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ABSTRACT

Line-edge roughness (LER) characterization
is vital in the semiconductor industry. This paper
presents an EKEI (enhanced knife edge
interferometry)-based method for photomask
LER characterization. The changes in fringe
pattern caused by edge roughness were derived
and analyzed by cross-correlation index. A
negative relationship between the cross-
correlation and the LER value was observed. The
result is validated by both simulation and
experiment, indicating that the proposed method
can detect both roughness changes and residual
pollution on photomask edge.
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INTRODUCTION

With the demand for rapidly growing
semiconductor industries, lithography-related
system is getting increasing attention [1]. During
the lithography process, even tiny defect on
photomask can greatly compromise the quality of
final products. Therefore, the photomask
inspection technology, as a potential method to
deal with this problem, has became a research
hotspot in this area [2]. In photomask inspection,
the most critical parameters to be measured
include dimension, defect, and LER (line edge
roughness) [3-4]. Currently, most used photomask
inspection method includes SEM, TEM [5-14]
and AFM [15-18]. However, these methods are
very expensive and time consuming. Therefore, a
high-speed and low-cost inspection method is in
high demand. In this study, an EKEI (enhanced
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knife edge interferometry)-based photomask LER
characterization = method, which is an
improvement of previous developed KEI-based
system, is proposed [19-23]. By building a
geometrical-based optic model, the LER’s
influences towards detected fringe patterns can be
analyzed. Thus, both edge defects and LER
anomaly on photomask can be detected. The
performance of this method was verified by both
numeral simulation and experiments.

LER EVALUTION PRINCIPLE

The LER measurement principle is based on
Fresnel number-based geometry optic model.
Figure 1 shows the schematic for the EKEI-based
KEI characterization system. The setup is similar
to author’s previous work [21].

This Fresnel zone-based fringe pattern can be
directly estimated using Eq.1 [19]:
F= o
B A X Zeff

(M

where a is the radius of the beam at the photomask
plane, A is the light wavelength, Z.y is the
effective distance of the optical system.

In Eq.1, the odd terms of the Fresnel zone provide
positive contribution for the recorded intensity
while the even term provides negative
contribution.

Eq.1 can be converted to [19]:
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where NA is the numerical aperture from the
objective lens and Zg,. is the distance from the
photomask to the objective lens focal point.

In this paper, the LER is introduced into
simulation model. The LER can be defined as 3
times the standard deviation of the edge profile,
which is controlled by 2 parameters: duty ratio
(D/P) and the intensity (I) shown in Fig.1. Thus,
the definition of LER can be re-written as:

fD D
LER =3 x I |5 (1=3). 3)

The Fresnel zone will be blocked by the LER
affected edges; thus, the fringe pattern changes
with different blocking area. Therefore, LER can
be measured by fringe pattern changes.

NUMERICAL SIMULATION

The simulated datasets consist of 10 groups of
fringe pattern, among which, nine sets were
generated by edges with different LER while the
remaining one generated by smooth edge is
considered as reference.

As shown in Fig.1(a), the magnitude of fringe
pattern decreases when LER increases.
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Figure 1. (a) Simulated fringe pattern with
different LER conditions, (b) similarity for
different LER condition-generated fringe pattern
based on cross-correlation method.

The changes in simulated fringe pattern can be
further evaluated by a cross-correlation-based
method [20], as shown in Fig. 1(b). It is clearly
indicated that there is a strong negative
correlation between the LER value and the
similarity value.

EXPERIMENTS

The system prototype, shown in Fig.2, consists of
a well-collimated monochromatic laser diode, a
dimension-fixed thin aperture, an ideal objective
lens with a certain numerical aperture (NA), a XY-
motorized stage, and a PD-assisted op-amp.

Figure 2. Measurement method: Enhanced
knife-edge interferometry

A well-collimated green laser light (A 532 nm)
passes through a ¢1.0 mm aperture, then further
re-shaped by an objective lens (NA = 0.4). Once
the light passes through the photomask, it shines
on the PD sensor.

The photomask is fixed on a XY-motorized linear
stage, its line patterns’ fringe pattern are recorded
when the stage moves. The scanning speed is
Imm/s with a 25mm moving resolution.

Photo of real experiment setup is shown in Fig.3.
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Figure 3. Experiment setup

As discussed in previous part, the cross-
correlation index between experiment groups and
reference group were calculated to evaluate LER
changes. In the design, LER varies from 2.40 um
to 5.88 um. For verification purpose, the LER
value of each line pattern was also measured by
optical microscope, as shown in Fig.4.
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Figure 4. LER values calculated from design,
photomask, and printed wafer patterns.

Difference exists between LER values in designed
and manufactured samples, which could be

caused by the resolution limitation of microscope.

Fig.5 shows how the designed LER line pattern is
transferred to real photomask product.

Sample 10

Sample 9
Figure 5. Photomask LER design and images of
the fabricated patterns: (a) photomask LER design
(left), (b) pictures of real photomask with
designed LER

RESULTS

Fringe pattern results of different line edges are
shown in Fig.6.
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Figure 6. Fringe patterns of photomask cases.

As the LER increases, the intensity for the first
order fringe decreases and the high-order fringe is
attenuated.

Cross-correlation results are further calculated,
as showed in Fig.7.
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Figure 7. LER characterization: result by cross-
correlation method

The similarity decreases while the LER value
increasing on the line pattern. When the LER
value changes from 2.40 um to 5.88 um, the
similarity decreases by 0.0183.

Overall, the experiment result agrees with the
relationship obtained from simulation. However,
slight difference exists between simulation results
and experiment data, which could be caused by
two factors: alignment error and slightly
anisotropic property of glass.

To further evaluate the performance of proposed
method, fringe patterns of residual polluted the
edge were also measured as shown in Fig.8. The
fringe pattern of polluted edge was attenuated at
the beginning, then increased gradually. This is
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because the residual can partially cover the edge
but cannot block the light completely. This result
indicates that the proposed system might be
applied for in-process lithography monitor.
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Figure 8. Photomask defect inspection: (a)
particles on the photomask and (b)
interferometric fringe pattern

Conclusion and future work

This paper proposed an EKEI-based photomask
inspection system for LER and defect
characterization. A Fresnel number-based
geometrical optic modal was built, and a cross-
correlation-based method was used for LER
evaluation. Through numerical simulation, fringe
patterns under various LER conditions were
computed and analyzed, strong negative
correlation between the cross-correlation index
and LER values were observed on the line
patterns.  Experiment from  manufactured
photomasks show good agreement with the
simulation results. In addition, the methods also
show the potential to detect the residual pollution
on the edge. For the future work, 1-D wavelet
transform method could be employed as a more
promising fringe pattern analyze method, which
can provide much more profound information of
edge characteristic, as shown in Fig.8.

Figure 8. Results from 1-D wavelet transform
method
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