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Abstract

Equivariant representation is necessary for the brain and artificial perceptual sys-
tems to faithfully represent the stimulus under some (Lie) group transformations.
However, it remains unknown how recurrent neural circuits in the brain represent
the stimulus equivariantly, nor the neural representation of abstract group operators.
The present study uses a one-dimensional (1D) translation group as an example to
explore the general recurrent neural circuit mechanism of the equivariant stimulus
representation. We found that a continuous attractor network (CAN), a canonical
neural circuit model, self-consistently generates a continuous family of stationary
population responses (attractors) that represents the stimulus equivariantly. Inspired
by the Drosophila’s compass circuit, we found that the 1D translation operators
can be represented by extra speed neurons besides the CAN, where speed neurons’
responses represent the moving speed (1D translation group parameter), and their
feedback connections to the CAN represent the translation generator (Lie algebra).
We demonstrated that the network responses are consistent with experimental data.
Our model for the first time demonstrates how recurrent neural circuitry in the
brain achieves equivariant stimulus representation.

1 Introduction

Neuronal responses in the brain internally represent the stimulus s in the world. When the stimulus
changes due to some transformations, the brain updates its internal representation accordingly to
faithfully reflect the stimulus change. For example, V1 neurons encode the visual orientation, and their
population responses track the changing orientation which enables subsequent brain areas to decode
the instantaneous orientation. Transformations acting on a continuous stimulus can be described
by the Lie group theory [1], and a neural representation reflecting the stimulus transformation is
called group equivariant representation [2–4]. Mathematically, supposing a Lie group G acting on a
continuous stimulus s, the evoked neural population response ū(s) (a continuous function of s, and ū
denotes the mean response) is equivariant with the action of group G (group homomorphism) if,

T̂g · ū(s) = ū(Tg · s), ∀g ∈ G, ∀s. (1)
∗Corresponding author.
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Figure 1: (A) An equivariant map between the stimulus and the neural representation. (B) Tuning
curves (mean responses) of a population of homogeneous neurons in response to a one-dimensional
stimulus feature s, where each neuron j has its unique value of preferred stimulus xj . The tunings of
neurons have the same profile and only differ in the preferred stimulus xj . (C) A one-dimensional
translation operator T̂ (a) shifts the population response ū(x− s) by amount a.

T̂g and Tg are the induced actions (operators) with group element g ∈ G which respectively act on
neuronal responses and the stimulus, and · denotes the action of group operators. Intuitively, the
equivariant neural representation (Eq. 1) implies the neuronal responses evoked from a transformed
stimulus (e.g., rotating the orientation of Gabor images), i.e., ū(Tg · s) (Fig. 1A, blue path) would be
the same as transforming the neuronal responses evoked by the original stimulus along the stimulus
manifold, i.e., T̂g · ū(s) (Fig. 1A, green path).

The equivariant representation is indispensable for the brain to represent the stimulus under transfor-
mations. An equivariant neural circuit is not only required to represent the stimulus equivariantly
(ū(s), Eq. 1), but it also needs to explicitly represents the Lie group operators (T̂g , Eq. 1). Explicitly
representing group operators enables the brain to actively synthesize a transformed stimulus and
predict the changing stimulus under transformations [5]. For example, when tracking a moving object,
the brain not only represents the object’s instantaneous position s, but also represents its moving
speed (the translation group parameter) in order to predict the stimulus position in the next time step.
Yet it is an open question as to how recurrent neural circuits in the brain equivariantly represent the
stimulus, and how abstract group operators are represented in the brain.

Neuroscientists utilized the Lie group to investigate the perception and representation in the brain
(e.g., [6–14]), however, nearly none of previous studies linked the abstract group theory to concrete
biological recurrent circuit dynamics. Meanwhile, although equivariant neural networks have been
extensively studied recently in machine learning (ML) research to capture transformations of stimuli
(input data) defined on graphs (e.g., [15]) or defined on smooth manifolds (e.g., [3, 4, 16, 17]), nearly
all these studies focused on developing feedforward weights which act as group convolution kernels in
order to yield equivariant outputs under group transformations. There has not been much ML research
studying equivariant recurrent networks, nor explicit network representations of group operators.

