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Abstract

We consider concept generalization at a large scale in the
diverse and natural visual spectrum. Established compu-
tational modes (i.e., rule-based or similarity-based) are
primarily studied isolated and focus on confined and ab-
stract problem spaces. In this work, we study these two
modes when the problem space scales up, and the com-
plexity of concepts becomes diverse. Specifically, at the
representational level, we seek to answer how the com-
plexity varies when a visual concept is mapped to the rep-
resentation space. Prior psychology literature has shown
that two types of complexities (i.e., subjective complex-
ity and visual complexity) [22] build an inverted-U rela-
tion [10, 47]. Leveraging Representativeness of Attribute
(RoA), we computationally confirm the following obser-
vation: Models use attributes with high RoA to describe
visual concepts, and the description length falls in an
inverted-U relation with the increment in visual complex-
ity. At the computational level, we aim to answer how the
complexity of representation affects the shift between the
rule- and similarity-based generalization. We hypothesize
that category-conditioned visual modeling estimates the
co-occurrence frequency between visual and categorical
attributes, thus potentially serving as the prior for the nat-
ural visual world. Experimental results show that repre-
sentations with relatively high subjective complexity out-
perform those with relatively low subjective complexity

in the rule-based generalization, while the trend is the op-
posite in the similarity-based generalization.

1 Introduction

What is a cucumber? One may respond by a deep green
colored slim-long cylinder with trichomes on the surface
is a cucumber, or directly pick a cucumber—see, some-
thing looks like this is a cucumber. Given either answer
as prior knowledge, you can easily identify cucumbers;
you may check whether a target meets the rules described
in the first answer or judge whether it is similar to the
example shown in the second answer. Such capability is
concept generalization, and the approaches used to iden-
tify cucumber are rule- and similarity-based generaliza-
tion [45, 43], respectively.

Can both approaches be always applied to all concepts
we see in the world? Hardly. Let us consider how peo-
ple learn to identify dog, canteen, and ball. People easily
capture the main feature of a dog given very few exam-
ples, yet may get confused with the complex rules to iden-
tify a dog; by contrast, people may easily tell the limited
rules that shape the concept of canteens, such as serving
windows, tables, and chairs; and the concept of the ball
is such a simple concept that can be easily captured by
examples or a single rule. We refer the readers to Fig. 1
for an illustration. This observation naturally leads to a
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Ball looks like these examples.

Canteen looks like these examples.

Ball is generated by this rule.

Canteen is generated by these rules.

Dog looks like these examples. Dog is generated by these rules.

Similarity-based Rule-based

Ball looks like these examples.

Canteen looks like these examples.

Ball is generated by this rule.

Canteen is generated by these rules.

Dog looks like these examples. Dog is generated by these rules.

Similarity-based Rule-based

Figure 1: Concepts can be described either directly by exam-
ples or indirectly by a set of rules. Here, we show this intuition
using the concepts of ball, canteen, and dog; see details in Intro.

hypothesis that whether people generalize through rules
or similarity has something to do with how complex the
concept instances look like. “Look like,” complexity, and
generalization—these three elements shape the hypothe-
sis. In this work, we look into these dimensions of concept
generalization.

First, we contextualize the problem in the literature
of concept generalization—the framework of Bayesian
inference unifies rule- and similarity-based generaliza-
tion [50, 49, 51, 65]. Based on perception [28], this
paradigm reconstructs human’s hypothesis space consist-
ing of abstract features and incubates modern concept
learning algorithms [53, 30, 12]. However, as most con-
cept learners have only demonstrated in confined and
abstract problem space, a challenging problem remains:
When the problem space scales up (e.g., using data col-
lected from the natural world), is there a unified concept
representation that combines the two established modes
(i.e., rule- and similarity-based)? If it does, how does the
generalization shift between the two modes w.r.t. the com-
plexity of concepts?

One concrete hypothesis rooted in psychology [10, 58]
is that we tend to describe visual concepts (i.e., visual
complexity, the complexity coded by pixels) by simple
visual patterns with explicit semantics (i.e., subjective
complexity, the coding length for describing certain con-
cepts). For a simple concept, we may only need one at-
tribute (e.g., the shape circle for ball). As the concepts
become more complex, we adopt more attributes, such
as canteens are rooms with serving windows, tables, and
chairs. When the concept becomes even more compli-
cated, we would choose not to describe it—if we still de-

scribe it with the attributes generated by the complex rules
to identify it, the description would be much too long to
be appropriate for communication. Hence, we capture the
main feature and view it as an “icon” for the concept, such
as dog looks like dog.

Together, we observe a shift in the continuous space
spanned by the rule- and similarity-based approaches
w.r.t. the increase of concept complexity. Intuitively, both
very simple and complex concepts have a lower descrip-
tion length, generalized by similarity. In comparison, con-
cepts neither too simple nor too complex have a higher
description length, generalized by rules. This observation
echos modern literature in both information theory and
psychology, which demonstrate that subjective and visual
complexity [22] come in an inverted-U relation [10, 47].

In essence, we seek to quantify the relation between
the prior-studied but mostly isolated modes (i.e., rule-
and similarity-based): What are the relations between the
computation-mode-shift and the concept complexity, as
we hypothesized above and illustrated in Fig. 2? Specifi-
cally, we disassemble the above question into two on the
basis of Marr’s [35] representational level and compu-
tational level, respectively: (i) How does the complexity
change when a visual concept is mapped to the representa-
tion space? (ii) How does the complexity of representation
affect the shift between rule- and similarity-based gener-
alization? By answering these two questions, we hope to
provide a new perspective and the very first pieces of evi-
dence on unifying the two computational modes by map-
ping out the landscape of the concept complexity vs. the
computation mode.

