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Yanqging Sun and Fang Fang

Abstract In this paper, we study several profile estimation methods for the gener-
alized semiparametric varying-coefficient additive model for longitudinal data by
utilizing the within-subject correlations. The model is flexible in allowing time-
varying effects for some covariates and constant effects for others, and in having
the option to choose different link functions which can used to analyze both dis-
crete and continuous longitudinal responses. We investigated the profile generalized
estimating equation (GEE) approaches and the profile quadratic inference function
(QIF) approach. The profile estimations are assisted with the local linear smoothing
technique to estimate the time-varying effects. Several approaches that incorporate
the within-subject correlations are investigated including the quasi-likelihood (QL),
the minimum generalized variance (MGV), the quadratic inference function and the
weighted least squares (WLS). The proposed estimation procedures can accommo-
date flexible sampling schemes. These methods provide a unified approach that work
well for discrete longitudinal responses as well as for continuous longitudinal re-
sponses. Finite sample performances of these methods are examined through Monto
Carlo simulations under various correlation structures for both discrete and contin-
uous longitudinal responses. The simulation results show efficiency improvement
over the working independence approach by utilizing the within-subject correlations
as well as comparative performances of different approaches.

1 Introduction

The repeated measurements on same individuals over time are common in medical
and public health researches. In AIDS clinical trials, for example, the viral load
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and CD4 cell counts, which are considered as surrogate endpoints for HIV disease
progression and HIV transmission to others, are measured repeatedly during the
course of studies for trial participants. The repeated measurements in the longitu-
dinal follow-up often display temporal effects and are correlated. We investigate
several estimation methods for analyzing longitudinal data under the generalized
semiparametric varying-coeflicient additive models by incorporating the within sub-
ject correlations.

Suppose that there is a random sample of # subjects. For the ith subject, let Y;(r)
be the response at time ¢ and let X;(¢) and Z;(¢) be the possibly time-dependent
covariates of dimensions p + 1 and ¢, respectively, over the time interval [0, 7],
where 7 is the end of follow-up. Let u;(¢) = E{Y;(¢)|X;(¢), Z;(¢)} be the conditional
expectation of Y;(¢) given X;(¢) and Z;(¢) at time ¢. The generalized semiparametric
regression model speculates that

wit) =g Ha" OX:(t)+ BT Z:(t)},  i=1,....n (1)

for0 <t < 7, where g(-) is a known link function, a(t) is a (p+ 1)-dimensional vector
of unspecified functions and § is a g-dimensional vector of unknown parameters.
The notation 67 represents transpose of a vector or matrix 6. When the link function
g(+) is the identity function, model (1) is known as the semiparametric additive
model. When the link function is the natural logarithm function and X;(¢) = 1,
model (1) is known as the proportional means model. Setting the first component
of X;(#) as 1 gives a nonparametric baseline function. Under model (1), the effects
of some covariates are constant while others are time-varying. Model (1) is more
flexible than the parametric regression model where all the regression coefficients
are time-independent and more desirable for model building than the nonparametric
regression model where every covariate effect is an unspecified function of time.
Different link functions can be selected to provide a rich family of models for
longitudinal data. Both the categorical and continuous longitudinal responses can
be modelled with appropriately chosen link functions. For example, the identity and
logarithm link functions can be used for the continuous response variables while the
logit link function can be used for the binary responses.

The semiparametric additive model for longitudinal data has been studied exten-
sively for decades. These approaches include the nonparametric kernel smoothing
by Hoover et al. (1998), the joint modelling of longitudinal responses and sampling
times by Martinussen and Scheike (1999) and Lin and Ying (2001), the backfitting
method by Zeger and Diggle (1994) and Wu and Liang (2004), and the profile ker-
nel smoothing approach by Sun and Wu (2005). Fan and Li (2004) considered the
profile local linear approach and the joint modelling for partially linear models. Hu
et al. (2004) showed that for partially linear models, the backfitting is less efficient
than the profile kernel method. Sun et al. (2013) investigated the generalized semi-
parametric additive model (1) using the local linear profile estimation method. The
aforementioned estimation and inference procedures are derived without consider-
ing the correlations of longitudinal responses within subjects known as the working
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independence approach. The estimation methods under the working independence
are valid and yield asymptotically unbiased estimators.

Correlation among repeated measurements on the same subject often exists for
longitudinal data or clustered data. Incorporating such within-subject correlation
into estimation procedure can lead to improved efficiency. Liang and Zeger (1986)
introduced the idea of using a working correlation matrix with a small set of nuisance
parameters to avoid specification of correlation between measurements within the
cluster. Severini and Staniswalis (1994) and Lin and Carroll (2001a,b) estimated a(t)
using the kernel method by ignoring the within-subject correlation while estimating
[ using weighted least squares by accounting for the within-subject correlation when
X;(¢t) = 1. Chen and Jin (2006) studied the method of generalized estimating equa-
tions by modeling the within-cluster correlation. Using piecewise local polynomial
approximation of a(#), Chen and Jin (2006) showed that the weighted least square
estimator of B achieves the semiparametric efficiency. Fan et al. (2007) proposed
a profile local linear approach by imposing certain correlation structure for the lon-
gitudinal data for improved efficiency. Fan et al. (2007) proposed two methods to
estimate for the within-subject correlation by optimizing the quasi-likelihood (QL)
and by minimizing the generalized variance of the estimator of 5 (MGV). Following
the generalized method of moments of Hansen (1982), Qu et al. (2000) proposed the
quadratic inference function method (QIF) by representing the inverse of working
correlation matrix by a linear combination of basis matrices. Song et al. (2009),
Madsen et al. (2011) and Tang et al. (2019) studied a mean-correlation parametric
regression method for a family of discrete longitudinal responses by assuming that
the marginal distributions of longitudinal responses follow an exponential family dis-
tribution and the joint distributions of the discrete responses from the same subject
are modeled by a copula model. These approaches have a limitation of not allowing
for time-varying covariate effects.

