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ABSTRACT

Pre-trained language models (PLMs) such as BERT, RoBERTa, and

DeBERTa have achieved state-of-the-art performance on various

downstream tasks. The enormous sizes of PLMs hinder their deploy-

ment in resource-constrained scenarios, e.g., on edge and mobile

devices. To address this issue, many model compression approaches

have been proposed to reduce the number of model parameters.

This paper focuses on compressing the token embeddingmatrices of

PLMs, which typically make up a large proportion (around 20-30%)

of the entire model parameters. Existing efforts to compress token

embedding usually require the introduction of customized com-

pression architectures or the optimization of model compression

processes for individual downstream tasks, limiting their appli-

cability in both model and task dimensions. To overcome these

limitations and adhere to the principle of "one-for-all", we propose

a lightweight token embedding framework named LightToken,

which is able to produce compressed token embedding in a task

and model-agnostic fashion. LightToken is generally compatible

with different architectures and applicable to any downstream task.

Specifically, through an integration of low-rank approximation,

novel residual binary autoencoder, and a new compression loss

function, LightToken can significantly improve the model com-

pression ratio. To demonstrate the effectiveness of LightToken, we

conduct comprehensive experiments on natural language under-

standing and question answering tasks. In particular, LightToken

improves the state-of-the-art token embedding compression ratio

from 5 to 25 and outperforms the existing token embedding com-

pression approaches by 11% and 5% on GLUE and SQuAD v1.1

benchmarks, respectively.
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1 INTRODUCTION

Pre-trained languagemodels (PLMs), such as BERT [11], RoBERTa [27],

and DeBERTa [16], have achieved state-of-the-art results on a wide

range of natural language tasks. Examples include natural language

inference [19], sentiment classification [32], and question answer-

ing [34]. These PLMs are usually very large-scale, which consist

of billions of parameters; for example, BERT, RoBERTa have 110M,

123M parameters respectively. This large scale of PLMs has been a

bottleneck when deploying them on resource-constrained mobile

and edge devices due to hardware limitations.

To comply with the demand for lightweight models, a number of

works compress PLMs to reduce their footprint through knowledge

distillation [17], matrix factorization [36], pruning [53], or quanti-

zation [33]. These methods either train shallow models with fewer

layers, such as DistilBERT [37], or use matrix factorization and

quantization to reduce the memory consumption of each weight

matrix, such as FWSVD [18] and Q8bert [49]. These compressed

PLMs have been successful in reducing over 40% parameters while

maintaining over 97% model performance.

Despite these progresses, there is still substantial room to achieve

a much better compression ratio with less performance degradation.
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PLMs typically consist of a token embedding matrix, a deep neural

network with the attention mechanism, and an output layer. The

token embedding matrix often occupies a significant proportion

of the whole model due to the use of a large vocabulary table.

For example, the token embedding matrix accounts for over 21%

and 31.2% of the model size for BERT and RoBERTa respectively.

Furthermore, because of differences among token frequencies, there

are lots of redundancies in the token embedding matrix. Therefore,

any approach that could compress token embedding matrix can be

complementary to other model compression methods to achieve a

higher compression ratio.

Unfortunately, very limited efforts were spent on studying the

compression of the token embedding matrices, and existing meth-

ods suffer from the limitations in terms of generalizability and effi-

ciency. Existing work [25, 51] on token embedding matrix compres-

sion leverages knowledge distillation to learn a small task-specific

token embedding matrix. However, they are task-specific and thus

a new compressed token embedding matrix has to be learnt for

each downstream task. This could be laborious and it is difficult

to reuse the compression for different tasks. Another limitation

is that these approaches use knowledge distillation to guide the

learning of the lightweight token embedding matrix. This process is

time-consuming and expensive, for example, as noted by Zhao et al.

[51], it can take 2-4 days to train on a 32 TPU cores platform, which

almost takes the same time as training BERT from scratch [34].

To address the aforementioned issues and limitations, a desirable

token embedding matrix compression method for PLMs should

1) be task-agnostic to generalize well for different downstream

tasks, 2) be model-agnostic to be a plug-in module for different

backbones, 3) be complementary to other model compression meth-

ods, and 4) have a high compression ratio while preserving model

performance.

To achieve this goal, a task andmodel-agnostic lightweight token

embedding framework for PLMs named LightToken is proposed

in this paper. LightToken integrates low-rank and hashing approx-

imation. First, we use singular value decomposition for the token

embedding matrix to achieve rank-𝑘 approximation, where 𝑘 is

very small. Then, a residual binary autoencoder is proposed to

learn the hash codes with respect to the residual matrix between

the original token embedding matrix and rank-𝑘 approximation ma-

trix. This novel integration of low-rank approximation and hashing

methods could lead to significant compression with very limited

performance degradation due to the following reasons. First, the

low-rank approximation extracts the coherent components with a

shared basis, while the residual binary autoencoder generates hash

codes to approximate the incoherent components of token embed-

ding matrix. They are complementary and jointly provide huge

reduction. In addition, after the low-rank approximation, fewer

hash codes are needed to maintain model accuracy, increasing the

compression ratio. This is theoretically demonstrated in our anal-

ysis in Proposition 1. Furthermore, a new reconstruction loss is

proposed, which could be considered as an upper bound of the

widely used Euclidean distance and enable the model to focus more

on the direction matching between original embeddings and com-

pressed embeddings. It reweighs the cosine similarity and makes

the loss better-conditioned than Euclidean distance.

We also propose effective compressor training recipes. Specif-

ically, we propose to train the compressor with the pre-training

objective to reduce the accuracy loss caused by compression. We

fix the learned hash codes and fine-tune the decoder of the residual

binary autoencoder using Wikipedia corpus. This step is efficient

compared to pre-training because the number of decoder param-

eters is very small (a one or two hidden layers of DNN) and the

epoch of fine-tuning is small (just 10 epochs). We also propose to re-

place the token embedding layer of the PLM with LightToken and

fine-tune the decoder and other layers of the PLM for downstream

tasks.

The contributions of the paper are summarized as follows:

• We propose a task and model-agnostic lightweight token em-

bedding framework for PLMs by leveraging the complementary

integration of low-rank and hashing approximation, and demon-

strate its effectiveness both empirically and theoretically. To the

best of our knowledge, this is the first attempt to leverage hash-

ing method for learning a task and model-agnostic lightweight

token embedding matrix.

• New designs and strategies are proposed to further improve the

ability of the compressor. In particular, we propose a new loss

function Uℓ2 for token embedding compression, which is not

only better-conditioned but also shows nice compression results.

• We conduct extensive experiments on GLUE and SQuAD v1.1

benchmarks. Results show that the proposed LightToken outper-

forms baselines significantly. The proposed LightToken achieves

25x compression ratio without accuracy loss, and when the com-

pression ratio reaches 103, the accuracy loss is within 6% of the

original measure.

