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Abstract. We propose an optimization formulation for the simultaneous estimation of a latent variable and the
identification of a linear continuous-time dynamic system, given a single input-output pair. We justify this ap-
proach based on Bayesian maximum a posteriori estimators. Our scheme takes the form of a convex alternating
minimization, over the trajectories and the dynamic model respectively. We prove its convergence to a local min-
imum which verifies a two point-boundary problem for the (latent) state variable and a tensor product expression
for the optimal dynamics.
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1. INTRODUCTION

The theory of latent variables in Data Science has been progressing very fast in the recent
years, with the objective of reducing the dimension of the dataset. Since data is often associated
with dynamic systems, it is natural to consider in this context the framework of identification
and estimation of dynamic systems. We refer to [10] for a survey of the main ideas in this
direction and to [11] for details, in connection with the Kalman filter in discrete time. The
general idea is to consider the latent variable as described by a dynamic system in state space
representation. The difficulty is that we need to identify the system while estimating it. The
maximum likelihood approach is a natural way to proceed. A discrete time version for a simpler
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model can be found in [3]. While most of the papers on this specific topic are indeed in discrete
time, there is a huge swath of literature dealing with dynamic systems in continuous time,
justifying tackling this setting as well. To simplify the theory and the algorithm, we consider
that some aspects of the linear dynamic system are known, in particular the covariance matrices
of the noises and the observation matrix.

2. THE MODEL

We consider an input-output problem (v(t),y(#));c[o,r] in state space representation, where
we want from a single trajectory to reconstruct the state and its dynamic equation, in other
words to perform both estimation and system identification at the same time. We assume that
the linear dynamic systems with noise are described by two stochastic differential equations,
with all the underlined quantities being known,

dx = (Ax+ Bv)dt + Gdw, x(0) = & ~ N (x0,I1), 2.1)
dy = Cx(t)dt +db(1), ¥(0) =0, (2.2)

where we assume for simplicity that the dimensions of the operators are fixed, for instance
chosen minimal through realization theory, see e.g. [3]. More precisely we take x(¢) € RY,
v(t) eRY, A € Z(RY;RV), Be Z(R%RY); v(t) being a given deterministic control. There
is no optimal control in this setup, but v(.) is an input decided by the controller. The process
w(t) is a Wiener process in R™, with correlation matrix Q, and G € .Z(R™;R"). The random
variable £ is Gaussian with mean xo € R and covariance matrix ITy. It is independent of the
Wiener process w(t). The matrices A and B are not known, although they are in the vicinity of
known matrices Ao, By used as priors. The state of the system x(¢) is not observable. We observe
instead the process y(¢) € R” where C € .Z(RV;RP) is known. The process b(t) is a Wiener
process in R”, with covariance matrix R, also independent from & and w(.). For simplicity, we
assume in the sequel that the matrices I1p, Q, R are invertible (inverses would then be replaced
with pseudo-inverses).

The only information is v(¢),y(r),t € [0,T]. If A, B were known, the problem would reduce
to estimating the evolution of the state x(¢). This is the classical Kalman smoothing problem.
There are many equivalent ways to solve it. For instance, it is well known that the maximum
likelihood is equivalent to the following least square deterministic control problem

d
d—f = Ax+Bv+Gw, x(0)=E&, (2.3)

in which the control is the pair (§,w(.)) minimizing the payoff

TG E )& —x0) + 2 [ 0wl @it g [ R 00) - Cxl0)- ()~ Cx()a.
(2.4)
When A,B are not known, one way to proceed is to approach (2.3) as a constraint. This
leads to the following formulation. Introduce the argument Z = (A, B,x(.).w(.)) where x(.) €

In continuous time, y(t) € L>(.7,R™) “is reminiscent of the observation process, in fact rather the derivative of
the observation process (which, as we know, does not exist)” [2, p180]. Thus it is as if we observed this derivative
to do the reconstruction, which is justified since only integrals of it appear in (2.4).
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H'(0,T;RN), w(.) € L?(0,T;R™), and define the norm
|1Z||> = tr(AA* 4+ BB*) + |x(0 |2+/ 2dt+/ (t)|?dt, (2.5)

thus Z belongs to a Hilbert space, denoted by Z. Based on (2.4), we then introduce the follow-
ing functional J over Z to perform the reconstruction. It will be justified in Section 3 through
Bayesian arguments.

