Check for
Updates

LightToken: A Task and Model-agnostic Lightweight Token
Embedding Framework for Pre-trained Language Models

Haoyu Wang Ruirui Li Haoming Jiang
Purdue University Amazon.com Inc Amazon.com Inc
wang5346@purdue.edu ruirul@amazon.com jhaoming@amazon.com
Zhengyang Wang Xianfeng Tang Bin Bi
Amazon.com Inc Amazon.com Inc Amazon.com Inc
zhengywa@amazon.com xianft@amazon.com bbi@amazon.com
Monica Cheng Bing Yin Yaqing Wang
Amazon.com Inc Amazon.com Inc Purdue University
chengxca@amazon.com alexbyin@amazon.com wang5075@purdue.edu
Tuo Zhao Jing Gao
Georgia Institute of Technology Purdue University
tourzhao@gatech.edu jinggao@purdue.edu
ABSTRACT CCS CONCEPTS

Pre-trained language models (PLMs) such as BERT, RoBERTa, and
DeBERTa have achieved state-of-the-art performance on various
downstream tasks. The enormous sizes of PLMs hinder their deploy-
ment in resource-constrained scenarios, e.g., on edge and mobile
devices. To address this issue, many model compression approaches
have been proposed to reduce the number of model parameters.
This paper focuses on compressing the token embedding matrices of
PLMs, which typically make up a large proportion (around 20-30%)
of the entire model parameters. Existing efforts to compress token
embedding usually require the introduction of customized com-
pression architectures or the optimization of model compression
processes for individual downstream tasks, limiting their appli-
cability in both model and task dimensions. To overcome these
limitations and adhere to the principle of "one-for-all", we propose
a lightweight token embedding framework named LightToken,
which is able to produce compressed token embedding in a task
and model-agnostic fashion. LightToken is generally compatible
with different architectures and applicable to any downstream task.
Specifically, through an integration of low-rank approximation,
novel residual binary autoencoder, and a new compression loss
function, LightToken can significantly improve the model com-
pression ratio. To demonstrate the effectiveness of LightToken, we
conduct comprehensive experiments on natural language under-
standing and question answering tasks. In particular, LightToken
improves the state-of-the-art token embedding compression ratio
from 5 to 25 and outperforms the existing token embedding com-
pression approaches by 11% and 5% on GLUE and SQuAD v1.1
benchmarks, respectively.

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

KDD °23, August 6-10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0103-0/23/08.
https://doi.org/10.1145/3580305.3599416

2302

« Computing methodologies — Natural language processing,.

KEYWORDS

Pre-trained Language Model, Compression

ACM Reference Format:

Haoyu Wang, Ruirui Li, Haoming Jiang, Zhengyang Wang, Xianfeng Tang,
Bin Bi, Monica Cheng, Bing Yin, Yaging Wang, Tuo Zhao, and Jing Gao. 2023.
LightToken: A Task and Model-agnostic Lightweight Token Embedding
Framework for Pre-trained Language Models. In Proceedings of the 29th
ACM SIGKDD Conference on KnowledgeDiscovery and Data Mining (KDD
"23), August 6—10, 2023, Long Beach, CA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3580305.3599416

1 INTRODUCTION

Pre-trained language models (PLMs), such as BERT [11], RoBERTa [27],
and DeBERTa [16], have achieved state-of-the-art results on a wide
range of natural language tasks. Examples include natural language
inference [19], sentiment classification [32], and question answer-
ing [34]. These PLMs are usually very large-scale, which consist
of billions of parameters; for example, BERT, RoBERTa have 110M,
123M parameters respectively. This large scale of PLMs has been a
bottleneck when deploying them on resource-constrained mobile
and edge devices due to hardware limitations.

To comply with the demand for lightweight models, a number of
works compress PLMs to reduce their footprint through knowledge
distillation [17], matrix factorization [36], pruning [53], or quanti-
zation [33]. These methods either train shallow models with fewer
layers, such as DistilBERT [37], or use matrix factorization and
quantization to reduce the memory consumption of each weight
matrix, such as FWSVD [18] and Q8bert [49]. These compressed
PLMs have been successful in reducing over 40% parameters while
maintaining over 97% model performance.

Despite these progresses, there is still substantial room to achieve
amuch better compression ratio with less performance degradation.

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

PLMs typically consist of a token embedding matrix, a deep neural
network with the attention mechanism, and an output layer. The
token embedding matrix often occupies a significant proportion
of the whole model due to the use of a large vocabulary table.
For example, the token embedding matrix accounts for over 21%
and 31.2% of the model size for BERT and RoBERTa respectively.
Furthermore, because of differences among token frequencies, there
are lots of redundancies in the token embedding matrix. Therefore,
any approach that could compress token embedding matrix can be
complementary to other model compression methods to achieve a
higher compression ratio.

Unfortunately, very limited efforts were spent on studying the
compression of the token embedding matrices, and existing meth-
ods suffer from the limitations in terms of generalizability and effi-
ciency. Existing work [25, 51] on token embedding matrix compres-
sion leverages knowledge distillation to learn a small task-specific
token embedding matrix. However, they are task-specific and thus
a new compressed token embedding matrix has to be learnt for
each downstream task. This could be laborious and it is difficult
to reuse the compression for different tasks. Another limitation
is that these approaches use knowledge distillation to guide the
learning of the lightweight token embedding matrix. This process is
time-consuming and expensive, for example, as noted by Zhao et al.
[51], it can take 2-4 days to train on a 32 TPU cores platform, which
almost takes the same time as training BERT from scratch [34].

To address the aforementioned issues and limitations, a desirable
token embedding matrix compression method for PLMs should
1) be task-agnostic to generalize well for different downstream
tasks, 2) be model-agnostic to be a plug-in module for different
backbones, 3) be complementary to other model compression meth-
ods, and 4) have a high compression ratio while preserving model
performance.

To achieve this goal, a task and model-agnostic lightweight token
embedding framework for PLMs named LightToken is proposed
in this paper. LightToken integrates low-rank and hashing approx-
imation. First, we use singular value decomposition for the token
embedding matrix to achieve rank-k approximation, where k is
very small. Then, a residual binary autoencoder is proposed to
learn the hash codes with respect to the residual matrix between
the original token embedding matrix and rank-k approximation ma-
trix. This novel integration of low-rank approximation and hashing
methods could lead to significant compression with very limited
performance degradation due to the following reasons. First, the
low-rank approximation extracts the coherent components with a
shared basis, while the residual binary autoencoder generates hash
codes to approximate the incoherent components of token embed-
ding matrix. They are complementary and jointly provide huge
reduction. In addition, after the low-rank approximation, fewer
hash codes are needed to maintain model accuracy, increasing the
compression ratio. This is theoretically demonstrated in our anal-
ysis in Proposition 1. Furthermore, a new reconstruction loss is
proposed, which could be considered as an upper bound of the
widely used Euclidean distance and enable the model to focus more
on the direction matching between original embeddings and com-
pressed embeddings. It reweighs the cosine similarity and makes
the loss better-conditioned than Euclidean distance.

