
Published in Transactions on Machine Learning Research (06/2022)

Clustering units in neural networks: upstream vs down-
stream information

Richard D. Lange rdlange@seas.upenn.edu
Department of Neurobiology
University of Pennsylvania
Philadelphia, PA 19104

David S. Rolnick
Mila Québec AI Institute
McGill University
Montréal, Canada H3A 0G4

Konrad P. Kording
Department of Neurobiology
University of Pennsylvania
Philadelphia, PA 19104

Reviewed on OpenReview: https: // openreview. net/ forum? id= Euf7KofunK

Abstract

It has been hypothesized that some form of “modular” structure in artificial neural net-
works should be useful for learning, compositionality, and generalization. However, defining
and quantifying modularity remains an open problem. We cast the problem of detect-
ing functional modules into the problem of detecting clusters of similar-functioning units.
This begs the question of what makes two units functionally similar. For this, we consider
two broad families of methods: those that define similarity based on how units respond to
structured variations in inputs (“upstream”), and those based on how variations in hidden
unit activations affect outputs (“downstream”). We conduct an empirical study quantifying
modularity of hidden layer representations of a collection of feedforward networks trained
on classification tasks, across a range of hyperparameters. For each model, we quantify
pairwise associations between hidden units in each layer using a variety of both upstream
and downstream measures, then cluster them by maximizing their “modularity score” using
established tools from network science. We find two surprising results: first, dropout dra-
matically increased modularity, while other forms of weight regularization had more modest
effects. Second, although we observe that there is usually good agreement about clusters
within both upstream methods and downstream methods, there is little agreement about the
cluster assignments across these two families of methods. This has important implications
for representation-learning, as it suggests that finding modular representations that reflect
structure in inputs (e.g. disentanglement) may be a distinct goal from learning modular
representations that reflect structure in outputs (e.g. compositionality).

1 Introduction

Modularity is a design principle in which systems that solve complex problems are decomposed into sub-
systems that solve simpler problems and that can be independently analyzed, debugged, and recombined for
new tasks. From an engineering perspective, modular design has many benefits, such as increased robustness
and fast adaptation to new problems (Simon, 1962). It is well-known that learning systems benefit from

1

https://openreview.net/forum?id=Euf7KofunK


Published in Transactions on Machine Learning Research (06/2022)

Figure 1: A) Given a neural network, such as this schematic of a fully-connected network for classifying
MNIST digits, we frame the problem of detecting modules that perform distinct functions inside the network
as a problem of identifying clusters of units in a hidden layer (colors). B) Given some method for quantifying
the pairwise functional similarity between any two units, we operationalize a “module” as a subset of units
with high intra-module functional similarity and low similarity to units in other modules, which appears
as high block-diagonal values in the pairwise similarity matrix after sorting by cluster. C) In this setup,
the main challenge is to define what makes any pair of two units “functionally similar” such that two units
are “similar” if they are part of the same functional module. We distinguish between two broad classes of
methods: (i) those that score similarity based on how “upstream” factors influence the pair, and (ii) those
based on how the pair influences “downstream” behavior of the network. D) Schematic of our pipeline to
quantify modularity: given a layer of a network, we compute the n × n matrix of “similarity” of all pairs
of units in that layer. We then search for the maximally modular clustering such that the similarity matrix
becomes heavily block-diagonal as in B. The output is a modularity score (Q) and cluster-assignments (P ),
for each layer and for each method of quantifying pairwise similarity.

2



Published in Transactions on Machine Learning Research (06/2022)

structure adapted to the problem at hand (Denker et al., 1987), and many real-world problems indeed can
be decomposed into sub-problems. It is no surprise, then, that modularity is considered a normative design
principle of evolved biological systems (Wagner et al., 2007; Lipson, 2007), including in biological neural
networks (Azam, 2000; Kashtan & Alon, 2005; Kashtan et al., 2007; Clune et al., 2013), and one from which
artificial neural networks (ANNs) can benefit.

Despite these strong intuitions, formally defining and quantifying the modularity of a given system remains an
open problem (cf. Simon (1962); Lipson (2007)). It is generally accepted that, by definition, modular systems
decompose into sub-systems that implement functions that solve sub-problems. Characterizing modules in
ANNs therefore begs the question: when are two parts of a network involved in the same “function” (Csordás
et al., 2021)? In this paper, we ask this question at the level of pairs of hidden units. That is, we consider
a variety of methods for measuring the “functional similarity” of any given pair of hidden units, and we
operationalize a “module” as a cluster of similarly-functioning units (Figure 1A-B). This definition is not
intended to solve the question of what a module is, but to provide a tractable basis for experimenting with
various ideas related to modularity, such as how it is affected by regularization.

One goal of this paper is simply to raise awareness of qualitative differences between “upstream” and “down-
stream” ways of thinking about neural representations and the functions they are involved in (Figure 1C).
In section 3, we make these definitions quantitative and give details for our method for detecting and quan-
tifying functional modules in the hidden layers of trained neural networks by clustering units into similarly-
functioning groups. This framework allows us to directly compare a variety of proxies for the amount of
modularity a network exhibits. Experimental results are described in section 4. In addition to quantitatively
scoring modularity, we further investigate whether different similarity measures agree on which units belong
to which module. Surprisingly, we find that clusters discovered according to “upstream” measures of func-
tional similarity are consistently distinct from those discovered using “downstream” measures. Although we
do not consider regularization methods explicitly designed to produce modular designs, these initial empirical
results nonetheless call for a deeper look at how the “function” of a representation is defined, as well as why
and in which situations modules may be useful.

2 Related Work

The study of modularity in neural networks has a long history (Clune et al., 2013; Amer & Maul, 2019). One
common source of inspiration from biology is the functional dissociation of “what” and “where” pathways in
the ventral and dorsal streams of the brain, respectively (Goodale & Milner, 1992). Each of these pathways
can be seen as a specialized module (and may be further decomposed into submodules), and many previous
experiments on modularity in artificial neural networks have explored principles that would result in similarly
distinct what/where information processing in ANNs (Rueckl et al., 1989; Jacobs et al., 1991; Di Ferdinando
et al., 2001; Bakhtiari et al., 2021). A key difference to this line of work is that, rather than specifying the
functional role of modules ahead of time, such as one module being “what” and another being “where,” our
work seeks to identify distinct functional clusters in trained networks.

Broadly speaking, there are two families of approaches to modularity in neural networks, corresponding to
different ways of thinking about the function of parts of a network. The structural modularity family of ap-
proaches defines function in terms of network weights and how sub-networks connect to other sub-networks,
and so modules are defined as densely intra- and sparsely inter-connected sub-networks (Watanabe et al.,
2018; Amer & Maul, 2019; Csordás et al., 2021; Filan et al., 2021; Hod et al., 2021). The functional modular-
ity family of approaches emphasizes network activations rather than weights, or the information represented
by those activations. These include disentanglement, compositionality, invariance, and others(Bengio et al.,
2013; Higgins et al., 2018; Andreas, 2019; Scholkopf et al., 2021; Watanabe, 2019; Watanabe et al., 2019;
2020). The relationship between structural and functional modules is not clear – while it certainly seems
that they are (or ought to be) correlated (Lipson, 2007), it has been observed empirically that even extremely
sparse inter-module-connectivity does not always guarantee functional separation of information-processing
(Béna & Goodman, 2021). In this work, we take the functional approach, based on the assumption that
structural modularity is itself only useful insofar as it supports distinct functions of the units, and that often
distinct functions must share information, making strict structural delineations potentially counterproduc-

3



Published in Transactions on Machine Learning Research (06/2022)

tive. For example, knowing “what” an object is in a challenging visual scene helps localize “where” it is, and
vice versa.