Semiparametric statistical modeling of discrete longitudinal responses beyond the
marginal approach has been understudied. We investigate several profile estimation
methods for the generalized semiparametric varying-coefficient additive model (1)
by incorporating the within-subject correlations including the profile generalized es-
timating equation (GEE) approaches and the quadratic inference function approach.
These methods provide a unified approach that work well for discrete longitudinal
responses as well as for continuous longitudinal responses. Different methods for
estimating the within-subject correlations such as the QL and MGV methods as well
as a newly proposed profile weighted least square (WLS) approach fall under the
umbrella of profile GEE approaches. The performances of these different methods
are examined through extensive simulation studies under a variety of models and the
within-subject correlation structures. The proposed semiparametric methods utiliz-
ing the within-subject correlations work well for discrete longitudinal responses as
well as for continuous longitudinal responses.

The rest of the paper is organized as follows. The profile GEE estimation us-
ing fixed working covariance matrices is presented in Section 2.1. The methods
for estimating the correlations are described in Section 2.2. An alternative profile
estimation of model (1) via quadratic inference function is proposed in Section
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2.3. The computational algorithms of the proposed procedures are summarized in
Section 2.4. Section 3 presents the results of simulation studies for evaluating the
finite sample performances of different methods. The results of simulation studies
for continuous longitudinal responses are presented in Section 3.1 and the results of
simulation studies for discrete longitudinal responses are given in Section 3.2. Some
concluding remarks are given in Section 4.

2 Profile GEE Estimation Procedures

This section presents several profile estimation methods for the generalized semipara-
metric varying-coefficient additive model (1) by incorporating the within-subject cor-
relations and the approaches for estimating the within-subject correlations. Choices
of kernel function, bandwidth and link function are also discussed.

2.1 Model estimation using fixed working covariance matrices

Suppose that the longitudinal response Y;(#) and the possibly time-dependent co-
variates X;(t) and Z;(¢) are observed at the sampling times 7;; < Tjp < -+ < Tiy,,
where J; is the total number of observations on the ith subject. Let ¥;; = Y;(Tj;),
Xij = Xi(Tij) and Z;; = Z;(Ti;). LetY; = (Y1, - - -, Yi],.)T be the vector of responses
for individual i. Similarly, define X; = (Xi1,- -+, Xis,)", Zi = (Zir,- -+, Ziy,)" and
T; = (Tj1,- -+, Tiy,). The sampling times {T;;,j = 1, ..., J;} varies among individu-
als under random designs, while they are not depend on i under fixed designs. We
propose the kernel assisted profile method to estimate the nonparametric functions
a(t) and parametric coefficients 8 under model (1) by taking into consideration of
the within-subject correlations.

For given S, let a(t) = a(to) + c(to)(t — to) + O((t — 19)?) be the first order Taylor
expansion of a(:) for t € Ny, a neighborhood of 7y, where @(#y) is the derivative of
a(t)att = f9. Denote a* (o) = (a” (1), & (t0))" and X (t,t—19) = Xi(1)® (1, 1 —19)”,
where ® is the Kronecker product. Then for ¢ € N;,, model (1) can be approximated
by

At to, @ (t0). BIXi(1), Zi(1) = g {a T (10)X; (.t —10) + BT Zi(1)}.  (2)

Let Xl-*j(fo) = X;; ®(1,T;; - t0)", j = 1,...,J;. The approximated conditional
expectation of ¥;; for T;; € N, is given by 4;;(10) = ﬂ{Q*T(IO)XZ}(tO) + Bz},
where u(-) = g7'(-). Denote £, (1) = ,Ll{a*T(to)X;‘j(to) + B1Z;;} where () is the
first derivative of u(-). Let uj(to) = (u},(to), " - ,u;.kji (to))T. Let X! (o) denote a
2(p + 1) x J; matrix with the jth column vector being the le“j(to), j=1L...,J.

Let K(-) be a nonnegative kernel function and & = h,, > 0 a bandwidth parameter.
Let Kin(to) = diag{Kn(T;j — t0),j = 1,...,J;} be the J; x J; diagonal matrix
with {K,(T;j —t0), j = 1,..., J;}, on the diagonal and zero elsewhere, where Kj,(-) =
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K(-/h)/h. Ateach t; and for fixed 8, we consider the following local linear estimating
function for a*(ty):

Ual's B.10) = ) X (00)A; (t0)K ) (10)Vi K (o) [ = i @)] . B
i=1

where Af (1) = diag{fi;;(t0),j = 1,...,J;} and V ;! is the inverse of the working
covariance matrix for estimating a*(#y). The solution to the equation U, (a™*; 8, o) = 0
is denoted by @* (¢, ). We denote the first p + 1 components of @*(ty, 8) by @(to, ).

Let fi;;(8) = p{@" (Ti, H)Xi; + B Zi} and fi;(B) = (A (B), - ... fiis;(B))". The
profile weighted least-squares estimator 3 is obtained by minimizing the following
profile least-squares function:

() = % D1 = m B Vy 1% - m(B)) “)

i=1

where Vz‘l.l is the inverse of the working covariance matrix for estimating S.
Let A;; = adT(T,-j,ﬁ)/a,B be the derivative of d/T(Tij,ﬂ) with respect to 3,
which is a g X (p + 1) matrix with the kth row having the partial derivative of
~T (.
al(T; j» B) with respect to the kth component of B, 1 < k < g. Let %;“B) =

a7 (T; oa” (Tiy,, S . . 7T (T.8) o
(2 0p) .. PP and X; = diag{Xij.j = 1.....J;}. Then 2 TBK; =
0T (Ti, 04T Ty ) o\ . .
(%Xil, - aa—JXl‘J'.) is a ¢ x J; matrix.

Taking the derivative of £{3(8) with respect to 3, we have the score function

n =T
Us(B) = ), {%/T;’ﬁ)xi + ZiAVE Y - @), )
i=1

where Ai = diag{ﬁij,j =1,.. .,J,'}, /.i,'j = ﬂ{dT(Tij,,B)Xij + ,BTZ,']'}, and Zi =
(Zir, -+, Ziy,) is a ¢ X J; matrix.

For given working covariance matrices Vj; and Vy;, the profile GEE estimator ,é
of B is obtained by solving the estimatirlg equation Ug(B) = 0. The profile GEE
estimator for «(¢) is given by &(t) = a(t, B).