: o o * *
M I(ABO)0) = T (A~ A) (A~ Ag)" + (B-By)(B-B)))  26)

2
B o)~ Bute) ~ G0 i+ 3115 (x(0) ~30)-(+(0) ~ )
1 T 1 1 r —1
+5 [ @ WO 0di+3 /O R (y(t) — Cx(1)).(y(¢) — Cx(r))dr,

for given parameters o, 3 > 0. To alleviate notations, from now on we do not underline the
known quantities and we refer the reader to this section. The first term in « is a regularizing
term in (A, B) using our prior. The second term in f3 is a penalty term if the constraint (2.3) is not
satisfied. It can be seen as a regularization of (2.4) (see Theorem 3.1 below). The other terms
penalize deviations of (x(0),w(z),Cx(t)) from their references (xp,0,y(z)). So the problem
amounts to minimizing the functional J(Z) on the Hilbert space 2. Note that (A, B) only appear
in the two first terms, while (x(.),w(.)) appear in all terms but the two first. This suggests to do
an alternating minimization of J as in Section 5 below. However J is non convex due to term
Ax(t), so we cannot hope to reach a global minimum for every initialization. We will first justify
the choice of J in Section 3 and then prove the existence of a minimum in Section 4, giving also
the first-order optimality conditions that it satisfies. Note that a similar methodology can be
replicated if we consider some other matrices to be unknown (e.g. C or G). In the discrete time
case, the problem of estimating simultaneously two matrices while minimizing an expression
of their product has been considered in [9].

3. BAYESIAN JUSTIFICATION OF THE MODEL

We follow here the presentation of [6, Section 2] for the classical derivation of a least squares
problem from a maximum a posteriori (MAP) estimator of system based on a model (M) and
observations operator (O). To avoid technicalities, we do the justification for random variables
over a finite set, thus not for the stochastic differential equations (2.1)-(2.2) with Brownian
motions which we considered. However the ideas and results extend to infinite dimensions [5].
To obtain the objective function (2.6), we consider that (2.2) is an equation of the form

Y =0(x(.),w(.)) + Nops

The key reason for the methodological difference when moving to continuous time is reminded in [5] “While
in the finite-dimensional setting, the prior and posterior distribution of such statistical problems can typically be
described by densities w.r.t. the Lebesgue measure, such a characterisation is no longer possible in the infinite
dimensional spaces [...] no analogue of the Lebesgue measure exists in infinite dimensional spaces.” However
Gaussian measures can still serve as a replacement in our case [4]. They correspond here to the Wiener processes
we consider. Radon—Nikodym derivatives are then obtained through Girsanov’s theorem [2, Chapter 6.5].
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where Y = (y1)rc 7, Nobs ~ N (0, %), % (s,t) = = R(t). Similarly we relax (2.3) by introduc-
ing a model error

0= M(x(.),w(.),A,B) + Nmodel

where Nyoger ~ - (0,Id/B). We put a Gaussian prior yy on (x(.),w(.),A,B) of the form
x(0) ~ A (x0,Ip), w(.) ~ A(0,2) with 2(s,1) = 6,—,0(t), A ~ A (Ap,Id /@) and B ~
A (Bo,1d /). Thus, by Bayes’ theorem, the posterior distribution is given by

u(dz) o eXP(—gllM(X(-),W(-),AaB) (= %Ily(-) —0(x(.),w())ll#)*o(dZ).

where [|y(.)||%, = (Z'y(.)).y(.). The MAP estimator is then given by argmax . » u*(dZ), and
thus equivalently by minimizing the log-density, argming, 5 —logu*(dZ) which is precisely
(2.6). More formally, in continuous time, to derive (2.6) as the problem solved by the MAP, one
can just apply [5, Corollary 3.10] to identify J as an Onsager-Machlup functional.