Our work is perhaps most closely related to a series of papers by Watanabe and colleagues in which trained
networks are decomposed into clusters of “similar” units with the aim of understanding and simplifying
those networks. In some cases, they quantify the similarity of units structurally using a combination of both
incoming and outgoing weights (Watanabe et al., 2018), and in other cases functionally using correlation
between hidden unit activations (Watanabe, 2019; Watanabe et al., 2019; 2020). These are similar in spirit
to our goal of identifying modules by clustering units, but an interesting contrast to our approach; while
they combine “upstream” and “downstream” information for each pair of units, we find stark differences in
results between the two.

3 Quantifying modularity by clustering similarity

We split the problem of identifying functional modules into two stages (Figure 1D): scoring the pairwise
similarity of units, then clustering based on similarity. To simplify, we only apply these steps separately
to each hidden layer, but in principle modules could be scored in the same way after concatenating layers
together. Section 3.1 below defines the set of pairwise functional similarity methods we use, and Section 3.2
describes the clustering stage.

While we focus on similarity between pairs of individual units, our approach is related to, and inspired by,
the question of what makes neural representations “similar” when comparing entire populations of neurons
to each other (Kornblith et al., 2019). Rather than finding clusters-of-similar-neurons as we do here, one
could instead define modules in terms of dissimilarity-between-clusters-of-neurons. In preliminary work,
we explored such a definition of functional modules, using representational (dis)similarity between sub-
populations of neurons. The main challenge of this approach is that existing representational-similarity
methods are highly sensitive to dimensionality (the number of neurons in each cluster), and it is not obvious
how best to control for this when computing dissimilarity between clusters such that the method is not
biased to prefer large or small cluster sizes.1 To further motivate our method, note that representational
similarity analysis is closely related to tests for statistical (in)dependence between populations of neurons
(Kornblith et al., 2019; Gretton et al., 2005; Cortes et al., 2012), and so the problem of finding mutually
“dissimilar” modules is analogous to the problem of finding independent subspaces (Hyvärinen et al., 2001;
Gutch & Theis, 2007). In Independent Subspace Analysis (ISA), there is an analogous problem of determining
what constitutes a surprising amount of dependence between subspaces of different dimensions, and various
methods have been proposed with different inductive biases (Wu et al., 2021; Bach & Jordan, 2004; 2003;
Póczos & Lõrincz, 2005). However, Palmer & Makeig showed that a solution to the problem of detecting
independent subspaces is to simply cluster the individual dimensions of the space. This provides some
justification for the methods we use here: some technicalities2 notwithstanding, the problem of finding
subspaces of neural activity with “dissimilar” representations is, in many cases, reducible to the problem of
clustering individual units based on pairwise similarity, as we do here.

3.1 Quantifying pairwise similarity of hidden units

What makes two hidden units “functionally similar”? In other words, we seek some similarity function
S : N,D,T → Rn×n+ that takes as input a neural network N evaluated on a dataset D to solve task T and
produces an n×n matrix of non-negative similarity scores for all pairs among the n hidden units. We further
require that the resulting matrix is symmetric, or Sij = Sji. Importantly, allowing S to depend on the task
T opens the door to similarity measures where units are considered similar based on their downstream
contribution to a particular loss function.

1Note that dimensionality is not a problem for other applications of representational (dis)similarity methods, since the
population size is traditionally fixed in any single analysis.

2First, one can construct pathological examples of dependent subspaces but where all individual variables are independent, so
pairwise independence between all elements in a cluster cannot guarantee independent clusters. Second, summing or averaging
pairwise dissimilarity across clusters will give quantitatively different value than measuring dissimilarity between the populations,
but this brings us back to the dimensionality problem already discussed.

4



Published in Transactions on Machine Learning Research (06/2022)

Figure 2: Color scheme and 2x2x2 visualization of the 8 proposed similarity methods.

Similarity by covariance. The first similarity measure we consider is the absolute value covariance of
hidden unit activities across inputs. Let xk ∈ Rd be the kth input in the dataset, and hi(x) be the response
of the ith hidden unit to input x, with i ∈ {1, 2, . . . , n}. Then, we define similarity as

Scov
ij = 1

K − 1

∣∣∣∣∣
K∑
k=1

(
hi(xk)− h̄i

) (
hj(xk)− h̄j

)∣∣∣∣∣ (1)

where K is the number of items in D and h̄i ≡ 1
K

∑K
k=1 hi(xk) is the mean response of unit i on the given

dataset. Intuitively, the absolute value covariance quantifies the statistical dependence of two units across
inputs, making it an upstream measure of similarity. Scov corresponds to some classic notions of “disen-
tanglement”: to the extent that the rows and columns of Scov can be sorted to have highly block-diagonal
structure, this means that hidden units cluster into statistically independent – or at least uncorrelated –
groups. This is also similar in spirit to Representational Similarity Analysis, where the similarity of sets
of units is quantified using some (often kernel-based) measure of their independence on a given dataset
(Kornblith et al., 2019).

Similarity by input sensitivity. While Scov quantifies similarity of responses across inputs, we next
consider a measure of similar sensitivity to single inputs, which is then averaged over D. Let Jh

x denote
the n × d Jacobian matrix of partial derivatives of each hidden unit with respect to each of the d input
dimensions. Then, we say two units i and j are similarly sensitive to input changes on input xk if the dot
product between the ith and jth row of Jh

xk
has high absolute-value magnitude. In matrix notation over the

entire dataset, we use

Si-sens = 1
K

∣∣∣∣∣
K∑
k=1

Jh
xk

Jh>
xk

∣∣∣∣∣ (2)

where the superscript “i-sens” should be read as the “input sensitivity.”

Similarity by last-layer sensitivity. Let y ∈ Ro denote the last-layer activity of the network. Using
the same Jacobian notation as above, let Jy

h denote the o× n matrix of partial derivatives of the last layer
with respect to changes in the hidden activities h. Then, we define similarity by output sensitivity as

So-sens = 1
K

∣∣∣∣∣
K∑
k=1

Jy>
h Jy

h

∣∣∣∣∣ , (3)

likewise with “o-sens” to be read as “output-sensitivity.” Note that both h and y depend on the particular
input xk, but this has been left implicit in the notation to reduce clutter.

Similarity by the loss Hessian. The “function” of a hidden unit might usefully be thought of in terms
of its contribution to the task or tasks it was trained on. To quote Lipson,

“In order to measure modularity, one must have a quantitative definition of function... It
is then possible to take an arbitrary chunk of a system and measure the dependency of

5



Published in Transactions on Machine Learning Research (06/2022)

the system function on elements within that chunk. The more that the dependency itself
depends on elements outside the chunk, the less the function of that chunk is localized, and
hence the less modular it is.” (Lipson, 2007).

Lipson then goes on to suggest that the “dependence of system function on elements” can be expressed as
a derivative or gradient, and that the dependence of that dependence on other parts of the system can be
expressed as the second derivative or Hessian. Towards this conception of modular functions on a particular
task, we use the following definition of similarity:

Shess
ij = 1

K

∣∣∣∣∣
K∑
k=1

∂2L

∂hi∂hj

∣∣∣∣∣ , (4)

where L is the scalar loss function for the task, and should be understood to depend on the particular input
xk. Importantly, each Hessian on the right hand side is taken with respect to the activity of hidden units,
not with respect to the network parameters as it is typically defined.