To provide theoretical insight into this fundamental question, we used a 1D translation group acting
on a 1D stimulus feature as an example to investigate the general recurrent circuit mechanism
of equivariant representation. We found the equivariant stimulus representation can be naturally
realized in continuous attractor networks (CANs) which self-consistently generate a continuous family
of stationary population responses (attractors) to represent the stimulus equivariantly. Moreover,
the translation group operators are represented by separate neuronal populations whose responses
represent the translation speed (translation group parameter). The feedback connections from speed
neurons to CANs are shifted on the stimulus manifold, which encode the translation generator (Lie
algebra). We compare the proposed recurrent circuit model with Drosophila’s internal compass circuit
to show its biological plausibility. The present study is one of the first studies linking the equivariant
representation to a biologically plausible neural circuit model with rigorous mathematical analysis. It
will shed light on the neural representations in the brain.

2 Translation group and homogeneous neural population code

We start from a concrete Lie group and neural representation to investigate the general circuit
mechanism of equivariant representation. As an example, we consider a 1D translation Lie group
T acting on a 1D stimulus s which can be regarded to be heading direction, orientation, moving
direction, spatial location, etc. A group element T (a) ∈ T translates the stimulus s to s + a, i.e.,
T (a) · s = s+ a, and therefore an equivariant neural representation ū(s) should satisfy (Fig. 1C),
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ū
[
T (a) · s

]
= ū(s+ a) = T̂ (a) · ū(s), (2)

where T̂ (a) is the 1D translation operator inducing the translation of neural representation (Fig. 1C).
Several properties of the T̂ (a) can be directly derived from the definition (Eq. 2) [18],

T̂ (0) = 1, (3a)

T̂ (a)T̂ (b) = T̂ (a+ b) = T̂ (b)T̂ (a), (3b)

T̂ (a)−1 = T̂ (−a). (3c)

First, a translation operator with zero translation should leave the neural representation of stimulus to
be the same as no transformation (Eq. 3a). Second, the translation operator can be composed together
and the composition is not dependent on the order of operators (Eq. 3b), which implies the translation
operator is commutative or abelian [18]. Third, the inverse of a translation operator corresponds to an
operator translating to the opposite direction with the same distance (Eq. 3c). Since the translation is
continuous, the amount of translation can be made infinitesimally small. Consider an infinitesimal
translation δa→ 0 on the stimulus s, then the corresponding change of neural representation is,

T̂ (δa) · ū(s) = ū(s+ δa) ≈ ū(s) + δa∂sū(s) = (1 + δa∂s)ū(s), (4)

where ∂s = ∂/∂s denotes the derivative over s, and a first order Taylor expansion was used in
above derivation. p̂ ≡ ∂s is called the translation generator characterizing the tangential direction
of translation in the group space, and forms a basis of the Lie algebra. In physics, p̂ is usually
regarded as the momentum operator [18]. Using the infinitesimal translation, the differential form of
a translation operator can be derived as (see details of Lie group in Supplementary Information (SI)),

dT̂ (a)

da
= lim
δa→0

T̂ (a+ δa)− T̂ (a)

δa
=

(
lim
δa→0

T̂ (δa)− 1

δa

)
T̂ (a) = p̂ · T̂ (a). (5)

By exponentiating the two sides in Eq. (5), the translation operator can be solved as T̂ (a) = exp(ap̂),
which is an exponential map of the translation generator p̂.

We next define a concrete neural representation based on experimental observations. The neural
representation ū(s) = {ūj(s)}Nj=1 is regarded as the mean responses of a population of N neurons.
Since the translation operator (Eq. 2) acts on a continuous function of neural population response,
i.e., ū(s), we therefore consider the limit of a large neuronal population with infinite number of
neurons (N →∞), and then ū(s) effectively converges to a continuous function (a vector of infinite
dimension in Hilbert space). Inspired by the bell-shape stimulus tuning curves widely observed in the
cortex, the mean response of the j-th neuron is modeled as a Gaussian function of the stimulus s (Fig.
1B),

ūj(s) ≡ ū(xj − s) = Uj exp[−(xj − s)2/4σ2
j ], (6)

where xj denotes the preferred stimulus of a neuron, indicating the neuronal response reaches its
maximum when the stimulus matches its preferred value, i.e., s = xj . Uj and σj denote respectively
the peak firing rate and the tuning width of the j-th neuron. A necessary condition to construct an
equivariant neural population code is homogeneous neurons in the population, which means the
tuning curves of all neurons have the same profile, i.e., Uj ≡ U and σj ≡ σ for any j, and the
preferred stimulus of all neurons, {xj}, is uniformly distributed on the stimulus space. In this way,
the mean responses of all neurons in response to a stimulus s are (Fig. 1C)

ū(s) ≡ ū(x− s) = U exp[−(x− s)2/4σ2], (7)

which can be verified to satisfy the translation equivariant representation (Eq. 2).