Representation vs. complexity Representing the
natural visual world merely with human prior is insuf-
ficient [23] and oftentimes brittle to generalize. Despite
that hierarchy empowers large-scale Bayesian word learn-
ing [37, 1], extending it to visual domains is yet chal-
lenging and may need costly elaboration. In comparison,
modern discriminative models trained for visual catego-
rization by leveraging large-scale datasets can capture the
rich concept of attributes [63]. These observations and
progresses naturally lead to the problem of concept rep-
resentation complexity: If we distinguish visual concepts
using attributes, at least how many attributes should we
use [8, 32]?

To tackle this problem, here we offer a new perspec-
tive by bridging the subjective complexity with the visual
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visual complexity

subjective complexity

  

similarity-based similarity-basedrule-based

attribute (iconicity) attribute (iconicity)
attribute
 (texton)

attribute
(texture)

dax

similarity-based

A B

Given few examples of Dax and Tufa, are images shown in A Dax/Tufa or not? What about the images in B?

tufa

rule-based

A B

(a)

(b)

Figure 2: The landscape of the computation-mode-shift vs. the concept complexity. (a) Representation level: original visual
concepts of diverse complexity and visualization of their representative attributes (around the peaks of heatmaps). (b) Computation
level: an illustration of similarity- and rule-based generalization. The former is similar to word learning [65]: Given very few
examples of known concept dax, tell which is most likely to be dax in unseen examples. The latter is akin to concept learning [41]:
Given a rule tufa over two known concepts, tell how tufa generates the examples of unknown concepts. As concept visual complexity
increases, concept subjective complexity first increases, then decreases—and the computation mode shifts from similarity to rules
as subjective complexity increases.

complexity via Representativeness of Attribute (RoA),
which consists of (i) the probability of recalling an at-
tribute z when referring to a concept c, and (ii) the prob-
ability of recalling other concepts ĉ when referring to an
attribute z. This design echoes the principles in rational
analysis [52] yet can be obtained by frequentist statistics
for large problem spaces (e.g., natural visual world [2]).

Computation vs. complexity Modern statistical
learning methods have demonstrated strong expressive-
ness in concept representation by implicitly calculating
the co-occurrence frequency between visual attributes and
categories [59, 64], even when scaling up to the complex
and large-scale visual domain—the learned representation
fits the prior distribution of visual concepts conditioned
on categorical description [63]. It can also bridge sensory-
derived and language-derived knowledge [5]. Hence, this
learning paradigm should somehow have inherent seman-
tic properties in addition to visual properties, such as
iconicity [15, 13, 40] and disentanglement [3, 20, 36].

To properly evaluate the computation, we extend the
problem domain from generalization over single concepts

to that across multiple concepts. This is because in the
natural visual world, we cannot precisely answer how a
concept is generated by rules, or which examples are suf-
ficient to represent a concept. Hence, instead of consid-
ering the absolute measurements for single concepts, we
consider the relative measures between concepts; for ex-
ample, cucumber to banana is watermelon to what, or
dog is more similar to cat or to bike–only the significant
differences are considered. We argue that rule-based and
similarity-based generalization reflects the analogy and
similarity properties in psycholinguistics [17], where the
former pairs are two ends of a continuum of concept rep-
resentation, and the latter pairs are two ends of a contin-
uum of literal meaning. Visual categorization brings these
two pairs together because linguistic analogy and simi-
larity come from generalizing the corresponding appear-
ance instead of pure literal meaning—concepts with more
easy-to-disentangle attributes (e.g., shape and color) are
more likely to generalize by rules, while concepts repre-
sented with more iconicity [14] (i.e., those more likely to
be viewed holistically) tend to generalize by similarity.
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Computationally, the above hypothesis is consistent
with the findings by Wu et al. [60]. Specifically in their
visual space of natural scenes, textons (low-entropy) [68]
can be composed by very simple concepts [61], akin to
rule-based generalization. In comparison, textures (high-
entropy) [27] cannot be represented by rules [69]; instead,
they are evaluated and generalized in terms of similarity
by “pursuit” [70]. As such, we hypothesize that general-
ization shifts from similarity to rules as subjective com-
plexity increases. Those perspectives provide us with ap-
proaches to model and evaluate Bayesian generalization
in the natural visual world.

In the remainder of the paper, we first present the
new metrics, Representativeness of Attribute (RoA),
to measure the subjective complexity and analyze the
computation-mode-shift in Sec. 2. Next, through a series
of experiments, we provide strong evidence to support our
hypotheses in Sec. 3; we draw the following conclusions
in response to the two problems raised at the beginning: (i)
Representation: the subjective complexity significantly
falls in an inverted-U relation with the increment of visual
complexity. (ii) Computation: rule-based generalization
is significantly positively correlated with the subjective
complexity of the representation, while the trend is the
opposite for similarity-based generalization.

2 Bayesian generalization and com-
plexities

In this section, we formulate Bayesian generalization for
visual concept learning (Sec. 2.1), followed by the def-
initions of subjective complexity and visual complexity
(Sec. 2.2).

2.1 Bayesian generalization for large-scale
visual concept learning

Concept-conditional modeling Let us consider f :
RD 7→ Rd, which maps the input x ∈ RD to a repre-
sentation vector z ∈ Rd. Here, f might be part of a dis-
criminative model trained for visual categorization tasks,
such as a prefix for a convolutional neural network with-
out the last fully-connected layer for mapping z to the cat-
egory vector c ∈ Rc. Training a discriminator for image

categorization is to estimate the likelihood of concept c
given a set of samples X: P (c|X) =

∏
x∈X P (c|x; θ),

where θ is the parameter of f . Here, we assume that
f provides a good estimation of P (z|X; θ); Tishby et
al. [54] provides empirical evidence that a discrimina-
tive model may first learn how to extract proper attributes
to model images X conditioned on c, then learn to dis-
criminate their categories based on the attribute distribu-
tion. Some dimensions of z (usually 5% ∼ 10% of the
total dimensions) capture concrete semantic attributes of
visual concepts when the activation score fz(X) is rela-
tively high [4]. Combining this concept-conditional mea-
surement with attribute modeling, we rewrite the category
prediction considering the attribute as a latent variable and
marginalize the observable joint distribution (X, c) over
z:

P (c|X; θ) =
∑
z∈Z

P (c, z|X; θ) =
∑
z∈Z

P (c|z)P (z|X; θ), (1)

where Z is the space of all attributes. This expression is
essentially a Bayesian prediction view of visual catego-
rization, which can be derived to Bayesian generalization
in the natural visual world.

