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Abstract

Standard Monte Carlo computation is widely known to exhibit a canonical square-root
convergence speed in terms of sample size. Two recent techniques, one based on control
variate and one on importance sampling, both derived from an integration of reproducing
kernels and Stein’s identity, have been proposed to reduce the error in Monte Carlo com-
putation to supercanonical convergence. This paper presents a more general framework to
encompass both techniques that is especially beneficial when the sample generator is bi-
ased and noise-corrupted. We show our general estimator, which we call the doubly robust
Stein-kernelized estimator, outperforms both existing methods in terms of mean squared
error rates across different scenarios. We also demonstrate the superior performance of our
method via numerical examples.

Keywords: Monte Carlo methods, kernel ridge regression, Stein’s identity, control func-
tionals, importance sampling

1 Introduction

We consider the problem of numerical integration via Monte Carlo simulation. As a generic
setup, we aim to estimate the expectation θ = Eπ[f(X)] using independent and identically
distributed (i.i.d.) samples xi, i ∈ [n] := {1, · · · , n}, drawn from the target distribution π.
A natural Monte Carlo estimator is the sample mean θ̂ = 1

n

∑n
i=1 f(xi), which is widely

known to be unbiased with mean squared error (MSE) O(n−1), a rate commonly referred
to as the canonical rate.

In this paper, we are interested in Monte Carlo estimators that are supercanoncial,
namely with MSE o(n−1). We focus especially on recently proposed Stein-kernelized-based
methods. These methods come in two forms, one based on control variate, or more generally
control functional (CF), and one based on importance sampling (IS). They are capable of
reducing bias or variance of Monte Carlo estimators to the extent that the convergence
speed becomes supercanonical. On a high level, these approaches utilize knowledge on the
analytical form of the sampling density function (up to a normalizing constant), and apply
a “kernelization” of Stein’s identity induced by a reproducing kernel Hilbert space (RKHS)
to construct functions or weights that satisfy good properties for CF or IS purpose.
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Our main goal in this paper is to study a more general framework to encompass both
approaches, by introducing a doubly robust Stein-kernelized (DRSK) estimator. The “dou-
bly robust” terminology borrows from existing approaches in off-policy learning (Dud́ık
et al., 2011, 2014; Jiang and Li, 2016; Farajtabar et al., 2018) where one simultaneously
applies control variate and IS to reduce estimation error, and the resulting estimator is no
worse than the more elementary estimators. In our setting, we will show that DRSK indeed
outperforms kernel-based CF and IS across a range of scenarios, especially when the sam-
ple generator is imperfect in that the samples are biased or noise-corrupted. Importantly,
distinct from the off-policy learning literature, the superiority of our estimator manifests in
terms of faster MSE rates in n.

More specifically, we consider a general estimation framework with target quantity θ =
Eπ[f(X,Y )], where X is a partial list of input variables that is analytically tractable (i.e., its
density πX known up to a normalizing constant), while Y is a noise term that is not traceable
and is embedded in the samples (xi, f(xi, yi)). Moreover, instead of having a generator for π,
we may only have access to a possibly biased generator with distribution q. In this setting,
we will demonstrate that applying the existing methods of kernel-based CF and IS both
encounter challenges. In fact, because of these complications, these estimators could have a
subcanonical convergence. On the other hand, our DRSK still exhibits supercanonical rate.