3 Towards an equivariant recurrent neural circuit model

We next investigate how the equivariant homogeneous neural code, i.e., ū(x − s) in Eq. (7), can
be self-consistently generated by a concrete recurrent neural circuit dynamics. Specifically, we
explore the recurrent circuit mechanism to generate a stable stimulus representation ū(x− s) without
translation (corresponding to a zero translation operator, T̂ (0)). Afterward, we investigate the neural
representation of translation operators and how it induces the translation of stimulus representation.
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Figure 2: A continuous attractor network (CAN) self-consistently maintains an equivariant stimulus
representation. (A) The CAN structure. Excitatory (E) neurons are aligned based on their preferred
stimulus x, and a pool of inhibitory neurons provides negative feedback to ensure the network
stability. (B) The recurrent connections between E neurons are translation-invariant with respect
to the preferred stimulus x. (C-D) An example of spatiotemporal responses of all E neurons in the
network model (C) and their temporal average (D). Note that the non-zero response is self-sustained
by the network without external input. (E) The state space of CAN’s population responses contains a
one-dimensional continuous manifold, on which each location denotes a population response ū(x−s)
representing the value of stimulus feature s. Top: a schematic diagram of the energy landscape of the
CAN. Bottom: three example population responses which correspond to three states on the continuous
manifold. (F) Eigenanalysis of the perturbed CAN dynamics. Top: the eigenvector (blue) with the
largest eigenvalue (λ1 = 1) corresponds to an infinitesimal change of population responses (orange)
along the stimulus feature manifold. Bottom: the eigenvalues of the perturbed CAN dynamics where
the largest eigenvalue is 1, indicating neutral stability along the stimulus manifold.

3.1 The autonomous dynamics of continuous attractor networks

Since the recurrent neural circuit dynamics needs to generate non-zero mean responses ū(x− s) for
any value s (Eq. 6), the neural dynamics should be stable at any s. That is, there is a manifold of
fixed points (attractors) in the state space of network dynamics. The continuous manifold of attractors
can emerge from the autonomous dynamics (no external input drive) of continuous attractor networks
(CANs, Fig. 2A), which is a canonical network model explaining the processing of continuous stimuli
in neural circuits [19, 20], including heading-direction [21], orientation [22], spatial location [23]
and so on. In the present study, we consider a CAN dynamics as follows [24, 25],

τ
∂u(x, t)

∂t
= −u(x, t) + ρ

∫
Wr(x, x

′) · r(x′, t)dx′, (8a)

r(x, t) = G[u(x, t)] =
[u(x, t)]2+

1 + kρ
∫

[u(x′, t)]2+dx
′ . (8b)

where u(x, t) and r(x, t) denote respectively the synaptic input and firing rate of the excitatory
neuron preferring stimulus s = x at time t, and τ is the time constant of synaptic input. G(·) is an
activation function that is modeled as divisive normalization where [·]+ is nonnegative rectification
and k determines the global inhibition strength. The divisive normalization is a canonical operation
widely observed in the cortex [26], and is resulted from the parvalbumin (PV) inhibitory neurons [27].

Wr(x, x
′) denotes the recurrent weight from the neuron preferring x′ to the neuron preferring x,

which is modeled as a Gaussian function of the disparity between the preferred stimuli of the pre-
and post-synaptic neurons (Fig. 2B), i.e.,

Wr(x, x
′) = Wr(x− x′) = wr(

√
2πσ)−1 exp

[
−(x− x′)2/2σ2

]
, (9)

where wr is a scalar and determines the peak recurrent weight, and σ the width of connection in the
stimulus space. Because we consider a large population of neurons that are uniformly distributed
in the stimulus space, the neuronal interactions effectively become an integral in Eq. 8a, with ρ
denoting the neuronal density in the stimulus space. Furthermore, the translation-invariant recurrent
connections, which only depend on x − x′, imply that the recurrent interactions are effectively
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conducting convolution on the stimulus space, i.e.,
∫
Wr(x−x′) · r(x′, t)dx′ ≡ (Wr ∗r)(x, t), where

the symbol ∗ denotes the convolution over x.