2303

Haoyu Wang, et al.

We also propose effective compressor training recipes. Specif-
ically, we propose to train the compressor with the pre-training
objective to reduce the accuracy loss caused by compression. We
fix the learned hash codes and fine-tune the decoder of the residual
binary autoencoder using Wikipedia corpus. This step is efficient
compared to pre-training because the number of decoder param-
eters is very small (a one or two hidden layers of DNN) and the
epoch of fine-tuning is small (just 10 epochs). We also propose to re-
place the token embedding layer of the PLM with LightToken and
fine-tune the decoder and other layers of the PLM for downstream
tasks.

The contributions of the paper are summarized as follows:

e We propose a task and model-agnostic lightweight token em-
bedding framework for PLMs by leveraging the complementary
integration of low-rank and hashing approximation, and demon-
strate its effectiveness both empirically and theoretically. To the
best of our knowledge, this is the first attempt to leverage hash-
ing method for learning a task and model-agnostic lightweight
token embedding matrix.
New designs and strategies are proposed to further improve the
ability of the compressor. In particular, we propose a new loss
function U#, for token embedding compression, which is not
only better-conditioned but also shows nice compression results.
e We conduct extensive experiments on GLUE and SQuAD v1.1
benchmarks. Results show that the proposed LightToken outper-
forms baselines significantly. The proposed LightToken achieves
25x compression ratio without accuracy loss, and when the com-
pression ratio reaches 103, the accuracy loss is within 6% of the
original measure.

2 RELATED WORK

State-of-the-art compression methods for pre-trained language
models (PLMs) can be roughly categorized into four classes: ma-
trix factorization, weight quantization, pruning, and knowledge
distillation.

Matrix factorization (MF) uses the product of multiple small
matrices to replace a large full-rank matrix. Winata et al. [47] de-
signed an SVD-based compressed LSTM network for the question-
answering task, and Acharya et al. [1] applied low-rank matrix
factorization to the word embedding layer for classification model
compression. MF in these methods is developed for traditional shal-
low language models, but not deep PLMs. Recently, Chen et al. [6]
and Hsu et al. [18] proposed two variants of SVD to compress the all
weight matrices of PLM. Hsu et al. [18] used fisher information as
the weight of the parameters in the reconstruction loss, and Chen
et al. [6] weighs the reconstructed loss by the empirical distribution
of the input. ALBERT [23] factorized the token embedding layer
and used the weight-sharing strategy in the pre-training stage to
learn a lightweight PLM.

Weight quantization is a widely explored method for model
compression, particularly in the computer vision field [9, 12, 21, 52].
The idea is to map model weights to low-precision integers and
floating-point numbers. Recently, there have been many efforts
toward applying this technique to PLM compression. For example,
Jin et al. [21], Xiao et al. [48] and Zafrir et al. [49] proposed 8-
bit quantization for BERT [11]; Tang et al. [42] further explored

LightToken: A Task and Model-agnostic Lightweight Token Embedding Framework for Pre-trained Language Models

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

OQ
OQ
.00
OQ
OQ
Embedd e Residual
Stage 1: Rank-k SVD Approximation
e
! 0000
| 88| *Xlec0e
1 OO Vik
I (OO
% Q0
| OO UX,k
P
|

Stage 3: Fine-tuning
Decoder

ecoder
Reconstructed

Hash Codes

Stage 4: Fine- |
tuning Pre—lrained:
Language Model |
for Downstream |

Tasks

Downstream Task [—
Training Dataset

Concatenate Embedding

|

|

j‘(l
[

Pre-trained
Language Model

Figure 1: The 4-stage framework of LightToken.

using 4-bits to quantize BERT; Shen et al. [38] designed a Hessian-
based mixed-precision quantization scheme for BERT; Bai et al.
[2], Tian et al. [44] and Zhang et al. [50] explored how to quantize
BERT into 1-bit and 2-bits. Another line of quantization is based
on clustering, where multiple centroids are used to approximate
vectors. For example, Shu and Nakayama [39] and Chen et al. [8]
use the sum of several centroids to represent vectors.

Pruning is mainly to set redundant parameters to zero in order to
learn a sparse network. Liu et al. [28] proposed a dynamic structured
pruning method for efficient BERT inference; McCarley et al. [30]
applied weight pruning to BERT-based question-answering models;
Chen et al. [7] pruned BERT by finding a small sub-network based
on lottery ticket hypothesis [13].

Knowledge distillation [17] is a compression paradigm that uti-
lizes a trained large model (teacher model) to guide the learning of a
compact, lightweight model (student model). It has been studied in
various recent works, such as DistilBERT [37], TinyBERT [20], Mo-
bileBERT [41], and PKD [40], which used BERT as the teacher model
to learn a more shallow or narrow student model. Zhao et al. [51]
proposed a sub-token sharing vocabulary table and uses knowledge
distillation to learn the new vocabulary representations. Lioutas
et al. [25] combined the autoencoder and knowledge distillation to
learn lightweight token representations.

Most of the existing MF, quantization, and pruning methods,
however, are task-specific, and thus they cannot be used as a plug-in
module. Knowledge distillation methods such as TinyBERT, Mobile-
BERT, and PKD are model-specific and need to train a new network
from scratch, which could be time-consuming. On the contrary,
the proposed method is task-agnostic and can be implemented as
a plug-in module to work together with many other compression
methods. It is worth mentioning that task-agnostic compression is
much more challenging than task-specific compression. The origi-
nal token embedding matrix is very informative. Nevertheless, for

2304

task-specific compression, the compressed token embedding matrix
just needs to adjust for a specific task, so extensive information can
be removed or lost. In contrast, task-agnostic compression needs to
preserve as much information as possible to be adapted to different
downstream tasks.

Furthermore, many existing knowledge distillation methods such
as TinyBERT, MobileBERT, and PKD are model-specific, relying
on customized compression architectures, and require training a
new network from scratch, which can be expensive. Different from
them, the proposed method is model agnostic and can be applied
to a variety of backbone models.

3 METHODOLOGY

Given a pre-trained language model (PLM), the token embedding,
denoted as X € R¥XN , is a matrix with dimensions d X N, where d
is the dimension of each token embedding and N is the number of
tokens. Typically, N is a large number, often exceeding 10K or even
100K. The aim is to compress the matrix X such that the resulting
compressed token embedding matrix, denoted as X can be repre-
sented with a very small number of parameters while preserving
the model performance.

3.1 Overview

In order to find X, we propose a lightweight token embedding
framework named LightToken via low-rank and hashing approx-
imation, which is shown in Fig. 1. The framework includes four
stages. First, we apply singular value decomposition to the raw
token embedding matrix to achieve the best rank-k (k is very small)
approximation (Section 3.2). Second, the residual between SVD
approximation and the raw token embedding matrix is encoded as
hash codes via learning a binary autoencoder (Section 3.3). In order
to make the optimization of binary autoencoder better-conditioned,

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

we propose a new reconstruction loss function in Section 3.3.2.
To further reduce the approximation error, in the third stage, we
further train the compressor with the pre-training objective using
a subset of Wikipedia Corpus (Section 3.4). In the fourth stage, we
replace the raw token embedding matrix with the rank-k SVD, the
learned hash codes, as well as the decoder and then fine-tune the
decoder and later layers of PLM for downstream tasks (Section 3.5).