To summarize, equations (1) through (4) provide four different methods to quantify pairwise similarity
of hidden units. Scov and Si-sens are upstream, while So-sens and Shess are downstream. All four
take values in [0,∞), however, it is not clear if the raw magnitudes matter, or only relative (normalized)
magnitudes. Take Scov for instance. Kornblith et al. argue that hidden-unit covariance is more meaningful
than correlation, since the principal directions of variation both affect learning and have been shown to
correlate with meaningful perceptual differences for human observers. On the other hand, we do not want
our measure of modularity, which is a global property of an entire layer, to be skewed by a small number
of highly variable units. Further, the community-detection algorithm we use for clustering below has been
primarily developed and tested on unweighted and undirected graphs. For these reasons, we introduce an
optional normalized version of each of the above four un-normalized similarity measures:

Ŝij ≡
Sij

max
(√

SiiSjj , ε
) , (5)

where ε is a small positive value included for numerical stability. Whereas Sij ∈ [0,∞), the normalized values
are restricted to Ŝij ∈ [0, 1]. In total, this gives us eight methods to quantify pairwise similarity. These
can be thought of as 2x2x2 product of methods, as shown in the color scheme in Figure 2: the upstream
vs downstream axis, the unnormalized vs normalized axis, and the covariance vs gradient (i.e.
sensitivity) axis. We group together both Scov and Shess under the term “covariance” because the Hessian
is closely related to the covariance of gradient vectors of the loss across inputs.

3.2 Quantifying modularity by clustering

Decomposing a set into clusters that are maximally similar within clusters and maximally dissimilar across
clusters is a well-studied problem in graph theory and network science. In particular, Girvan & Newman
proposed a method that cuts a graph into its maximally modular subgraphs (Girvan & Newman, 2002;
Newman & Girvan, 2004; Newman, 2006), and this tool has previously been used to study modular neural
networks (Amer & Maul, 2019; Béna & Goodman, 2021).

We apply this tool from graph theory to our problem of detecting functional modules in neural networks
by constructing an adjacency matrix A from the similarity matrix S by simply removing the diagonal
(self-similarity):

Aij ≡

{
Sij if i 6= j

0 otherwise
.

Given A, we can simplify later notation by first constructing the normalized adjacency matrix, Ã, whose
elements all sum to one:

Ã ≡ A∑
ij Aij

,

6



Published in Transactions on Machine Learning Research (06/2022)

or, more compactly, Ã ≡ A/1>nA1n where 1n is a column vector of length n containing all ones. Let P be
an n× c matrix that represents cluster assignments for each of n units to a maximum of c different clusters.
Cluster assignments can be “hard” (Pij ∈ {0, 1}) or “soft” (Pij ∈ [0, 1]), but in either case the constraint
P 1c = 1n must be met, i.e. that the sum of cluster assignments for each unit is 1.3 If an entire column of
P is zero, that cluster is unused, so c only provides an upper-limit to the number of clusters, and in practice
we set c = n. Girvan & Newman propose the following score to quantify the level of “modularity” when
partitioning the normalized adjacency matrix Ã into the cluster assignments P :

Q(Ã,P ) ≡ Tr(P>ÃP )− Tr(P>Ã1n1>n ÃP ) . (6)

The first term sums the total connectivity (or, in our case, similarity) of units that share a cluster. By
itself, this term is maximized when P assigns all units to a single cluster. The second term gives the
expected connectivity within each cluster under a null model where the elements of Ã are interpreted as the
joint probability of a connection, and so Ã1n1>n Ã is the product of marginal probabilities of each unit’s
connections. This second term encourages P to place units into the same cluster only if they are more similar
to each other than “chance.” Together, equation (6) is maximized by partitioning Ã into clusters that are
strongly intra-connected and weakly inter-connected.

We define the modularity of a set of neural network units as the maximum achievable Q over all P :

P ∗(Ã) ≡ arg max
P

Q(Ã,P )

Q∗(Ã) ≡ Q(Ã,P ∗) .
(7)

To summarize, to divide a given pairwise similarity matrix S into modules, we first construct Ã from S,
then we find the cluster assignments P ∗ that give the maximal value Q∗. Importantly, this optimization
process provides two pieces of information: a modularity score Q∗ which quantifies the amount of modularity
in a set of neurons, for a given similarity measure. We also get the actual cluster assignments P ∗, which
provide additional information and can be compared across different similarity measures. Given a set of
cluster assignments P ∗, we quantify the number of clusters by first getting the fraction of units in each
cluster, r(P ∗) = 1>nP ∗

n . We then use the formula for discrete entropy to measure the dispersion of cluster
sizes: H(r) = −

∑c
i=1 ri log ri. Finally we say that the number of clusters in P ∗ is

num clusters(P ∗) = eH(r(P ∗)) . (8)

We emphasize that discovering the number of clusters in P ∗ is included automatically in the optimization
process; we set the maximum number of clusters c equal to the number of hidden units n, but in our
experiments we find that P ∗ rarely uses more than 6 clusters for hidden layers with 64 units (Supplemental
Figure S7).

It is important to recognize that the sense of the word “modularity” in graph theory is in some important
ways distinct from its meaning in terms of engineering functionally modular systems. Whether or not a
high value of Q∗ indicates more “modular” design requires additional interpretation beyond the choice of
pairwise similarity measure S. In graph-theoretic terms, a “module” is a cluster of nodes that are highly
intra-connected and weakly inter-connected to other parts of the network, defined formally by Q (Girvan &
Newman, 2002; Newman & Girvan, 2004). This definition of graph modularity uses a particular idea of a “null
model” based on random connectivity between nodes in a graph (Amer & Maul, 2019). While this null-model
of graph connectivity enjoys a good deal of historical precedence in the theory of randomly-connected graphs,
where unweighted graphs are commonly studied in terms of the probability of connection between random
pairs of nodes, it is not obvious that the same sort of null model applies to groups of “functionally similar”
units in an ANN. This relates to the earlier discussion of ISA, and provides a possibly unsatisfying answer
to the question of what counts as a “surprising” amount of statistical independence between clusters; using
Q makes the implicit choice that the product of average pairwise similarity, Ã1n1Tn Ã, gives the “expected”

3While we only consider hard cluster assignments in our experiments below, we have encountered cases where Q is maximized
by soft cluster assignments, so we include it in the definition here for completeness.

7



Published in Transactions on Machine Learning Research (06/2022)

similarity between units. An important problem for future work will be to closely reexamine the question
of what makes neural populations functionally similar or dissimilar, above and beyond statistical similarity
(Csordás et al., 2021; Kornblith et al., 2019), and what constitutes a surprising amount of (dis)similarity
that may be indicative of modular design. Throughout this paper, our use of the term “modularity” to refer
to Q∗ should be understood as only a quantitative proxy for truly modular design principles, but one that
enjoys some precedence in the study of modular neural networks (Kashtan & Alon, 2005; Watanabe et al.,
2018; Béna & Goodman, 2021).

Finding P ∗ exactly is NP-complete (Brandes et al., 2008), so in practice we use a variation on the approximate
method proposed by (Newman, 2006). Briefly, the approximation works in two steps: first, an initial set of
cluster assignments is constructed using a fast spectral initialization method that, similar to other spectral
clustering algorithms, recursively divides units into clusters based on the sign of eigenvectors of the matrix
B = Ã− Ã1n1>n Ã and its submatrices. Only subdivisions that increase Q are kept. In the second step, we
use a Monte Carlo method that repeatedly selects a random unit i then resamples its cluster assignment,
holding the other n− 1 assignments fixed. This resampling step involves a kind of exploration/exploitation
trade-off: Q may decrease slightly on each move to potentially find a better global optimum. We found that
it was beneficial to control the entropy of each step using a temperature parameter, to ensure that a good
explore/exploit balance was struck for all Ã. Supplemental Figure S5 shows that both the initialization and
the Monte Carlo steps play a crucial role in finding P ∗, consistent with the observations of (Newman, 2006).
Full algorithms are given in Appendix A.1.