Representativeness of Attribute (RoA) as an in-
formative prior Statistically, we treat the concept-
conditional attribute activation score as an estimation of
the probability P (z|c) that recalls an attribute z when
referring to a concept c, similar to answering “Describe
how a dog looks like.” In the context of the natural visual
world, we also have all activation scores generated by an
attribute as an estimation of the probability P (ĉ|z) that
recalls all concepts ĉ 6= c when referring to the attribute
z, akin to answering “What do you recall seeing a blue
thing in a ball shape?”

Given the above observations and inspiration by Tenen-
baum et al. [52]), we formally define the RoA of a specific
attribute zi for concept c as:

RoA(zi, c) = log
P (zi|c)∑

ĉ6=c P (ĉ)P (zi|ĉ)
, (2)

where P (ĉ) is the prior of concepts in the context. We
hypothesize that humans estimate P (ĉ) through both lan-
guage derivation and visual experience, essentially cal-
culating the co-occurrence frequency between visual at-
tributes and categorical attributes over the joint distribu-
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tion P (zi, ĉ). Hence, modeling RoA with large-scale im-
age datasets and language corpus should yield human-
level prior modeling. On this basis, we use f to statisti-
cally estimate P (zi, ĉ) [63]:

RoA(zi, c) = log
P (zi|c)∑

ĉ 6=c P (ĉ)P (zi|ĉ)
∝ log

P (zi|c; θ)∑
ĉ 6=c P (ĉ|zi; θ)

, (3)

where P (z|c; θ) and P (ĉ|z; θ) are estimations of P (zi|c)
and P (zi, ĉ), respectively.

Generalize to the unseen Given an appropriate mod-
eling of P (z|X; θ), the goal is to generalize an unknown
concept c′ to a small set of unseen examples X̂ =
{x1, · · · , xn}, where n tends to be a small integer. The
generalization function P (c′|X̂) is given by:

P (c′|X̂) =
∑
z∈Z

P (c′|z)P (z|X̂; θ)

=
∑
z∈Z

P (c′)P (z|c′)∑
c∈C P (c)P (z|c)P (z|X̂; θ)

∝ P (c′)︸ ︷︷ ︸
uninformative

prior

∑
z∈Z

exp
(
RoA(z, c′)

)︸ ︷︷ ︸
informative

prior

P (z|X̂; θ),

(4)

where the uninformative prior P (c′) encodes the
computation-mode-shift. Specifically, the similarity-
based generalization 〈c :: c′〉 between a concept pair is
defined as ∃c ∈ C, σ0(c, c′) < δ, where δ is a relative
small neighbour. Similarly, the rule-based generalization
〈c1 : c2 :: c3 : c′〉 over a quadruple of concepts is defined
as ∃c1, c2, c3 ∈ C, σ1(c1−c2, c3−c′) < δ, where σN (·, ·)
is an arbitrary metric measurement with an N-order input.
Further, we define P (c′) ∝ σ0σ1/(σ0 + σ1) [50], result-
ing in the simplest hypotheses of concepts: The harmonic
property keeps guide to similarity-based generalization if
σ0 is dominating, and vice versa.

2.2 Complexities
Visual complexity Visual concepts come with di-

verse complexity, from very simple geometry concepts
such as squares and triangles to very complex natural
concepts such as dogs and cats. Inspired by Wu et al. [60],
we indicate concept-wise visual complexity by Shannon’s
information entropy [42]. Formally, for a set of images
X = {x1, x2, · · · } belonging to a concept c, the concept-
wise entropy is H(X|c) = EX∼P (·|c)[logP (X|c)]. As
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Figure 3: Visual complexity of datasets, sorted in increasing
order. L: LEGO, G:2D-Geo, A: ACRE, P: Place, I: ImageNet.

shown in Fig. 3, we compute the visual complexity and
order some commonly known image datasets: 2D geome-
tries [11], single concepts [19], compositional-attribute
objects [66, 26], human-made objects [9], scenes [67],
and animals [62, 9].

Subjective complexity We quantify the subjective
complexity over the prior model by Kolmogorov Com-
plexity [32]. We calculate the minimum description
length, i.e., the minimum number of attributes to discrim-
inate a concept. Specifically, for each concept c, we rank
all attributes z ∈ Z by RoA(z, c) decreasingly, such that
∀i, j ∈ [1, d], i < j,RoA(zi, c) ≥ RoA(zj , c). Starting
from K = 1, for each iteration, we select the top-K at-
tributes and check whether these attributes can distinguish
the concept c from the others. This process continues if
the current iteration cannot distinguish it from the others.
Formally, we define subjective complexity of visual con-
cept L(ĉ) as:

L(ĉ) = min
K

1
(
P (ĉ 6= c) < ε | c = arg max

c
P (c|z1, · · · , zK ;φ)

)
, (5)

where ε is the error rate threshold, and φ the parameter of
f ’s suffix in the same discriminative model for visual cat-
egorization (e.g., the fully-connected layer). We calculate
P (c|z1, · · · , zK ;φ) by removing the neurons’ effects cor-
responding to zK+1, · · · , zd [4]. Instead of maintaining
all error rate thresholds, we leverage the accuracy gain
between every two iterations to search for the minimum
K. This process yields the concept-wise subjective com-
plexity in RoA.