Note that da” (¢, 8)/9 is the first p + 1 columns of da*7 (¢, 8)/ 8. Next we show
that da*7 (1, 8)/0B can be expressed in terms of the partial derivatives of U, (a*; 3, 1)
at ™ = @*(t, B). Specifically, since Un(@*(t, B); B, t) = 0(p+1) by (3), it follows that
a*(t, B) satisfies

{OUa(a*;B, 1) a1 (1, B) . WUalasp, t)}
oa* apB 0B

= 0xp11)-
@' = (1.B)

Therefore,
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0aT(Lp) _ {aum*;ﬂ, r)}‘ OUale’; B,1) ©
ap da* B aup
where
—BU"(“ B0 Zx A OK, OV K P 0Ar 00X (1), (7)
and
OUq(a"; B, 1) / 24 A
— " ZX OA;OK, OV K 0A 07 ®)

Under the identity link in model (1), @*(z, 8) and B can be solved explicitly as
the roots of the score functions (3) and (5), respectively. When there are no explicit
solutions, the Newton-Raphson iterative algorithm can be used to solve the equa-
tions. The estimation procedure iteratively updates estimates of the nonparametric
component &*(z, ) and the parametric component 3 until convergence. We denote
the first p + 1 components of the convergent a’(t, ﬁ) as &(r).

Let fi; = {@" (Ti)Xy + BT Z;} and A; = diag{ﬁ,l} Define E)i(f) =
Y XA, Kl/z(t)V 1K (OAXT and Ep(r) = 7' B, XAK PV K ()
AiZl.T. Let BlJ = (Tl.,) E1 ll(T,.,)Xl., + Z;; and Bi = (B, , ,Ji) . Following
the derivations in Fan et al. (2007), we estimate the variance of 3 by P 1DP! for
given covariance matrices Vj; and V;;, where

n
=t S (BT AV; A,
i=1

and
n

D=n" ) [Bl Ay (Y; = fu)(Y; = )" Vi AiBy] .

i=1

2.2 Estimation of the within-subject covariance matrix

The conditional within-subject correlation of longitudinal responses Y;(-) at times
s,t € [0,7] can be measured by the Pearson correlation coefficient p;(s,t) =
Corr (Y(s). (D[ Xi(). Zi()) = Cov (%i(s), Yi(0)|Xi (). Zi()) /(0i(s)ri(1))., where (1)
be the conditional standard deviation of Y;(¢) given X;(¢) and Z;(¢), 0 < t < 7. For
simplicity, we assume that both () and p; (s, t) do not depend on the covariates X;(+)
and Z;(-). Thus we use the notations o-(¢) and p(s, t) in place of o7(¢) and p;(s, t), re-
spectively. In practice, the correlation structure p(s, ¢) is often unknown or complex,
and a working correlation is employed by assuming a correlation model for p(s, t).
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The working independence corresponds to assuming p(s,¢) = 0 for s # ¢. Other
commonly used correlation models include the compound symmetry or exchange-
able structure (Exchangeable) with p(s, 1) = 6, |0| < 1; a generalized the first-order
autoregressive (AR(1)) with p(s,7) = 615771, 0 < 6 < 1, which is a generalization
of AR(1) model in time series to allow the possibility of unequally-spaced times;
and a generalization of the first-order autoregressive moving-average (ARMA(1,1))
with p(s, 1) = pg*~!l, where |p| < 1 and ¢ > 0. Fan et al. (2007) considered more
complex correlation structure by embedding the working correlation into a collection
of the correlation families po(s, t, 0p), . . ., Pm(s, 1):

p(s,1,0) = bopo(s, 1;00) + b1p1(s,1,01) + -+ + by pm(s, 1, 01), )

where 6 = (09, bo, 01, b1, ..., by, 0,n) and by + - - - + by, = 1 with all b; > 0.
Let pi (s, t,0), 8 € O, be the working correlation function for ¥;(¢), 0 < ¢ < 7, for
k = 1,2. We consider decomposition of the working covariance V; of (Y1, -+, Y,)
into
Vii = AiRii(0)A;, (10)

where A; = diag{co(T;;),j = 1,...,J;}, and Ry;(6) is the working correlation matrix
of (Y1, -+ ,Y;y,) under the working correlation model pi (s, t,0) for k = 1, 2.

The examples of correlation matrices R;(6) of (¥;1, - - - ,Y;s,) at the measurement
times #1,...,t;, for J; = 4 for Exchangeable, AR(1) and ARMA(1,1) correlations
are shown in the following:

10060 1 glh—2l glu-t3] glti—t4] 1 pgh—nl pgln-sl pgln-tal
100 1 gl gln-ul 1 pg 5l pglh—tl
16|’ 1 gls-ul)] 1 pqltz—t«tl :
1 1 1
(a) Exchangeable (b) AR(1) (c) ARMA(L 1)

The GEE estimation of the regression coeflicients are consistent even when the
true correlation matrix is not an element of the class of working correlation matrices,
and are efficient when the working correlation is correctly specified (Liang and
Zeger, 1986). Lin and Carroll (2000) showed that the most efficient estimation of
the nonparametric component a(#) can be achieved by ignoring the within-subject
correlation. However, more efficient estimation for the parametric component S is
obtained by letting V;; in (5) to be to the inverse of true covariance matrix of ¥;; see
Lin and Carroll (2001a,b), Wang et al. (2005), and Fan et al. (2007). Thus we set
R1;(0) to be the identity matrix and focus on discussing the approaches for estimating
A; and Ry;(0). For convenience, we use the notation p(s, t, ) for p»(s, t, 8) and R;(6)
for Ry;(0).
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2.2.1 Estimation of marginal variance

Let do(r) and By be the marginal estimators of a(r) and 8 in Section 2 by setting
Vii to the identity matrix for k = 1,2. Define the residual #;; = Y;; — fi;;, where
fij = g "a&d (Ti))Xij + BL Zij}. Following Fan et al. (2007), we estimate the
marginal variance of response Y;(¢) when it is continuous using kernel smoothing:

n Ji a2
i=1 255y P Kyt = Tij)

Ji * ’
?:1 Zj:l Kh(t - Tij)

52(t) =

(1)

where K, () = K*(-/h)/h, K*(-) is a nonnegative kernel function and & = h, > 0 a
bandwidth parameter.

When the response Y;(¢) is a discrete random variable, the variance estimation can
take different form to account for the model structure of the particular distribution
family. For example, fl.zj is replaced by f;;(1 — fi;;) if the response Y;(¢) is a Bernoulli
random variable, and by fi;; if Y;(¢) is a Poisson random variable. We refer to Liang
and Zeger (1986) for the relationship between variance and the model parameters
when marginal distribution of Y;(¢) belongs to an exponential family.