2 RELATEDWORK

State-of-the-art compression methods for pre-trained language

models (PLMs) can be roughly categorized into four classes: ma-

trix factorization, weight quantization, pruning, and knowledge

distillation.

Matrix factorization (MF) uses the product of multiple small

matrices to replace a large full-rank matrix. Winata et al. [47] de-

signed an SVD-based compressed LSTM network for the question-

answering task, and Acharya et al. [1] applied low-rank matrix

factorization to the word embedding layer for classification model

compression. MF in these methods is developed for traditional shal-

low language models, but not deep PLMs. Recently, Chen et al. [6]

and Hsu et al. [18] proposed two variants of SVD to compress the all

weight matrices of PLM. Hsu et al. [18] used fisher information as

the weight of the parameters in the reconstruction loss, and Chen

et al. [6] weighs the reconstructed loss by the empirical distribution

of the input. ALBERT [23] factorized the token embedding layer

and used the weight-sharing strategy in the pre-training stage to

learn a lightweight PLM.

Weight quantization is a widely explored method for model

compression, particularly in the computer vision field [9, 12, 21, 52].

The idea is to map model weights to low-precision integers and

floating-point numbers. Recently, there have been many efforts

toward applying this technique to PLM compression. For example,

Jin et al. [21], Xiao et al. [48] and Zafrir et al. [49] proposed 8-

bit quantization for BERT [11]; Tang et al. [42] further explored
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Figure 1: The 4-stage framework of LightToken.

using 4-bits to quantize BERT; Shen et al. [38] designed a Hessian-

based mixed-precision quantization scheme for BERT; Bai et al.

[2], Tian et al. [44] and Zhang et al. [50] explored how to quantize

BERT into 1-bit and 2-bits. Another line of quantization is based

on clustering, where multiple centroids are used to approximate

vectors. For example, Shu and Nakayama [39] and Chen et al. [8]

use the sum of several centroids to represent vectors.

Pruning is mainly to set redundant parameters to zero in order to

learn a sparse network. Liu et al. [28] proposed a dynamic structured

pruning method for efficient BERT inference; McCarley et al. [30]

applied weight pruning to BERT-based question-answering models;

Chen et al. [7] pruned BERT by finding a small sub-network based

on lottery ticket hypothesis [13].

Knowledge distillation [17] is a compression paradigm that uti-

lizes a trained large model (teacher model) to guide the learning of a

compact, lightweight model (student model). It has been studied in

various recent works, such as DistilBERT [37], TinyBERT [20], Mo-

bileBERT [41], and PKD [40], which used BERT as the teachermodel

to learn a more shallow or narrow student model. Zhao et al. [51]

proposed a sub-token sharing vocabulary table and uses knowledge

distillation to learn the new vocabulary representations. Lioutas

et al. [25] combined the autoencoder and knowledge distillation to

learn lightweight token representations.

Most of the existing MF, quantization, and pruning methods,

however, are task-specific, and thus they cannot be used as a plug-in

module. Knowledge distillation methods such as TinyBERT, Mobile-

BERT, and PKD are model-specific and need to train a new network

from scratch, which could be time-consuming. On the contrary,

the proposed method is task-agnostic and can be implemented as

a plug-in module to work together with many other compression

methods. It is worth mentioning that task-agnostic compression is

much more challenging than task-specific compression. The origi-

nal token embedding matrix is very informative. Nevertheless, for

task-specific compression, the compressed token embedding matrix

just needs to adjust for a specific task, so extensive information can

be removed or lost. In contrast, task-agnostic compression needs to

preserve as much information as possible to be adapted to different

downstream tasks.

Furthermore, many existing knowledge distillationmethods such

as TinyBERT, MobileBERT, and PKD are model-specific, relying

on customized compression architectures, and require training a

new network from scratch, which can be expensive. Different from

them, the proposed method is model agnostic and can be applied

to a variety of backbone models.

3 METHODOLOGY

Given a pre-trained language model (PLM), the token embedding,

denoted as 𝑿 ∈ R𝑑×𝑁 , is a matrix with dimensions 𝑑 × 𝑁 , where 𝑑

is the dimension of each token embedding and 𝑁 is the number of

tokens. Typically, 𝑁 is a large number, often exceeding 10𝐾 or even

100𝐾 . The aim is to compress the matrix 𝑿 such that the resulting

compressed token embedding matrix, denoted as 𝑿̂ can be repre-

sented with a very small number of parameters while preserving

the model performance.

3.1 Overview

In order to find 𝑿̂ , we propose a lightweight token embedding

framework named LightToken via low-rank and hashing approx-

imation, which is shown in Fig. 1. The framework includes four

stages. First, we apply singular value decomposition to the raw

token embedding matrix to achieve the best rank-𝑘 (𝑘 is very small)

approximation (Section 3.2). Second, the residual between SVD

approximation and the raw token embedding matrix is encoded as

hash codes via learning a binary autoencoder (Section 3.3). In order

to make the optimization of binary autoencoder better-conditioned,
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we propose a new reconstruction loss function in Section 3.3.2.

To further reduce the approximation error, in the third stage, we

further train the compressor with the pre-training objective using

a subset of Wikipedia Corpus (Section 3.4). In the fourth stage, we

replace the raw token embedding matrix with the rank-𝑘 SVD, the

learned hash codes, as well as the decoder and then fine-tune the

decoder and later layers of PLM for downstream tasks (Section 3.5).

3.2 Rank-k SVD Approximation

A lot of existing works [3, 6, 18] have shown the singular value

decomposition is powerful when compressing model weight ma-

trices. Usually, a token embedding matrix has very few dominant

singular values. Take BERT as an example, first four singular values

are much larger than others as shown in Fig. 2. Therefore, we apply

SVD to achieve a coarse approximation, which can be represented

as

𝑿 = 𝑼𝑺𝑽𝑇 ≈ 𝑼𝑿 ,𝑘𝑽
𝑇
𝑿 ,𝑘

, (1)

where 𝑼 and 𝑽 are orthogonal matrices in R𝑑×𝑑 and R𝑛×𝑛 respec-

tively, and 𝑺 ∈ R𝑑×𝑛 is a diagonal matrix. 𝑼𝑿 ,𝑘 = 𝑼𝑺
1
2

𝑿 ,𝑘
and

𝑽𝑿 ,𝑘 = 𝑽𝑺
1
2

𝑿 ,𝑘
are rank-𝑘 approximation matrices, where 𝑺

1
2

𝑿 ,𝑘
is

the square root of the first 𝑘 entries of 𝑺 .