3.2 Rank-k SVD Approximation

A lot of existing works [3, 6, 18] have shown the singular value
decomposition is powerful when compressing model weight ma-
trices. Usually, a token embedding matrix has very few dominant
singular values. Take BERT as an example, first four singular values
are much larger than others as shown in Fig. 2. Therefore, we apply
SVD to achieve a coarse approximation, which can be represented
as

X =USVT ~ UxiVy 1

1)
where U and V are orthogonal matrices in R4*d and R™ " respec-

1
tively, and § € RY*" is a diagonal matrix. Uxx = USg, and

s?

1
- vS2 : A .
Vxi = st, i are rank-k approximation matrices, where ¢

is
the square root of the first k entries of S. -

However, the rank-k approximation does not always work well
for all models. For example, the first k singular values of RoBERTa
token embedding matrix are not significantly larger than other
singular values, as shown in Fig. 2. Considering the approximation
X~ Ux i Vig i NI >0t

IXI11F Yol

singular value, the error ratio will be large if the first k singular
values are not large enough, i.e. most singular values having little
variance. To tackle this problem, we modify the X to amplify its
first k singular values, which can be formulated as USaVT, where
Sq is a diagonal matrix and diag(Sqy)[1 : k] = diag(S)[1 : k],
diag(Sq)[k + 1 :] = diag(S)[k + 1 :]/2. We find replacing the
token embedding matrix with US,VT does not influence the model
performance and the amplified matrix enlarges the gap between
the first k singular values and remaining singular values.

error ratio , where o; is the i-th largest

0.035 T T T T T T

0.03f ——BERT 1
—4—RoBERTa

Amplified RoOBERTa|
0.025 - b

o

9

S
T
L

0.015 - b

Normalized Singular Values

Log IDs of Sorted Singular Values
Figure 2: The curves of logarithm IDs of sorted singular val-
ues and normalized singular values.

3.3 Learning Hash Codes

3.3.1 Residual Binary Autoencoder. Although the SVD provides
a coarse approximation of X, we find that it loses a great deal

2305

Haoyu Wang, et al.

— Forward propagation

Encoder

Backpropagation
Enc(; ©;) propag

Fully-connected
layer

Subtraction

Encoder
Enc(;; ©;)

Dncoder
Dec(-)

Concatenation

Dncoder
Dec()

Residual Binary

Binary Autoencoder
Autoencoder y

Figure 3: The framework of the Residual Binary Autoencoder
and a simple Binary Autoencoder..

of information of token embeddings, which leads to a significant
performance drop in experiments. To alleviate performance drop
and improve the approximation, we use binary hash codes to encode
the residual of SVD, which is denoted as R = X — UX,kV}; o Here,
complementary to SVD which is a linear compression method, we
design a non-linear binary autoencoder to learn the hash codes. The
binary autoencoder encodes the input residual R as binary codes
and then takes advantage of a non-linear decoder to reconstruct
input. Specifically, the binary autoencoder can be formulated as

b; = Enc(R;), R; = Dec(b;), ()

where Enc(-) is the encoder, Dec(+) is the decoder, b; € {0,1}%,
dp, is the dimension of hash codes, and the subscript i represents
the i-th token. However, the encoded hash codes b; are discrete,
which is non-differentiable. Therefore, it is difficult to learn the
hash codes in an end-to-end manner directly. To solve this problem,
following Bengio et al. [4], we apply the Straight Through estimator
to estimate the gradient, i.e. using binary codes in the forward prop-
agation and employing tempered sigmoid to approximate binary
codes during backward propagation, which can be formulated as

e; = Enc(R;), (3)
b; = Sigmoid(e;/7) + Sg(I(e; > 0.5) — Sigmoid(e;/7)), (4)
R; = Dec(b;), (5)

where Sg(-) represents the stop gradient operation, I(x) = 0 if
x < 0.5, otherwise I(x) = 1, and 7 is a positive scalar.

In this way, we can train the binary autoencoder with popular
optimizers such as SGD, Adam, etc. However, the tempered sig-
moid is a biased estimation and it will be saturating after training
multiple epochs [43], which makes the model converge to a subpar
local optimum. We show the differences between the residual bi-
nary autoencoder and the simple binary autoencoder in Fig. 3. To
solve this problem, we propose a novel residual binary autoencoder

LightToken: A Task and Model-agnostic Lightweight Token Embedding Framework for Pre-trained Language Models

network, which learns the hash codes in a progressive manner
with residual connections. Specifically, let RZJ. be the input of j-th
encoder (j = 0,...,m — 1), and then the recursive expressions can
be represented as

¢/ = Enc(R/;©;), ()
b/ = Sigmoid (¢’ /) + Sg(I(¢} > 0.5) - Sigmoid(¢} /7)), (7)
R = R/ —-FC(b), (8)

where FC(-) is a fully-connected layer to transform the dimension
of b’ the same as that of RJ and R0 R;. The final hashing codes

are the concatenation of b]i’ and the decoder decodes the hash codes,
which can be formulated as

= by IIbj ||...IIbJ* ", R; = Dec(by), ©

where || represents the concatenation operation. In this way, the
residual connections enable the gradient to be more stable and helps
the autoencoder learn better binary representation. And we just
need to store the learned hash codes B and the decoder Dec(+). To
achieve a high compression ratio, the architecture can be as light-
weight as possible, such as modeled by a fully-connected network
with only one or two hidden layers.

3.3.2 Loss Function. The reconstructed token embedding can be
represented as X = R + Uy kVX > and existing works usually use
Euclidean distance to calculate the loss function, i.e.

min || X - X]|%, (10)
(5]

where O is the parameter of residual binary autoencoder. However,
we find although using the loss function based on direct Euclidean
distance can achieve good performance on most tasks, it shows
poor performance on grammatical acceptability tasks, such as on
CoLA [46], or on small training dataset like RTE [5, 10, 14, 15],
which are shown in experiments. The potential reason is that the
Euclidean distance does not pay enough attention to the angle
between original embeddings and the recontructions. Specifically,
the Euclidean distance can be decomposed as

I1X; - Xill? = 1% - X2+ 1% - XFI12, (1)

where X l“ 2)}? X’; X is the parallel projection, and X =X; -
§§’ §’ ; X is the orthogonal projection. After simplifying the second

term, we have

(X, Xi))2)
11X 11X
We can find Eqn. 12 enforces the square of the cosine similarity
between X; and X; to be equal to 1. However, the cosine similarity
tending to 1 or -1 can both decrease this loss term, which provides
too much freedom to learn the autoencoder parameters and may
confuse/mislead the approximation learning. To solve this problem,

we replace this orthogonal projection term with a tight upper bound,
which can be represented as
)) < z||fa-||§(1—

Y <Xs >
||Xl-||§(1 - (i
Xl

1% K11 = 1081 - (12

(Xi, Xi))
(1 11X 1

2306

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

The upper bound enables the cosine similarity to be close to 1
directly and two sides of the inequality are equal if and only if

X Xi) 1. Therefore, the final loss function U#, is
11X 11X
X X (Xi, Xi)
DX - X2 +2||xl~||§(1 el (13)
; (1 X: Xl
Furthermore, we can rewrite Uf, as
o 2
N N (Xi, Xi)
=l 131 - S
; 11 111X

Therefore, the proposed U#; loss can also be interpreted as adding
a weighted cosine similarity regularizer in the Euclidean distance.