Remark 3.1 (RKHS constraint in the limit case). Interestingly [6, Proposition 1] recalls that for
B — o= (vanishing model noise case), we have that the accumulation points of the optimum Zﬁ
all satisfy (2.3). For given A, B, (2.3) says that x(.) belongs to the affine vector space of functions
A = {x(.) | Iw(.), d5/dt = Ax+Bv+Gw, [} Q~'w(t).w(t)dt < oo}. This space can be equipped
with a quadratic norm based on IT, ' (x(0)).(x(0)) + J& 0 w(t).w(t)dt + [ C*R™'Cx(t).x(¢)dt
and, once the affine term is removed, has a reproducing kernel Hilbert space (RKHS) structure.
We refer to [1] for more on this topic. Since we consider B # oo, we authorize x(.) to live
beyond this RKHS. In other words the “noise” term w(.) can be understood as a control, and
by introducing B we assume implicitly some extra noise on the model that was not present in
(2.1). Moreover B — oo implies that the minimizer w(.) is equal to G (4x/ar — Ax(t) — Bv(r)),
with G® the pseudo-inverse of G for the Euclidean norm. Consequently the objective simplifies
to

J(4,B.x()) = Zte((A—Ao) (A~ A0)" + (B Bo) (B~ Bo)") + 311y (x(0) —x0).(x(0) ~ x0)
T X X
4 % /0 oo \G° <2117 — Ax(1) —Bv(t)> | (% _ Ax(1) —Bv(t)) dt

1 T
3 [ R0 = Cx(0)-6(0) — Calr))a, (3.1

where it is effectively the noise w(.) of (2.1) that is penalized, and J corresponds to the tradi-
tional least square estimator used in Kalman smoothing [1, 7].

Remark 3.2 (Relation with EM). It is well-known that the Expectation-Maximization (EM)
algorithm is an alternating minimization of a log-likelihood [8], which is the form of algorithm
we propose in Section 5. More precisely, given a probability space (%, fi), the relative entropy
(Kullback-Leibler divergence) is defined as

KL(uI) = [ n(@s/an () dpa () (3.2)

for u absolutely continuous w.r.t. it and +oo otherwise. In our case, we assume our observations
Y to be sampled according to vV and X serves as a latent, hidden random variable X € (.27, i1).
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We posit a joint distribution pg(dx,dy) parametrized by an element 8 = (A, B) of the set ©® =
Z(RV;RN) x Z(R4;RN). As presented in [8, ], the goal is to infer 8 by solving

inKL(V 3.3
min (V|pype), (3.3)

where py po(dy) = [4 pe(dx,dy) is the marginal in . The EM approach starts by minimizing
a surrogate function of 6 upperbounding KL(V|pypg). For any & € I1(x,V) = {x|pym = v},
by the data processing inequality, i.e. KL of the marginals is smaller than KL of the plans,

KL(7|pype) < KL(z|pg) =: L(m,6).

EM then proceeds by alternating minimizations of L(x, 0) [8, Theorem 1]:

6, = argminKL(7,|pg), (3.4)
0cO
Tp1 = argmin KL(7|pg,). (3.5)
mell(*,v)

The above formulation consists in (3.4), optimizing the parameters 6, at step n (M-step), and
then (3.5), optimizing the joint distribution 7, at step n+ 1 (E-step). This is actually what
we propose as algorithm to minimize J by minimizing alternatively in X = (x(.),w(.)) and 6 =
(A,B), J being obtained as previously as the KL divergence of Gaussian measures. However
making explicit the (Gaussian) measures underlying our parametrization goes beyond our scope
and we now move to the study of our specific least-squares J.