5



12345678910
Desc. Len.

0

50

100

Ac
cu

ra
cy

 (%
) D. = LEGO

12345678910
Desc. Len.

D. = 2D-Geo

12345678910
Desc. Len.

D. = ACRE

12345678910
Desc. Len.

D. = AwA

12345678910
Desc. Len.

D. = Places365

12345678910
Desc. Len.

D. = ImageNet

(a) The accuracy of visual categorization task with description length from 1 to 12

0 20 40 60 80 100
Relative Discription Length (%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

LEGO
2D-Geo
ACRE
AwA
Places365
ImageNet

(b) Visual categorization accuracy with
various description lengths

LEGO 2D-Geo ACRE AwA Places365 ImageNet
Visual Complexity (Databases)

0

1

2

3

4

5

Lo
g 

Su
bj

ec
tiv

e 
Co

m
pl

ex
ity

(c) Average subjective complexity on dif-
ferent datasets

0.5 1.5 2.5 3.5 4.5 5.5 6.5
Log Visual Complexity

0

1

2

3

4

5

Lo
g 

Su
bj

ec
tiv

e 
Co

m
pl

ex
ity

(d) Estimated inverted-U relation between visual
and subjective complexity

Figure 4: Quantitative results of Representation vs. Complexity. (vector graphics; zoom for details)

3 Empirical analysis

In this section, we provide evidence and analyses to vali-
date the above hypotheses. We (i) conduct empirical anal-
yses at both the representation (Sec. 3.1) and computa-
tional (Sec. 3.2) level; (ii) provide quantitative analyses of
the computation-mode-shift w.r.t. the concept complexity
in Sec. 3.2); and (iii) provide qualitative analyses to inter-
pret from the aspect of natural image statistics in Sec. 3.3.

3.1 Representation vs. complexity

This experiment investigates the visual concepts’ subjec-
tive complexity by visual categorization. Our predictions
were that models use attributes with high RoA to de-
scribe visual concepts, and the description length falls in
an inverted-U relation with the increment of visual com-
plexity.

Method Six groups of discriminative models are
trained from scratch on six datasets with the supervision
of concept labels: LEGO [48], 2D-Geo [11], ACRE [66],
AwA [62], Places [67], and ImageNet [9], ordered as the
increment of concept-wise visual complexity. Models are
all optimized to converge on the training set and are tuned
to the best hyper-parameters on the validation set. Readers
can refer to the supplementary material for details about
these datasets and the training process.

During the evaluation, RoA is calculated for each at-
tribute in the context of all concepts for each dataset. Fol-
lowing the protocol described in Sec. 2.2, the models con-
duct visual categorization tasks from leveraging only one
attribute with the highest RoA to the entire attribute space.

Results The main quantitative results are illustrated
in Fig. 4. Subjective complexity shows significant diver-
sity between the datasets. The logarithm values are as fol-
lows; see Fig. 4c. LEGO: .10 (CI = [−.10, .52], p <
.05), 2D-Geo: 2.91 (CI = [1.21, 2.95], p < .05), ACRE:
3.08 (CI = [2.99, 3.46], p < .05), AwA: 5.08 (CI =
[4.82, 5.36], p < .05), Places: 2.74 (CI = [1.63, 4.72],
p < .05), ImageNet: 1.28 (CI = [1.16, 1.51], p < .05).
All models rely on only a few (less than 20% of all) at-
tributes to reach the prediction accuracy comparable with
prediction accuracy exploiting all attributes; see Fig. 4b.
Most models (5 out of 6) exploit very few (less than 5%
of all) attributes to reach a higher accuracy than that of
all attributes; see Fig. 4b. The models for the simplest
dataset (i.e., LEGO) and the most complex dataset (i.e.,
ImageNet) obtain a large accuracy gain (over 10%) with
the description length from 0 to 3 and obtain smaller accu-
racy subsequently. In comparison, the models for ACRE
and Places obtain relatively small accuracy gain (about
5%) with description length from 0 to 8; see Fig. 4a.
Fig. 4d shows the estimated inverted-U relation between
subjective complexity and visual complexity. Following

6



the “two-lines” test [44], the relation is relatively robust
across the datasets, decomposing the non-monotonic re-
lation via a “breakpoint”; the positive linear relation (b =
1.10, z = 253.76, p < 1e− 4) and the negative linear re-
lation (b = −2.57, z = −659.26, p < 1e − 4) are both
significant.

Discussion The above results reveal that (i) the repre-
sentation helps the models to describe concepts with very
few attributes, (ii) representation trained from very simple
or very complex datasets usually have a shorter concept
description length than those trained on other datasets,
and (iii) the subjective complexity significantly comes in
an inverted-U relation with the visual complexity.

3.2 Computation vs. complexity
This experiment evaluates the capability of rule- and
similarity-based generalization by the representations in
Sec. 3.1. We predicted that under the same evaluation pro-
tocol, representations with relatively high subjective com-
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Figure 5: Quantitative results of Computation vs. Complexity.
(a)(b) The rank correlation of similarity- and rule-based general-
ization with the four representations trained from four datasets.
(c)(d) The rank correlation of similarity- and rule-based gener-
alization according to the visual complexity. (L: LEGO, G:2D-
Geo, A: ACRE, I: ImageNet) These plots reflect the landscape
in Fig. 2.

plexity outperform those with low subjective complexity
in rule-based generalization, while the trend is the oppo-
site in similarity-based generalization.

Method The evaluation of generalization is designed
with two phases: in-domain and out-of-domain general-
izations. The former consists of unseen samples from
the test set of ACRE and ImageNet, whereas the latter
contains unseen samples of unknown concepts collected
from the internet. Each phase has a dataset with pairs for
similarity-based generalization evaluation and a dataset
with quadruples for rule-based generalization evaluation.