2.2.2 Estimation of correlation coeflicients

We study different approaches to estimate 6§ of the correlation matrix R(6). Two of
the methods, the quasi-likelihood approach and the minimum generalized variance
approach, were adopted from Fan et al. (2007) for model (1) with the identity link
function. We also propose the minimum weighted least squares approach to estimate
0.

The QL estimation of 8 is obtained by maximizing the quasi-likelihood function:

n

4 1 AT 2~1p—1,o\ 212
6= arglgleaé( ( -3 Z{log |R;(0)| + rl-TAi R (0)A; ri}), (12)

i=1

where R;(0) and A; = diag{c(T;;),j = 1,...,J;} are defined the same as in equation
(10), % = {1, . .., iy, } is the estimator for vector ¢ and 7;; are defined above.
Let EB(&Z, ) be the estimated covariance matrix of 8 under the working corre-

lation model pg(s, #, 8), which depends on the estimated marginal variance 62 and
the correlation parameter vector 6. Defining the generalized variance of 3 as the
determinant [£4(52, 6)] of £4(6%,6). By (Dempster, 1969, Section 3.5), the volume

of the ellipsoid of (3 — ,B)TZE(&Z, 6) (8 — B) < c for any positive constant ¢ equals
ﬂq/2c1/2|23(6'2, 0)|'/2 /T(% + 1), where T'(") is the gamma function. It follows that
minimizing the volume of the confidence ellipsoid of (3 — B)TEE(&Z, 0)(B-Pp) < c

over 8 € O is equivalent to minimizing |23(6-2, 0)| for 6 € ® and that the minimizer
of the volume of the confidence ellipsoid over 6 € @ is not affected by c¢. Here ¢ can
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be viewed as a constant associated with a confidence level. The MGV estimation of
6 by Fan et al. (2007) is obtained by minimizing the generalized variance of 5:

) = in|Z4(62,0)|. 1
0 = argmin [X4(57, 0)| (13)

Following the idea of the quasi-likelihood approach of Fan et al. (2007), we also
study estimation of 6 obtained by minimizing the weighted least squares:

6 = arg rngin(fiTAl._lRi_l(G)A;lfi), (14)

2.3 Profile estimation via quadratic inference function

Qu et al. (2000) proposed the method of quadratic inference functions that does
not involve direct estimation of the correlation parameter. The idea is to represent
the inverse of the working correlation matrix by the linear combination of basis
matrices:

R7! ~aMy+aMy+---+agMg, (15)
where M) is the identity matrix, and My, .-, Mg are symmetric matrices, and
ai, - -+ ,ag are constant coefficients. The representation is applicable to many com-

monly used working correlations (Qu et al., 2000). For example, if the correlation
structure exchangeable, then R(#) has 1’s on the diagonal, and 6’s everywhere off
the diagonal. The inversion R~! can be written as a;M; + a, M, where M, is the
identity matrix, and M, is a matrix with O on the diagonal and 1 off the diagonal. For
the AR(1) correlation with p(s, t) = 95-*1 the inversion R~ of a J x J correlation
matrix can be written as a linear combination of three basis matrices, where M; is
the identity matrix, and M, has 1 on the two main off-diagonals and O elsewhere,
and M, has 1 on the corners (1, 1) and (J, J), and 0 elsewhere.

Applying the QIF approach, we propose an alternative profile estimation of model
(1). We replace the GEE estimator of 8 that solves Ug() = 0 in Section 2 by the
estimator that minimizes the quadratic inference function while keep the estimation
for @(t, B) as the root of (3) unchanged. Applying idea of the QIF, we define the
‘extended score’ function:

B RE s R AT i Y W VAT

1< 1 ”
&@=;;&w=52

= {%Xi + Zi}AiAAi_l/ZMKAi_I/Z [Y; — @(B)}]
(16)
The quadratic inference function is defined as Q,,(8) = g1 (8)C,,' (8)gn(8), where
C.(B) = (1/n?) P g[(,B)gl.T(,B). The profile QIF estimator is the minimizer of
On(B): R
B= argHgnQn(ﬁ) a7
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Following the derivations of the asymptotic properties shown in Qu et al. (2000),
we estimate the variance of the QIF estimator £ by {¢,(8)C; ' (8)¢I (8)}~!, where

0aT(TB) v . 5\ A A-120g =124 [06TB) ¢ , 5|
g,,w):;Z : . (18)
i=1 ~T ~ 3 2a(T:.f) % AY
aa™ (T;, A:AT P My ATVPA, | 2T
(S8, ¢ 2B P A A2, 1 7

2.4 Computational algorithms

The iterative algorithms of the procedures using the QL, MGV, WLS and QIF
approaches for estimating «(¢) and 8 under model (1) are outlined in the following.

1. Calculate the estimates of a(¢) and 8 using the working independence approach
and use them as the initial estimates &} (¢) and B1°};

2. Given the m-step estimates & "} (¢) and S 1"}, calculate 7;; = ¥;j—g~ ' {(a "™} (T;;)T
X+ (,BA{’"})TZ,-‘,-} and obtain the matrix Ai{m} whose diagonal elements are esti-
mated by (11);

3. For the QL, MGV and WLS approaches for estimating the correlation matrix,
obtain the estimate §1"} using one of the QL, MGV and WLS methods described
in Section 2.2.2; Set Vz{im} = Ai{m}Ri (9{m})AAlﬁ{m} as in (10); Then update the
estimate of 8 to B{"*1} by solving (5) and the estimate of a(f) to & "*1}(r) =
a(, iy,

4. For the QIF approach, update the estimate of 8 to 81"*1} obtained by minimizing
0.(B) = gF(B)C; ' (B)gn(B) where and A; in g,,(B) is replaced by AAlﬁ{m}, and then
update the estimate of a(¢) to @1} (r) = a(r, Bim+1});

5. Repeating steps 2 to 4 until convergence, which is usually achieved within a few
iterations.

2.5 Choices of kernel function, bandwidth and link function

We employ local linear techniques to estimate the nonparametric time-varying effects
a(t). The kernel function is designed to give greater weight to observations with
sampling time near ¢ than those further away. In kernel density estimation, the
Epanechnikov kernel function K(x) = ?—1(1 — x?), is asymptotically optimal with
the smallest mean integrated squared error among probability density functions.
(Silverman, 1986, p.43) showed that there is not much variation in the efficiency in
the choice of kernel function: the asymptotic relative efficiency of the Tukey kernel
function K(x) = }—g 1 — x)2 compared to the optimal Epanechnikov kernel is 99%,
the Gaussian kernel has a relative efficiency of 95% and the rectangular kernel has



Title Suppressed Due to Excessive Length 11

a relative efficiency about 93%. We expect that the choice of kernel function has
little effect on the performance of the proposed estimators for model (1) as well. It
is common to assume compact support for technical simplicity. This assumption can
be relaxed to include the Gaussian kernel (Silverman, 1986, p.38).