Other than theoretical interest, a motivation of studying our considered general setting
pertains to estimation problems that involve epistemic and aleatory variables, which arise
when simulation generators are “corrupted”. More concretely, consider a target perfor-
mance measure that is an expected value of some random outputs (aleatory noise), which
are in turn generated from some input models. When the input models themselves are
estimated from extrinsic data (epistemic noise), then estimating the target performance
measure would involve handling the two sources of noises simultaneously, a common prob-
lem in stochastic simulation under input uncertainty (Xie et al., 2014; Zouaoui and Wilson,
2003; Song et al., 2014; Lam, 2016; Corlu et al., 2020; Barton et al., 2022). Here, when
the epistemic uncertainty is represented via a Bayesian approach, a natural strategy is to
estimate the posterior performance measure, in which X can represent the epistemic un-
certainty and Y the aleatory uncertainty. Typically, X follows a posterior distribution that
is known up to a normalizing constant, and may need to be generated using variational
inference (Wainwright and Jordan, 2008; Blei et al., 2017)1 or Markov chain Monte Carlo
(MCMC) with independent parallel chains (Rosenthal, 2000; Liu and Lee, 2017)2, so that
the realized samples follow a biased distribution q instead of π (Liu et al., 2017)3. Our work
primarily focuses on the case where the generated samples of X are independent, while

1. In variational inference (Blei et al., 2017), the family of variational distributions generally does not
contain the true posterior and thus the resulting approximate distribution is systemically biased/different
from the true posterior.

2. Parallel computing of MCMC has attracted attention due to the enhancement of parallel processing
units in GPU (Jacob et al., 2011). More precisely, here we mean that the n samples are the end point of
n independent Markov chains respectively where each Markov chain is initialized from an i.i.d. starting
point and run for the same amount of (possibly small) iterations; See Section 4.2 for an example. These
n samples are independent but may exhibit a high bias as pinpointed by Rosenthal (2000), which falls
into the scope of our study.

3. There are other problem settings where the biased distribution q also arises, such as in parametric
bootstrap or perturbed maximum a posteriori; See Liu et al. (2017) for details.
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other studies for the case where the samples are not necessarily independent (but without
studying supercanonical rates) can be found in, e.g., South et al. (2022b); Belomestny et al.
(2021) and references therein. On the other hand, Y could be generated from a black-box
simulator that lacks analytical tractability. Such problems with biased epistemic generators
and black-box aleatory noises comprise precisely the setup where DRSK is well-suited to
enhance the estimation rates.

To be more concrete, below we use a simple generic problem in stochastic simulation to
illustrate our problem setting. A more sophisticated example of a computer communication
network can be found in Section 4.2 in our numerical experiments.

Example 1 Consider an M/M/1 queue with known arrival rate 1 and unknown service rate
x. Since the ground-truth x is unknown, we may estimate x via Bayesian inference based on
historical data (say, the actual service time of several customers) and obtain its posterior
distribution up to a normalizing constant. By leveraging MCMC or variational inference,
only samples from an approximate posterior (instead of the exact posterior) can be drawn.
Suppose we are interested in the mean of the waiting time of the first 10 customers. To do
this, for each rate x, we simulate a fixed number of M/M/1 queues, obtain the waiting time
of the first 10 customers in each queue, and output their average f(x, y). Here y represents
the intrinsic noise (aleatory uncertainty) in the simulation model since the sample average
waiting time given x is still a random proxy for its expectation. The goal is to calculate
the expectation of f(X,Y ) under the posterior of X and the intrinsic noise of Y . Note,
moreover, that when using a large or even moderate number of simulated queues, the noise
level of Y given X in our estimate is small because of the averaging effect.

Finally, in terms of computational complexity, DRSK costs no more than kernel-based
CF and IS. The main computational expense is to solve a kernel ridge regression (KRR)
problem (as in kernel-based CF) and a convex quadratic program (as in kernel-based IS),
both of which involve a Gram matrix whose dimension is related to the number of the
samples. Although computational complexity is not the main focus of this work, we point
out that KRR is known to not scale well with the growth of the sample size due to the matrix
computation. Hence advanced computational techniques such as divide-and-conquer KRR
(Zhang et al., 2013) may be applied when the sample size is large.

In the following, we first introduce some background and review the kernel-based CF and
IS (Section 2). With these, we introduce our main DRSK estimator, present its convergence
guarantees and compare with the existing methods (Section 3). After that, we demonstrate
some numerical experiments to support our method (Section 4). Finally, we develop the
theoretical machinery for regularized least-square regression on RKHS needed in our analysis
(Section 5) and detail the proofs of our theorems (Section 6).

