work

The MPI standard provides a set of collective communication

algorithms that enable efficient distributed computations of

interconnected nodes [16]. The HPC community has focused

on the efficient implementation of these MPI collective al-

gorithms [40, 50] and demonstrated how to build optimized

algorithms for specific interconnects, like mesh, hypercube, or

fat-tree [7,8,41]. In contrast to TACCL, these prior works as-

sume homogeneous interconnects and are often only focused

on bandwidth optimality. Hybrid algorithms [7, 10] combine

bandwidth- and latency-optimal algorithms based on input

sizes, but only qfor mesh networks.

NCCL [37] is a GPU implementation of a subset of the

standard MPI collectives, optimized for NVLINK and Infini-

band interconnects. While NCCL uses the topology of GPU

connections and NIC placement along with buffer size to de-

cide between two main types of communication algorithms —

Ring and Tree, it is agnostic to the exact performance profile

of the links, and thus (as we show) is often multiple times

slower than TACCL’s topology aware collectives.

Recent works like SCCL [9], Blink [51], and Plink [29] spe-

cialize algorithms for the underlying topology. SCCL solves

an integer programming encoding based on discrete-time val-

ues in the form of steps and rounds of the algorithm in order to

achieve the pareto-frontier of latency- and bandwidth-optimal

algorithms. SCCL is able to synthesize a novel pareto-optimal

ALLGATHER algorithm for an Nvidia DGX1 node, but its re-

strictive formulation constrains it to only only synthesize

algorithms for single-node topologies. TACCL on the other

hand synthesizes collective algorithms for multi-node topolo-

gies. Blink uses a heuristic spanning-tree packing algorithm

to maximize bandwidth utilization within a node and a hier-

archical approach across. Blink has good performance over

NCCL in the case when NCCL cannot create rings spanning

all GPUs inside a node. TACCL, on the other hand, outper-

forms NCCL when using the entire node of GPUs. Plink

constructs a logical topology based on bandwidth and latency

probes of the physical topology to avoid oversubscribed and

congested links and searches for a reasonable clustering of

nodes for a two-level hierarchical reduction strategy. Plink

builds that hierarchical reduction from known primitives and

does not search over the space of possible algorithms.

There are also hierarchical approaches to implement col-

lectives [12, 29, 42, 51]. For example, Horovod [42] imple-

ments an ALLREDUCE by a local ReduceScatter, a global

ALLREDUCE, and then a local ALLGATHER. These meth-

ods do not search over possible algorithms, but instead pick

from a known set of decompositions. Concurrent to our work,

Ningning et al. [52] use syntax guided synthesis to combine

base MPI primitives among a subset of nodes to hierarchi-

cally generate larger MPI primitives for the entire network. In

contrast, TACCL uses a fine grained approach for algorithm

synthesis while using communication sketches for scalabil-

ity. Combining these two complementary approaches is an

interesting opportunity for future work.

Program sketching [24, 47, 49] is a popular technique that

has been applied to a variety of problems from synthesizing

stencil computations [48], converting hand drawings to im-

ages [17] to social media recommendations [11]. Our work

builds on this body of work to use sketching to effectively

search a large space of communication algorithms.

Lastly, network flow problems have used linear program-

ming to solve routing and scheduling problems for traffic

engineering [22,23,25,44, 46] and topology engineering [45].



These techniques, however, cannot be used for generating col-

lective algorithms since communication collectives do not fol-

low all flow properties. Non-source GPUs in a collective can

send the same chunk over different links in parallel while hav-

ing received that chunk only once, which violates an important

flow-conservation property used extensively in network flow

problem literature. TACCL on the other hand makes use of

communication sketches and an encoding relaxation tech-

nique to solve a continuous-time integer linear programming

that faithfully models communication collectives.

9 Conclusion and Future Work

TACCL is a topology and input-size aware collective commu-

nication library for multi-node distributed machine learning

training and inference. TACCL uses user-provided commu-

nication sketches to guide synthesis of collective algorithms.