The bandwidth, on the other hand, is much more of a concern. The cross-validation
bandwidth selection is widely used to choose the bandwidth. Rice and Silverman
(1991) suggested a leave-one-subject-out cross-validation approach. We recommend
the K -fold cross-validation bandwidth selection considered by Sunetal. (2013) in the
marginal estimation approach for the generalized semiparametric regression model
(1). Specifically, subjects are divided into K approximately equal-sized groups. Let
Dy denote the kth subgroup of data, then the kth prediction error is given by

2
PE(h) = Z Z [Kj—g_l{(@(—k)(ﬂj))TXij +BLnZiy|» (19

ieDy 11 <T;j<n

for k = 1,..., K, where &()(t) and 5y, are the estimators of a(t) and 8 based on
the data without the subgroup Dy, and [, 2] C (0, 7). The subset [#1, #; ] is considered
to avoid possible instability in estimating «(z) near the boundary. In practice, this
interval can be taken to be close to [0, 7]. The data-driven bandwidth selection
based on the K-fold cross-validation is to choose the bandwidth % that minimizes the
total prediction error PE(h) = Zszl PE}.(h). The K-fold cross-validation bandwidth
selection provides a working tool for locating an appropriate bandwidth.

The proposed estimation procedure holds for a wide class of link functions under
model (1). A link function needs to be selected for a particular data application. The
choice may be clear for some applications based on prior knowledge, but more often
one needs to choose a link function that gives the “best fit" of the data. One criterion
proposed by Sun et al. (2013) is to access the model fit by the regression deviation
defined as

n 2
RDGO ) =), D [y @)Xy Lz | 20)

i=1 41 <T;j<ty

where h., is the bandwidth selected based on the K-fold cross-validation method
for the given link function g(-) described above, and &, (7) and ,ég are the estimators
of a(t) and B under model (1) with the bandwidth /... In practice, the link function
g(+) can be selected to minimize the regression deviation. Further examination of
model fitness should be accompanied by model assessment tools such as the residual
plots and formal goodness-of-fit tests.

3 Simulation Studies

In this section, we conduct a simulation study to assess the performances of the
profile estimation methods using the QL, MGV, WLS and QIF approaches presented
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in Section 2 under various models for longitudinal responses, different types of the
within-subject correlation structures and different models for the measurement times.
For convenience, we refer to the profile estimators resulted from these approaches as
the the QL, MGV, WLS and QIF estimators. Section 3.1 presents a study of model
(1) for continuous longitudinal responses and Section 3.2 shows the performances
of these approaches for discrete longitudinal responses.

3.1 Continuous longitudinal responses

We study the performances of the proposed methods for continuous longitudinal
responses under model (1) with the identity link function: Y;(¢) = o (£)X;(t) +
BT Zi(t) + €(t). We consider two simulation settings. In the first simulation setting
(C1), the true correlation structure of the longitudinal responses is ARMA(1,1) and
the measurement times are independent of covariates. In the second simulation set-
ting (C2), the true correlation structure of the longitudinal responses is Exchangeable
and the measurement times are dependent of covariates.

Simulation setting (C1). Similarto Fanetal. (2007), for each subject i, we consider
time independent covariates X;(r) = (X;(¢), X2:(1))T and Zi(t) = (Z1i(t), Zo:)",
where Xj; = 1, (Xp;(t), Z1;(¢)) are time-varying covariates having a bivariate normal
distribution with mean 0, variance 1 and correlation coefficient of 0.5 at each time
t, and Zy; is a time-independent covariate from Bernoulli distribution with success
probability 0.5. We take a(t) = (v/t/12, sin(27¢/12))" and 8 = (1, 2)" . The error (t)
is a Gaussian process with mean 0, variance varying with time o-(¢) = 0.5 exp(t/12)
and of the ARMA(1,1) correlation structure, i.e., Corr(¥;(s), Y;(t)) = yp!"=5! for s #
t. We take (y, p) = (0.85,0.9) and (0.85, 0.6) for strong and moderate, respectively.
All subjects have the same scheduled measurement time points, {0,1,2,...,12}, but
each of the scheduled time points has a 20% probability of being skipped except for
the time 0. A random perturbation generated from the uniform distribution on [0, 1]
is added to the non-skipped scheduled time points. Every subject has approximately
7 to 13 observations with an average of 11.

Simulation setting (C2). Similar to Sun et al. (2013), for each subject i, we
let Z1;(t) be a time-varying covariate from a uniform distribution on [0, 1], Z; a
time-independent Bernoulli random variable with the success probability of 0.5,
Xi; = 1, and Xp;(f) a time-varying Bernoulli random variable with the success
probability of 0.5 at each time ¢. Let a(f) = (0.5v1,0.5sin(2¢))” and 8 = (0.5, 1)T.
The error €;(¢) has a normal distribution with mean ¢; and variance v2, where ¢;isa
random variable from N(0, 1). Thus ¢;(¢) has an Exchangeable correlation structure
with the correlation coefficients equal to § = 0.8 and 8 = 0.5 for v = 0.5 and
v = 1, respectively. The measurement times T;; for each subject 7 follow a Poisson
process with the intensity 4;(t) = 0.6 exp(0.7Z;), for 0 < ¢ < 7 with 7 = 3.5. The
censoring times C; are generated from a uniform distribution on [1.5, 8]. There are
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approximately three observations per subject on [0, 7] and about 30% of subjects are
censored before 7 = 3.5.

The performances of the profile GEE estimators using the QL, MGV and WLS
approaches for estimating the correlation parameter 6 as well as the profile estimators
via the QIF approach are examined under the settings (C1) and (C2). We let Vj; to be
the identity matrix for all the estimators while using different correlation structures
are assumed for V,;. The working independence estimator (WI) is obtained by letting
Vz_[.1 be the identity matrix. The Epanechnikov kernel function K(x) = %(1 —x?%), is
used in the study.