2 Background and Existing Methods

We first introduce our setting and notations (Section 2.1), then review the technique of
kernelization on Stein’s identity in an RKHS (Section 2.2), kernel-based CF (Section 2.3)
and IS (Section 2.4), followed by a discussion on other related work (Section 2.5).
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2.1 Setting and Notation

Consider a random vector (X,Y ) where X takes values in an open set Ω ⊂ R
d and Y takes

values in an open set Γ ⊂ R
p. Our goal is to estimate the expectation of f(X,Y ) under a

distribution (X,Y ) ∼ π, which we denote as θ := Eπ[f(X,Y )]. The point estimator will be
denoted as θ̂. We assume X admits a positive continuously differentiable marginal density
with respect to d-dimensional Lebesgue measure, which we denote as πX(x). Similarly, we
denote πY |X(y|x) as the conditional distribution of Y given X (which is not required to
have density).

Our premise is that we can run simulations and have access to a collection of i.i.d.
samples D = {(xi, f(xi, yi)) : i = 1, · · · , n} where (xi, yi) are drawn from some distribution
q (which might be unknown and distinct from π). It is sometimes useful to think of X as
the “dominating” factor in the simulation, contributing the most output variance, whereas
Y is an auxiliary noise and contributes a small variance (we will rigorously define these
in the theorems later). The small variance from Y can be justified in, e.g., the stochastic
simulation setting where typically the modeler simulates and then averages a large number
of simulation runs to estimate an expectation-type performance measure; Recall Example
1.

For convenience, for any measurable function g : Ω×Γ → R, we write µ(g) = Eπ[g(X,Y )],
and for any measurable function g : Ω → R, we write µX(g) = EπX

[g(X)]. If g is constructed
from training data, then µ(g) and µX(g) are understood as the conditional expectation of
g given training data. Let L2(πX) denote the space of measurable functions g : Ω → R

for which µX(g2) is finite, with the norm written as ‖ · ‖L2(πX). Let Ck(Ω,Rj) denote the

space of (measurable) functions from Ω to R
j with continuous partial derivatives up to order

k. The region Ω can be bounded or unbounded; in the former case, the boundary ∂Ω is
assumed to be piecewise smooth (i.e., infinitely differentiable).

Similarly, for any measurable function g : Ω×Γ → R, we write ν(g) = Eq[g(X,Y )], and
for any measurable function g : Ω → R, we write νX(g) = EqX [g(X)]. If g is constructed
from training data, then ν(g) and νX(g) are understood as the conditional expectation of
g given training data. Let L2(qX) denote the space of measurable functions g : Ω → R for
which νX(g2) is finite, with the norm written as ‖ · ‖L2(qX).

Throughout this paper, we assume that πX ∈ C1(Ω,R). The score function of the
density πX , u(x) := ∇x log πX(x) is well-defined and is computable for given xi’s. This
is equivalent to saying πX(x) has a parametric form that is known up to a normalizing
constant. We also assume that the target function f : Ω×Γ → R satisfies Eπ[f(X,Y )2] <∞.

2.2 Stein-Kernelized Reproducing Kernel Hilbert Space

We briefly introduce the technique of kernelization on Stein’s identity in an RKHS (Liu
et al., 2016; Oates et al., 2017).