The evaluation protocol for similarity-based general-
ization extends its definition in Sec. 2.1. Formally, given
unknown concept c′ and known concepts c ∈ C, the
ranking of the pairwise metric measurement is S =
{σ0(ci, c

′) ≥ σ0(cj , c
′)|ci, cj ∈ C}. The representa-

tion ranking Sr is obtained by the cosine similarity be-
tween two representation vectors cos(zi, z′). The ground-
truth ranking Sh is obtained by human judgment. Hence,
the generalization capability of the representation can be
quantified through the rank correlation coefficient [46] as
an accuracy measurement.

Similarly, the evaluation protocol for rule-based gen-
eralization is defined as follows. Given incomplete rule
r′(c3, c

′) and known rules ri(c1, c2) ∈ R, the ranking
score Rr of representation is reduced to a cosine similar-
ity calculation cos(z2− z1 + z3, c

′), and the ground-truth
ranking Rh is obtained by human judgment [36]. We ob-
tain the ground-truth concepts by literal meanings through
the language representation model GloVe [39]. The im-
age examples are retrieved from datasets (in-domain) or
the internet (out-of-domain) with label embedding match-
ing [57].

Results The quantitative results for in-domain gener-
alization evaluation are illustrated in Fig. 5. In similarity-
based generalization, the representation trained from Ima-
geNet outperforms others (over 15%), and LEGO outper-
forms its more complex counterparts 2D-Geo and ACRE
(over 10%). In rule-based generalization, the representa-
tion trained from ACRE outperforms its more complex
counterpart, ImageNet (over 20%). Though the models
trained on ImageNet and ACRE reach the highest accu-
racy on similarity- and rule-based generalization, this is
not likely due to over-fitting in training: The objective
of visual categorization is different from that of general-
ization, thus the over-fitting on one visual categorization
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Figure 6: A landscape of similarity- and rule-based generalization over concepts with relatively high and low subjective
complexity, considering both concept complexities and concept hierarchy. Bidirectional arrows denote the similarity judgment
between concepts, wherein concepts linked by solid lines are more similar than those linked by dashed lines. Arrows denote rules
over concepts. Rule-based generalization in basic-level generalizes given rules to unknown rules. Similarity shifts to rules when
the sample hierarchy goes from superordinate-level to subordinate-level (e.g., from block to blue cylinder, from cat to angora
cat). Rules shift to similarity as the sample hierarchy goes from subordinate-level to superordinate-level (e.g., from car on the
road to car, from dalmatian to spot). We further notice a confusing similarity judgment between blue cylinder, blue cube, and
green cylinder with distinct and shared attributes.
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would not result in an over-fitting on other objectives. In-
tuitively, representations trained on more complex dataset
span more complex attribute spaces. However, the result
implies that the shift between similarity- and rule-based
generalization is non-monotonic as the dataset complexity
increases; it is more correlated to the subjective complex-
ity based on Sec. 3.1. Hence, there is a significant negative
relationship between the similarity-based generalization
and the subjective complexity (r = −.48, p < .05), and
a significant positive relationship between the rule-based
generalization and the subjective complexity (r = .68,
p < .01).
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Figure 7: The RoA matrix. Most (21 out of 25) of the con-
cepts are unknown; high saturation indicates high RoA value.
The diagonal elements are the most representative attributes of
all concepts.

Fig. 6 illustrates the qualitative results for out-of-
domain generalization. As shown in Fig. 7, though never
tuned on the unseen examples, the representation model
also captures representative attributes for unknown con-
cepts, which supports our argument in Sec. 2.1 that RoA
has the potential to serve as a prior for Bayesian gener-
alization. Further, we visualize the most representative
attributes of each concept by upsampling the activated
feature vector to the size of the original image [4]; the
attributes are located around the peaks. Most attributes
with high RoA are explainable, such as the shape attribute
shared by blue cylinder and green cylinder, shape and
color captured by two distinct attributes in banana and
watermelon, and foreground object (plane, car) and back-
ground (road, field) attributes in airport and car on the

road. Those concepts with more than one meaningful at-
tributes are sensitive to rule-based generalization. By con-
trast, those concepts with only one meaningful attribute,
such as dog-like face for dog, car-like shape for car, are
sensitive to similarity-based generalization.

Discussion The above experiment reveals that (i)
both similarity- and rule-based generalizations are not
significantly related to the visual complexity of datasets,
(ii) the capability of similarity-based generalization has a
significant negative relationship with the subjective com-
plexity of representation, and (iii) the capability of rule-
based generalization has a positive relationship with the
subjective complexity of representation. We empirically
articulate that the computation-mode-shift significantly
exists, and similarity shifts to rules as the subjective com-
plexity increases; please refer to the supplementary mate-
rial for more details.

3.3 A statistical interpretation
Subjective complexity in natural image statistics

According to algorithmic information theory [8], a con-
cept’s subjective complexity is proportional to the prob-
ability of perceiving this concept. This is consistent with
the subjective complexity of visual concepts defined in
our work. An attribute z is representative for concept c
when RoA(z, c) is relatively high; we have a high prob-
ability of observing the attribute by the concept (e.g.,
P (z|c) = 1) or only by the concept (i.e.,

∑
ĉ 6=c P (ĉ|z)

is small). Specifically, complex concepts (e.g., dog, cat),
though consisting of many attributes (e.g., fur, ear), tend
to have a unique attribute of view as a whole to distinguish
these concepts from others because we can hardly observe
them in other concepts. Conversely, simple concepts (e.g.,
circle, cylinder) can be observed by many other concepts
(e.g., wheel, chimney) and also have other attributes (e.g.,
number of angles, smoothness). Nevertheless, the attribute
shape is one of the simple attributes to describe these con-
cepts; representation of these concepts emerges iconic-
ity [24, 15, 13, 40].

Meanwhile, for those concepts that are either too sim-
ple or too complex (e.g., watermelon, airport), no unique
or simple attribute can distinguish them from others; i.e.,
RoA(z, c) is not high. In these cases, we have to de-
scribe them with more attributes. Of note, this interpre-
tation is also in line with the principle of rational refer-
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ence [16, 21].