4 Experiments

4.1 Setup and initial hypotheses

We would like to understand the behavior of the various notions of modularity above, operationalized using
Q∗, for each of the eight different methods for quantifying pairwise similarity introduced in the previous
section. In our initial experiments, we began by studying a large collection of simple feedforward fully-
connected networks trained on the MNIST dataset (LeCun et al., 1998) across a range of regularization
schemes (Experiment 1). In follow-up experiments, we further explored the effects of network width
(Experiment 2) and depth (Experiment 3). A summary of the architectures and hyperparameters used
in each experiment can be found in Supplemental Figure S1 and Table S1.

In all experiments, we defined x (input layer) as the raw pixel inputs and y (output layer) as the
10−dimensional class logits. We discarded models that achieved less than 80% test accuracy (this only
happened at extreme values of regularization). Summary statistics of model behavior as a function of reg-
ularization strength are shown in Supplementary Figures S2 through S4. For reference values, we also
performed all analyses on 100 randomly initialized models from each architecture with zero training. Models
were written and trained using PyTorch (Paszke et al., 2019) and PyTorch Lightning4, and all compute jobs
were run on a private server and managed using GNU Parallel (Tange, 2011). Code is publicly available at
https://github.com/KordingLab/clustering-units-upstream-downstream.

Before running these experiments, we hypothesized that

1. Dropout would decrease modularity by encouraging functions to be “spread out” over many units.

2. L2 regularization (weight decay) would minimally impact modularity, since the L2 norm is invariant
to rotation while modularity depends on axis-alignment.

3. L1 regularization on weights would increase modularity by encouraging sparsity between subnet-
works.

4. All similarity measures would be qualitatively consistent with each other.

As shown below, all four of these hypotheses turned out to be wrong, to varying degrees.
4https://www.pytorchlightning.ai/

8

https://github.com/KordingLab/clustering-units-upstream-downstream


Published in Transactions on Machine Learning Research (06/2022)

Figure 3: Modularity score as a function of regularization strength. Inset network diagram: Results for
Experiment 1 are based on a simple feedforward network, trained on MNIST, with two hidden layers and 64
units per layer. Top row: example similarity matrices, sorted by cluster, and their associated Q∗ values.
Thin red grid lines indicate boundaries between clusters discovered by the modularity-maximizing cluster
assignments P ∗. Similarity in these examples is measured by Ŝcov, i.e. the absolute value correlation between
hidden units’ activity on test items, across increasing values of dropout regularization (curved red lines).
Bottom two rows: modularity score (Q∗) as a function of percent regularization, combined for both hidden
layers. Each subplot shows a different one of our eight similarity measures. Errorbars indicate standard error
of the mean (across seeds and layers). Gray shading shows the distribution of scores for untrained models,
out to ±3σ. Note that the x-axis, “percent regularization,” is different for each series: it is identical to
dropout probability for the dropout series, but it is log-spaced from 0% = 1e−5 to 100% = 1e−1 for L2 and
log-spaced from 0% = 1e−5 to 100% = 1e−2 for L1.

4.2 How modularity depends on regularization (Experiment 1)

In Experiment 1, we trained a fully-connected neural network on MNIST with two hidden layers and 64
units per layer. Figure 3 shows the dependence of trained networks’ modularity score (Q∗) as a function of
regularization strength for each of three types of regularization: an L2 penalty on the weights (weight decay),
an L1 penalty on the weights, and dropout. The top row of Figure 3 shows four example Ã matrices sorted
by cluster, to help give an intuition behind the quantitative values of Q∗. In these examples, the increasing
value of Q∗ is driven by an increasing contrast between intra-cluster similarity and inter-cluster similarity. In
this example, it also appears that the number and size of clusters remains roughly constant; this observation
is confirmed by plotting the number of clusters versus regularization strength in Supplemental Figure S7.

Figure 3 shows a number of surprising patterns that contradict our initial predictions. First, and most
saliently, we had predicted that dropout would reduce modularity, but found instead that it has the greatest
effect on Q∗ among the three regularization methods we tried. This is especially apparent in the upstream
methods (first two columns of the figure), and is also stronger for the first hidden layer than the second

9



Published in Transactions on Machine Learning Research (06/2022)

Figure 4: Modularity score as a function of regularization strength for wider (gray background, top) and
deeper (white background, bottom) models. Subplots are formatted identically to Figure 3.

(Supplemental Figure S6). In general, Q∗ can increase either if the network partitions into a greater number
of clusters, or if the contrast between clusters is exaggerated. We found that this dramatic effect of dropout
on Q∗ was accompanied by only minor changes to the number of clusters (Supplemental Figure S7), and
so we can conclude that dropout increases Q∗ by increasing the redundancy of hidden units. In
other words, hidden units become more clusterable because they are driven towards behaving like functional
replicas of each other, separately for each cluster. This observation echoes, and may explain, why dropout
also increases the “clusterability” of network weights in a separate study (Filan et al., 2021).

The second surprising result in Figure 3 is that L2 regularization on the weights did, in fact, increase
Q∗, whereas we had expected it to have no impact. Third, L1 regularization had a surprisingly weak effect,
although its similarity to the L2 regularization results may be explained by the fact that they actually resulted
in fairly commensurate sparsity in the trained weights (Supplemental Figure S2 bottom row). Fourth, we
had expected few differences between the eight different methods for computing similarity, but there appear
to be distinctive trends by similarity type both in Figure 3 as well as in the number of clusters detected
(Supplemental Figure S7). The next section explores the question of similarity in the results in more detail.

10



Published in Transactions on Machine Learning Research (06/2022)

4.3 Generalization to wider and deeper networks (Experiments 2 and 3)

We repeated this analysis of Q∗ scores and clusters, as a function of regularization strength, for both a wider
and deeper version of the fully-connected network used in Experiment 1. Modularity scores for these further
experiments are shown in Figure 4, and analogous plots showing their numbers of clusters can be found in
Supplemental Figure S8.

While many of the qualitative trends remain, two differences to Experiment 1 are worth noting. First,
inspecting the results for wider models, although we again see that dropout increases Q∗, its effect relative
to the other normalization types is greatly attenuated. In fact, in this wider architecture, we begin to see
some evidence for our original hypothesis that increasing L1 weight regularization would increase modularity,
at least with respect to downstream measures of similarity. However, this is a fragile effect, as too-large L1
regularization quickly overpowers learning and degrades performance (Supplemental Figure S3). Second,
the deeper models in Experiment 3 show an even more exaggerated difference between dropout and other
regularization types, at least for upstream similarity measures. We further found that this effect is primarily
driven by layers early in the network (see Supplemental Figures S9 and S10 for a breakdown by layer).

Another interesting effect revealed by Experiment 3 is that the effect of dropout on Q∗ was highest in
early layers for upstream similarity measures, but highest in later layers for downstream similarity measures
(Supplemental Figure S9). As will be explored in more detail in the next section, this provides some initial
evidence that the upstream- and downstream-families of approaches are measuring different things.

4.4 Comparing modules discovered by different similarity methods

The previous two sections discussed idiosyncratic trends in the modularity scores Q∗ as a function of both
regularization strength and how pairwise similarity between units (S) is computed. However, such differences
in the quantitative value of Q∗ are difficult to interpret, and would largely be moot if the various methods
agreed on the question of which units belong in which cluster. We now turn to the question of how similar
the cluster assignments P ∗ are across our eight definitions of functional modules. To minimize ambiguity,
we will use the term “functional-similarity” to refer to S, and “cluster-similarity” to refer to the comparison
of different cluster assignments P ∗ across different functional-similarity methods. Note that all comparisons
between cluster assignments investigated in this section are performed separately per layer per model –
cluster assignments are never compared for units across different models.