However, the rank-𝑘 approximation does not always work well

for all models. For example, the first 𝑘 singular values of RoBERTa

token embedding matrix are not significantly larger than other

singular values, as shown in Fig. 2. Considering the approximation

error ratio
∥𝑿−𝑼𝑿 ,𝑘𝑽

𝑇
𝑿 ,𝑘

∥𝐹

∥𝑿 ∥𝐹
=

√︂

∑𝑑
𝑖=𝑘+1 𝜎

2
𝑖

∑

𝑖 𝜎
2
𝑖

, where𝜎𝑖 is the 𝑖-th largest

singular value, the error ratio will be large if the first 𝑘 singular

values are not large enough, i.e. most singular values having little

variance. To tackle this problem, we modify the 𝑿 to amplify its

first 𝑘 singular values, which can be formulated as 𝑼𝑺𝑎𝑽
𝑇 , where

𝑺𝑎 is a diagonal matrix and 𝑑𝑖𝑎𝑔(𝑺𝑎) [1 : 𝑘] = 𝑑𝑖𝑎𝑔(𝑺) [1 : 𝑘],

𝑑𝑖𝑎𝑔(𝑺𝑎) [𝑘 + 1 :] = 𝑑𝑖𝑎𝑔(𝑺) [𝑘 + 1 :]/2. We find replacing the

token embedding matrix with 𝑼𝑺𝑎𝑽
𝑇 does not influence the model

performance and the amplified matrix enlarges the gap between

the first 𝑘 singular values and remaining singular values.
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Figure 2: The curves of logarithm IDs of sorted singular val-

ues and normalized singular values.

3.3 Learning Hash Codes

3.3.1 Residual Binary Autoencoder. Although the SVD provides

a coarse approximation of 𝑿 , we find that it loses a great deal

𝑅𝑖𝑗
EncoderEnc(⋅; 𝚯𝑗)𝐼(⋅) Sigmoid

Fully-connected 

layer

Subtraction

Concatenation 

Loss

Uℓ2
DncoderDec(⋅)

…

𝑅𝑖𝑗
EncoderEnc(⋅; 𝚯𝑗)𝐼(⋅) Sigmoid

Loss

Uℓ2
DncoderDec(⋅)

Forward propagation 

Backpropagation 

Residual Binary 

Autoencoder
Binary Autoencoder

Figure 3: The framework of the Residual Binary Autoencoder

and a simple Binary Autoencoder..

of information of token embeddings, which leads to a significant

performance drop in experiments. To alleviate performance drop

and improve the approximation, we use binary hash codes to encode

the residual of SVD, which is denoted as 𝑹 = 𝑿 − 𝑼𝑿 ,𝑘𝑽
𝑇
𝑿 ,𝑘

. Here,

complementary to SVD which is a linear compression method, we

design a non-linear binary autoencoder to learn the hash codes. The

binary autoencoder encodes the input residual 𝑹 as binary codes

and then takes advantage of a non-linear decoder to reconstruct

input. Specifically, the binary autoencoder can be formulated as

𝒃𝒊 = Enc(𝑹𝑖 ), 𝑹̂𝑖 = Dec(𝒃𝑖 ), (2)

where Enc(·) is the encoder, Dec(·) is the decoder, 𝒃𝒊 ∈ {0, 1}𝑑𝑏 ,

𝑑𝑏 is the dimension of hash codes, and the subscript 𝑖 represents

the 𝑖-th token. However, the encoded hash codes 𝒃𝑖 are discrete,

which is non-differentiable. Therefore, it is difficult to learn the

hash codes in an end-to-end manner directly. To solve this problem,

following Bengio et al. [4], we apply the Straight Through estimator

to estimate the gradient, i.e. using binary codes in the forward prop-

agation and employing tempered sigmoid to approximate binary

codes during backward propagation, which can be formulated as

𝒆𝒊 = Enc(𝑹𝑖 ), (3)

𝒃𝒊 = Sigmoid(𝒆𝒊/𝜏) + Sg(𝑰 (𝒆𝒊 > 0.5) − Sigmoid(𝒆𝒊/𝜏)), (4)

𝑹̂𝒊 = Dec(𝒃𝑖 ), (5)

where Sg(·) represents the stop gradient operation, 𝑰 (𝑥) = 0 if

𝑥 < 0.5, otherwise 𝑰 (𝑥) = 1, and 𝜏 is a positive scalar.

In this way, we can train the binary autoencoder with popular

optimizers such as SGD, Adam, etc. However, the tempered sig-

moid is a biased estimation and it will be saturating after training

multiple epochs [43], which makes the model converge to a subpar

local optimum. We show the differences between the residual bi-

nary autoencoder and the simple binary autoencoder in Fig. 3. To

solve this problem, we propose a novel residual binary autoencoder
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network, which learns the hash codes in a progressive manner

with residual connections. Specifically, let 𝑹
𝑗
𝑖 be the input of 𝑗-th

encoder ( 𝑗 = 0, ...,𝑚 − 1), and then the recursive expressions can

be represented as

𝒆
𝒋

𝒊
= Enc(𝑹

𝑗
𝑖 ;𝚯𝒋), (6)

𝒃
𝒋

𝒊
= Sigmoid(𝒆

𝒋

𝒊
/𝜏) + Sg(𝑰 (𝒆

𝒋

𝒊
> 0.5) − Sigmoid(𝒆

𝒋

𝒊
/𝜏)), (7)

𝑹
𝒋+1

𝒊
= 𝑹

𝑗
𝑖 − FC(𝒃

𝒋

𝒊
), (8)

where FC(·) is a fully-connected layer to transform the dimension

of 𝒃
𝒋

𝒊
the same as that of 𝑹

𝑗
𝑖 , and 𝑹0

𝑖 = 𝑹𝑖 . The final hashing codes

are the concatenation of 𝒃
𝒋

𝒊
, and the decoder decodes the hash codes,

which can be formulated as

𝒃𝑖 = 𝒃0𝒊 ∥𝒃
1

𝒊 ∥...∥𝒃
𝒎−1

𝒊 , 𝑹̂𝑖 = Dec(𝒃𝑖 ), (9)

where ∥ represents the concatenation operation. In this way, the

residual connections enable the gradient to be more stable and helps

the autoencoder learn better binary representation. And we just

need to store the learned hash codes 𝑩 and the decoder Dec(·). To

achieve a high compression ratio, the architecture can be as light-

weight as possible, such as modeled by a fully-connected network

with only one or two hidden layers.