3.4 Training Compressor with Pre-training
Objective

To further close the gap between the lightweight token embedding

and raw token embedding, we fine-tune the learned decoder on the

subset of Wikipedia corpus.

Formally, we replace the token embedding matrix of the PLM
with the learned hash codes and decoder, and denote the parameters
of the decoder as ©p, the parameters of the PLM except token
embedding as ©py pr. Then we fix the hash codes B, ©pr s, and
only update ©p with the pre-training loss £, (masked language
modeling loss), which can be represented as

mian(ng,GD,G)pLM), (15)
Op

where X represents Wikipedia corpus data. There are three advan-
tages to fine-tune the decoder. First, it helps preserve semantic
information in the reconstructed embeddings. which is verified in
Section 5.3.2. Second, fine-tuning the decoder is very efficient due
to its simple architecture. Third, it is task and model-agnostic. It
is fine-tuned with pre-training loss and does not rely on a specific
PLM design.

3.5 Fine-tuning PLM for Downstream Tasks

To apply the PLM and lightweight token embedding for different
downstream tasks, we fine-tune the model with task-specific loss
functions. However, different from traditional task-specific fine-
tuning, we fix the hash codes and only update ®py ps and © p, which
can be formulated as

min L (X B,©p, Oprm),

(16)
©pLMm.Op

where X; is the downstream task training data.

4 THEORETICAL ANALYSIS

In this section, we show that hashing can benefit from rank-k SVD
approximation, i.e. the number of hash codes to be required can
be reduced by conducting rank-k SVD approximation. We prove it
theoretically in Proposition 1 based on Lemma 1. In Lemma 1 and
Proposition 1, we assume the token embedding satisfies a multi-
variate Gaussian distribution. We visualize the 200th and 600th
dimension of BERT token embedding matrix in Fig. 4 to show the
reasonableness of the assumption.

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

3000 3000

2000 2000

1000 1000

A A
BERT ,) ®BERT
—Fitted Gaussian Distribution| —Fitted Gaussian Distribution|

-0.1 0 0.1 -0.1 0 0.1 0.2

Haoyu Wang, et al.

3000 3000

2000 2000

1000 1000

L
BERT
[—Fitted Gaussian Distribution

0.05 0.1 -0.2 -0.1 0 0.1

i L
mBERT
[—Fitted Gaussian Distribution|

-0.15 -0.1 -0.05 0

Figure 4: Histograms of four random sampled dimensions of BERT representation and curves of fitted Gaussian distribution

PDF.

LEMMA 1. Assume we are given a set of N i.i.d. samples X =
[x1,...xN] € RAXN from a multivariate Gaussian distribution. We
encode the vector x such that the encoded representation can be used
to recover x given a distortion €2, i.e. E[||x — %||?] < €?. Then the
average number of bits needed is

N+d

LX) ==x

d . d plu
lOg (I+ EXXT) + m log (l + 6—2) (17)
where yt = %XINM, and X = X—FIJTVXI.IftheX = [x1,...,xN] €

R? from a subspace, i.e., a degenerate Gaussian, Eqn. 18 is an upper
bound of the code length [29].

PrROPOSITION 1. Assume each row of X is sampled from a multi-
variate Gaussian distribution and ﬁXlel = 0. The singular value
decomposition of X is X = UAVT. The k approximate matrix X, =
UALVT, where Ay is the same matrix as A except that it contains

only the k largest singular values. Then we have L(X — Xy) < L(X)
ne, (14745 07 (X)) > (144
(1455 0, (X)) NZe?

i-th largest singular value of X.

when O'IZ(X)) %, where g;(X) is the

5 EXPERIMENT

In this section, we evaluate the proposed LightToken and answer
the following questions:

RQ1 How does LightToken perform compared to state-of-the-art
token compression baselines?

RQ2 What is the role of each module of LightToken in model
performance improvements respectively?

RQ3 How does the performance change with varying compres-
sion ratios and ranks of SVD approximation?

RQ4 Can the proposed LightToken preserve semantic informa-
tion of original tokens?

5.1 Datasets and Experiment Settings

5.1.1 Datasets. We conduct experiments on benchmark GLUE [45]
and SQuAD 1.1 [35] following Chen et al. [6], Hsu et al. [18]. More
specifically, we adopt 8 tasks from GLUE for evaluation, including
MRPC, SST-2, RTE, STS-B, QQP, ONLI, MNLIL, and CoLA. Details
of tasks are shown in Table 3 in the appendix. The performance is
reported on the development sets following [6, 18].

5.1.2 Baselines. We adopt four state-of-the-art baselines:

SVD is a classical and powerful method for compression. It is the
best rank-k approximation with respect to Euclidean distance.
DSVD [3] is a variant of SVD. It adds cosine similarity as a regular-
izer and achieves state-of-the-art performance on token compres-
sion task.

e TRVQ [26] is an improved residual quantization method, which
consists of multiple codebooks and takes advantage of the residual
mechanism to learn the quantized representation. We implement
IRVQ based on Faiss [22].

e DCQ [8, 39] is a state-of-the-art method to learn compositional rep-
resentation for embedding compression in an end-to-end manner.

We compare all methods under a high compression ratio as 25.
To test the generalization of LightToken, we apply the proposed
mehtod to three popular backbones: 1) BERT-base [11], 2) RoBERTa-
base [27], and 3) DistilBERT [37]. BERT and RoBERTa are used to
represent BERT-base and RoBERTa-base respectively for short. We
show the implementation details in the appendix due to limited
space.

5.2 Performance Comparison

In this section, we report the performance of baselines and the
proposed LightToken in Table 2 and Table 1 to answer RQ1.

Table 2 and Table 1 show that the proposed LightToken out-
performs all the state-of-the-art baselines on GLUE and SQuAD
v1.1 datasets. Under the compression ratio of 25, all baselines suffer
from significant performance drops except the proposed method.
The proposed LightToken nearly preserve the performance of full
model to achieve lossless compression. The performance of base-
line methods drops by at least 14.6%, 8.1%, and 9.0% with BERT,
RoBERTa, and DistilBERT respectively on GLUE with respect to av-
erage performance. However, the proposed LightToken maintains
PLMs’ accuracy by taking advantage of the non-linear architecture
and the new loss function. The experimental results show that the
proposed method can not only be used as a plug-in component for
PLMs like BERT and RoBERTa but also be use to further reduce the
parameters of the compressed model like DistilBERT to improve
the efficiency.