We say that a real-valued function g(x) : Ω ⊂ R
d → R is in the Stein class of πX(x)

(Ley et al., 2017; Liu et al., 2016) if g(x) is continuously differentiable and satisfies

∫

Ω
∇x(πX(x)g(x))dx = 0 ∈ R

d.
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This condition can be easily checked using integration by parts or the divergence theorem;
in particular, it holds if πX(x)g(x) = 0, ∀x ∈ ∂Ω when the closure of Ω is compact, or
lim‖x‖→∞ πX(x)g(x) = 0 when Ω = R

d. The “canonical” Stein operator of πX , AπX
, acting

on the Stein class of πX(x) is a (linear) operator defined as

AπX
g(x) = u(x)g(x) + ∇xg(x) ∈ R

d. (1)

where u(x) := ∇x log πX(x) is the score function of πX(x) as introduced earlier. Note that
the general definition of the Stein operator typically depends on a class of functions that
Stein operator acts on (Gaunt et al., 2019); Yet, if this class of functions is exactly the Stein
class of πX(x), the “canonical” Stein operator is defined uniquely by (1) as suggested by
previous studies (Stein et al., 2004; Liu et al., 2016; Ley et al., 2017; Mijoule et al., 2018).

For any g(x) in the Stein class of πX(x), we have the well-known Stein’s identity (Liu
et al., 2016; Mijoule et al., 2018) as follows:

EπX
[AπX

g(X)] = 0 (2)

since ∇x(πX(x)g(x)) =
(

u(x)g(x) + ∇xg(x)
)

πX(x). In addition, a vector-valued function
g(x) = [g1(x), · · · , gd′(x)] is said to be in the Stein class of πX(x) if every gi, ∀i ∈ [d′] is in
the Stein class of πX(x).

Recall that a Hilbert space H with an inner product 〈·, ·〉 : H × H → R is a RKHS if
there exists a symmetric positive definite function k : Ω × Ω → R, called a (reproducing)
kernel, such that for all x ∈ Ω, we have k(·, x) ∈ H and for all x ∈ Ω and h ∈ H,
we have h(x) = 〈h(·), k(·, x)〉. A kernel k(x, x′) is said to be in the Stein class of πX if
k(x, x′) ∈ C2(Ω × Ω,R), and both k(x, ·) and k(·, x′) are in the Stein class of πX for any
fixed x, x′. Note that if k(x, x′) is in the Stein class of πX , so is any h ∈ H (Liu et al., 2016).

Suppose k(x, x′) is in the Stein class of πX . Then it is easy to see that ∇x′(πX(x′)k(·, x′))
is also in the Stein class of πX for any x′ (Liu et al., 2016):

∫

Ω
∇x

(

πX(x)∇x′(πX(x′)k(x, x′))
)

dx = ∇x′

(

πX(x′)

∫

Ω
∇x(πX(x)k(x, x′))dx

)

= 0 ∈ R
d×d

since k(·, x′) is in the Stein class of πX for any x′. Taking the trace of the matrix

trace
(

∇x

(

πX(x)∇x′(πX(x′)k(x, x′))
))

,

we get the following kernelized version of Stein’s identity (cf. (2)):

EX∼πX
[k0(X,x

′)] = 0, ∀x′ ∈ Ω (3)

where k0(x, x
′) is a new kernel function defined via

k0(x, x
′) := ∇x · ∇x′k(x, x′) + u(x) · ∇x′k(x, x′) + u(x′) · ∇xk(x, x′) + u(x) · u(x′)k(x, x′).

Let H0 be the RKHS related to k0(x, x
′). Then all the functions h(x) in H0 are or-

thogonal to πX(x) in the sense that EπX
[h(X)] = 0 (Liu and Lee, 2017). This proposition

is fundamental in the construction of Stein-kernelized CFs. It is easy to check that the
commonly used radial basis function (RBF) kernel k(x, x′) = exp(− 1

h2 ‖x − x′‖22) is in the
Stein class for continuously differentiable densities supported on R

d.
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In addition that the kernel k is in the Stein class, we also assume the gradient-based
kernel k0 satisfies supx∈Ω k0(x, x) < ∞. In this paper, we always assume H0 satisfies these
two conditions. For instance, the RBF kernel k(x, x′) = exp(− 1

h2 ‖x − x′‖22) satisfies the
above two conditions for continuously differentiable densities supported on R

d whose score
function u(x) is of polynomial growth rate.