3.2 A continuous attractor network equivariantly represents the stimulus

It can be checked that the CAN dynamics (Eqs. 8a-9) can generate a family of non-zero Gaussian-
profile stationary responses that are consistent with the proposed responses (Eq. 6) [25, 28],

ū(x− s) = U exp
[
−(x− s)2/4σ2

]
, r̄(x− s) = R exp

[
−(x− s)2/2σ2

]
, (10)

as long as the recurrent weight is stronger than a critical value which is solved as wc =

2
√

2(2π)1/4
√
kσ/ρ (see SI. Sec. 2). It is worth noting that s is a free parameter in Eq. (10),

indicating that the network has a continuous family of fixed points, i.e., ū(x − s), which self-
consistently emerge from the recurrent neural dynamics without the influence from external inputs
(Eqs. 8a-8b). The stationary population responses (Eq. 10) are consistent with the equivariant
homogeneous neural population code (Eq. 7), and therefore they represent the stimulus equivariantly.

The stationary population responses in the recurrent network should be stable in order to maintain
the equivariant stimulus representation robustly, otherwise, the population responses can be easily
disrupted by noises. Therefore we check whether the continuous family of population responses
(Eq. 10) are stable (attractors), by performing the stability analysis of the network dynamics. We
perturbed the network state around the fixed points by adding a small perturbation δu(x, t), i.e.,
u(x, t) = ū(x− s) + δu(x, t), and then the dynamics of the perturbation is derived as [28],

τ
∂

∂t
δu(x, t) = −δu(x, t) +

∫
K(x, x′|s)δu(x′, t)dx′. (11)

The interaction kernel K(x, x′|s) = ρ
∫
Wr(x− x′′)∂r̄(x′′ − s)/∂ū(x′ − s)dx′′, whose analytical

expression can be seen at SI. Sec. 3. Treating K(x, x′|s) as an operator acting on the perturbation
δu(x, t), all of its eigenvalues, λn, and (unnormalized) eigenfunctions, fn, can be analytically
calculated (listed with a descending order) [28],

λ1 = 1, f1(x|s) ∝ ∂sū(x− s), (12a)

λ2 = 1−
√

1− wc
2/wr

2, f2(x|s) ∝ ū(x− s), (12b)

λn = 22−n (n ≥ 3), fn(x|s) = · · · . (12c)

The explicit expression of eigenfunctions for n ≥ 3 can be found at SI. Sec. 3. We see no eigenvalues
are larger than 1 (Fig. 2F) indicating that the continuous family of fixed points (ū(x− s) in Eq. 10)
are stable, i.e., the network has a continuous family of attractors, and each attractor is an equivariant
representation of the stimulus s (Fig. 2E).

4 Representing translation operators in CANs

It is noteworthy that the eigenfunction f1(x|s) of the perturbed network dynamics (Eq. 2F, top) is
parallel to the direction of translation generator (Eq. 12a), i.e., f1(x|s) ∝ ∂sū(x− s) = p̂ · ū(x− s),
thus f1(x|s) corresponds to the translation of neural responses along the continuous attractor manifold
representing the stimulus s (Eq. 2F, top). Meanwhile, its corresponding eigenvalue λ1 = 1 suggests
the eigenfunction f1(x|s) is neutrally stable, which is resulted from the translation invariance of
recurrent connections in the network (Eq. 9). Nevertheless, although the CAN dynamics maintains
the translation operator resulted from the external perturbation δu(x, t), it does not self-consistently
support non-zero translation generators in that the stationary network states are static without any
translation (Eq. 10, Fig. 2C-D), i.e., corresponding to T̂ (0). We next explore a self-sustained network
mechanism to represent non-zero translation operators, i.e., T̂ (a), (a 6= 0) (Eq. 2), in order to induce
translations of neuronal responses ū(x− s).

4.1 Incorporating translation operators in a CAN

To embed translation operators in the CAN dynamics, we derive a differential equation of Eq. (2) and
compare it with the CAN dynamics. We consider the translation has instantaneous speed v(t), which
determines the translation amount in a time window dt as da = v(t)dt. Taking the derivative of Eq.