3.3.2 Loss Function. The reconstructed token embedding can be

represented as 𝑿̂ = 𝑹̂ + 𝑼𝑿 ,𝑘𝑽
𝑇
𝑿 ,𝑘

, and existing works usually use

Euclidean distance to calculate the loss function, i.e.

min
𝚯

∥𝑿 − 𝑿̂ ∥2𝐹 , (10)

where 𝚯 is the parameter of residual binary autoencoder. However,

we find although using the loss function based on direct Euclidean

distance can achieve good performance on most tasks, it shows

poor performance on grammatical acceptability tasks, such as on

CoLA [46], or on small training dataset like RTE [5, 10, 14, 15],

which are shown in experiments. The potential reason is that the

Euclidean distance does not pay enough attention to the angle

between original embeddings and the recontructions. Specifically,

the Euclidean distance can be decomposed as

∥𝑿𝑖 − 𝑿̂𝑖 ∥
2
2 = ∥𝑿𝑖 − 𝑿̂

∥
𝑖 ∥

2
2 + ∥𝑿𝑖 − 𝑿̂⊥

𝑖 ∥22, (11)

where 𝑿̂
∥
𝑖 =

⟨𝑿𝑖 ,𝑿̂𝑖 ⟩
⟨𝑿𝑖 ,𝑿𝑖 ⟩

𝑿𝑖 is the parallel projection, and 𝑿̂⊥
𝑖 = 𝑿̂𝑖 −

⟨𝑿𝑖 ,𝑿̂𝑖 ⟩
⟨𝑿𝑖 ,𝑿𝑖 ⟩

𝑿𝑖 is the orthogonal projection. After simplifying the second

term, we have

∥𝑿𝑖 − 𝑿̂⊥
𝑖 ∥22 = ∥𝑿̂𝑖 ∥

2
2

(

1 −
( ⟨𝑿𝑖 , 𝑿̂𝑖 ⟩

∥𝑿𝑖 ∥∥𝑿̂𝑖 ∥

)2
)

. (12)

We can find Eqn. 12 enforces the square of the cosine similarity

between 𝑿𝑖 and 𝑿̂𝑖 to be equal to 1. However, the cosine similarity

tending to 1 or -1 can both decrease this loss term, which provides

too much freedom to learn the autoencoder parameters and may

confuse/mislead the approximation learning. To solve this problem,

we replace this orthogonal projection termwith a tight upper bound,

which can be represented as

∥𝑿̂𝑖 ∥
2
2

(

1 −
( ⟨𝑿𝑖 , 𝑿̂𝑖 ⟩

∥𝑿𝑖 ∥∥𝑿̂𝑖 ∥

)2
)

≤ 2∥𝑿̂𝑖 ∥
2
2

(

1 −
⟨𝑿𝑖 , 𝑿̂𝑖 ⟩

∥𝑿𝑖 ∥∥𝑿̂𝑖 ∥

)

.

The upper bound enables the cosine similarity to be close to 1

directly and two sides of the inequality are equal if and only if
⟨𝑿𝑖 ,𝑿̂𝑖 ⟩

∥𝑿𝑖 ∥ ∥𝑿̂𝑖 ∥
= 1. Therefore, the final loss function Uℓ2 is

∑︁

𝑖

∥𝑿𝑖 − 𝑿̂
∥
𝑖 ∥

2
2 + 2∥𝑿̂𝑖 ∥

2
2

(

1 −
⟨𝑿𝑖 , 𝑿̂𝑖 ⟩

∥𝑿𝑖 ∥∥𝑿̂𝑖 ∥

)

. (13)

Furthermore, we can rewrite Uℓ2 as

∑︁

𝑖

∥𝑿𝑖 − 𝑿̂𝑖 ∥
2
2 + ∥𝑿̂𝑖 ∥

2
2

(

1 −
⟨𝑿𝑖 , 𝑿̂𝑖 ⟩

∥𝑿𝑖 ∥∥𝑿̂𝑖 ∥

)2

. (14)

Therefore, the proposed Uℓ2 loss can also be interpreted as adding

a weighted cosine similarity regularizer in the Euclidean distance.

3.4 Training Compressor with Pre-training
Objective

To further close the gap between the lightweight token embedding

and raw token embedding, we fine-tune the learned decoder on the

subset of Wikipedia corpus.

Formally, we replace the token embedding matrix of the PLM

with the learned hash codes and decoder, and denote the parameters

of the decoder as 𝚯𝑫 , the parameters of the PLM except token

embedding as 𝚯𝑃𝐿𝑀 . Then we fix the hash codes 𝑩, 𝚯𝑃𝐿𝑀 , and

only update 𝚯𝑫 with the pre-training loss L𝑝 (masked language

modeling loss), which can be represented as

min
𝚯𝑫

L𝑝 (𝔛;𝑩,𝚯𝑫 ,𝚯𝑃𝐿𝑀 ), (15)

where 𝔛 represents Wikipedia corpus data. There are three advan-

tages to fine-tune the decoder. First, it helps preserve semantic

information in the reconstructed embeddings. which is verified in

Section 5.3.2. Second, fine-tuning the decoder is very efficient due

to its simple architecture. Third, it is task and model-agnostic. It

is fine-tuned with pre-training loss and does not rely on a specific

PLM design.

3.5 Fine-tuning PLM for Downstream Tasks

To apply the PLM and lightweight token embedding for different

downstream tasks, we fine-tune the model with task-specific loss

functions. However, different from traditional task-specific fine-

tuning, we fix the hash codes and only update𝚯𝑃𝐿𝑀 and𝚯𝑫 , which

can be formulated as

min
𝚯𝑃𝐿𝑀 ,𝚯𝑫

L𝑡 (𝔛𝑡 ;𝑩,𝚯𝑫 ,𝚯𝑃𝐿𝑀 ), (16)

where 𝔛𝑡 is the downstream task training data.

4 THEORETICAL ANALYSIS

In this section, we show that hashing can benefit from rank-𝑘 SVD

approximation, i.e. the number of hash codes to be required can

be reduced by conducting rank-𝑘 SVD approximation. We prove it

theoretically in Proposition 1 based on Lemma 1. In Lemma 1 and

Proposition 1, we assume the token embedding satisfies a multi-

variate Gaussian distribution. We visualize the 200th and 600th

dimension of BERT token embedding matrix in Fig. 4 to show the

reasonableness of the assumption.
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Figure 4: Histograms of four random sampled dimensions of BERT representation and curves of fitted Gaussian distribution

PDF.

Lemma 1. Assume we are given a set of 𝑁 i.i.d. samples 𝑿 =

[𝒙1, ..., 𝒙𝑁 ] ∈ R𝑑×𝑁 from a multivariate Gaussian distribution. We

encode the vector 𝒙 such that the encoded representation can be used

to recover 𝒙 given a distortion 𝜖2, i.e. E[∥𝒙 − 𝒙̂ ∥2] ≤ 𝜖2. Then the

average number of bits needed is

𝐿(𝑋 ) =
𝑁 + 𝑑

2𝑁
log

(

𝑰 +
𝑑

𝜖2𝑁
𝑿̄𝑿̄𝑇

)

+
𝑑

2𝑁
log

(

1 +
𝝁𝑇 𝝁

𝜖2

)

, (17)

where 𝝁 =
1
𝑁 𝑿1𝑁×1, and 𝑿̄ = 𝑿 −𝝁1𝑇

𝑁×1
. If the𝑿 = [𝒙1, ..., 𝒙𝑁 ] ∈

R
𝑑 from a subspace, i.e., a degenerate Gaussian, Eqn. 18 is an upper

bound of the code length [29].