4. EXISTENCE OF A MINIMUM AND NECESSARY CONDITION

Before searching for a minimum, we prove that J has indeed one.
Proposition 4.1. The functional J(Z) attains its infimum.

Proof. The functional J(Z) is continuous on % . It is also weakly lower semicontinuous. In-
deed if Z, — Z (weakly), then A, — A in Z(RY;RN), B, — B in Z(R%:RY), x,(.) — x(.)
in H'(0,T;RN), w,(.) — w(.) in L?(0,T;R™). We deduce that (x,(.)), is equicontinuous,
hence, by Ascoli’s theorem, x,(.) — x(.) in C°([0,T];R"). It follows that A,x,(.)— Ax(.) in

C%([0,T);RY) and i

- N d_): in L2(O, T;RY). Consequently we have

%tr((An —AO)(An _AO)* + (Bn _B())(B" _B())*)

1“61(%(0) —x0)-(%n(0) —x0) + ! TR_l(Y(f) — Cxp(1))-(y(t) — Cxn(2))dt
+2 2 Jo

n—soo

LmiN %tr((A —Ao)(A —Ag)* + (B—Bo)(B—By)")

4TI (5(0) 20)-(e0) )5 [ R 60) ~ Cale). () — o))
Sy (x x0).(x X0 2 ), y x(1)).(y(t) — Cx(t))dr.

From the weak lower semicontinuity of the norm in the spaces L?(0,7T;R") and L?(0,T;R™),
we conclude easily that J(Z) < liminf J(Z,). If we consider a minimizing sequence Z,, namely

J(Z,) — inf J(Z) > 0.
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Then, since J(Z,) < J(0) for n sufficiently large, it follows easily that the sequence Z, is
bounded in Z. Since weakly closed bounded sets are weakly compact, we can extract a sub-
sequence, still denoted Z,, — Zin% weakly. From weak lower semicontinuity of J, we obtain
J(Z) < liminfJ(Z,) = inf J(Z). This implies that Z is a minimum of J(Z), which concludes the
proof.H 0

We now check that J(Z) has a Gteaux differential in Z.

Proposition 4.2. The gradient DJ(Z) € % is given by the formula

((DJ(Z2),2)) =tI'(|:OC(A—A0)+/OTq(t)x*<t)dt:| ,Z*) +tr({a(B—BO)jL/OTq(z)v*(;)dt} 1}'*)
+ (Hgl(x(o) —X0) +/OTA*q(t) —C*'R ' (y(r) —Cx(t))dt) x(0)

w0+ [ a0 - R 009~ extonas]| S a
+ [ @ gt + 0w w0 @1
in which Z = (A,B,x(.),w(.)), Z = (A,B,3(.),w(.)) and q(t) is defined by
a(t) == (510 Ax) - Bv(0) - Gu 1) ). “2)
Proof. From the definition of the Gateaux differential in Z, we must check that
%J(m 0Z)|9—0 = ((DJ(Z),Z)) (4.3)

is equal to the right hand side of (4.1). We fix Z, Z with q(t) defined by (4.2). As easily checked
we can write

%J(Z+GZ)\920 :tr({Q(A—Ao)—}—/()Tq(t)x*(l)dt] g*)
i ( {a(B—Bo) + Tq(t)v*(t)dt} E*)
+ 1T (x(0) — xo) F(0) — /OTq(t). (%X—Af(t)) dt

T T
—/O C*R‘l(y(t)—Cx(t)).f(t)dtJr/O (G*q(t) + O~ 'w(r)).w(t)dr. (4.4)

We then replace x(¢) with x(0) + f; %f(s)ds. We perform a change of integration and some
rearrangements to obtain the relation (4.1). ]