We observe that the methods SVD and DSVD with RoBERTa
suffers from more than 20% performance drop, which is larger than
those with BERT and DistilBERT. Such an observation illustrates
that it is difficult to make single low-rank approximation work with
RoBERTa and supports the motivation of of amplifying singular
values in this scenario.

5.3 Ablation Study

5.3.1 Effectiveness of the Proposed Uty Loss. In this section, we
conduct ablation studies to answer RQ2 regarding the U#, loss. To
clearly validate the role of the proposed U#; loss in LightToken,
we design two ablation studies: 1) comparing LightToken with
LightToken w/o U#; and 2) comparing LightToken w/o WikiFT
and LightToken w/o Uf; and WikiFT. The results are also sum-
marized in Table 2 and Table 1. The ablation studies confirm that

2307

LightToken: A Task and Model-agnostic Lightweight Token Embedding Framework for Pre-trained Language Models

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Table 1: Performance comparison on GLUE dataset. "CR" represents token emnedding compression ratio. "AVG" is the average
performance of the 8 tasks. Results of * and ¥ are taken from [37] and [24] respectively. The highest scores of compression

methods per category are in bold.

Method CR MRPC SST-2 RTE STS-B QQP ONLI MNLI CoLA AVG
BERT* 1 86 927 693 890 89.6 918 867 563 83.0
+SVD 25 811 794 542 731 798 812 736 77 66.3
+DSVD 25 815 811 600 782 834 845 764 145 70.0
+IRVQ 25 835 811 567 821 842 845 783 164 709
+DCQ 25 832 791 567 784 839 842 763 226 706
+LightToken (ours) 25 909 922 715 879 878 912 840 57.6 829
w/o Ut w/o WikiFT 25 863 885 657 868 862 883 826 232 760
w/o WikiFT 25 882 898 646 874 868 904 842 339 782
w/o Ut 25 896 914 686 882 879 911 85 555 820
RoBERTa" 1 917 945 737 891 888 908 872 648 85.1
+SVD 25 82 828 524 703 832 774 745 00 655
+DSVD 25 831 819 527 771 827 831 752 00 67.0
+IRVQ 25 872 869 59.6 845 855 866 815 190 739
+DCQ 25 888 921 617 852 872 905 854 349 782
+LightToken (ours) 25 912 936 722 89.2 880 918 866 618 843
w/o Ut w/o WikiFT 25 865 903 588 868 874 901 846 81 741
w/o WikiFT 25 882 909 603 877 878 909 859 134 756
w/o Uty 25 910 932 700 886 880 923 8.5 570 833
DistilBERT* 1 875 913 599 89 885 892 822 513 796
+SVD 25 808 784 581 699 817 814 706 94 663
+DSVD 25 827 792 592 752 827 829 737 92 681
+IRVQ 25 851 843 538 802 837 842 756 150 702
+DCQ 25 851 835 585 79.0 845 833 779 270 724
+LightToken (ours) 25 90.1 899 66.1 859 8.5 834 816 517 80.0
w/o Uty w/o WikiFT 25 87.1 868 635 848 850 861 80.0 197 741
w/0 WikiFT 25 865 869 639 849 857 864 804 254 750
w/o Uty 25 892 892 635 857 866 885 818 481 791

the proposed U, loss helps the model achieve better performance.
Take Table 1 as an example, compared to LightToken w/o Ufy, the
proposed LightToken achieves 1.1%, 1.2%, and 1.1% performance
improvements with BERT, RoBERTa and DistilBERT as backbones
respectively in term of the average accuracy over the 8 tasks; com-
pared to LightToken w/o Ufy and WikiFT, LightToken w/o WikiFT
shows 2.9%, 2.0%, and 1.2% improvements with BERT, RoBERTa
and DistilBERT as backbones respectively in term of the average
accuracy over the 8 GLUE tasks. In particular, we observe that the
proposed loss function significantly boosts the model performance
with BERT, RoBERTa, and DistilBERT on CoLA, achieving 25%, 37%,
and 18% improvement in average respectively. This demonstrates
the effectiveness of the proposed loss function, especially when
dealing with grammar-preservation involved tasks.

5.3.2 Effectiveness of Fine-tuning the Decoder. In this section, we
conduct analysis to answer RQ2 regarding fine-tuning the decoder.
We design two ablation studies including 1) comparing LightToken
and LightToken w/o WikiFT and 2) comparing LightToken w/o
Ut, with LightToken w/o Uf; and WikiFT to show the effectiveness
of fine-tuning the decoder. We report results in Table 2 and Table 1.
The experimental results show that fine-tuning the decoder can

2308

0.95

IIBERT-LightToken w/o Residual
[EEIBERT+LightToken
[EEIDistIBERT+LightToken w/o Residual
[EIDistiBERT+LightToken

[TSI TN T o
RTE STSB QQP

055

QNLI MNLI ColLA SQuAD

0.45

MRPC SST-2

Figure 5: Performance of LightToken with or without the
proposed residual connection. The y-axis represents the eval-
uation metric values corresponding to each task.

improve model performance significantly. The average performance
improvements of LightToken versus LightToken w/o WikiFT and
LightToken w/o Uf, versus LightToken w/o Ufy and WikiFT with
respect to the three backbones on GLUE and SQuAD are 8.5% and
2.0% respectively. Specifically, LightToken brings improvements
around 11.5% compared to LightToken w/o WikiFT in term of the
average accuracy over 8 tasks on GLUE dataset. The results show

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Table 2: Performance comparison on SQuAD v1.1 dataset.
"CR" represents the token embedding compression ratio. Re-
sults of * and ¥ are taken from [37] and [16] respectively. The
highest scores of compression methods per category are in
bold.

Method CR SQuAD v1.1
Exact Match (EM) F1
BERT* 1 81.2 88.5
+SvD 25 645 7 74.8
+DSVD 25 67.3 77.5
+IRVQ 25 72.7 82.0
+DCQ 25 68.8 78.8
+LightToken (ours) 25 80.3 87.9
w/o Uty w/o WIikiFT 25 79.8 87.5
w/o WikiFT 25 79.8 87.3
w/o Ufp 25 80.1 87.8
RoBERTa” 1 84.8 91.1
+SVD 25 751 83.2
+DSVD 25 75.9 83.7
+IRVQ 25 79.8 87.4
+DCQ 25 83.3 90.1
+LightToken (ours) 25 85.2 91.6
w/o Uty w/o WIikiFT 25 83.3 90.2
w/o WikiFT 25 83.0 89.6
w/o Uty 25 85.3 91.6
DistilBERT* 1 77.7 85.8
+SVD 25 562 ¢ 68.2
+DSVD 25 59.5 70.8
+IRVQ 25 59.9 71.7
+DCQ 25 68.0 78.2
+LightToken (ours) 25 76.4 84.8
w/o Uty w/o WIikiFT 25 71.9 81.3
w/o WikiFT 25 73.6 82.5
w/o Uty 25 76.2 84.7
097 z 3 5
0.85
o 08
i 075F < _ —6-BERT Averaged GLUE
T -+ BERT+SVD Averaged GLUE
é 071 S - -e-SES?sLé?u"LTD"“" Averaged GLUE
Sosst TTTtoim el [Bemientoes souo
ug;o.sf ’ ~.. bR —
0551 P R

&
Compression Ratio
Figure 6: Performance with different compression ratios. The
y-axis represents the averaged accuracy of all GLUE tasks

for GLUE dataset and represents F1 for SQuAD.

that fine-tuning the decoder is effective to close the gap between
the full model and the compressed model.