Using a three-step technique of relaxed routing, heuristic or-

dering, and contiguity and exact scheduling, TACCL gener-

ates efficient collectives for multi-node topologies. We also

make some brief observations about TACCL below:

Scalability. TACCL can synthesize algorithms for large-

scale nodes - we have been able to synthesize an ALLGATHER

algorithm for 8 Azure NDv2 nodes using TACCL in under

5 minutes. As compared to NCCL, this algorithm has up-

to 1.7× higher algorithm bandwidth for different data sizes.

We also evaluated TACCL’s synthesis for 8 Nvidia DGX-2

nodes (128 GPUs) and found a solution in around 11 hours.

While TACCL scales to multi-node topologies, the synthesis

technique is still based on solving an NP-hard problem that

grows exponentially with a quadratic power with scale. As

a future work, we would like to scale TACCL further by

hierarchically composing synthesized algorithms.

Generality across different topologies. Apart from hier-

archical topologies like Nvidia DGX-2 and Azure NDv2,

TACCL can also be applied to non-hierarchical topologies

like a 2D-Torus. We were able to synthesize an ALLGATHER

algorithm for a 2D 6×8 Torus using TACCL. We made use of

the symmetry attribute in communication sketches to explore

synthesis for this topology. However, the amount of explo-

ration we can do with different communication sketches may

be more limited in these cases than for hierarchical topologies.

Exploring communication sketches. Communication

sketches have proven effective in narrowing the search space

of algorithms. Interestingly, different communication sketches

can optimize different ranges of input sizes. Communication

sketches reflect the intuition of developers, and by intelli-

gently exploring the space of communication sketches we can

obtain a range of collective algorithms with different perfor-

mance characteristics. Learning an automated controller for

exploring communication sketches is an interesting direction

for collective algorithm synthesis in the future.

To conclude, TACCL uses the abstraction of communica-

tion sketches and a novel problem formulation to generate

efficient algorithms for collectives like ALLGATHER, ALL-

TOALL, and ALLREDUCE. The algorithms thus generated are

up-to 6.7× faster than the state-of-the-art NCCL and result

in 11%−2.4× faster end-to-end training time.
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Appendix

A Communication Sketch Input

TACCL adopts a user-in-the-loop approach where algorithm

designers provide a communication sketch to guide communi-

cation algorithm synthesis by TACCL. TACCL’s synthesizer

takes in a profiled topology provided by TACCL profiler

along with a communication sketch provided by a human-

in-the-loop. A communication sketch comprises of a logical

topology, switch-hyperedge strategy, symmetry information,

input size, and other hyperparameters. Listing 1 gives an ex-

ample of how users can provide a communication sketch input

to the TACCL synthesizer. Here, we show an example of the

communication sketch dgx2-sk-1 used in the evaluation to

synthesize an ALLGATHER algorithm for 2 Nvidia DGX-2

nodes (each node has 16 GPUs and 8 NICs, every two GPUs

in the node share a NIC).

The sketch annotates the NVSwitch in each node and sets

a uc-min switch-hyperedge strategy. Further, the inter-node

sketch fixes the sender and receiver GPUs in a node for inter-

node data transfers. In our example, the odd-numbered GPUs

sharing a NIC are chosen as senders and the even-numbered

GPUs are chosen as receivers for inter-node communication.

The user also annotates how the inter-node relay GPUs would

split the inter-node bandwidth using a beta_split attribute.

Since only a single GPU per NIC is chosen in our example to

perform inter-node send and similarly receive, the bandwidth

is not split. Optionally, the user can also map chunks to sender

GPUs so that only mapped GPUs are used for inter-node trans-

fers for the chunk. The chunk_to_relay_map attribute defines

the parameters for the mapping function. The communication

sketch also allows users to play with rotational symmetry for

data routing. Given a symmetry offset and a group size, a

chunk transfer over a link is set to be equivalent to a rota-

tionally symmetric chunk over a rotationally symmetric link.

In our example of the symmetry_offset attribute, using [2,16]
fixes an intra-node symmetry with an offset of two, and using

[16,32] fixes a symmetric data transfer pattern between the

two DGX-2 nodes. Hyperparameters like input data partition-

ing and input size can also be provided via the communication

sketch.