5



 W 

r(x,x0):  support non-zero 

                      response u(x
  
{ s) 

A B C D

10

20

30

0

10
Time t (¿)

50

-180

180

N
e
u

ro
n
 i
n
d
e
x
 x

0

-180

180

B
u
m

p
 p

o
s
it
io

n

0

r(t)

Speed v = 5

Speed (theory)
50-50 0

S
p
e
e
d
 (

n
e
tw

o
rk

)

¹

-50

0

50

Speed

Sim
Theory

-5

0

5

S
p
e
e
d

-30

0

30

In
te

g
ra

te
d
 s

ti
m

u
lu

s
 

10
Time t (¿)

50

Commutation

@
x
W 

r(x,x0): induce translation

                      on stimulus manifold 

Tuning disparity x  − x'

R
e
c
u
rr

e
n
t 
w

e
ig

h
t 

0

0

wr

¿v

F
ir
in

g
 r

a
te

 (
a
.u

.)

Figure 3: The derivative of recurrent connection, ∂xWr, induces translation of CAN’s population
responses along the stimulus feature manifold, and represents the 1D translation operator. (A)
Illustration of the recurrent connections in the network model. (B) An example of spatiotemporal
responses in the network (top) and the internally represented stimulus feature moves over time with a
constant speed. (C) The actual moving speed of population responses along the stimulus manifold
is consistent with theoretical prediction by using the magnitude of ∂xWr. (D) Commutative path
integration in the CAN.

(2) over time t, and utilizing the differential form of translation operators (Eq. 5), we derive that (to
simplify notation we set s = 0 without loss of generality),

dū(x− a)

dt
=
dT̂ (a) · ū(x)

da

da

dt
= v

[
dT̂ (a)

da
ū(x)

]
= vp̂ · T̂ (a) · ū(x) = vp̂ · ū(x− a).

Replacing the variable x − a by x, we reach the differential equation governing the translation of
neuronal responses with speed v(t),

dū(x)

dt
= v(t)p̂ · ū(x). (13)

In comparison, the CAN dynamics in the stationary state is dū(x)/dt = 0 (Eq. 8a), i.e., the network
state is static. To incorporate the translation operator with speed v(t) (Eq. 13), we utilize that the
stationary CAN state satisfying ū(x− s) = ρWr ∗ r̄(x− s), and substitute it to the right hand side of
Eq. (13),

vp̂ · ū(x) = v∂s[ρWr ∗ r̄(x)] = −vρ(∂xWr) ∗ r̄(x), (14)

where we have used ∂s = −∂x (Eq. 7), and swapped the convolution and partial derivative. The
above equation provides an insight that the translation generator can be converted into the derivative
of recurrent connections in the network, i.e., ∂xWr. Therefore, it motivates us to consider a modified
CAN dynamics whose recurrent connections have a new component (∂xWr, Fig. 3A) [21, 29],

τ
∂u(x, t)

∂t
= −u(x, t) + ρ (Wr − τv∂xWr) ∗ r(x, t). (15)

Next we verify whether the modified CAN dynamics (Eq. 15) embeds translation operators, i.e.,
a spontaneously moving neural response along the stimulus manifold with speed v. We substitute
the mean population response (ū(x − s) and r̄(x − s), Eq. 10) into the above network dynamics,
repeatedly use the stationary response that satisfies ū(x− s) = ρWr ∗ r̄(x− s) to cancel terms,

∂ū(x− s)
∂t

= τ−1[−ū(x− s) + ρWr ∗ r̄(x− s)]− vρ(∂xWr) ∗ r̄(x− s),

= −v∂x[ρWr ∗ r̄(x− s)] = vp̂ · ū(x− s).
(16)

Comparing Eqs. (16) and (13), we see the stationary state in the modified CAN spontaneously
translates along the stimulus manifold in a way consistent with the action of translation operators
(Eq. 13). Therefore the recurrent connection component ∂xWr represents the translation generator,
and its magnitude determines the moving speed v. Numerical simulations of the network model also
confirm our theoretical derivations (Fig. 3B-C), where the actual moving speed is well predicted by
the theory using the magnitude of recurrent connection ∂xWr.
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When the network response deviates from the stereotypical Gaussian profile (Eq. 10), the recurrent
connection component Wr will remove distortions because the eigenvalues of all perturbations
perpendicular to the continuous stimulus manifold are smaller than 1 (Eq. 12a - 12c). Once the
population response settles into a smooth Gaussian profile, the network response translates along the
continuous manifold with the desired speed (see details in SI. Sec. 4).