Quantifying similarity between cluster assignments is a well-studied problem, and we tested a variety of
methods in the clusim Python package (Correia et al., 2018). All cluster-similarity methods we investigated
gave qualitatively similar results, so here we report only the “Element Similarity” method of Gates et al.,
which is a value between 0 and 1 that is small when two cluster assignments are unrelated, and large when one
cluster assignment is highly predictive of the other. However, it is conceivable that two cluster assignments
do not strongly predict each other, but nonetheless they give rise to similar values of Q. That is, to the extent
that Q has many good maxima as a function of P ∗, differences between cluster assignments is not indicative
of strong differences in the similarity structures.5 For this reason, we included an additional “transfer” test
of cluster alignment: let P ∗A be the optimal cluster assignments computed for the pairwise similarities ÃA,
and likewise P ∗B for ÃB . Then,

Q(ÃA,P
∗
B) +Q(ÃB ,P

∗
A)

2 (9)

quantifies how well the cluster assignments P ∗ transfer between similarity measures, transferring both B to
A and vice versa. We refer to (9) as the “transferability” of clusters between two similarity measures.

Note that all of these cluster-similarity analyses are applied only to P ∗ cluster assignments computed in the
same layer of the same model. Thus, any dissimilarity in clusters that we see is due entirely to the different
choices for functional-similarity, S, rather than to differences in regularization, seed, architecture, etc.

Figure 5a summarizes the results of this cluster-similarity analysis in Experiment 1: there is a striking
difference between clusters of units identified by “upstream” functional-similarity methods

5We are indebted to an anonymous reviewer for pointing this out.

11



Published in Transactions on Machine Learning Research (06/2022)

Figure 5: Summary of cluster-similarity analysis. a) Separately for each model, layer, and run, we computed(8
2
)
cluster-similarity scores between cluster assignments P ∗ for each pair of the eight functional-similarity

methods (S) above. This plot shows the average cluster-similarity for each pair of functional-similarity
methods in Experiment 1. b-c) Same as (a) but for wider (Experiment 2) and deeper (Experiment 3)
models. d) We repeated the analysis in (a) on a set of 100 random (untrained) models. This panel shows
the difference between (a) and the random models. Where the difference is positive (green), training had
the effect of increasing cluster-similarity, and where it is zero (black), there is little difference in cluster-
similarity before and after training. e-f) Same as (d) but for wider (Experiment 2) and deeper (Experiment
3) models. In all cases, the untrained reference models were of the same architecture as the trained model
being analyzed. Note the different colorbar scale in panel (f).

12



Published in Transactions on Machine Learning Research (06/2022)

(Scov, Ŝcov, Si-sens, Ŝi-sens) compared to “downstream” functional-similarity methods (Shess,
Ŝhess, So-sens, Ŝo-sens). This analysis also reveals secondary structure within each class of upstream and
downstream methods, where the choice to normalize not (S vs Ŝ) appears to matter little, and where there
is a moderate difference between moment-based methods (Scov, Shess) and gradient-based methods (Si-sens,
So-sens). It is worth noting that some of this secondary structure is not robust across all types and levels
of regularization; in particular, increasing L2 or L1 regularization strength appears to lead to (i) stronger
dependence on normalization in the downstream methods, and (ii) a stronger overall agreement among
the upstream methods (Supplemental Figure S11). We found that a qualitatively similar division between
clusters identified using upstream and downstream similarity methods persisted in Experiments 2 and 3
(Figure 5b-c).

We next asked to what extent these cluster-similarity results are driven by training. As shown in Figure 5d-f,
much of the structure in the downstream methods is unaffected by training (i.e. it is present in untrained
models as well), while the cluster-similarity among different upstream methods only emerged as a result of
training. Interestingly, despite the seemingly sharp differences between upstream and downstream methods
shown in Figure 5a-c, this analysis further shows that training tended to weakly increase the agreement
between upstream and downstream methods.

Overall, these trends in alignment between clusters were confirmed in the “transfer” analysis defined in
equation (9) (Supplemental Figure S12).

5 Conclusions

An abundance of “modular” designs in engineered and evolved systems has led many to speculate about the
usefulness of modularity as a design principle (Lipson, 2007), and how modular designs might be discovered
by learning agents such as artificial neural networks (Amer & Maul, 2019). Yet, precisely defining what a
“module” is in a neural network is an open problem. Here we operationalized modules in a neural network
as clusters of hidden units that perform similar functions, which leads naturally to the related question of
what makes any given pair of units functionally similar? We introduced eight functional-similarity measures
intended to cover a variety of intuitions about what makes two units similar, and empirically evaluated
cluster-assignments based on each of these eight methods in a large number of trained models. It should
be emphasized that our quantitative results on increased or decreased “modularity” refer to changes in Q∗,
which may not correspond to the kind of system-level “modularity” that motivates work in this area. Our
goal is not to establish an indisputable definition of modularity, but to call attention to surprising ways that
intuitions about modularity can be wrong.

One such surprising observation was that dropout increases modularity (as defined by Q∗) (Filan et al.,
2021), although this has little to do with the common-sense definition of a “module.” Instead, it is the
byproduct of dropout causing subsets of units to behave like near-copies of each other, perhaps so that if
one unit is dropped out, a copy of it provides similar information to the subsequent layer. This effect was
reduced, but not absent, in the “wide” model of Experiment 2. To our knowledge, this redundancy-inducing
effect of dropout has not been noted in the literature previously.

Our main result is that there is a crucial difference between defining “function” in terms of how units are
driven by upstream inputs, and how units drive downstream outputs. While we studied this distinction
between upstream and downstream similarity in the context of modularity and clustering, it speaks to the
deeper and more general problem of how best to interpret neural representations. For example, some sub-
disciplines of representation-learning (e.g. “disentanglement”) have long emphasized that a “good” neural
representation is one where distinct features of the world drive distinct sub-populations or sub-spaces of neural
activity (Higgins et al., 2018; Eastwood & Williams, 2018; Ridgeway & Mozer, 2018). This is an upstream
way of thinking about what is represented, since it depends only on the relationship between inputs and the
unit activations and does not take into account what happens downstream. Meanwhile, many have argued
that the defining characteristic of a neural representation is its causal role in downstream behavior (Garson
& Papineau, 2019); this is, of course, a downstream way of thinking. At a high level, one way to interpret
our results is is that upstream and downstream ways of thinking about neural representations are
not necessarily aligned, even in trained networks. This observation is reminiscent of recent empirical

13



Published in Transactions on Machine Learning Research (06/2022)

work finding that “disentangled” representations in auto-encoders (an upstream concept) do not necessarily
lead to improved performance or generalization to novel tasks (a downstream concept) (Locatello et al.,
2019; Montero et al., 2021) (cf. (van Steenkiste et al., 2019)).

Despite its theoretical motivations, this is an empirical study. We trained over 300 feedforward, fully-
connected neural networks on MNIST. While it is not obvious whether MNIST admits a meaningful “mod-
ular” solution, Experiments 2 and 3 suggest that our main result – the misalignment between upstream and
downstream definitions of neural similarity – is fairly robust to width and depth. Still, it is plausible that
upstream and downstream ways of thinking about neural representations will become better aligned in more
structured tasks and larger models.