Listing 1: Example sketch dgx2-sk-1 for ALLGATHER

{

// sketch for intra-node policy

"intranode_sketch": {

"strategy": "switch",

"switches":

[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]],

"switch_hyperedge_strategy": ["uc-min"]

},

// sketch for communication policy between any

two nodes

"internode_sketch": {

"strategy": "relay",

"internode_conn": {"1" : [0], "3" : [2], "5"

: [4], "7" : [6], "9" : [8], "11" :

[10], "13" : [12], "15" : [14]}, // "i":

[j1, j2] implies GPU i in a node will

only send data to GPU j1 and j2 of

another node

"beta_split": {"1": 1, "3": 1, "5": 1, "7" :

1, "9" : 1, "11" : 1, "13" : 1, "15" :

1}, // "i": n implies inter-node sends

from a GPU i of a node will use 1/n-th

of the inter-node bandwidth

"chunk_to_relay_map": [2,1] // maps chunk to

a sender relay GPU. [r1,r2] means chunk

c will be send to another node via GPU

(rp//r1)*r1 + r2, where rp is the

precondition GPU for chunk c

},

// enforces rotational symmetry.

// [(o,g), ..]: o is the rotational offset and

g is the group size for the rotational

symmetry.

// : eg. send(c,src,r) == send( (c + o)%g, (src

+ o)%g, (r + o)%g)

"symmetry_offsets": [[2, 16], [16, 32]],

"hyperparameters": {

"input_chunkup": 2, // Data at each GPU is

partitioned into 2 chunks that can be

independently routed

"input_size": "1M"

}

}

B TACCL Synthesizer in Detail

As explained in Section 5, TACCL’s synthesizer has rout-

ing, heuristic ordering, and contiguity and exact scheduling

stages. We provide a detailed description of each of these

stages in this section. We first formally introduce some terms

that we will use later. Let C denote the set of chunks that

are required to be routed in the algorithm for collective coll.

Let R denote the set of GPU ranks involved in coll. Let

coll.precondition and coll.postcondition denote the precon-

dition and post-condition of the collective respectively.The

tuple (c,r) ∈ coll.precondition,c ∈ C ,r ∈ R , if chunk c is

present at rank r at the start of the collective. Similarly, the



(c,r) ∈ coll.postcondition if chunk c has to be present at rank

r at the end of the collective. Further, let L denote the set of

links, such that (r1,r2) ∈ L ,r1 ∈ R ,r2 ∈ R if there exists

a link from rank r1 to rank r2 in the logical topology deter-

mined by the topology and communication sketch. Let S send
r

denote the set of switched destinations for rank r, such that

dst ∈ S send
r if link (r,dst) is a part of a switch-hyperedge. Sim-

ilarly, S recv
r denotes the set of switched sources for rank r, such

that src ∈ S recv
r if link (src,r) is a part of a switch-hyperedge.

α(r1,r2), β(r1,r2) are the alpha and beta costs respectively

of the link (r1,r2) ∈ L . The term lat(r1,r2) is the sum of

α(r1,r2) and β(r1,r2) cost of the link, which denotes the

total transfer cost of a single chunk over link (r1,r2). Table 3

lists the variables that the TACCL’s synthesizer solves for.

We will describe each variable in detail in this section.

B.1 Routing

The main aim of the routing stage is to give us the path

that every chunk takes in the collective. Our objective is to

minimize the time (denoted by continuous variable time) it

takes to reach the post-condition of the collective.