If Z = (A,B,x(.),w(.)) is a point of minimum for J(Z), it follows from formula (4.1) that the
corresponding ¢(z) defined by

q(t)=— (Z—f(t) — AX(1) — Bv(r) — GW(t)) 4.5)
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satisfies
Hal(f(O) —xp) + /OT(A*Z]\(t) —C*'R7! (y(t) —Cx(t))dt =0

T
a0+ /[ (A*G(s) — C*R ™ (y(s) — CR(s))ds = 0, Vt.

d
It follows that d—i] is well defined. Differentiating the previous equation, and reordering (4.5),

we obtain the following system of optimality conditions for (4.1)

dx ~ ~
d_’; = AX(1)+Bv(1) — (GO™'G* + é)a(r), x(0) =xo —Iog(0),  (4.6)
8 R R o — ey, ) =0,
R T
(A —Ag) + /0 G(0)F" (1)dr = 0, 4.7)

N T
a(B—Ao) + /O Gl v (1)dt = 0,

with w(z) given by

w(t) = —0G*q(1). (4.8)
Note that (4.7) has an interesting structure, decomposing the optimal A (resp. B) as a sum of
rank 1 tensor products between the covector g and the trajectory x (resp. covector g and control

V).

5. ALTERNATING MINIMIZATION ALGORITHM

The relations (4.6), (4.7) can be interpreted as a fixed point problem for the pair (K, E). If
we fix the pair (A,B) then we obtain the pair (%(.),§(.)) by solving the system of forward
backward equations (4.6). Next for fixed (%(.),4(.)) we obtain (A,B) by the formulas (4.7).
This corresponds also to an alternating minimization of J, which happens in two steps.

The first part is associated to a control problem, formulated as a calculus of variations prob-
lem

~ 1
(in K(A,Bix(.),w(.)) = 5T ' (x(0) = x0).(x(0) = x0)
B (Tldx ~ 2
+E A E—Ax(t)— v(t) — Gw(t)| dt
1
+§/ 0~ w(t)wlr)dr + > /R Cx(1)).(v(¢) — Cx(r) )dt
(5.1)
The second part is associated to an optimization problem
minL(A, Bix(.),w(.)) := %tr((A—Ao)(A—AO)* +(B—Bo)(B—Bo)")
B (T|d% _ P
+§ A E—Ax() Bv(t) —Gw(t)| dt. (5.2)
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It is important to notice that the two problems (5.1), (5.2) are convex quadratic and have a
unique solution, whereas the original problem (2.6) is not convex. This highlights the usefulness
of algorithm that we propose to find a local optimum ZofJ (Z2).

We initialize the algorithm with Ay = Ag,Bo = Bg. For n > 0, knowing A,,B,, we define
uniquely the pair (x;(.), w,(.)) which minimizes K (A,,, B,;x(.),w(.)). This leads immediately to
the existence and uniqueness of the pair x,(.), g,(.) solution of the system of forward-backward
relations

% = Apxy(t) +Byv(t) — (GQ 1G* 4 é) anlt x2(0) = x9 — Togn(0) (5.3)
_ddqtn = (An) qu(t) = C*R™'C(y(t) — Cx, (1)), gn(T) =0, (5.4)

with wy,(f) given by
wn(t)) = —0G*q,(t). (5.5)
We then define A, 1,By,+1 by minimizing L(A, B;x,(.),wn(.)). We obtain

A(Ani1 —Ag) — B / <dﬁ—An+1xn(t)—Bn+1v(t)—Gwn(t)> (ta(1))'dt =0,  (5.6)

o(B,+1—By) B/ (dﬁ—An+1xn(t)—Bn+1v(t)—Gwn(t)) (v(2))*dt = 0.