2309

Haoyu Wang, et al.

o o o
N o ©

Metric Values

o
Y

N, 227

b, 4125
Co, OF, S

'np,es "9u, 61235

i ColA
" /?ag,oa /"GS/

Figure 7: Performance of different k used in rank-k approxi-
mation.

5.3.3 Effectiveness of the Residual Connection. In this section, we
do the ablation study to answer RQ2 regarding the residual con-
nection. We conduct this ablation study with BERT and DistilBERT
as backbones and show the results in Fig. 5. We find that the resid-
ual connection improves model performance on most tasks. For
example, it leads to 2.1% and 1.7% improvement on GLUE tasks
on average for BERT and DistilBERT respectively. It brings 3.4%
improvement on the SQuAD dataset with DistilBERT as the back-
bone. In particular, the performance of BERT+LightToken w/o the
residual, BERT+LightToken, DistilBERT+LightToken w/o resid-
ual, and DistilBERT+LightToken are 47.6, 57.6, 46.2, and 51.7 on
CoLA dataset, achieving 21.1% and 103.1% improvement compared
to the model without the residual connection with BERT and Dis-
tiIBERT as backbones, respectively. It shows the proposed residual
connection is an effective solution to learn more informative hash
codes.

5.4 Performance w.r.t. Different Compression
Ratios

In this section, we study how the performance of LightToken
changes with respect to different compression ratios in order to
answer RQ3. We show the average performance on GLUE and F1
value on SQuUAD in Fig. 6. We notice that with the increment of the
compression ratio, the accuracy performance degradation of the
proposed LightToken is very slight. For example, when the com-
pression ratio is 25, LightToken does not have performance drop
in term of accuracy both on GLUE and SQuAD. When compression
ratio reaches 103, accuracy drop of LightToken is still within 6%.
However, for SVD, when the compression ratio is 103, its accuracy
drop on GLUE and SQuAD is huge, as large as 37.7% and 33.4%
respectively. It shows the superiority of LightToken, especially
when we need to highly compress the token embedding matrix.

5.5 Performance w.r.t. Different Ranks of SVD
Approximation

In this section, we study how performance changes with respect
to different ranks of SVD approximation in order to answer RQ3.
We show the performance on datasets CoLA, RTE, MNLI, STS-B,
and SQuAD with rank-2, 4, and 6 SVD approximation in Fig. 7.
There are two key discoveries. First, model performance increases
when using a higher rank approximation. It is not surprising since
the reconstruction error will be reduced with more parameters
utilized. Second, the rank-4 approximation has better performance

LightToken: A Task and Model-agnostic Lightweight Token Embedding Framework for Pre-trained Language Models

Distance

(c) dog and dogs

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

1.2

g
-
L
o
Distance

90 100

1
1
1
1
1 | 0.1
1
[

13

(d) dog and tiger

Figure 8: Fig. 8(a) represents the pairwise distance of original embedding corresponding to sampled tokens. Fig. 8(b) represents
the pairwise distance of LightToken reconstructed embedding corresponding to sampled tokens. Fig. 8(c) and Fig. 8(d) visualize
the learned hash codes differences. Number 1 means the hash code is the same in the dimension and 0 means the hash code is
different in the dimension. The 384 dimension hash codes are reshaped as a 24 X 16 matrix.

than rank-2 approximation. However, it is observed to bring limited
performance improvement when further increasing the rank ap-
proximation to rank 6. More precisely, using rank-4 approximation
leads to 3.8% and 3.7% relative accuracy performance improvement
compared with adopting rank-2 approximation on CoLA and RTE
datasets. However, the improvement of rank-6 approximation is
less than 0.05% compared to rank-4 approximation. It shows that
using the largest four singular values will be sufficient enough to
preserve the token information.

5.6 Case Study

In this section, we visualize the reconstructed token representa-
tions and hash codes in Fig. 8(a) to answer RQ4. To show that the
reconstructed representations can preserve semantics information,
we sample 100 token ids from the BERT token vocabulary, and
compute the pairwise distance before and after conducting com-
pression in Fig. 8(a) and Fig. 8(b) respectively. The brightness of the
color in the two figures indicates the distance. The color patterns
in Fig. 8(a) and Fig. 8(b) are very similar, showing the pattern is
preserved before and after conducting LightToken compression. If
we use a complete graph to model all tokens, where vertices are
tokens and edges are weighted by the distances among tokens, the
adjacent matrix will be represented by the pairwise distance matrix.
Therefore, Fig. 8(a) and Fig. 8(b) illustrate that the reconstructed
representations preserve the neighborhood information of original
token representations. Besides, to show that the hash codes can
maintain semantics information, we select three tokens, including
dog, dogs, and tiger, and visualize two of their pairwise representa-
tions in Fig. 8(c) and Fig. 8(d). We compute the difference for each
bit. For the i-th dimension of hash codes, if their bits are the same,

2310

the result for this bit is 1, else is 0. We reshape the 384-dimension
hash codes as a 24X16 matrix. Intuitively, the hash codes of dog
and dogs should be more similar than that of dog and tiger. Fig. 8(c)
and Fig. 8(d) is consistent with the intuition. It demonstrates that
the learned hash codes also preserve semantic information.

6 CONCLUSION

In this paper, we proposed a task and model-agnostic lightweight
token embedding framework, namely LightToken, for effective
compression of PLMs. The proposed LightToken integrates low-
rank and hashing approximation. We first leverage SVD to obtain a
rank-k approximation matrix. Then the residual between the token
embedding matrix and the rank-k approximation matrix is encoded
as hash codes by the proposed residual binary autoencoder. The
decoder is fine-tuned in the Wikipedia corpus to further reduce
accuracy loss. Theoretical analysis demonstrates the benefit of such
integration, as shown by the smaller number of hash codes needed
after the rank-k approximation. Extensive experiments are con-
ducted on GLUE and SQuAD v1.1 benchmarks. Experimental results
show that the proposed LightToken outperforms state-of-the-art
baselines, and achieves 25x compression ratio without accuracy
loss.

ACKNOWLEDGEMENT

This work is supported in part by the US National Science Founda-
tion under grant NSF IIS-1747614 and IIS-2141037. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

REFERENCES

(1]

A

=
20,

[10

[11]

[12

[13

[14

[16]

[17]

[18]

[19]

[20

[21

[22]

[23

[24]

[25

Anish Acharya, Rahul Goel, Angeliki Metallinou, and Inderjit Dhillon. 2019.
Online embedding compression for text classification using low rank matrix
factorization. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33. 6196-6203.

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael
Lyu, and Irwin King. 2020. Binarybert: Pushing the limit of bert quantization.
arXiv preprint arXiv:2012.15701 (2020).