Minimize time (1)

The time taken for the collective algorithm is the latest time

at which a chunk becomes available on a rank that is in the

post-condition of the collective. We use a continuous variable

start[c,r] to denote the time that chunk c becomes available

on rank r, and end up with the following constraints for time

time ≥ start[c,r] ∀(c,r) ∈ coll.postcondition (2)

For chunks on ranks that belong to the collective’s precon-

dition, we set the start time to zero.

start[c,r] = 0 ∀(c,r) ∈ coll.precondition (3)

We also add correctness constraints in our formulation for

routing - chunks are sent from a GPU rank only after they

have been received on that rank. We introduce a continuous

variable send[c,src,r] to denote the time of sending chunk c

from rank src to rank r and add the following constraint to

our formulation:

send[c,src,r]≥ start[c,src] ∀c ∈ C ∀(src,r) ∈ L (4)

We use a binary variable is_sent[c,src,r] to indicate if

chunk c is sent over the link (src,r) in our algorithm. We

note that the routing stage does not strictly respect bandwidth

constraints of any link - the generated solution may send two

chunks simultaneously over a link at the time cost of one

chunk. The chunk start time on a rank will be determined

only by the chunk send time on the source, independent of

other chunk transfers on the link (eq. 5). LHS→RHS in the

equation signifies an indicator constraint, i.e., if LHS is 1,

RHS will hold.

is_sent[c,src,r]→start[c,r] = send[c,src,r]+ lat(src,r)

∀c ∈ C ∀(src,r) ∈ L

(5)

Instead of bandwidth constraints, this encoding uses relaxed

bandwidth constraints. They are expressed by aggregating

the link transfer time of all chunks sent over a link and using

it to to lower bound the total time of the algorithm (eq. 6). For

switched connections, the total time is lower bounded by the

sum of link transfer times of all chunks sent over all switched

outgoing links from a source, and also by the sum of link

transfer times for chunks received from all incoming links to

a destination (eq. 7 and eq. 8).

time ≥ ∑
c∈C

(lat(src,r)∗ is_sent[c,src,r]) ∀(src,r) ∈ L

(6)

time ≥ ∑
c∈C

∑
dst∈S send

r

(lat(r,dst)∗ is_sent[c,r,dst]) ∀r ∈ Ssend

(7)

time ≥ ∑
c∈C

∑
src∈S recv

r

(lat(src,r)∗ is_sent[c,src,r]) ∀r ∈ Srecv

(8)

Based on the communication sketch, we also add con-

straints for uc-max and uc-min strategies for switch-

hyperedges to maximize and minimize the number of links

utilized in a switch respectively. We introduce a new binary

variable is_util[src,r] for links (src,r) that are a part of a

switch-hyperedge. This variable is 1 if any chunk is sent over

link (src,r), and 0 otherwise.(eq. 9 and eq. 10). According to

the switch-hyperedge strategy, we add this variable, weighted

with a small constant γ, to the objective function (eq. 11). γ is

negative for uc-max and positive for uc-min.

is_util[src,r]>= is_sent[c,src,r] ∀c ∈ C∀(src,r) ∈ L

(9)

is_util[src,r]<= ∑
∀c∈C

is_sent[c,src,r] ∀(src,r) ∈ L (10)

Minimize time+ γ× ( ∑
(src,r):switched links

is_util[src,r])

(11)

We also add symmetry constraints according to the symme-

try offsets provided by user in the communication sketch. For

a chunk c and link (src,r), we identify a rotationally symmet-

ric chunk ĉ and link ( ˆsrc, r̂) and add the following constraints:

start[c,r] = start[ĉ, r̂] (12)

send[c,src,r] = send[ĉ, ˆsrc, r̂] (13)

is_sent[c,src,r] = is_sent[ĉ, ˆsrc, r̂] (14)



MILP Variables Explanation

Routing

time time spent in the collective algorithm

start[c,r] time at which chunk c becomes available at GPU r

send[c,src,r] time at which chunk c is sent from GPU src to GPU r

is_sent[c,src,r] indicates if chunk c is sent from GPU src to GPU r

is_util[src,r] indicates if any chunk is sent from GPU src to GPU r

Contiguity

is_together[c,o,r] indicates if chunks c and o are sent to GPU r together

from the same source, thus sharing the bandwidth and

reducing the latency cost of transfer

Table 3: Variables used in TACCL’s MILP formulation. Vari-

ables with prefix is_ are binary variables and others are con-

tinuous variables.