Our work raises the important questions: are neural representations defined by their inputs or their outputs?
And, in what contexts is it beneficial for these to be aligned? We look forward to future work applying our
methods to larger networks trained on more structured data, as well as recurrent networks. We also believe
it will be valuable to evaluate the effect of attempting to maximize modularity, as we have defined it, during
training, to see to what extent this is possible and whether it leads to performance benefits. Note that
maximizing Q during training is challenging because (i) computing S may require large batches, and more
importantly (ii) optimizing Q is highly prone to local minima, since neural activity and cluster assignments
P will tend to reinforce each other, entrenching accidental clusters that appear at the beginning of training.
We suspect that maintaining uncertainty over cluster assignments (e.g. using soft Pij ∈ [0, 1] rather than
hard P ∈ {0, 1} cluster assignments) will be crucial if optimizing any of our proposed modularity metrics
during training.

Unequivocally defining and quantifying the modularity of a neural network remains an open problem. How-
ever, we hope that the distinction we introduced between upstream and downstream ways of thinking about
modules, and about neural representations more generally, will foster and sharpen future work on modular
neural network design.

14



Published in Transactions on Machine Learning Research (06/2022)

References
Mohammed Amer and Tomás Maul. A review of modularization techniques in artificial neural networks.
Artificial Intelligence Review, 52(1):527–561, 2019. ISSN 15737462. doi: 10.1007/s10462-019-09706-7.
URL https://doi.org/10.1007/s10462-019-09706-7.

Jacob Andreas. Measuring compositionality in representation learning. arXiv, pp. 1–15, 2019. ISSN 23318422.

Farooq Azam. Biologically inspired modular neural networks. Phd, Virginia Polytechnic Institute and State
University, 2000. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.6.1840&rep=
rep1&type=pdf.

Francis R. Bach and Michael I. Jordan. Kernel independent component analysis. Journal of Machine
Learning Research, 3(1):1–48, 2003. ISSN 15324435. doi: 10.1162/153244303768966085.

Francis R. Bach and Michael I. Jordan. Beyond independent components: Trees and clusters. Journal of
Machine Learning Research, 4(7-8):1205–1233, 2004. ISSN 15324435. doi: 10.1162/jmlr.2003.4.7-8.1205.

Shahab Bakhtiari, Patrick Mineault, Tim Lillicrap Deepmind, Christopher C Pack, and Blake A Richards.
The functional specialization of visual cortex emerges from training parallel pathways with self-supervised
predictive learning. NeurIPS, 3, 2021. URL https://doi.org/10.1101/2021.06.18.448989.

Gabriel Béna and Dan F. M. Goodman. Extreme sparsity gives rise to functional specialization. arXiv, 2021.
URL http://arxiv.org/abs/2106.02626.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspec-
tives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828, 2013. ISSN
01628828. doi: 10.1109/TPAMI.2013.50.

U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and D. Wagner. On Modularity
Clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2):172–188, 2008. doi: 10.1109/
TKDE.2007.190689.

Jeff Clune, Jean Baptiste Mouret, and Hod Lipson. The evolutionary origins of modularity. Proceedings of
the Royal Society B, 280, 2013. doi: 10.1098/rspb.2012.2863.

Rion B Correia, Alexander J Gates, Xuan Wang, and Luis M Rocha. Cana: A python package for quantifying
control and canalization in boolean networks. Frontiers in physiology, 9:1046, 2018.

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning kernels based on centered
alignment. Journal of Machine Learning Research, 13:795–828, 2012. ISSN 15324435.

Róbert Csordás, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Are Neural Nets Modular? Inspecting
Functional Modularity Through Differentiable Weight Masks. ICLR, 2021. URL http://arxiv.org/abs/
2010.02066.

J Denker, D Schwartz, B Wittner, S Solla, R Howard, L Jackel, and J Hopfield. Large Automatic Learning,
Rule Extraction, and Generalization. Complex Systems, 1:877–922, 1987.

Andrea Di Ferdinando, Raffaele Calabretta, and Domenico Parisi. Evolving Modular Architectures for Neural
Networks. Proceedings of the sixth Neural Computation and Psychology Workshop: Evolution, Learning,
and Development, pp. 253–262, 2001. doi: 10.1007/978-1-4471-0281-6_25.

Cian Eastwood and Christopher K.I. Williams. A framework for the quantitative evaluation of disentangled
representations. ICLR, 2018.

Daniel Filan, Stephen Casper, Shlomi Hod, Cody Wild, Andrew Critch, and Stuart Russell. Clusterability
in Neural Networks. arXiv, 2021. URL http://arxiv.org/abs/2103.03386.

Justin Garson and David Papineau. Teleosemantics, Selection and Novel Contents. Biology & Philosophy,
34(3), 2019. doi: 10.1007/s10539-019-9689-8.

15

https://doi.org/10.1007/s10462-019-09706-7
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.6.1840&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.6.1840&rep=rep1&type=pdf
https://doi.org/10.1101/2021.06.18.448989
http://arxiv.org/abs/2106.02626
http://arxiv.org/abs/2010.02066
http://arxiv.org/abs/2010.02066
http://arxiv.org/abs/2103.03386


Published in Transactions on Machine Learning Research (06/2022)

Alexander J. Gates, Ian B. Wood, William P. Hetrick, and Yong Yeol Ahn. Element-centric clustering
comparison unifies overlaps and hierarchy. Scientific Reports, 9(1):1–13, 2019. ISSN 20452322. doi:
10.1038/s41598-019-44892-y. URL http://dx.doi.org/10.1038/s41598-019-44892-y.

M. Girvan and M. E.J. Newman. Community structure in social and biological networks. Proceedings of the
National Academy of Sciences of the United States of America, 99(12):7821–7826, 2002. ISSN 00278424.
doi: 10.1073/pnas.122653799.

Melvyn A. Goodale and A. David Milner. Separate visual pathways for perception and action. TINS, 15(1):
20–25, 1992.

Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring statistical dependence
with Hilbert-Schmidt norms. In S. Jain, H. U. Simon, and E. Tomita (eds.), Lecture Notes in Artificial
Intelligence, volume 3734, pp. 63–77. Springer-Verlag, Berlin, 2005. ISBN 354029242X. doi: 10.1007/
11564089_7.

Harold W Gutch and Fabian J Theis. Independent Subspace Analysis is Unique, Given Irreducibility. In
Mike E Davies, Christopher J James, Samer A Abdallah, and Mark D Plumbley (eds.), Independent
Component Analysis and Signal Separation, volume 7. Springer, Berlin, 2007.

Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo Rezende, and Alexander
Lerchner. Towards a Definition of Disentangled Representations. arXiv, pp. 1–29, 2018.

Shlomi Hod, Daniel Filan, Stephen Casper, Andrew Critch, and Stuart Russell. Quantifying Local Special-
ization in Deep Neural Networks. arXiv, 2021. URL http://arxiv.org/abs/2110.08058.

Aapo Hyvärinen, Patrik O. Hoyer, and Mika Inki. Topographic independent component analysis. Neural
Computation, 13(7):1527–1558, 2001. ISSN 08997667. doi: 10.1162/089976601750264992.

Robert A Jacobs, Michael I Jordan, and Andrew G Barto. Task Decomposition Through Competition in a
Modular Connectionist Architecture:The What and Where Vision Tasks. Cognitive Science, pp. 219–250,
1991.

Nadav Kashtan and Uri Alon. Spontaneous evolution of modularity and network motifs. Proceedings of
the National Academy of Sciences of the United States of America, 102(39):13773–13778, 2005. ISSN
00278424. doi: 10.1073/pnas.0503610102.

Nadav Kashtan, Elad Noor, and Uri Alon. Varying environments can speed up evolution. Proceedings of
the National Academy of Sciences of the United States of America, 104(34):13711–13716, 2007. ISSN
00278424. doi: 10.1073/pnas.0611630104.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of Neural Network
Representations Revisited. ICML, 36, 2019. URL http://arxiv.org/abs/1905.00414.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-Based Learning Applied to
Document Recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

H Lipson. Principles of modularity, regularity, and hierarchy for scalable systems. Journal of Biological
Physics and Chemistry, 7(4):125–128, 2007. ISSN 15120856. doi: 10.4024/40701.jbpc.07.04.