Klaudia Balazy, Mohammadreza Banaei, Rémi Lebret, Jacek Tabor, and Karl
Aberer. 2021. Direction is what you need: Improving Word Embedding Compres-
sion in Large Language Models. In Proceedings of the 6th Workshop on Represen-
tation Learning for NLP (RepL4NLP-2021). 322-330.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or
propagating gradients through stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432 (2013).

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. 2009. The
Fifth PASCAL Recognizing Textual Entailment Challenge.. In TAC.

Patrick Chen, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. 2021. Drone:
Data-aware low-rank compression for large nlp models. Advances in neural
information processing systems 34 (2021), 29321-29334.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang
Wang, and Michael Carbin. 2020. The lottery ticket hypothesis for pre-trained
bert networks. Advances in neural information processing systems 33 (2020),
15834-15846.

Ting Chen, Martin Renqiang Min, and Yizhou Sun. 2018. Learning k-way d-
dimensional discrete codes for compact embedding representations. In ICML.
PMLR, 854-863.

Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. 2019. Low-bit quanti-
zation of neural networks for efficient inference. In 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW). IEEE, 3009-3018.

Ido Dagan, Oren Glickman, and Bernardo Magnini. 2006. The pascal recognising
textual entailment challenge. In Machine learning challenges workshop. Springer,
177-190.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

Angela Fan, Pierre Stock, Benjamin Graham, Edouard Grave, Rémi Gribonval,
Herve Jegou, and Armand Joulin. 2020. Training with quantization noise for
extreme model compression. arXiv preprint arXiv:2004.07320 (2020).

Jonathan Frankle and Michael Carbin. 2018. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. arXiv preprint arXiv:1803.03635 (2018).
Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and William B Dolan. 2007.
The third pascal recognizing textual entailment challenge. In Proceedings of the
ACL-PASCAL workshop on textual entailment and paraphrasing. 1-9.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo
Magnini, and Idan Szpektor. 2006. The second pascal recognising textual entail-
ment challenge. In Proceedings of the Second PASCAL Challenges Workshop on
Recognising Textual Entailment, Vol. 7.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2020. De-
berta: Decoding-enhanced bert with disentangled attention. arXiv preprint
arXiv:2006.03654 (2020).

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531 2, 7 (2015).

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia
Jin. 2022. Language model compression with weighted low-rank factorization.
arXiv preprint arXiv:2207.00112 (2022).

Nanjiang Jiang and Marie-Catherine de Marneffe. 2019. Evaluating BERT for
natural language inference: A case study on the CommitmentBank. In Proceedings
of the 2019 conference on empirical methods in natural language processing and the
9th international joint conference on natural language processing (EMNLP-IJCNLP).
Xiaogi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang,
and Qun Liu. 2019. Tinybert: Distilling bert for natural language understanding.
arXiv preprint arXiv:1909.10351 (2019).

Jing Jin, Cai Liang, Tiancheng Wu, Liqin Zou, and Zhiliang Gan. 2021. KDLSQ-
BERT: A quantized bert combining knowledge distillation with learned step size
quantization. arXiv preprint arXiv:2101.05938 (2021).

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535-547.
Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2019. Albert: A lite bert for self-supervised learning
of language representations. arXiv preprint arXiv:1909.11942 (2019).

Dongjun Lee, Sohee Yang, and Minjeong Kim. 2019. CLaF: Open-Source Clova
Language Framework. https://github.com/naver/claf.

Vasileios Lioutas, Ahmad Rashid, Krtin Kumar, Md Akmal Haidar, and Mehdi
Rezagholizadeh. 2019. Distilled embedding: non-linear embedding factorization
using knowledge distillation. (2019).

2311

[26

[27

[28

[29]

[31

[32

[33

(34]

@
2

[36

[37

[38

~
&

=
&

'S
&

[46

[47

(48]

[49

[52

[53

Haoyu Wang, et al.

Shicong Liu, Hongtao Lu, and Junru Shao. 2015. Improved Residual Vector
Quantization for High-dimensional Approximate Nearest Neighbor Search. arXiv
preprint arXiv:1509.05195 (2015).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

Zejian Liu, Fanrong Li, Gang Li, and Jian Cheng. 2021. EBERT: Efficient BERT
Inference with Dynamic Structured Pruning. In Findings of ACL’21. 4814-4823.
Yi Ma, Harm Derksen, Wei Hong, and John Wright. 2007. Segmentation of
multivariate mixed data via lossy data coding and compression. IEEE transactions
on pattern analysis and machine intelligence 29, 9 (2007), 1546-1562.

JS McCarley, Rishav Chakravarti, and Avirup Sil. 2019. Structured pruning of a
BERT-based question answering model. arXiv preprint arXiv:1910.06360 (2019).
Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2016.
Pointer Sentinel Mixture Models. arXiv:1609.07843 [cs.CL]

Manish Munikar, Sushil Shakya, and Aakash Shrestha. 2019. Fine-grained senti-
ment classification using BERT. In 2019 Artificial Intelligence for Transforming
Business and Society (AITB), Vol. 1. IEEE, 1-5.

Antonio Polino, Razvan Pascanu, and Dan Alistarh. 2018. Model compression
via distillation and quantization. arXiv preprint arXiv:1802.05668 (2018).

Chen Qu, Liu Yang, Minghui Qiu, W Bruce Croft, Yongfeng Zhang, and Mohit
Iyyer. 2019. BERT with history answer embedding for conversational question
answering. In Proceedings of the 42nd international ACM SIGIR conference on
research and development in information retrieval. 1133-1136.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250 (2016).

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana
Ramabhadran. 2013. Low-rank matrix factorization for deep neural network train-
ing with high-dimensional output targets. In 2013 IEEE international conference
on acoustics, speech and signal processing. IEEE, 6655-6659.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108 (2019).

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami,
Michael W Mahoney, and Kurt Keutzer. 2020. Q-bert: Hessian based ultra low
precision quantization of bert. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34. 8815-8821.

Raphael Shu and Hideki Nakayama. 2018. Compressing Word Embeddings via
Deep Compositional Code Learning. In ICLR.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019. Patient knowledge distilla-
tion for bert model compression. arXiv preprint arXiv:1908.09355 (2019).
Zhiging Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny
Zhou. 2020. Mobilebert: a compact task-agnostic bert for resource-limited devices.
arXiv preprint arXiv:2004.02984 (2020).

Hanlin Tang, Xipeng Zhang, Kai Liu, Jianchen Zhu, and Zhanhui Kang. 2022.
MKQ-BERT: Quantized BERT with 4-bits Weights and Activations. arXiv preprint
arXivi2203.13483 (2022).

Wei Tang, Gang Hua, and Liang Wang. 2017. How to train a compact binary
neural network with high accuracy?. In AAAI'31.

Jiayi Tian, Chao Fang, Haonan Wang, and Zhongfeng Wang. 2022. BEBERT:
Efficient and robust binary ensemble BERT. arXiv preprint arXiv:2210.15976
(2022).

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R
Bowman. 2018. GLUE: A multi-task benchmark and analysis platform for natural
language understanding. arXiv preprint arXiv:1804.07461 (2018).