4.2 Path integration in the modified CAN dynamics

The brain accumulates the effects of a series of translation operators, and the combined translation
effects are not dependent on their action orders (Eq. 3b), i.e., translations are commutative. The
translation accumulation that is independent of action orders corresponds to the path integration in
the neuroscience research [23, 29, 30], where the animals’ navigation system integrates their walking
path to update their walking distance. The path integration can be achieved in the modified CAN
dynamics (Eq. 15). To illustrate this, we compute the translation distance in the modified CAN
dynamics (Eq. 16) by using the chain rule, ∂ū(x−s)

∂t = ∂ū(x−s)
∂s

∂s
∂t = −∂ū(x−s)

∂x v(t), and substitute it
back to Eq. (16). Finally, the translation distance is derived as

ds = v(t)dt, (17)

where ds is the translation distance along the continuous stimulus manifold in the CAN in a time
window lasting dt. As an example, we consider a constant moving speed v1 lasts for time duration
t1, followed by another constant speed v2 lasting for duration t2, and then we swap the order of two
speeds (Fig. 3D, top). The moving distance in the two cases can be calculated as the same,

|s| =
∫ t1

0
v1dt+

∫ t1+t2
t1

v2dt =
∫ t2

0
v2dt+

∫ t2+t1
t2

v1dt = v1t1 + v2t2, (18)

which shows the translation in the modified CAN is commutative, i.e., the network achieves path
integration. This is also confirmed by numerical simulations (Fig. 3D, bottom).

5 A biologically plausible equivariant recurrent circuit

Although in the modified CAN dynamics the recurrent connection component ∂xWr (Eq. 15)
mathematically represents the translation generator and translates network responses, the connection
∂xWr is not biologically plausible due to two reasons. First, the magnitude of the connection
component ∂xWr needs to be multiplicatively modulated by the speed v (Eq. 15), but multiplicative
modulation of synaptic weights is challenging in neural systems. Second, with Gaussian-profile
connections (Eq. 9), the derivative ∂xWr means that a neuron has both excitatory and inhibitory
synapses, which disobeys Dale’s law that a neuron can be either excitatory or inhibitory but cannot
be both. Therefore, we propose a new neural circuit model to represent the translation operator
that is consistent with the biological neural circuitry. Mathematically, we will replace the term of
multiplicative synaptic weight modulation (Eq. 15, last term) by a biologically plausible input term
that is originated from separate neuronal populations whose responses represent moving speed v.

The new circuit model is inspired by the Drosophila’s compass system which consists of three
neuronal populations (Fig. 4B, e.g., [31, 32]). There is a ring of heading-direction (stimulus s)
neurons whose dynamics is governed by a CAN (Fig. 4B, E-PG neurons in blue disk, [33]). Besides,
there are two populations of speed neurons (Fig. 4B, left and right P-EN neurons) whose firing rates
encode the speed (translation distance a in a unit time). Moreover, the feedback projections from
speed neurons to heading-direction neurons are either clockwise or anti-clockwise shifted and they
induce translations of heading-direction neurons’ responses. Therefore, our new recurrent circuit
model has three populations of neurons (Fig. 4A): the stimulus s neurons which is modeled as a
CAN as before (Eqs. 8a-8b), and two populations of speed neurons which are supposed to encode the
positive and negative speed respectively. The network dynamics is governed by [31, 34–36],

τ
∂u(x, t)

∂t
= −u(x, t) + ρWr ∗ r(x, t) + ρ

∑
m=±Wm ∗ rm(x, t), (19a)

τ
∂u±(x, t)

∂t
= −u±(x, t) + wvsr(x, t), r±(x, t) = [(gv ± v)u±(x, t)]+. (19b)