Using (5.3)-(5.5), the term in w,, canceling out with one of those in g,, we can rewrite the
equation (5.6) as follows by factorizing

T T
Ania (0B [ 5050 ) + BB [ 90
T T T
— aAy+BA, /O 2a(£) (en(£))*dt + BB, /0 V(1) (1))t — /O an(6) Cen(0))"dE, (5.7)

Bnia || le)00)) i+ Byt + B / V()
= aBy+ BA, / X (t dt+BB/ )dt — /Oan(t)(v(t))*dt.

Our main result is the convergence of the alternating minimization scheme to extremal points
for the first-order optimality conditions.

Theorem 5.1. The sequence J(Z") is decreasing. The sequence Z" is bounded and Z"' — 7" —
0. Limits of converging subsequences of Z" are solutions of the set of necessary conditions (4.6),
(4.7).

Proof. We compute the two differences K (A;+1,Bn+1;%0(-),wn(.)) —K(An+1,Bnt13%n+1(-)ywnr1(.))
and L(An, Bn;xn(.),wn(.)) — L(Au+1,Bnt1:X%a(.),wn(.)) which are nonnegative numbers, since
(xp+1(.),wnt1(.)) minimizes K (A, +1,Bpt1:x(.),w(.)) and (A,+1,Bp+1) minimizes L(A, B; x,,(.), wa(.))-
Since we know the minimizers, we can use the fact that a quadratic function f(z), with Hessian
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H and minimum Z, satisfies f(z) — f(2) = %(z —Z)*H(z—Z). This is a completion of square
argument. Consequently, we have

K(A,H_] >Bn+] ;xn(.), Wn()) — K(AYH-] ,B,H_] s Xn+1 (~);Wn+l ())

= lI_I ( (O) Xn+1 (0))()6” (0) —Xn+1 (O))

ﬁ/

+ 5/ Qil(wn(l‘) — Wit 1(2))-(Wn(t) = w1 (2))dt

2
= Xn1) = Ant (6n (1) = X1 (1)) = G(wn (1) = w1 (1)) | dt

dt

+5 / R C(0(t) — X1 (1))-Co0n (£) — ni1 (1) ). (5.8)
Similarly we can write also
L(An, Bp;xn (), wn(.)) — L(Ant1, B 1320 (), wa(.))

o * *
:Etr ((An—Ap41)(An —Ang1)” + (B — Bpy1)(Bn — But1)”)

B A= A ) + By B ) Pt 59)
Adding up, we see that the left hand side is J(Z") —J(Z"*1), so we obtain
J(Z)—d(zT) = ln H(€(0) = x41(0)). (xa (0) — X411 (0))
Xt w5k Ja

+ 5/ Q_l(wn(t) — W1 (2)).(Wn(t) —wpg1 () )dt

2
dt = Xn1) = Ap1 (X (1) = X1 (1)) = G(Wa (1) =Wt (2)) | di

2/ R C(tn(t) = 21 (1)).Clotn(8) — 0 (1))t

+ Etr ((An _An+1)(An _An—b—l)>|< + (Bn _Bn-i—l)(Bn _Bn+1)*)

T
B = A 0) 4 (B B0 .10
0

which is a nonnegative quantity. It follows that the sequence J(Z") is decreasing. Since it
is nonnegative, it converges. From the relation (5.10) we see that Z" — Z"t! — 0 in ||.|| .
Since J(Z") < J(Z°), the sequence Z" is bounded in 2. If we extract a subsequence which
converges weakly to Z, also noted Z" without loss of generality, then A, — .Z, B, — B and

x,(.) = x(.) in H'(0, T; RY) weakly, hence strongly in C°([0, T];RY). From (5.3), g.(.) = q(,)
in H'(0,T;R") weakly and strongly in C%([0,T); RN). Therefore, from (5.5) w,(.) — w(.) in
LZ(O T;RN). Finally Z, — 7. We can thus take the limit in equations (5.3), (5.7) and obtain
that Z is solution of the set of equations (4.6), (4.7). This concludes the proof. O
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