The simulation results for estimating 8 under the setting (C1) and ARMA(1,1)
correlation with strong and moderate correlations are shown in Tables 1 and 2,
respectively. The simulation results for estimating S under the setting (C2) and
Exchangeable correlation with strong and moderate correlations are shown in Tables
3 and 4, respectively. The tables summarize the estimation bias (Bias), the sample
standard error of estimates (SEE), the sample mean of the estimated standard errors
(ESE), and the 95% empirical coverage probability (CP) for n = 200. Each entry
of the table is calculated based on 1000 repetitions. The bandwidth used for each
table is selected based on the 10-fold cross-validation of a single simulation that
minimizes the total prediction error PE (k) for i in [0.7,1.3] and carried it over for
all 1000 repetitions.

Table 1 Summary of Bias, SEE, ESE and CP under different estimation methods for 8, and 3,
with n = 200, h = 0.8 based on 1000 simulations under the model setting (C1) and the strong
ARMAC(1,1) correlation with (y, p) = (0.85, 0.9).

pi1=1 ﬁzzz
Method Bias SEE ESE CP Bias SEE ESE CP
Working Independence
WI 0.0013  0.0244 0.0235 0.938 0.0059 0.1016 0.1011 0.944
Assuming Exchangeable Correlation (Misspecification)
QL 0.0001 0.0166 0.0160 0.937 0.0041 0.1096 0.1020 0.938

MGV 0.0001 0.0166 0.0160 0.936 0.0041 0.1061 0.0992 0.940
QIF 0.0003 0.0168 0.0160 0.930 0.0053 0.0954 0.0915 0.940
WLS 0.0004 0.0171 0.0164 0.934 0.0052 0.0946 0.0912 0.941
Assuming ARMAC(1,1) Correlation (True)
QL 0.0005 0.0130 0.0127 0.936 0.0030 0.0955 0.0848 0.914
MGV 0.0008 0.0147 0.0140 0.929 0.0052 0.0936 0.0918 0.943
QIF 0.0005 0.0143 0.0136 0.931 0.0051 0.0926 0.0877 0.939
WLS 0.0006 0.0142 0.0136 0.935 0.0050 0.0926 0.0897 0.942
Assuming Mixed Correlation
QL 0.0005 0.0131 0.0127 0.937 0.0030 0.0956 0.0847 0.916
MGV 0.0005 0.0145 0.0138 0.930 0.0047 0.0934 0.0895 0.942
QIF 0.0004 0.0142 0.0133 0.928 0.0053 0.0925 0.0864 0.932
WLS 0.0006 0.0142 0.0136 0.934 0.0051 0.0927 0.0897 0.942
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Table 2 Summary of Bias, SEE, ESE and CP under different estimation methods for 8| and 3
with n = 200, & = 0.8 based on 1000 simulations under the model setting (C1) and the moderate
ARMAC(1,1) correlation with (y, p) = (0.85, 0.6).

p1=1 Br=2
Method Bias SEE ESE CP Bias SEE ESE CP
Working Independence
WI 0.0009 0.0242 0.0236 0.942 0.004 0.0672 0.0666 0.946
Assuming Exchangeable Correlation (Misspecification)
QL 0.0003  0.0220 0.0210 0.937 0.0033  0.0665 0.0634 0.941

MGV 0.0001 0.0221 0.0212 0.939 0.0024 0.0937 0.0895 0.949
QIF 0.0004 0.0221 0.0209 0.931 0.0035 0.0647 0.0618 0.943
WLS 0.0005 0.0222 0.0212 0.937 0.0035 0.0645 0.0623 0.943
Assuming ARMAC(1,1) Correlation (True)
QL 0.0008 0.0182 0.0174 0.935 0.0028 0.0618 0.0601 0.938
MGV 0.0007 0.0187 0.0179 0.933 0.0031 0.0618 0.0604 0.942
QIF 0.0007 0.0195 0.0182 0.928 0.0036 0.0629 0.0606 0.941
WLS 0.0008 0.0194 0.0184 0.933 0.0033 0.0622 0.0609 0.941
Assuming Mixed Correlation
QL 0.0008 0.0182 0.0174 0.935 0.0028 0.0619 0.0601 0.937
MGV 0.0005 0.0192 0.0183 0.942 0.0027 0.0659 0.0630 0.945
QIF 0.0007 0.0196 0.0181 0.924 0.0036 0.0633 0.0600 0.944
WLS 0.0008 0.0193 0.0184 0.933 0.0033 0.0622 0.0609 0.941

Table 3 Summary of Bias, SEE, ESE and CP under different estimation methods for 8, and 3,
with n = 200, h = 1.2 based on 1000 simulations under the model setting (C2) and the strong
Exchangeable correlation with 6 = 0.8.

p1=1 Br=2
Method Bias SEE ESE CP Bias SEE ESE CP
Working Independence
WI 0.0023  0.1535 0.1544 0.949 0.0048 0.1691 0.1629 0.934
Assuming ARMAC(1,1) Correlation
QL 0.0064 0.0884 0.0878 0.949 -0.0084 0.1605 0.1427 0.915

MGV 0.0047 0.0974 0.0973 0.948 0.0008 0.1574 0.1466 0.933
QIF 0.0048 0.1064 0.1019 0.935 -0.0001 0.1576  0.1434 0.917
WLS 0.0051 0.0945 0.0948 0.953 -0.0004 0.1564 0.1451 0.929
Assuming Exchangeable Correlation (True)
QL 0.0069 0.0853 0.0855 0.956 -0.0145 0.1625 0.1423 0910
MGV 0.0044 0.1113 0.1119 0.950 0.0022 0.1588 0.1493 0.928
QIF 0.0066 0.1069 0.1037 0.950 0.0021 0.1584 0.1473 0.922
WLS 0.0053 0.0942 0.0945 0.956 -0.0009 0.1563 0.1449 0.926
Assuming Mixed Correlation
QL 0.0068 0.0855 0.0853 0.953 -0.0134  0.1622 0.1422 00911
MGV 0.0031 0.1246 0.1249 0.949 0.0033 0.1616 0.1532 0.929
QIF 0.0060 0.1044 0.0976 0.930 -0.0003 0.1573 0.1421 0914
WLS 0.0052 0.0942 0.0944 0.954 -0.0008 0.1563 0.1448 0.927