From similarity to rules Since similarity gradient
can be viewed as a partial order defined on a single
set [50], sorting hypotheses requires numerical compar-
ison in the same domain. Hence, similarity judgment in
a single attribute space zi is simply calculating the simi-
larity between concepts cj and ck by d(z

(j)
i , z

(k)
i ), where

d(·, ·) can be an arbitrary similarity or distance met-
ric [38]. As the number of independent attribute spaces
increases (i.e., subjective complexity increases), the sim-
ilarity becomes subtle as we have to consider multiple
independent attributes. Of note, the attribute spaces are
those obtained after dimension reduction [64]. Accord-
ing to high-dimension geometry, those concept represen-
tations are almost distributed uniformly [6], unless we
assign weights to different attribute spaces by only con-
sidering very few attributes. For example, watermelon is
similar to tennis in the attribute space of shape, but it be-
comes cucumber in the attribute space of color; airport is
similar to plane in the attribute space of foreground ob-
ject and is similar to land and sky in the attribute space
of background context. In this work, we reduce similarity
judgment over multiple attribute spaces to rules defining
relations over two concepts: At least one shared attribute
space bridges the two concepts.

From rules to similarities As the number of inde-
pendent attribute spaces (i.e., subjective complexity) de-
creases, rules are moved back to similarity. For example,
we have the rule relating dalmatian to spotted tabby by
fur texture, and can generalize it to samoyed to angora
cat. However, when the concepts are more complex (e.g.,
dalmatian and samoyed fall in dog, or spotted tabby and
angora cat belong to cat), rules are difficult on these con-
cepts; instead, we directly apply similarity judgment.

Concept complexities and hierarchy When visual
complexity moves from low to high, we have visual con-
cepts move from simple and universal to complex and
unique. We argue that these two ends consist of super-
ordinate concepts [65], usually on higher hierarchies. Ob-
jects such as watermelon, attribute-specified animals such
as samoyed, are subordinate concepts of ball and dog,
respectively; scenes such as airport are compositions of
subordinate concepts like plane and land and sky. In a top-
down view, we have concepts with increasing subjective
complexity and more shared attribute spaces to general-

ize by rules. In a bottom-up view, the attribute spaces are
reduced to the simple or unique ones, easy for similarity
judgment.

4 Conclusion
We have analyzed the complexity of concept generaliza-
tion in the natural visual world, in Marr’s representational
and computational level. At the representational level, the
subjective complexities significantly fall in an inverted-U
relation with the increment of visual complexity. At the
computational level, the rule-based generalization is sig-
nificantly positively correlated with the subjective com-
plexity of the representation, while the trend is the op-
posite in similarity-based generalization. RoA bridges the
two levels by unifying the frequentist properties of nat-
ural images (sensory-based) and the Bayesian properties
of concepts (knowledge-derived) [5]. It is easy to obtain,
is flexible to an extent, and captures contextual rational-
ity, thus may serve as humans’ visual common sense [71].
Please refer to the supplementary material for additional
remarks.

The limitations of this work lead to several future di-
rections: (i) We only demonstrated the inverted-U rela-
tion and the correlation empirically. Can we provide them
theoretically, from the aspect of information theory and
statistics? (ii) Can we further extend the generalization
evaluation to a larger scale, that helps to probe the con-
tinuum space between similarity and rules quantitatively?
(iii) Are our findings consistent with those in other envi-
ronments, where the concepts are represented in different
modalities (e.g., language, audio, and tactile)? (iv) If us-
ing only a few attributes with high RoA improves the ac-
curacy of the visual categorization task, as Sec. 3.1 sug-
gests, can we build an algorithm that samples from RoA
adaptively to task and data distribution for stronger gen-
eralization? (v) If RoA reflects humans’ visual common-
sense, can we model the communications between indi-
viduals toward commonsense knowledge as a pursuit of
the common grounds on representative attributes for the
concepts to be communicated [55]? With many questions
unanswered, we hope to shed light on future research on
Bayesian generalization.
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A Additional Remarks

A.1 The Uniqueness of the Natural Visual
World

Why do we only use the modality of vision to inves-
tigate the complexity of Bayesian generalization? Vi-
sion is unique for the diverse complexities both in the
natural visual world and in the semantic space [28],
which relates vision to the discussion of levels of ab-
straction [60]. To some extent, vision serves as the bridge
between abstract language-derived knowledge and per-
ceptual sensory-derived knowledge [5]. The two ends
of the continuum of Bayesian generalization touch the
functional essences of rule-based symbolic signals and
similarity-based perceptual signals [50]. In particular, the
very final development of symbolic signals leads to the
emergence of language, based on the compositionality
of symbols and rules as the basic feature of language.
The psychology literature supports the hypothesis that
language is emerged from visual communications by ab-
stracting visual concepts toward hieroglyphs through their
iconicity [15, 13, 14]. Both simple and universal visual
concepts, such as geometric shapes, and complex and
unique visual concepts, such as animals and artificial ob-
jects, are all related to corresponding abstract concepts
by iconicity. By contrast, those concepts that are nei-
ther simple nor unique are unlikely to be abstracted by
iconicity since they are described by multiple represen-
tative attributes—though each attribute can be general-
ized through iconicity respectively, putting different at-
tribute spaces together is not making sense—by contrast,
those concepts naturally satisfy the compositionality of
language, thus are appropriate for rule-based generaliza-
tion. In this sense, vision is not only a modality of data but
is the hallmark of human intelligence, evolving percep-
tual sensory toward language for communications. Hence,
vision is meaningful and sufficient for investigating the
complexity of Bayesian generalization.

Consider other modalities, say audio, the second com-
mon resource of sensory input. Although we could de-
fine audio complexity and try to correlate it with sub-
jective complexity, audio is only a perceptual sensory—
abstraction of raw audio is not related to any semantic
meaning, thus does not provide much insight on human
intelligence; also the diversity of audio complexity is far

less than its visual counterpart. Hence, generalizing the
experiments to audio data may be a bonus but never pro-
vides us insights as deep as that provided by visual data.