Francesco Locatello, Stefan Bauer, Mario Lucic, Sylvain Gelly, Bernhard Schölkopf, and Olivier Bachem.
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. arXiv,
pp. 1–33, 2019.

Milton Llera Montero, Casimir JJ Ludwig, Rui Ponte Costa, Guarav Malhotra, and Jeffrey Bowers. The
role of disentanglement in generalization. ICLR, 2021.

M. E.J. Newman. Modularity and community structure in networks. Proceedings of the National Academy
of Sciences of the United States of America, 103(23):8577–8582, 2006. ISSN 00278424. doi: 10.1073/pnas.
0601602103.

16

http://dx.doi.org/10.1038/s41598-019-44892-y
http://arxiv.org/abs/2110.08058
http://arxiv.org/abs/1905.00414


Published in Transactions on Machine Learning Research (06/2022)

M. E.J. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical
Review E - Statistical, Nonlinear, and Soft Matter Physics, 69(2 2):1–15, 2004. ISSN 1063651X. doi:
10.1103/PhysRevE.69.026113.

Jason A. Palmer and Scott Makeig. Contrast functions for independent subspace analysis. In Fabian J.
Theis, A. Cichocki, A. Yeredor, and M. Zibulevsky (eds.), Independent Component Analysis and Signal
Separation, volume LNCS 7191, pp. 115–122. Springer-Verlag, Berlin, 2012. ISBN 9783642285509. doi:
10.1007/978-3-642-28551-6_15.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems
32, pp. 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

Barnabás Póczos and András Lõrincz. Independent Subspace Analysis Using Geodesic Spanning Trees.
ICML, 22:673–680, 2005.

Karl Ridgeway and Michael C. Mozer. Learning deep disentangled embeddings with the F-statistic loss.
Advances in Neural Information Processing Systems, pp. 185–194, 2018. ISSN 10495258.

J. G. Rueckl, K. R. Cave, and S. M. Kosslyn. Why are ”what” and ”where” processed by separate cortical
visual systems? A computational investigation. Journal of Cognitive Neuroscience, 1(2):171–186, 1989.
ISSN 0898929X. doi: 10.1162/jocn.1989.1.2.171.

Bernhard Scholkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh
Goyal, and Yoshua Bengio. Toward Causal Representation Learning. Proceedings of the IEEE, 109(5):
612–634, 2021. ISSN 15582256. doi: 10.1109/JPROC.2021.3058954.

Herbert A Simon. The Architecture of Complexity. Proceedings of the American Philosophical Society, 106
(6), 1962.

O. Tange. Gnu parallel - the command-line power tool. ;login: The USENIX Magazine, 36(1):42–47, Feb
2011. doi: 10.5281/zenodo.16303. URL https://www.gnu.org/s/parallel.

Sjoerd van Steenkiste, Francesco Locatello, Jürgen Schmidhuber, and Olivier Bachem. Are disentangled
representations helpful for abstract visual reasoning? Advances in Neural Information Processing Systems,
32(NeurIPS), 2019. ISSN 10495258.

Günter P. Wagner, Mihaela Pavlicev, and James M. Cheverud. The road to modularity. Nature Reviews
Genetics, 8(12):921–931, 2007. ISSN 14710056. doi: 10.1038/nrg2267.

Chihiro Watanabe. Interpreting Layered Neural Networks via Hierarchical Modular Representation. Com-
munications in Computer and Information Science, 1143 CCIS:376–388, 2019. ISSN 18650937. doi:
10.1007/978-3-030-36802-9_40.

Chihiro Watanabe, Kaoru Hiramatsu, and Kunio Kashino. Modular representation of layered neural net-
works. Neural Networks, 97:62–73, 2018. ISSN 18792782. doi: 10.1016/j.neunet.2017.09.017.

Chihiro Watanabe, Kaoru Hiramatsu, and Kunio Kashino. Understanding community structure in layered
neural networks. Neurocomputing, 367:84–102, 2019. ISSN 18728286. doi: 10.1016/j.neucom.2019.08.020.

Chihiro Watanabe, Kaoru Hiramatsu, and Kunio Kashino. Knowledge discovery from layered neural networks
based on non-negative task matrix decomposition. IEICE Transactions on Information and Systems,
E103D(2):390–397, 2020. ISSN 17451361. doi: 10.1587/transinf.2019EDP7136.

17

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.gnu.org/s/parallel


Published in Transactions on Machine Learning Research (06/2022)

Zongze Wu, Chunchen Su, Ming Yin, Zhigang Ren, and Shengli Xie. Subspace clustering via stacked
independent subspace analysis networks with sparse prior information. Pattern Recognition Letters, 146:
165–171, 2021. ISSN 01678655. doi: 10.1016/j.patrec.2021.03.026.

18



Published in Transactions on Machine Learning Research (06/2022)

A Appendix

A.1 Algorithms

This section gives pseudocode for the algorithm we used to compute clusters P ∗ from the normalized matrix
of pairwise associations between units, Ã. Before running these algorithms, we always remove all-zero rows
and columns from Ã; we consider these units to all be in a separate “unused” cluster.

Algorithm 1 Full clustering algorithm.
Require: Normalized pairwise associations Ã
1: P ← GreedySpectralModules(Ã) . Initialize P using spectral method
2: P ∗ ←MonteCarloModules(Ã,P ) . Further refine P using Monte Carlo method
3: return P ∗

Algorithm 2 Pseudocode for greedy, approximate, spectral method for finding modules
1: function GreedySpectralModules(Ã)
2: B ← Ã− Ã1n1>n Ã . B is analogous to the graph Laplacian, but for modules (Newman, 2006)
3: P ←

[
1 0 0 . . .0

]
. Initialize P to a single cluster, which will be (recursively) split in two

4: queue← [0] . FILO queue keeping track of which cluster we’ll try splitting next
5: Q← Tr(P>BP ) . Compute Q for the initial P
6: while queue is not empty do
7: c← queue.pop() . Pop the next (leftmost) cluster id
8: i← indices of all units currently in cluster c according to P
9: v ← eig(B(i, i)) . Get the leading eigenvector of the submatrix of B containing just units in c

10: i+ ← subset of i where v was positive . Split v by sign (if not possible, continue loop)
11: i− ← subset of i where v was negative
12: c′ ← index of the next available (all zero) column of P
13: P ′ ← P but with all i− units moved to cluster c′ . Try splitting c into c, c′ based on sign of v
14: Q′ ← Tr(P ′>BP ′) . Compute updated Q for newly-split clusters P ′

15: if Q′ > Q then . Did splitting c help?
16: Q,P ← Q′,P ′ . Update Q and P
17: queue.append(c, c′) . Push c and c′ onto the queue to consider further subdividing them

later.
18: else
19: . Nothing to do - splitting c into c′ did not improve Q, so we don’t add further subdivisions

to the queue, and we keep the old P , Q values
20: end if
21: end while
22: return P . Once the queue is empty, P contains a good initial set of cluster assignments
23: end function

19



Published in Transactions on Machine Learning Research (06/2022)

Algorithm 3 Pseudocode for Monte Carlo method for improving clusters.
function MonteCarloModules(Ã,P , n)

for n steps do
i← index of a single a randomly selected unit
c← index of the first empty cluster in P
Q∗,P ∗ ← Tr(P>(Ã− Ã1n1>n Ã)P ),P . Keep track of best Q,P pair found so far
for j = 1 . . . c do . Try moving unit i to each cluster j, including a new cluster at c

P ′ ← P with i reassigned to cluster j
Q′j ← Tr(P ′>(Ã− Ã1n1>n Ã)P ′) . Compute updated Q with re-assigned unit
if Q′j > Q∗ then

Q∗,P ∗ ← Q′j ,P
′ . Update Q∗,P ∗ pair, even if we don’t select this j later

end if
end for
τ ← whatever temperature makes p ∝ eQ′/τ have entropy H = 0.15
p← eQ

′/τ∑
j
e
Q′
j
/τ

. We found H = 0.15 strikes a good balance between exploration and greedy

ascent.6
j∗ ∼ p . Sample new cluster assignment j from categorical distribution p
P ← P with unit i reassigned to cluster j∗, ensuring only the leftmost columns have nonzero values

end for
return P ∗

end function

A.2 Supplemental Figures

Experiment (model) L2 (weight decay) L1 weight penalty dropout prob.