Eq. (19a) is the CAN dynamics of stimulus neurons. u±(x, t) (r±(x, t)) are the synaptic inputs
(firing rate) of speed neurons which represent positive and negative speeds respectively and are driven
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Figure 4: The network model with disentangled representations of stimulus s and speed v (amount
of translation). (A-B) The proposed network structure (A) is similar to the Drosophila’s internal
compass (B). The three bumps shown in the middle represent the recurrent inputs from corresponding
color coded neural populations. (C) The connection strength from speed neurons to stimulus neurons
are shifted by ∆x which represents the translation generator. (D-E) The difference of firing rate
between two populations of speed neurons (D) determines the moving speed of population activities
of stimulus neurons (E). (F) The joint tuning curves over stimulus and speed of two example neurons.
(G) The proposed network implements the path integration with consistent speed as theory.

by the stimulus neuron r(x, t) preferring stimulus x. Note that stimulus neurons receive feedback
inputs from speed neurons (Eq. 19a, last term), which replaces recurrent inputs from biologically
implausible recurrent weight ∂xWr (Eq. 15, last term). Consistent with the Drosophila’s compass
[31, 32, 34], recurrent connections W±(x, x′) from the speed neuron x′ to the stimulus neuron x is
shifted by ∓∆x towards the purported moving direction encoded by speed neurons (Fig. 4C),

W±(x, x′) = wsv(
√

2πσ)−1 exp
[
−(x− x′ ∓∆x)2/2σ2

]
. (20)

Moreover, speed neurons’ firing rates r±(x, t) are multiplicatively modulated by the speed v (Eq. 19b).
This operation is necessary to reproduce gain modulation of speed neurons’ responses (speed invariant
stimulus tuning width) in present rate-based model [31], and it achieves the same computation with
multiplicative modulation of synaptic weights (Eq. 15, last term). gv is a constant determining the
baseline activity of speed neurons. To emphasize the main computational mechanism, we simplify
the circuit model (Eqs. 19a-19b) compared with the Drosophila’s circuit. First, we ignored the
interactions between speed neurons. Second, we assumed that a speed neuron is only driven by a
stimulus neuron with the same preferred stimulus, which is exhibited by the scalar wvs (Eq. 19b).

5.1 Neural representation of translation operators

We investigate how the abstract translation operator T̂ (a) is represented in the circuit model inspired
by the Drosophila’s compass. Similar to the theoretical analysis performed in Eqs. (15-16), we focus
on the latent network dynamics along the dominant continuous stimulus manifold by ignoring the
fluctuations along other directions. Then Eq. (19a) can be simplified into (see more details in SI. 5),

∂

∂t
ū(x− s) ≈ ρwsv√

2τU
(R+ − R−) [∆x p̂ · ū(x− s)] , (21)

where R+ and R− are the peak firing rates of positive and negative speed neurons, and U is the peak
synaptic input received by stimulus neurons (Eq. 10). The shifted connections W±(x, x′) from speed
neurons to stimulus neurons introduce the translation generator, in that the magnitude of translation
generator is proportional to the connection shift ∆x (Eq. 16). The excitatory W±(x, x′) pulls the
network response towards shifted directions (implementing the excitatory part of the translation
generator), while the inhibitory part of the translation generator is achieved through the network
effect of global inhibition (Eq. 8b). Moreover, the firing rate difference between two populations
of speed neuron, R+ − R−, determines the translation speed (1D translation operator parameter).
Overall, the fixed translation generator p̂ is stored in the shifted connections from speed to stimulus
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neurons, and the time-varying translation speed is represented by the firing rate difference between
two speed neuron populations which can change in a short time scale.

Meanwhile, the speed neurons’ dynamics (Eq. 19b) suggests R+ − R− = [(gv + v)− (gv − v)] =
2vwvsR. To translate network responses with the desired speed, the coefficient on the right hand side
of Eq. (21) should equal to the speed determining speed neurons’ response (Eq. 19b), which requires,

√
2ρwsvwvsR∆x = τU. (22)

We performed numerical simulation of the circuit model (Eqs. 19a-19b), whose parameters are set to
satisfy Eq. (22). We firstly verified our theoretical prediction, i.e., the moving speed is proportional
to the firing rate difference between two populations of speed neurons, i.e., R+ − R− (Fig. 4D-E).
Indeed, the actual moving speed of stimulus neurons’ population responses is consistent with the
required speed that determines the firing rate of speed neurons (Fig. 4G), which supports the validity
of our theoretical analysis and indicates the accurate path integration in the proposed circuit model.
The joint tuning curves of two example speed neurons with respect to the stimulus s and moving
speed v are plotted in Fig. 4F, which are multiplicatively modulated by the speed, i.e., the speed
invariant stimulus tuning width, and this is consistent with experimental observations [31].