Proposition 1. Assume each row of 𝑿 is sampled from a multi-

variate Gaussian distribution and 1
𝑁 𝑿1𝑁×1 = 0. The singular value

decomposition of 𝑿 is 𝑿 = 𝑼Λ𝑽𝑇 . The 𝑘 approximate matrix 𝑿𝑘 =

𝑼Λ𝑘𝑽
𝑇 , where Λ𝑘 is the same matrix as Λ except that it contains

only the 𝑘 largest singular values. Then we have 𝐿(𝑿 − 𝑿𝑘 ) < 𝐿(𝑿 )

when
Π
𝑑
𝑖=1 (1+

𝑑

𝑁𝜖2
𝜎2
𝑖
(𝑿 ) )

(1+ 𝑑

𝑁𝜖2
𝜎2
𝑘+1

(𝑿 ) )𝑑
> (1+ 𝑑

𝑁 2𝜖2
𝜎21 (𝑿 ))

𝑁
𝑁 +𝑑 , where 𝜎𝑖 (𝑿 ) is the

𝑖-th largest singular value of 𝑿 .

5 EXPERIMENT

In this section, we evaluate the proposed LightToken and answer

the following questions:

RQ1 How does LightToken perform compared to state-of-the-art

token compression baselines?

RQ2 What is the role of each module of LightToken in model

performance improvements respectively?

RQ3 How does the performance change with varying compres-

sion ratios and ranks of SVD approximation?

RQ4 Can the proposed LightToken preserve semantic informa-

tion of original tokens?

5.1 Datasets and Experiment Settings

5.1.1 Datasets. We conduct experiments on benchmark GLUE [45]

and SQuAD 1.1 [35] following Chen et al. [6], Hsu et al. [18]. More

specifically, we adopt 8 tasks from GLUE for evaluation, including

MRPC, SST-2, RTE, STS-B, QQP, QNLI, MNLI, and CoLA. Details

of tasks are shown in Table 3 in the appendix. The performance is

reported on the development sets following [6, 18].

5.1.2 Baselines. We adopt four state-of-the-art baselines:

• SVD is a classical and powerful method for compression. It is the

best rank-𝑘 approximation with respect to Euclidean distance.

• DSVD [3] is a variant of SVD. It adds cosine similarity as a regular-

izer and achieves state-of-the-art performance on token compres-

sion task.

• IRVQ [26] is an improved residual quantization method, which

consists of multiple codebooks and takes advantage of the residual

mechanism to learn the quantized representation. We implement

IRVQ based on Faiss [22].

• DCQ [8, 39] is a state-of-the-art method to learn compositional rep-

resentation for embedding compression in an end-to-end manner.

We compare all methods under a high compression ratio as 25.

To test the generalization of LightToken, we apply the proposed

mehtod to three popular backbones: 1) BERT-base [11], 2) RoBERTa-

base [27], and 3) DistilBERT [37]. BERT and RoBERTa are used to

represent BERT-base and RoBERTa-base respectively for short. We

show the implementation details in the appendix due to limited

space.

5.2 Performance Comparison

In this section, we report the performance of baselines and the

proposed LightToken in Table 2 and Table 1 to answer RQ1.

Table 2 and Table 1 show that the proposed LightToken out-

performs all the state-of-the-art baselines on GLUE and SQuAD

v1.1 datasets. Under the compression ratio of 25, all baselines suffer

from significant performance drops except the proposed method.

The proposed LightToken nearly preserve the performance of full

model to achieve lossless compression. The performance of base-

line methods drops by at least 14.6%, 8.1%, and 9.0% with BERT,

RoBERTa, and DistilBERT respectively on GLUE with respect to av-

erage performance. However, the proposed LightToken maintains

PLMs’ accuracy by taking advantage of the non-linear architecture

and the new loss function. The experimental results show that the

proposed method can not only be used as a plug-in component for

PLMs like BERT and RoBERTa but also be use to further reduce the

parameters of the compressed model like DistilBERT to improve

the efficiency.

We observe that the methods SVD and DSVD with RoBERTa

suffers from more than 20% performance drop, which is larger than

those with BERT and DistilBERT. Such an observation illustrates

that it is difficult to make single low-rank approximation work with

RoBERTa and supports the motivation of of amplifying singular

values in this scenario.

5.3 Ablation Study

5.3.1 Effectiveness of the Proposed Uℓ2 Loss. In this section, we

conduct ablation studies to answer RQ2 regarding the Uℓ2 loss. To

clearly validate the role of the proposed Uℓ2 loss in LightToken,

we design two ablation studies: 1) comparing LightToken with

LightToken w/o Uℓ2 and 2) comparing LightToken w/o WikiFT

and LightToken w/o Uℓ2 and WikiFT. The results are also sum-

marized in Table 2 and Table 1. The ablation studies confirm that
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Table 1: Performance comparison on GLUE dataset. "CR" represents token emnedding compression ratio. "AVG" is the average

performance of the 8 tasks. Results of ∗ and ♥ are taken from [37] and [24] respectively. The highest scores of compression

methods per category are in bold.