Experiment 1
(MNIST (64, 64))
9 seeds per hyperparameter

logspace(-5,-1,9) 0.0 0.0

1e-5 logspace(-5,-2,7) 0.0

1e-5 0.0 linspace(0.05,0.7,14)

Experiment 2
(MNIST (256, 256))
3 seeds per hyperparameter

logspace(-5,-1,5) 0.0 0.0

1e-5 logspace(-5,-2,4) 0.0

1e-5 0.0 linspace(0.1,0.6,6)

Experiment 3
(MNIST (64, 64, 64, 64, 64))
3 seeds per hyperparameter

logspace(-5,-1,5) 0.0 0.0

1e-5 logspace(-5,-2,4) 0.0

1e-5 0.0 linspace(0.1,0.6,6)

Table S1: Models and hyperparameters. Number of units in each hidden layer given in parentheses in the
first column, i.e. “MNIST (64, 64)” is a MLP with two hidden layers with 64 units in each layer. Each row
of the table describes one hyperparameter sweep performed for the corresponding model. L2 regularization
was always set to a minimum of 1e − 5 to avoid weights growing unboundedly (see Figures S2 through S4
for performance metrics and weight norms of trained models).

20



Published in Transactions on Machine Learning Research (06/2022)

Figure S1: Graphical depiction of architectures used in Experiments 1 through 3.

21



Published in Transactions on Machine Learning Research (06/2022)

Figure S2: Basic performance metrics as a function of regularization strength for basic MNIST model
(Experiment 1 in Table S1). Each column corresponds to a different regularization method, as in Table S1.
Each row shows a metric calculated on the trained models. Thin colored lines are individual seeds, and thick
black line is the average ± standard error across runs. Horizontal gray line shows each metric computed on
randomly initialized network. Sparsity (bottom row) is calculated as the fraction of weights in the interval
[−1e−3,+1e−3].

22



Published in Transactions on Machine Learning Research (06/2022)

Figure S3: Basic performance metrics as a function of regularization strength for “wide” MNIST model
(Experiment 2 in Table S1), plotted in the same format as Figure S2.

23



Published in Transactions on Machine Learning Research (06/2022)

Figure S4: Basic performance metrics as a function of regularization strength for “deep” MNIST model
(Experiment 3 in Table S1), plotted in the same format as Figure S2.

24



Published in Transactions on Machine Learning Research (06/2022)

Figure S5: Both spectral initialization and Monte Carlo optimization steps contribute to finding a good
value of Q∗. Left: The x-axis shows modularity scores (Q∗) achieved using only the greedy spectral method
for finding P ∗. The y-axis shows the actual scores we used in the paper by combining the spectral method
for initialization plus Monte Carlo search. The fact that all points are on or above the y=x line indicates
that the Monte Carlo search step improved modularity scores. Right: The x-axis now shows modularity
scores (Q∗) achieved using 1000 Monte Carlo steps, after initializing all units into a single cluster (we chose
a random 5% of the similarity-matrices that were analyzed in the main paper to re-run for this analysis,
which is why there are fewer points in this subplot than in the left subplot). The fact that all points are on
or above the y=x line indicates that using the spectral method to initialize improved the search.

25



Published in Transactions on Machine Learning Research (06/2022)

Figure S6: Modularity score (Q∗) versus regularization, split by layer. Format is identical to Figure 3,
which shows modularity scores averaged across layers. Here, we break this down further by plotting each
layer separately. The network used in our experiments has two hidden layers. The first two rows (white
background) shows modularity scores for the first hidden layer h1, and the last two rows (gray background)
shows h2.

26



Published in Transactions on Machine Learning Research (06/2022)

Figure S7: Number of clusters in P ∗ versus regularization, split by layer. Layout is identical to Figure
S6. Gray shading in the background shows 1σ, 2σ, and 3σ quantiles of number of clusters in untrained
(randomly initialized) networks. Note that, for the most part, training has little impact on the number of
clusters detected, suggesting that consistently finding on the order of 2-6 clusters is more a property of the
MNIST dataset itself than of training.
We computed the number of clusters using equation (8). This measure is sensitive to both the number and
relative size of the clusters.

27



Published in Transactions on Machine Learning Research (06/2022)

Figure S8: Number of clusters in P ∗ versus regularization, for wider (Experiment 2) and deeper (Experiment
3) models. Layout is identical to Figure S6.

28



Published in Transactions on Machine Learning Research (06/2022)

Figure S9: Modularity score versus depth in a 5-layer feedforward network (Experiment 3), using the max-
imum “good” regularization strength of each type, defined as largest value for each type of regularization
that achieved at least 80% performance with at least half of the seeds. Gray shaded backgrounds show
distribution of Q∗ values for untrained models; note that this null distribution itself depends on depth.

Figure S10: Number of clusters versus depth in a 5-layer feedforward network (Experiment 3), using the
maximum “good” regularization strength of each type, defined as largest value for each type of regularization
that achieved at least 80% performance with at least half of the seeds. Gray shaded backgrounds show
distribution of Q∗ values for untrained models; note that this null distribution itself depends on depth.

29



Published in Transactions on Machine Learning Research (06/2022)

Figure S11: Further breakdown of cluster-similarity by regularization strength (increasing left to right) and
type (L2/L1/dropout). Results in Figure 5 reflect an average of the results shown here. The six rows of
this figure should be read in groups of two rows: in each group, the top row shows the similarity scores
(averaged over layers and runs), and the bottom row shows the difference to untrained models. A number
of features are noteworthy here: (i) at low values of all three types of regularization, there is little cluster-
similarity within the upstream methods, but it becomes very strong at as regularization strength grows; (ii)
at the highest values of L2 and L1 regularization, the pattern inside the 4x4 block of downstream methods
changes to depend more strongly on normalization; (iii) a moderate amount of agreement between upstream
and downstream methods is seen for large L1 regularization strength, but curiously only for unnormalized
downstream methods.

30



Published in Transactions on Machine Learning Research (06/2022)

Figure S12: Cluster-transfer control for the cluster-alignment analysis, as in Figure 5 in the main text.
“Transferability” is defined in equation (9). Note that transferability is not normalized, but is defined in raw
units of Q. This is why the diagonals in panels (a)-(c) are not one.

31


	Introduction
	Related Work
	Quantifying modularity by clustering similarity
	Quantifying pairwise similarity of hidden units
	Quantifying modularity by clustering

	Experiments
	Setup and initial hypotheses
	How modularity depends on regularization (Experiment 1)
	Generalization to wider and deeper networks (Experiments 2 and 3)
	Comparing modules discovered by different similarity methods

	Conclusions
	Appendix
	Algorithms
	Supplemental Figures