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. 2018. Neural Network
Acceptability Judgments. arXiv preprint arXiv:1805.12471 (2018).

Genta Indra Winata, Andrea Madotto, Jamin Shin, and Elham] Barezi. 2018. Low-
Rank Matrix Factorization of LSTM as Effective Model Compression. (2018).
Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien Demouth, and Song Han. 2022.
Smoothquant: Accurate and efficient post-training quantization for large lan-
guage models. arXiv preprint arXiv:2211.10438 (2022).

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. 2019. Q8bert:
Quantized 8bit bert. In 2019 Fifth Workshop on Energy Efficient Machine Learning
and Cognitive Computing-NeurIPS Edition (EMC2-NIPS). IEEE, 36-39.

Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao Chen, Xin Jiang, and Qun
Liu. 2020. Ternarybert: Distillation-aware ultra-low bit bert. arXiv preprint
arXiv:2009.12812 (2020).

Sanqiang Zhao, Raghav Gupta, Yang Song, and Denny Zhou. 2019. Extreme
language model compression with optimal subwords and shared projections.
(2019).

Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. 2016. Trained ternary
quantization. arXiv preprint arXiv:1612.01064 (2016).

Michael Zhu and Suyog Gupta. 2017. To prune, or not to prune: exploring
the efficacy of pruning for model compression. arXiv preprint arXiv:1710.01878
(2017).

LightToken: A Task and Model-agnostic Lightweight Token Embedding Framework for Pre-trained Language Models

A PROOF OF PROPOSITION 1

LEMMA 1. Assume we are given a set of N i.i.d. samples X =
[x1,...xN] € RAXN from a multivariate Gaussian distribution. We
encode the vector x such that the encoded representation can be used

to recover x given a distortion €%, i.e. E[||x — %||?] < €%. Then the
average number of bits needed can be represented as
+d d
L(X) = =~ log(I + NXXT) +— log(l + —) (18)
where g = NX1N><1: and X = X—plel. IftheX = [x1,...xN] €

R? from a subspace, i.e., a degenerate Gaussian, Eqn. 18 is an upper
bound of the code length [29].

PropPOSITION 1. Assume each row of X is sampled from a multi-
variate Gaussian distribution and %Xlel = 0. The singular value
decomposition of X is X = UAVT. The k approximate matrix X, =
UALVT, where Ay is the same matrix as A except that it contains
only the k largest singular values. Then we have L(X — X;.) < L(X)

1(1+N€2 ol(X))
(+=L 02, (X))4
i-th largest singular value of X.

when > (1+ (X)) N+d where g;(X) is the

N2€2 %

Proor. According to Lemma 1, we have

L(X) =N (I + LNXXT)

N +d
ZI og(1+ —g 2(X)). (19)
Similarly, we have
N+ d d
L(X - X;) < log(I + —XXT) ton log(l + —)
(20)
where py = N(X X)1nx1,and X = X — Xj — ple1 Therefore,
X=X -X; - p1k,
1
=(X - XU - ﬁnT)l (21)
Hence, we have
_ 1
0i(X) <o1(X = Xp)ai (I - 117)
<o1(X = Xi)
=0x41(X). (22)
So Mt log(I + L XXT) < Hdlog(1+ 02 (X))
Then c0n51der
1
[[Tﬂ IWITXkal
—ai(x)1"1
L,
=t (), 23)
so we have
d JTa d UZ(X)
—log(1+ ——) <—log(1 24
e+ B < Tlog+ 20 ey
1 do?(X)
<= log(1+ Nl2€2). (25)

2312

Therefore,
L(X) - L(X ~Xp)
N d Zl 081+ 0?(X))
N+d, d do?(X)
M og(1 + S (X - 5 log(l+ﬁ)
>0.
B ALGORITHM OF LIGHTTOKEN

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

(26)

O

Algorithm 1: LightToken

Input: A pre-trained language model; Wikipedia corpus X;

downstream task dataset X;; rank of SVD
approxiamtion k.
// first stage: rank-k SVD approximation
[U,S,V] = SVD(X);
if PLM is RoBERTa then
L diag(S)[k +1:] = diag(S)[k +1:]/2;

Compute SVD approximation matrix Ux kVX ©

// second stage: learning hash codes
Compute the residual between original token embedding

-

[F I N

'S

@«

matrix x and SVD approximation matrix Uy ng k

R=X-Uyx kVX P
while converge do
Compute reconstructed token via residual binary
autoencoder;
8 Compute U#; loss based on Eqn. 13 and do
backpropagation to update parameters;
// third stage: fine-tune decoder
Replace the token embedding matrix of PLM with
UX,kV){,k + Dec(B);
10 Fix parameters of the PLM except token embedding @py a1
and hash codes B;
11 while converge do
12 for batch in X do
13 L Forward propagation based on Eqn. 15;
14

Update Op;
// fourth stage: fine-tune PLM for downstream
task
15 Fix B;
16 while converge do
17 for batch in X; do
18 L Forward propagation based on Eqn. 16;
19

N o

©

Update ®p and Opypr;

KDD ’23, August 6-10, 2023, Long Beach, CA, USA Haoyu Wang, et al.

C DATASET AND IMPLEMENTATION DETAILS Table 3: Detail information of GLUE and SQuAD v1.1.

We use rank-4 SVD approximation and two residual layers for all

backbones. For LightToken with BERT and DistilBERT as back- Dataset Task Metric

bones, the decoder is a one-hidden-layer MLP with ReLU as the MRPC Paraphrase Identification F1

activation function. For LightToken with RoBERTa as the back- QQP Paraphrase Identification F1

bone, the decoder is a two-hidden-layers MLP with GeLU as the MNLI Natural Language Inference Accuracy

activation function. We use wikitext-103-raw-v1 [31] as the corpus ONLI Natural Language Inference Accuracy

to fine-tune the decoder. The decoder is fine-tuned for 10 epochs. RTE Natural Language Inference Accuracy

We select the learning rates from {5e — 6, le — 5, 2e —5,3e — 5, 5¢ — 5} SST-2 Sentiment Classification Accuracy

and batch size from {8, 16, 32, 64}. Experiments are conducted using STS-B Similarity Pearson corr

four NIVIDA RTX A6000. CoLA Linguistic Acceptability Matthews corr
SQuAD v1.1 Question Answering Exact Match/F1

2313

	Abstract
	1 Introduction
	2 Related Work
	3 METHODOLOGY
	3.1 Overview
	3.2 Rank-k SVD Approximation
	3.3 Learning Hash Codes
	3.4 Training Compressor with Pre-training Objective
	3.5 Fine-tuning PLM for Downstream Tasks

	4 Theoretical Analysis
	5 Experiment
	5.1 Datasets and Experiment Settings
	5.2 Performance Comparison
	5.3 Ablation Study
	5.4 Performance w.r.t. Different Compression Ratios
	5.5 Performance w.r.t. Different Ranks of SVD Approximation
	5.6 Case Study

	6 Conclusion
	References
	A Proof of Proposition 1
	B Algorithm of LightToken
	C Dataset and Implementation Details