6 Conclusion and Discussion

Equivariant representation is necessary for the brain and artificial perceptual systems to reliably
represent the stimulus under transformations [2–4, 6, 7, 37]. The present study investigates how
recurrent neural circuits implement equivariant stimulus representation and Lie group operator
representation. Our theoretical analysis shows that the stimulus can be equivariantly represented in
a homogeneous neural population code that collectively emerges from a CAN dynamics. The Lie
translation group operators are represented by extra neuronal populations whose activities represent
the translation speed (translation group parameter) and whose feedback connections to the CAN store
the translation generator. Our study for the first time links the Lie group equivariance to a concrete,
biologically plausible recurrent neural circuit. It gives us insight into understanding the neural coding
principle and may inspire a new building block for equivariant representation in ML tasks.

The CAN is a canonical neural circuit model widely used in neuroscience [20, 22, 25, 38, 39].
Recurrent circuit models similar to the present model were proposed before (e.g., [29, 31, 34–
36, 40]), whereas no previous studies theoretically linked the network dynamics to the equivariant
stimulus representation, nor the Lie group operator representation. Besides, our theory also derives
the condition that network responses translate with the desired speed (Eq. 22), which is testable by
analyzing experimental data.

To highlight the basic mechanism of equivariant representation in a recurrent circuit, the proposed
neural circuit model has some simplifications compared with neural circuits in the brain. First, we
considered homogeneous neurons and ignored the randomness on recurrent connections and neural
noises in real cortical circuits. Apparently, the neural noise and random connections will break
the perfect structure of equivariant representation. It has been suggested that the CAN dynamics is
resistant to input noise by removing the noise component that is perpendicular to the attractor manifold
[24, 41], and then the equivariant representation can be approximately held. Another possibility is
that the neural heterogeneity and neural noise can help the brain implement sampling-based Bayesian
inference (e.g., [42–47]), where the instant response of the CAN and the activity of speed neurons
represent the samples of heading direction and rotation speed, respectively (e.g., [48, 49]). Second,
we analyzed a limiting case of infinite number of neurons in a recurrent circuit model, resulting in
that the translation operator (Eq. 2) acts on a continuous function of neuronal population response.
Although it brings huge benefit in theoretical analysis, the real neural circuit only has finite number of
neurons, especially there are only dozens of E-PG neurons in Drosophila’s heading direction circuit
(Fig. 4A, [31, 32]). In the case of finite number of neurons, the recurrent circuit model can still have
equivariant representation, however, the profile of population response and the convolution kernel will
slightly deviate from Gaussian and the concrete profile can be obtained by numerical optimization, as
suggested by a recent work [40].

The proposed neural circuit model can be extended to capture more characteristics in real neural
circuits. For example, our model doesn’t have the sensory input in order to emphasize an internal
mechanism inducing the translation of neural representation. The sensory inputs that represent
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instantaneous stimulus direction and the instantaneous velocity into Eqs. (19a and 19b) respectively,
similar with in earlier results [31, 34]. Moreover, the neural circuit model considers Gaussian profile
of population responses, while neuronal tunings sometimes have long tail with high kurtosis [50]. In
principle, the recurrent connection profile can be varied to let the recurrent circuit self-consistently
generate different tuning curves. In particular, the high kurtosis profile may be considered a scale-
mixture of Gaussians, i.e., Gaussians with different scales, and then it can be generated by recurrent
connections that is also consist of mixture of many Gaussian connection profiles

To elucidate the concepts clearly, the present study only investigates the 1D translation group while
the proposed framework can be generalized to more complicated group transformations. For example,
we may develop a recurrent circuit with a 2D translation group equivariant representation to explain
the spatial location coding in place and grid cells (e.g., [30, 51, 52]). A recent study reported that
the population activities of grid cells appear to reside in a 2D torus manifold [53], which is the 2D
version of the ring that is being studied in the present study. Meanwhile the CAN based on 2D torus
was also proposed in previous studies (e.g., [30, 48]). And therefore it is possible to generalize our
current theoretical framework to the 2D domain to partially explain the properties of grid cells in
future work. Another possibility is developing a (non-commutative) 3D rotation group equivariant
recurrent circuits to explain the 3D rotation encoding in the brain. These studies form our future
research.
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