Method CR MRPC SST-2 RTE STS-B QQP QNLI MNLI CoLA AVG

BERT∗ 1 88.6 92.7 69.3 89.0 89.6 91.8 86.7 56.3 83.0

+SVD 25 81.1 79.4 54.2 73.1 79.8 81.2 73.6 7.7 66.3

+DSVD 25 81.5 81.1 60.0 78.2 83.4 84.5 76.4 14.5 70.0

+IRVQ 25 83.5 81.1 56.7 82.1 84.2 84.5 78.3 16.4 70.9

+DCQ 25 83.2 79.1 56.7 78.4 83.9 84.2 76.3 22.6 70.6

+LightToken (ours) 25 90.9 92.2 71.5 87.9 87.8 91.2 84.0 57.6 82.9

w/o Uℓ2 w/o WikiFT 25 86.3 88.5 65.7 86.8 86.2 88.3 82.6 23.2 76.0

w/o WikiFT 25 88.2 89.8 64.6 87.4 86.8 90.4 84.2 33.9 78.2

w/o Uℓ2 25 89.6 91.4 68.6 88.2 87.9 91.1 83.5 55.5 82.0

RoBERTa♥ 1 91.7 94.5 73.7 89.1 88.8 90.8 87.2 64.8 85.1

+SVD 25 83.2 82.8 52.4 70.3 83.2 77.4 74.5 0.0 65.5

+DSVD 25 83.1 81.9 52.7 77.1 82.7 83.1 75.2 0.0 67.0

+IRVQ 25 87.2 86.9 59.6 84.5 85.5 86.6 81.5 19.0 73.9

+DCQ 25 88.8 92.1 61.7 85.2 87.2 90.5 85.4 34.9 78.2

+LightToken (ours) 25 91.2 93.6 72.2 89.2 88.0 91.8 86.6 61.8 84.3

w/o Uℓ2 w/o WikiFT 25 86.5 90.3 58.8 86.8 87.4 90.1 84.6 8.1 74.1

w/o WikiFT 25 88.2 90.9 60.3 87.7 87.8 90.9 85.9 13.4 75.6

w/o Uℓ2 25 91.0 93.2 70.0 88.6 88.0 92.3 86.5 57.0 83.3

DistilBERT∗ 1 87.5 91.3 59.9 86.9 88.5 89.2 82.2 51.3 79.6

+SVD 25 80.8 78.4 58.1 69.9 81.7 81.4 70.6 9.4 66.3

+DSVD 25 82.7 79.2 59.2 75.2 82.7 82.9 73.7 9.2 68.1

+IRVQ 25 85.1 84.3 53.8 80.2 83.7 84.2 75.6 15.0 70.2

+DCQ 25 85.1 83.5 58.5 79.0 84.5 83.3 77.9 27.0 72.4

+LightToken (ours) 25 90.1 89.9 66.1 85.9 86.5 88.4 81.6 51.7 80.0

w/o Uℓ2 w/o WikiFT 25 87.1 86.8 63.5 84.8 85.0 86.1 80.0 19.7 74.1

w/o WikiFT 25 86.5 86.9 63.9 84.9 85.7 86.4 80.4 25.4 75.0

w/o Uℓ2 25 89.2 89.2 63.5 85.7 86.6 88.5 81.8 48.1 79.1

the proposed Uℓ2 loss helps the model achieve better performance.

Take Table 1 as an example, compared to LightToken w/o Uℓ2, the

proposed LightToken achieves 1.1%, 1.2%, and 1.1% performance

improvements with BERT, RoBERTa and DistilBERT as backbones

respectively in term of the average accuracy over the 8 tasks; com-

pared to LightTokenw/o Uℓ2 andWikiFT, LightTokenw/oWikiFT

shows 2.9%, 2.0%, and 1.2% improvements with BERT, RoBERTa

and DistilBERT as backbones respectively in term of the average

accuracy over the 8 GLUE tasks. In particular, we observe that the

proposed loss function significantly boosts the model performance

with BERT, RoBERTa, and DistilBERT on CoLA, achieving 25%, 37%,

and 18% improvement in average respectively. This demonstrates

the effectiveness of the proposed loss function, especially when

dealing with grammar-preservation involved tasks.

5.3.2 Effectiveness of Fine-tuning the Decoder. In this section, we

conduct analysis to answer RQ2 regarding fine-tuning the decoder.

We design two ablation studies including 1) comparing LightToken

and LightToken w/o WikiFT and 2) comparing LightToken w/o

Uℓ2 with LightTokenw/o Uℓ2 andWikiFT to show the effectiveness

of fine-tuning the decoder. We report results in Table 2 and Table 1.

The experimental results show that fine-tuning the decoder can

MRPC SST-2 RTE STS-B QQP QNLI MNLI CoLA SQuAD
0.45

0.55

0.65

0.75

0.85

0.95

BERT+LightToken w/o Residual

BERT+LightToken

DistilBERT+LightToken w/o Residual

DistilBERT+LightToken

Figure 5: Performance of LightToken with or without the

proposed residual connection. The y-axis represents the eval-

uation metric values corresponding to each task.

improvemodel performance significantly. The average performance

improvements of LightToken versus LightToken w/o WikiFT and

LightToken w/o Uℓ2 versus LightToken w/o Uℓ2 and WikiFT with

respect to the three backbones on GLUE and SQuAD are 8.5% and

2.0% respectively. Specifically, LightToken brings improvements

around 11.5% compared to LightToken w/o WikiFT in term of the

average accuracy over 8 tasks on GLUE dataset. The results show
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Table 2: Performance comparison on SQuAD v1.1 dataset.

"CR" represents the token embedding compression ratio. Re-

sults of ∗ and ♥ are taken from [37] and [16] respectively. The

highest scores of compression methods per category are in

bold.

Method CR
SQuAD v1.1

Exact Match (EM) F1

BERT∗ 1 81.2 88.5

+SVD 25 64.5 74.8

+DSVD 25 67.3 77.5

+IRVQ 25 72.7 82.0

+DCQ 25 68.8 78.8

+LightToken (ours) 25 80.3 87.9

w/o Uℓ2 w/o WikiFT 25 79.8 87.5

w/o WikiFT 25 79.8 87.3

w/o Uℓ2 25 80.1 87.8

RoBERTa♥ 1 84.8 91.1

+SVD 25 75.1 83.2

+DSVD 25 75.9 83.7

+IRVQ 25 79.8 87.4

+DCQ 25 83.3 90.1

+LightToken (ours) 25 85.2 91.6

w/o Uℓ2 w/o WikiFT 25 83.3 90.2

w/o WikiFT 25 83.0 89.6

w/o Uℓ2 25 85.3 91.6

DistilBERT∗ 1 77.7 85.8

+SVD 25 56.2 68.2

+DSVD 25 59.5 70.8

+IRVQ 25 59.9 71.7

+DCQ 25 68.0 78.2

+LightToken (ours) 25 76.4 84.8

w/o Uℓ2 w/o WikiFT 25 71.9 81.3

w/o WikiFT 25 73.6 82.5

w/o Uℓ2 25 76.2 84.7
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Figure 6: Performance with different compression ratios. The

y-axis represents the averaged accuracy of all GLUE tasks

for GLUE dataset and represents F1 for SQuAD.

that fine-tuning the decoder is effective to close the gap between

the full model and the compressed model.

Figure 7: Performance of different 𝑘 used in rank-𝑘 approxi-

mation.

5.3.3 Effectiveness of the Residual Connection. In this section, we

do the ablation study to answer RQ2 regarding the residual con-

nection. We conduct this ablation study with BERT and DistilBERT

as backbones and show the results in Fig. 5. We find that the resid-

ual connection improves model performance on most tasks. For

example, it leads to 2.1% and 1.7% improvement on GLUE tasks

on average for BERT and DistilBERT respectively. It brings 3.4%

improvement on the SQuAD dataset with DistilBERT as the back-

bone. In particular, the performance of BERT+LightToken w/o the

residual, BERT+LightToken, DistilBERT+LightToken w/o resid-

ual, and DistilBERT+LightToken are 47.6, 57.6, 46.2, and 51.7 on

CoLA dataset, achieving 21.1% and 103.1% improvement compared

to the model without the residual connection with BERT and Dis-

tilBERT as backbones, respectively. It shows the proposed residual

connection is an effective solution to learn more informative hash

codes.