The results for WI is obtained by assuming working independence case. The
performances of the estimators QL, MGV, WLS and QIF are examined under both
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Table 4 Summary of Bias, SEE, ESE and CP under different estimation methods for 8, and 3,
with n = 200, h = 1.2 based on 1000 simulations under the model setting (C2) and the moderate
Exchangeable correlation with 8 = 0.5.

pr=1 Pr=2
Method Bias SEE ESE CP Bias SEE ESE CP
Working Independence
WI 0.006 0.1952  0.196 0.949 0.0062 0.1863 0.1787  0.94
Assuming ARMAC(1,1) Correlation
QL 0.0112 0.1611 0.1597 0.953 0.0006 0.1774 0.1647 0.932

MGV 0.0113 0.1723 0.1667 0.946 0.0020 0.1785 0.1665 0.929

QIF 0.0091 0.1740 0.1684 0.939 0.0033 0.1815 0.1658 0.917

WLS 0.0090 0.1661 0.1655 0.952 0.0039 0.1778 0.1667 0.927
Assuming Exchangeable Correlation (True)

QL 0.0118 0.1602 0.1591 0.954 -0.0001 0.1773 0.1646 0.935
MGV 0.0083 0.1723 0.1731 0.952 0.0048 0.1795 0.1695 0.933
QIF 0.0114 0.1676 0.1637 0.951 0.0045 0.1787 0.1659 0.928

WLS 0.0092 0.1659 0.1654 0.956 0.0037 0.1777 0.1666 0.927
Assuming Mixed Correlation

QL 0.0116 0.1602 0.1588 0.951 0.0001 0.1773 0.1646 0.933

MGV 0.0042 0.1837 0.1777 0.949 0.0055 0.1806 0.1710 0.936

QIF 0.0106 0.1692 0.1611 0.946 0.0039 0.1793 0.1632 0.921

WLS 0.0092 0.1658 0.1652 0.954 0.0037 0.1777 0.1665 0.927

the correctly specified correlation model and the misspecified correlation models.
The results under “Assuming Exchangeable Correlation" are obtained by assuming
exchangeable correlation in the estimation, the results under “Assuming ARMA(1,1)
Correlation" are obtained by assuming ARMAC(1,1) correlation in the estimation,
while the results under “Assuming Mixed Correlation" are obtained by assuming the
correlation to be the mix of the exchangeable and AR(1) correlation in the estimation.
The basis matrices for the QIF estimator are taken as a combination the basis matrices
for Exchangeable and AR(1) when ARMA(1,1) and Mixed Correlation Structures
are assumed.

The simulation study shows that all estimators are consistent with small estima-
tion bias. The WLS, QL, MGV and QIF estimators all perform well and improve the
estimation efficiency compared with the working independence (WI) method. The
methods utilizing the within-subject correlations show reduced estimation standard
errors in SEE and ESE. More efficiency is gained by assuming the true or mixed cor-
relation structures than the scenarios where correlation structures are misspecified.
More efficiency gain is also observed in the settings with stronger within-subject
correlations than with moderate within-subject correlations. For example, compared
with the WI estimator, the sample standard errors of the QL, MGV, WLS and QIF
estimators for 8| reduced between 30% to 46% in Table 1 for strong within-subject
correlation and the sample standard errors reduced between 8% to 25% in Table 2 for
moderate within-subject correlations under the true ARMAC(1,1) correlation. Simi-
larly, compared with the WI estimator, the sample standard errors of the QL, MGV,
WLS and QIF estimators for 8| reduced between 18% to 44% in Table 3 for strong



16 Yanqing Sun and Fang Fang

within-subject correlation and the sample standard errors reduced between 6% to
18% in Table 4 for moderate within-subject correlations under the true Exchange-
able correlation. The efficiency improved is more evident in estimating the effect
of time-varying covariate than for the time-invariant covariate. This phenomenon
also appeared in the simulation studies in Lin and Carroll (2001b) and Wang et al.
(2005).

The performances of the estimators by assuming ARMA(1,1) working correla-
tion and those under the mixed working correlation are close. The QL estimator
appeared to achieve most efficiency gain out of these estimators in most scenarios.
The above observations hold for both covariate-independent and covariate-dependent
measurement times.

3.2 Discrete longitudinal responses

In this section we examine the performance of the proposed methods for model (1)
for discrete longitudinal responses. We consider binary longitudinal responses in the
simulation setting (D1), and Poisson count responses in the simulation setting (D2).
Both settings have an Exchangeable correlation structure.

Simulation setting (D1) — The Bernoulli model. For binary longitudinal re-
sponses, we let g(u) = log{u/(1 — p)} be the logistic link function. The observation
times are generated similarly to the simulation setting (C1). All subjects have the
same scheduled observation time points, {0,1,2,...,8}, but each of the scheduled
time points has a 20% probability of being skipped except for the time 0. A random
perturbation generated from the uniform distribution on [0, 1] is added to the non-
skipped scheduled time points. The number of observations, J;, ranges from4 to 9. At
each observation time T;;, j = 1,...,J;, X;; = 1, Zy;; and Z;; are independent stan-
dard normal random variables that don’t vary with time. Let a(¢) = sin(z/30) — 0.5
and B = (0.01,0.01)" and p;; = P(Y;; = 1|X;j, Z;). The binary longitudinal re-
sponses Y;; = Y;(T;;), j = 1,..., J;, are generated with the marginal means following
the logit model logit(u;;) = a(T;;)X;; + Brz; 7 and with constant correlation co-
efficient Corr(Y;(s),Y;(¢)) = 0.5 for s # t. We refer to Macke et al. (2009) for
the techniques for simulating correlated binary responses. Our simulation used the
Matlab code provided in the paper to generate the correlated binary variables with
the specified mean and covariance.

Simulation setting (D2) — The Poisson model. Suppose that T;;, X;; and Z;; are
the same as in the simulation setting (D1). We also use a(¢) = sin(r¢/30) — 0.5
and B = (0.01,0.01)7. Let y;; = E(Y;|X;j, Zi;). Using the method of Macke et al.
(2009), we generate Poisson longitudinal process Y;; = Y;(T;;), j = 1,...,J;, with
the conditional marginal mean model log(u;;) = (T;;)X;; + 8" Z;; and with constant
correlation coefficient Corr(Y;(s), Y;(¢t)) = 0.5 for s # .