Further, for chunks that start on one node and have a final

destination on another node, we add inter-node transfer con-

straints which specify that at least one inter-node link will be

used to transfer that chunk.

∑
(r1,r2)∈L :r1∈node1,r2∈node2

is_sent[c,r1,r2]≥ 1 (15)

B.2 Ordering Heuristics

We start the heuristic ordering by determining the paths each

chunk takes using the solution of the path encoding. We then

consider the first link in every path as a candidate for schedul-

ing a chunk transfer. Using heuristics like chunk-with-shortest-

path-until-now-first and chunk-with-longest-path-from-now-

first, we select a path (and thus a chunk) which should be

scheduled in this round. We keep a running estimate of link

time, which is the earliest time at which a chunk can be sched-

uled over the link. We also keep a running estimate of chunk

time, which is the earliest time at which the next link transfer

can be scheduled for a chunk. At the start, the link time for ev-

ery link is 0 and the chunk time for every chunk is 0. When a

path is chosen in the first round, the chunk associated with the

path is scheduled to traverse the first link in the path. The link

time of that link increases by link latency and chunk time of

that chunk increases by link latency. The link candidate from

the selected path is also updated to be the next link in the path.

For the next rounds, we decide which path’s candidate link to

schedule next using the tracked link and chunk times along

with the scheduling heuristics. This keeps going until we have

scheduled a data transfer over all the links in all the paths.

We find that the best heuristics differ for architectures with

NVLinks and those with NVSwitches, in terms of whether to

start selecting links to schedule in the same order as the paths

or in the opposite order of the paths. The heuristic ordering

has the following three outputs:

• chunk_order(r1,r2), an ordered list of chunks trans-

ferred along each link (r1,r2). If chunk c1 is present

before chunk c2 in chunk_order(r1,r2), it denotes that

c1 is scheduled to be sent before c2 over link (r1,r2).

• switch_send_order(r), an ordering on the chunks sent

from a switch source r to any of the switch destinations

dsts. If (c1,dst1) is present before tuple (c2,dst2) in

switch_send_order(r), it means that a send of c1 over

link (r,dst1) should be scheduled before a send of chunk

c2 over link (r,dst2).

• switch_recv_order(r), an ordering on the chunks re-

ceived on a switch destination r from any of the

switch sources srcs. If (c1,src1) is present before tu-

ple (c2,src2) in switch_recv_order(r), it means that a

receive of c1 over link (src1,r) should be scheduled be-

fore a receive of chunk c2 over link (src2,r).

B.3 Contiguity and Exact Scheduling

Finally, we describe the formulation for the contiguity and

exact scheduling stage. Given the link and switch ordering

from the heuristic ordering stage, the aim of this stage is

to find the sweet spot in the trade-off between lower link

latency by sending multiple data chunks contiguously as a

big data chunk and reduced pipelining benefits due to the big

data-chunk transfer. We provide the main set of constraints

in our formulation below, leaving out other less important

constraints.

Our objective is still to minimize the time of the collective

and constraints eq. 1-eq. 4 must still hold in this formulation.

We add a new binary variable is_together(c1,c2,r) for all

chunks c1 and c2 that are sent over the same link to rank r.

If is_together(c1,c2,r) is 1, chunks c1 and c2 are sent as a

single data-chunk over a link to rank r.

is_together[c,o,r]→send[c,src,r] = send[o,src,r]

∀c,o ∈ chunk_order(src,r) ∀(src,r) ∈ L
(16)

The transfer time of a data chunk c along a link (src,r) will

be determined by all other data chunks that it has to travel

together with:

lat[c,src,r] =α(src,r)+β(src,r)∗

( ∑
o∈chunk_order(src,r)

is_together[c,o,r])

∀c ∈ chunk_order(src,r) ∀(src,r) ∈ L

(17)

start[c,r] =send[c,src,r]+ lat[c,src,r]

∀c ∈ chunk_order(src,r) ∀(src,r) ∈ (L)

(18)

We also add strict bandwidth constraints for this formu-

lation, allowing only one data chunk per link transfer time