5.4 Performance w.r.t. Different Compression
Ratios

In this section, we study how the performance of LightToken

changes with respect to different compression ratios in order to

answer RQ3. We show the average performance on GLUE and F1

value on SQuAD in Fig. 6. We notice that with the increment of the

compression ratio, the accuracy performance degradation of the

proposed LightToken is very slight. For example, when the com-

pression ratio is 25, LightToken does not have performance drop

in term of accuracy both on GLUE and SQuAD. When compression

ratio reaches 103, accuracy drop of LightToken is still within 6%.

However, for SVD, when the compression ratio is 103, its accuracy

drop on GLUE and SQuAD is huge, as large as 37.7% and 33.4%

respectively. It shows the superiority of LightToken, especially

when we need to highly compress the token embedding matrix.

5.5 Performance w.r.t. Different Ranks of SVD
Approximation

In this section, we study how performance changes with respect

to different ranks of SVD approximation in order to answer RQ3.

We show the performance on datasets CoLA, RTE, MNLI, STS-B,

and SQuAD with rank-2, 4, and 6 SVD approximation in Fig. 7.

There are two key discoveries. First, model performance increases

when using a higher rank approximation. It is not surprising since

the reconstruction error will be reduced with more parameters

utilized. Second, the rank-4 approximation has better performance
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Figure 8: Fig. 8(a) represents the pairwise distance of original embedding corresponding to sampled tokens. Fig. 8(b) represents

the pairwise distance of LightToken reconstructed embedding corresponding to sampled tokens. Fig. 8(c) and Fig. 8(d) visualize

the learned hash codes differences. Number 1 means the hash code is the same in the dimension and 0 means the hash code is

different in the dimension. The 384 dimension hash codes are reshaped as a 24 × 16 matrix.

than rank-2 approximation. However, it is observed to bring limited

performance improvement when further increasing the rank ap-

proximation to rank 6. More precisely, using rank-4 approximation

leads to 3.8% and 3.7% relative accuracy performance improvement

compared with adopting rank-2 approximation on CoLA and RTE

datasets. However, the improvement of rank-6 approximation is

less than 0.05% compared to rank-4 approximation. It shows that

using the largest four singular values will be sufficient enough to

preserve the token information.

5.6 Case Study

In this section, we visualize the reconstructed token representa-

tions and hash codes in Fig. 8(a) to answer RQ4. To show that the

reconstructed representations can preserve semantics information,

we sample 100 token ids from the BERT token vocabulary, and

compute the pairwise distance before and after conducting com-

pression in Fig. 8(a) and Fig. 8(b) respectively. The brightness of the

color in the two figures indicates the distance. The color patterns

in Fig. 8(a) and Fig. 8(b) are very similar, showing the pattern is

preserved before and after conducting LightToken compression. If

we use a complete graph to model all tokens, where vertices are

tokens and edges are weighted by the distances among tokens, the

adjacent matrix will be represented by the pairwise distance matrix.

Therefore, Fig. 8(a) and Fig. 8(b) illustrate that the reconstructed

representations preserve the neighborhood information of original

token representations. Besides, to show that the hash codes can

maintain semantics information, we select three tokens, including

dog, dogs, and tiger, and visualize two of their pairwise representa-

tions in Fig. 8(c) and Fig. 8(d). We compute the difference for each

bit. For the 𝑖-th dimension of hash codes, if their bits are the same,

the result for this bit is 1, else is 0. We reshape the 384-dimension

hash codes as a 24×16 matrix. Intuitively, the hash codes of dog

and dogs should be more similar than that of dog and tiger. Fig. 8(c)

and Fig. 8(d) is consistent with the intuition. It demonstrates that

the learned hash codes also preserve semantic information.

6 CONCLUSION

In this paper, we proposed a task and model-agnostic lightweight

token embedding framework, namely LightToken, for effective

compression of PLMs. The proposed LightToken integrates low-

rank and hashing approximation. We first leverage SVD to obtain a

rank-𝑘 approximation matrix. Then the residual between the token

embedding matrix and the rank-𝑘 approximation matrix is encoded

as hash codes by the proposed residual binary autoencoder. The

decoder is fine-tuned in the Wikipedia corpus to further reduce

accuracy loss. Theoretical analysis demonstrates the benefit of such

integration, as shown by the smaller number of hash codes needed

after the rank-𝑘 approximation. Extensive experiments are con-

ducted on GLUE and SQuAD v1.1 benchmarks. Experimental results

show that the proposed LightToken outperforms state-of-the-art

baselines, and achieves 25x compression ratio without accuracy

loss.
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A PROOF OF PROPOSITION 1

Lemma 1. Assume we are given a set of 𝑁 i.i.d. samples 𝑿 =

[𝒙1, ..., 𝒙𝑁 ] ∈ R𝑑×𝑁 from a multivariate Gaussian distribution. We

encode the vector 𝒙 such that the encoded representation can be used

to recover 𝒙 given a distortion 𝜖2, i.e. E[∥𝒙 − 𝒙̂ ∥2] ≤ 𝜖2. Then the

average number of bits needed can be represented as

𝐿(𝑋 ) =
𝑁 + 𝑑

2𝑁
log(𝑰 +

𝑑

𝜖2𝑁
𝑿̄𝑿̄𝑇 ) +

𝑑

2𝑁
log(1 +

𝝁𝑇 𝝁

𝜖2
), (18)

where 𝝁 =
1
𝑁 𝑿1𝑁×1, and 𝑿̄ = 𝑿 −𝝁1𝑇

𝑁×1
. If the𝑿 = [𝒙1, ..., 𝒙𝑁 ] ∈

R
𝑑 from a subspace, i.e., a degenerate Gaussian, Eqn. 18 is an upper

bound of the code length [29].

Proposition 1. Assume each row of 𝑿 is sampled from a multi-

variate Gaussian distribution and 1
𝑁 𝑿1𝑁×1 = 0. The singular value

decomposition of 𝑿 is 𝑿 = 𝑼Λ𝑽𝑇 . The 𝑘 approximate matrix 𝑿𝑘 =

𝑼Λ𝑘𝑽
𝑇 , where Λ𝑘 is the same matrix as Λ except that it contains

only the 𝑘 largest singular values. Then we have 𝐿(𝑿 − 𝑿𝑘 ) < 𝐿(𝑿 )

when
Π
𝑑
𝑖=1 (1+

𝑑

𝑁𝜖2
𝜎2
𝑖
(𝑿 ) )

(1+ 𝑑

𝑁𝜖2
𝜎2
𝑘+1

(𝑿 ) )𝑑
> (1+ 𝑑

𝑁 2𝜖2
𝜎21 (𝑿 ))

𝑁
𝑁 +𝑑 , where 𝜎𝑖 (𝑿 ) is the

𝑖-th largest singular value of 𝑿 .