The estimation results under the simulation settings (D1) and (D2) are summa-
rized in Table 5 and Table 6, respectively. The simulation shows that estimation
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bias is small for all estimators. The QL, MGV, WLS and QIF estimators that uti-
lize the within-subject correlations show improved efficiency compared with using
the working independence (WI) method with the sample standard errors reduced
between 17% to 24% in Table 5 and between 10% to 30% in Table 6. The QL
estimator achieved most efficiency gain out of these estimators. Efficiency gains are
slightly higher when the true or mixed correlation structures are assumed compared
to assuming the ARMA(1,1) correlation structures.

Table 5 Summary of Bias, SEE, ESE and CP under different estimation methods for 8; and 3,
with n = 200, h = 1.2 based on 1000 simulations under the Bernoulli model (D1) and the moderate
Exchangeable correlation with 8 = 0.5.

Br=1 Br=2
Method Bias SEE ESE CP Bias SEE ESE CP
Working Independence
WI 0.0002 0.0524 0.0525 0.954 0.0014 0.0516 0.0525 0.962
Assuming ARMA(1,1) Correlation
QL -0.0002 0.0406 0.0404 0.945 -0.0012  0.0407 0.0405 0.948
MGV -0.0004 0.0429 0.0428 0.937 -0.0005 0.0429 0.0429 0.950
QIF -0.0002 0.0445 0.0434 0.932 -0.0008 0.0440 0.0435 0.942

WLS 0.0000 0.0411 0.0410 0.944 -0.0005 0.0410 0.0410 0.955
Assuming Exchangeable Correlation (True)

QL 0.0000 0.0396 0.0395 0.947 -0.0013  0.0396 0.0395 0.949
MGV 0.0000 0.0396 0.0395 0.947 -0.0013  0.0396 0.0395 0.948
QIF 0.0003 0.0404 0.0397 0.944 -0.0012  0.0404 0.0397 0.943

WLS 0.0001 0.0408 0.0407 0.950 -0.0005 0.0406 0.0407 0.956
Assuming Mixed Correlation

QL 0.0000 0.0396 0.0394 0.947 -0.0012  0.0396 0.0394 0.949
MGV 0.0003 0.0434 0.0432 0.946 0.0000 0.0428 0.0432 0.951
QIF 0.0001 0.0406 0.0393 0.941 -0.0014  0.0406 0.0393 0.936

WLS 0.0001 0.0408 0.0406 0.948 -0.0005 0.0406 0.0406 0.956

4 Concluding Remarks

The generalized semiparametric varying-coefficient additive model (1) specifies a
model for the conditional mean of longitudinal responses. The model allows time-
varying effects for some covariates and constant effects for others, and is an umbrella
for many different models with selections of the link function. The intensively
studied semiparametric additive model obtained by using the identity link function is
popular for modeling continuous longitudinal responses. Semiparametric statistical
modeling of discrete longitudinal responses has been understudied. With selection
of link functions, model (1) can be used to model both continuous and discrete
responses. Sun et al. (2013) investigated the local linear profile marginal estimation
method for model (1) under the working independence. The estimation methods
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Table 6 Summary of Bias, SEE, ESE and CP under different estimation methods for 8, and 3,
with n = 200, 2 = 1.2 based on 1000 simulations under the Poisson model (D2) and the moderate
Exchangeable correlation with 8 = 0.5.

pr=1 Br=2
Method Bias SEE ESE CP Bias SEE ESE CP
Working Independence
WI -0.0008 0.0271 0.0268 0.944 -0.0005 0.0271 0.0269 0.943
Assuming ARMAC(1,1) Correlation
QL -0.0005 0.0206 0.0202 0.954 -0.0008 0.0199 0.0203 0.955
MGV -0.0008 0.0243 0.0241 0.943 -0.0011 0.0245 0.0240 0.949
QIF -0.0005 0.0220 0.0216 0.952 -0.0010 0.0224 0.0217 0.940

WLS -0.0006 0.0208 0.0205 0.954 -0.0007 0.0202 0.0205 0.954
Assuming Exchangeable Correlation (True)

QL -0.0006 0.0199 0.0197 0.951 -0.0007 0.0191 0.0197 0.955
MGV -0.0007 0.0219 0.0216 0.947 -0.0006 0.0215 0.0217 0.950
QIF -0.0005 0.0201 0.0197 0.950 -0.0006 0.0193 0.0197 0.953

WLS -0.0006 0.0206 0.0203 0.952 -0.0007 0.0199 0.0203 0.954
Assuming Mixed Correlation

QL -0.0006 0.0199 0.0197 0.948 -0.0007 0.0192 0.0197 0.956
MGV -0.0006 0.0222 0.0218 0.956 -0.0008 0.0219 0.0219 0.945
QIF -0.0006 0.0202 0.0195 0.949 -0.0007 0.0194 0.0195 0.954

WLS -0.0006 0.0206 0.0202 0.954 -0.0007  0.0200 0.0203  0.955

under working independence that ignore the within-subject correlation are valid and
yield asymptotically unbiased estimators.

In this paper, we studied several profile estimation methods for model (1) that uti-
lize the within-subject correlations to improve estimation efficiency. Several profile
estimation methods that utilize the within-subject correlations including the profile
GEE approaches and the profile QIF approach were investigated. The profile es-
timations are assisted with the local linear smoothing technique by approximating
the time-varying effects with linear functions in the neighborhood of each time. The
profile GEE approaches include the quasi-likelihood, the minimum generalized vari-
ance, and the weighted least squares. These methods differ by different procedures
used in estimating the within-subject correlations. The proposed profile estimation
methods for the generalized semiparametric varying-coefficient additive model (1)
provide a unified approach that work well for discrete longitudinal responses as well
as for continuous longitudinal responses.

Finite sample performances of these different methods are examined through
Monto Carlo simulations under various correlation structures for both discrete and
continuous longitudinal responses. Our study showed significant efficiency improve-
ment of all the estimators, the QL, WLS, WLS and QIF estimators, over the working
independence approach. The QL estimator appeared to achieve most efficiency gain
out of all estimators in most scenarios. The efficiency improved is more evident in es-
timating the effects of time-varying covariates than for the time-invariant covariates.
Efficiency gains are higher when the true or mixed correlation structures are assumed
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compared to the mis-specified correlation structures. The above observations hold
for both covariate-independent and covariate-dependent measurement times.
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