A.2 The appropriateness of the computa-
tional modeling

Thanks to Marr’s paradigm [35], we could separate the
computational-level problem and the representational-
level problem, where we study computation problems
regardless of their algorithmic representation or physi-
cal implementation in either humans or machines [30].
Hence, under the same computation problem, whether the
algorithm is neural networks or brain circuits is not the
problem in the scope.

Since the two parts of our computation problem—
Bayesian generalization [51] and subjective complex-
ity [31]—have established solid backgrounds in human
cognition, we have a sufficient prerequisite for studying
the complexities in the natural visual world. Though there
may be infinite interpretations of human cognitive mod-
els [33], constrained by previous theories and the princi-
ple of resource-rational analysis [33, 18], we can make
assumptions about the Bayesian derivations.

B Implementation Details

B.1 Implementing basic discriminative
models

The basic discriminative models are employed from
ResNet [25], thus the feature space is spanned by a 512-d
or 2048-d feature vector (dimensions are different by the
different depths of ResNet architecture). All models are
trained on eight NVIDIA A100 80GB GPUs.

B.2 Implementing RoA
In general, the RoA computes a score for each attribute zi
over each concept c. The output of RoA is a matrix where
the column space is the context of all the concepts in the
natural visual world, and the row space is all the attributes.
Assume we have three samples {x(1), x(2), x(3)} ∈ X
of concept c, then the output of f provides the attribute
vectors z(1), z(2), z(3) ∈ RH×W×D respectively. We
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then adaptively pool each feature map z
(1)
i , z

(2)
i , z

(3)
i ∈

RH×W×d in each dimension of the attribute vector to a
scalar z(1)i , z

(2)
i , z

(3)
i , thus z(1), z(2), z(3) ∈ Rd. P (zi|c) is

calculated by normalizing over the dimensions of centroid
vector of all z given the set of samples of concept c, e.g.,˜̄z(k), k = 1, 2, 3.

B.3 Implementing Subjective Complexity
Measurement

Since the calculation of the absolute value of L(ĉ) may
encounter multiple solutions, we employ accuracy gain
[4] to compute a relative L(ĉ) specifically for ĉ. The accu-
racy gain approach considers the categorization accuracy
difference for a single concept before and after removing
the effect of a specific neuron, defined as:

∆AccK(ĉ) = P
(
ĉ = c

∣∣c = argc maxP (c|z1, . . . , zK ;φ)
)

−P
(
ĉ = c

∣∣c = argc maxP (c|z1, . . . , zK−1;φ)
)
,

(6)
where K ≥ 2 and ∆Acc1(ĉ) = P

(
ĉ = c

∣∣c =

argc maxP (c|z1;φ)
)
. Hence, the relative L(ĉ) is exactly

computed by:

Lrelative(ĉ) = min
K

max AccK(c), (7)

which serves as the heuristic to search for the minimum
K to calculate absolute L(ĉ).

C Method Appropriateness Check-
ing

C.1 Checking the assumptions of the two-
lines test

The ”two-lines test” requires a weaker assumption than
the mostly used quadratic regression test for testing U-
shapes [34], hence the former is employed instead of
the latter. Let y = f(x) be the ground-truth function,
the U-shape assumes only a sign flip effect in discrete
data, where there exists xc such that f ′(x), x ≤ xc and
f ′(x), x ≥ xc has opposite signs [34]. To note, since the
data is originally discrete, there is no need to check the
existence of f ′(x) because it is estimated based on the

discrete data points. Hence, the basic hypothesis of the
U-shape is that at least one such xc exists, and the null
hypothesis is that no such xc exists. The null hypothe-
sis is rejected by estimating many xc values and run two
separate linear regressions for x ≤ xc and x ≥ xc respec-
tively. The fact that two regression lines are of opposite
sign rejects the null hypothesis. By contrast, the quadratic
regression test assumes that the first-order derivative func-
tion f ′(x) is continuous in the domain. Hence, there is no
need to employ the quadratic regression test.

C.2 Checking the assumptions of the linear
regression test

The assumptions of the test are (1) linearity of the
data; (2) x values are statistically independent; (3)
the errors are homoscedastic and normally distributed.
We did test the applicability of the linear regres-
sion test: (1) the two relations between rank cor-
relation and subjective complexity are intuitively in
lines ([(0.1, 7.8), (1.28, 79.1), (2.91, 46.7), (3.08, 99.5)]
and [(0.1, 17.1), (1.28, 33.2), (2.91, 15.8), (3.08, 10.2)]);
(2) all the evaluations are run separately with different
random seeds, thus the predictors are statistically inde-
pendent; (3) since the only independent variable is the
dataset, which is not likely to be the source of constant
variance of the errors, the errors are homoscedastic. Con-
sider the null hypothesis of the linear regression test that
the coefficient β1 is zero, which leads to a trivial solution.
However, the p-values of both the positive and negative
relations are less than 0.05, rejecting the null hypothesis.

C.3 The correctness for combining repre-
sentation and computation

As illustrated in Fig. 5, we integrated the results in rep-
resentation vs. complexity into this plot to use these
plots to demonstrate the computation-mode-shift—the
two U-shapes come with opposite trends intuitively show
the landscape for concept complexity vs. the computa-
tion mode, that similarity-based generalization tends to
emerge in concepts with very low or very high visual
complexity (i.e., the concepts with low subjective com-
plexity, on the left and right ends of the visual complex-
ity axis), and rule-based generalization tends to emerge in
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concepts with neither very low nor very high visual com-
plexity (i.e., the concepts with high subjective complex-
ity, in the middle of the visual complexity axis). This is
the exact claim of the paper. The quantitative results on
the significant positive relation between rule-based gener-
alization rank correlation and subjective complexity, and
the significant negative relation between similarity-based
generalization rank correlation and subjective complexity,
both support the claim.