Proof. According to Lemma 1, we have

𝐿(𝑿 ) =
𝑁 + 𝑑

2𝑁
log(𝑰 +

𝑑

𝜖2𝑁
𝑿𝑿𝑇 )

=
𝑁 + 𝑑

2𝑁

𝑑
∑︁

𝑖=1

log(1 +
𝑑

𝜖2𝑁
𝜎2𝑖 (𝑿 )). (19)

Similarly, we have

𝐿(𝑿 − 𝑿𝑘 ) ≤
𝑁 + 𝑑

2𝑁
log(𝑰 +

𝑑

𝜖2𝑁
𝑿̄𝑿̄𝑇 ) +

𝑑

2𝑁
log(1 +

𝝁𝑇 𝝁

𝜖2
),

(20)

where 𝝁 =
1
𝑁 (𝑿 −𝑿𝑘 )1𝑁×1, and 𝑿̄ = 𝑿 −𝑿𝑘 − 𝝁1𝑇

𝑁×1
. Therefore,

𝑿̄ =𝑿 − 𝑿𝑘 − 𝝁1𝑇𝑁×1

=(𝑿 − 𝑿𝑘 ) (𝑰 −
1

𝑁
11

𝑇 ) . (21)

Hence, we have

𝜎𝑖 (𝑿̄ ) ≤𝜎1 (𝑿 − 𝑿𝑘 )𝜎𝑖 (𝑰 −
1

𝑁
11

𝑇 )

≤𝜎1 (𝑿 − 𝑿𝑘 )

=𝜎𝑘+1 (𝑿 ). (22)

So 𝑁+𝑑
2𝑁 log(𝑰 + 𝑑

𝜖2𝑁
𝑿̄𝑿̄𝑇 ) ≤ 𝑁+𝑑

2𝑁 𝑑 log(1 + 𝑑
𝜖2𝑁

𝜎2
𝑘+1

(𝑿 )).

Then consider

𝝁𝑇 𝝁 =
1

𝑁 2
1
𝑇𝑿𝑘𝑿𝑘1

≤
1

𝑁 2
𝜎21 (𝑿 )1𝑇 1

=
1

𝑁
𝜎21 (𝑿 ), (23)

so we have

𝑑

2𝑁
log(1 +

𝝁𝑇 𝝁

𝜖2
) ≤

𝑑

2𝑁
log(1 +

𝜎21 (𝑿 )

𝑁𝜖2
) (24)

≤
1

2
log(1 +

𝑑𝜎21 (𝑿 )

𝑁 2𝜖2
) . (25)

Therefore,

𝐿(𝑿 ) − 𝐿(𝑿 − 𝑿𝑘 )

≥
𝑁 + 𝑑

2𝑁

𝑑
∑︁

𝑖=1

log(1 +
𝑑

𝜖2𝑁
𝜎2𝑖 (𝑿 ))

−
𝑁 + 𝑑

2𝑁
𝑑 log(1 +

𝑑

𝜖2𝑁
𝜎2
𝑘+1

(𝑿 )) −
1

2
log(1 +

𝑑𝜎21 (𝑿 )

𝑁 2𝜖2
)

>0. (26)

□

B ALGORITHM OF LIGHTTOKEN

Algorithm 1: LightToken

Input: A pre-trained language model; Wikipedia corpus 𝔛;

downstream task dataset 𝔛𝑡 ; rank of SVD

approxiamtion 𝑘 .

// first stage: rank-𝑘 SVD approximation

1 [𝑼 , 𝑺, 𝑽 ] = SVD(𝑿 );

2 if PLM is RoBERTa then

3 𝑑𝑖𝑎𝑔(𝑺) [𝑘 + 1 :] = 𝑑𝑖𝑎𝑔(𝑺) [𝑘 + 1 :]/2;

4 Compute SVD approximation matrix 𝑼𝑿 ,𝑘𝑽
𝑇
𝑿 ,𝑘

;

// second stage: learning hash codes

5 Compute the residual between original token embedding

matrix 𝒙 and SVD approximation matrix 𝑼𝑿 ,𝑘𝑽
𝑇
𝑿 ,𝑘

:

𝑹 = 𝑿 − 𝑼𝑿 ,𝑘𝑽
𝑇
𝑿 ,𝑘

;

6 while converge do

7 Compute reconstructed token via residual binary

autoencoder;

8 Compute Uℓ2 loss based on Eqn. 13 and do

backpropagation to update parameters;

// third stage: fine-tune decoder

9 Replace the token embedding matrix of PLM with

𝑼𝑿 ,𝑘𝑽
𝑇
𝑿 ,𝑘

+ Dec(𝑩);

10 Fix parameters of the PLM except token embedding 𝚯𝑃𝐿𝑀

and hash codes 𝑩;

11 while converge do

12 for batch in 𝔛 do

13 Forward propagation based on Eqn. 15;

14 Update 𝚯𝐷 ;

// fourth stage: fine-tune PLM for downstream

task

15 Fix 𝑩;

16 while converge do

17 for batch in 𝔛𝑡 do

18 Forward propagation based on Eqn. 16;

19 Update 𝚯𝐷 and 𝚯𝑃𝐿𝑀 ;
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C DATASET AND IMPLEMENTATION DETAILS

We use rank-4 SVD approximation and two residual layers for all

backbones. For LightToken with BERT and DistilBERT as back-

bones, the decoder is a one-hidden-layer MLP with ReLU as the

activation function. For LightToken with RoBERTa as the back-

bone, the decoder is a two-hidden-layers MLP with GeLU as the

activation function. We use wikitext-103-raw-v1 [31] as the corpus

to fine-tune the decoder. The decoder is fine-tuned for 10 epochs.

We select the learning rates from {5𝑒 −6, 1𝑒 −5, 2𝑒 −5, 3𝑒 −5, 5𝑒 −5}

and batch size from {8, 16, 32, 64}. Experiments are conducted using

four NIVIDA RTX A6000.

Table 3: Detail information of GLUE and SQuAD v1.1.

Dataset Task Metric

MRPC Paraphrase Identification F1

QQP Paraphrase Identification F1

MNLI Natural Language Inference Accuracy

QNLI Natural Language Inference Accuracy

RTE Natural Language Inference Accuracy

SST-2 Sentiment Classification Accuracy

STS-B Similarity Pearson corr

CoLA Linguistic Acceptability Matthews corr

SQuAD v1.1 Question Answering Exact Match/F1
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