D Dataset Construction

D.1 Empirical Analysis Datasets

Several widely-used image datasets that represent dif-
ferent concept-wise visual complexity are selected:
LEGO [48], 2D-Geo [11], ACRE [66], AwA [62],
Places [67], and ImageNet [9]. Especially, we use the Ima-
genet subset Imagenet-1k and the AwA2 version of AwA.
The so-called ACRE dataset, although not officially re-
leased, is based on the well-known CLEVR universe [26]
and can be rendered with single object in one panel and
without the blicket machine according to [66]. See Fig-
ure 9 for some examples of the datasets we use. We limit
images of each concept in all of these datasets to about 1k
to ensure a balanced number of learning samples, which
may lead to the gap between our models and the SOTA.

All the codes including the dataset construction, train-
ing and analyzing will be released. They are attached to
this Supplementary for review.

D.2 Definition of the Vocabulary

We leverage a fully-connected probabilistic graph model
to obtain the representativeness of every attribute for ev-
ery concept, where each node is a piece of natural lan-
guage that serves as either a concept or an attribute
describing other concepts. We exploit the RoA in lan-
guage to generate the in-domain and out-of-domain visual
datasets for Bayesian generalization. Technically, we use
the vocabulary from a WordPiece model (e.g., the base
version of Bert [56]), where a word is tokenized into word
pieces (also known as subwords) so that each word piece
is an element of the dictionary. Non-word-initial units are
prefixed with the sign ”##” as a continuation symbol. In

this way, there is no Out-Of-Vocabulary. This brings the
benefit of generalization over all words. Using all these
words as attributes or features leads to sufficient cover-
age. Moreover, some symbols are reserved for unused
placeholders, leaving room for features that the language
cannot describe. The readers can refer to vocab.txt in
the supplementary materials for more details about the at-
tribute list.

D.3 Human-in-the-loop dataset validation

We constructed the similarity-based generalization and
the rule-based generalization datasets using both man-
ual approaches and automatic approaches. Details of all
datasets are demonstrated in Tab. 1.

For in-domain similarity-based generalization, a con-
cept pair with a human-annotated similarity score was
first retrieved from MEN dataset [7] and ImageNet dataset
[9]. Next, we used AMT to crowd-source the image
aligned to the concept. In total, 305 pairs were selected
from 500 candidates. One image was aligned to each con-
cept.

For in-domain rule-based generalization, we generated
dataset using objects of easy-to-disentangle attributes
(e.g., shape and color) [66, 26]. Based on these at-
tributes, we constructed the quadruple relation (e.g.,
blue cube:red cube::blue cylinder:red
cylinder). In total, 4800 images and 24 quadruple
relations were collected.

For out-of-domain similarity-based generalization and
out-of-domain rule-based generalization, we collected
images from an open internet image dataset [29] based on
a predefined set of similarity pairs and rule quadruples. Of
note, all the selected pairs or rules were uniformly sam-
pled from the dataset instead of manually picked. All the
selected images were under human validation.

In the study, AMT workers recruited have acceptance
rates higher than or equal to 90% and approved hits more
than 500. Each AMT worker was compensated at the rate
of 0.01 dollar per selection. In total, we have tested 1000
judgments for 500 concept pairs; two judgments per pair.
Fig. 8 shows an example of the AMT interface.
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Given the concept pair, please evaluate whether the image pair below shows the corresponding concept.

Sun                                                 Sunlight

Figure 8: The Amazon Mechanical Turk (AMT) interface used to collect human judgments.

Table 1: Details of the datasets for generalization evaluation. Subordinate level indicates the concept being generalized to is a
subordinate concept of the known ones, whereas superordinate level indicates the concept being generalized to is a superordinate
concept of the known ones. Subordinate level, basic level, and superordinate level are terms introduced in [65].

Group In-domain Out-of-domain
Generalization type Similarity-based Rule-based Similarity-based Rule-based
Concept hierarchy basic level basic level basic level basic level subordinate level superordinate level

Test-set size 305 24 21 10 10 10

E Additional Results

E.1 The Convergence of Representation vs.
Generalization

Does the training setting of the representation model af-
fect its generalization ability? Fig. 10 shows the rank
correlation on in-domain generalization evaluation w.r.t.
the number of training epochs for visual categorization.
This result empirically shows that the generalization abil-
ity converges when the representation models are well
trained after 6-10 epochs, and that ability is stable after
convergence. The regression line is significantly vertical

to the y-axis (b = .03, a = 69.67, p < 1e − 4). Hence,
we can assume that there are no significant distinctions of
generalization ability between representation models be-
ing trained to convergence but with different training set-
tings.

E.2 Additional Visualization Results of
RoA

Additional visualization results of RoA are illustrated in
Fig. 11. Most (21 out of 25) concepts are unknown; high
saturation indicates high RoA value.
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Fig. 11a shows the concatenation of the 7 confusion
matrices where the n-th diagonal indicates the n-top RoA
of the concepts.

Fig. 11b shows the concatenation of 120 highest (from
the left) and 60 lowest (from the right) attributes with the
mean of RoA in the context.

Fig. 11c shows the concatenation of 120 highest (from
the left) and 60 lowest (from the right) attributes with the
variance of RoA in the context.
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LEGO

2D-Geo

ACRE

AwA

Places365

ImageNet

Metal Blue Cube Metal Purple Cylinder Rubber Cyan Sphere Metal Brown Cylinder  Rubber Red Sphere

Giant Panda GiraffeFox ElephantKiller Whale

Triangle Square Star Hexagon Circle

Technic Lever 3MPeg 2MPlate 1*2 Brick 2*2 Brick 1*1

Alley Arch Bridge Farm Ocean

Cock HenStingray Jay Magpie

Figure 9: Examples of datasets used in our work.
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Figure 10: Rank correlation of generalization w.r.t. the number of training epochs for visual categorization.
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