Next, let C denote the RKHS of constant functions with kernel kC(x, x′) = 1 for all
x, x′ ∈ Ω. The norms associated to C and H0 are denoted by ‖ · ‖C and ‖ · ‖H0 respectively.
H+ = C + H0 denotes the set {c + ψ : c ∈ C, ψ ∈ H0}. Equip H+ with the structure
of a vector space, with addition operator (c + ψ) + (c′ + ψ′) = (c + c′) + (ψ + ψ′) and
multiplication operator λ(c+ ψ) = (λc) + (λψ), each well-defined due to uniqueness of the
representation f = c + ψ, f ′ = c′ + ψ′ with c, c′ ∈ C and ψ,ψ′ ∈ H0. It is known that H+

can be constructed as an RKHS with kernel k+(x, x′) := kC(x, x′)+k0(x, x
′) and with norm

‖f‖2H+
:= ‖c‖2C + ‖ψ‖2H0

(Berlinet and Thomas-Agnan, 2011). Let κ := supx∈Ω

√

k+(x, x).
Note that κ <∞ since supx∈Ω k0(x, x) <∞.

Finally, we remark that different choices of the kernel k lead to different constructions
of the RKHS H+, and may lead to different performance of subsequent approaches since
their performance depends on the regularity of the ground-truth regression function in the
space H+. An ideal requirement is that H+ should embody the ground-truth regression
function.

2.3 Control Functionals

Control functional (CF), or more precisely Stein-kernelized control functional, first intro-
duced by Oates et al. (2017) and Oates et al. (2019), is a systematically constructed class of
control variates for variance reduction (In fact, CF can also partially perform bias reduction
as we will show in Section 3). Specifically, CF constructs a function sm(·) applied on X
such that µX(sm) is known, and that f(X,Y )− sm(X) has a very low variance so that the
CF-adjusted sample

f(X,Y ) − sm(X) + µX(sm)

is supercanonical for estimating Eπ[f(X,Y )]. This function sm(·) is constructed as a func-
tional approximation for f(·) by utilizing a training set of samples, where the function lies
in the RKHS H+ constructed in Section 2.2 which has known mean under the distribution
π.

In more detail, following Oates et al. (2017), we divide the data D into two disjoint
subsets as D0 = {(xi, yi)}mi=1 and D1 = {(xi, yi)}ni=m+1, where 1 ≤ m < n. D0 is used to
construct a function sm(·) ∈ L2(πX) that is a partial approximation to f (that only depends
on x). sm(x) is given by the following regularized least-square (RLS) functional regression
on the RKHS H+, also known as kernel ridge regression (KRR):

sm(x) := arg min
g∈H+







1

m

m
∑

j=1

(f(xj , yj) − g(xj))
2 + λ‖g‖2H+







where λ > 0 is a regularization parameter which typically depends on the cardinality of the
data set D0. Note that in CF, the RKHS space H+ instead of H0 is the hypothesis class

6



Doubly Robust Stein-Kernelized Monte Carlo Estimator

used in the KRR because H0 only contains functions with mean zero that cannot effectively
approximate the function f with a general mean. Consider the function

fm(x, y) = f(x, y) − sm(x) + µX(sm). (4)

Then the CF estimator is given by a sample average of fm(·, ·) on D1, i.e.,

θ̂CF :=
1

n−m

n
∑

j=m+1

fm(xj , yj).

If (xi, yi) are i.i.d. drawn from the original distribution π, it is clear that we have
unbiasedness, since Eπ[θ̂CF |D0] = µ(fm) = θ for any given D0 and hence Eπ[θ̂CF ] = θ. On
the other hand, suppose our data D are drawn from a distribution q which may be different
from the original distribution π. Then given D0 (and thus given sm), one component
fm(X,Y ) is in general biased for θ and the resulting CF by taking their average can suffer
as a result.

It is well known in the KRR literature that the sm can be written explicitly in a closed
form. We will review this result in Section 6.1 and in particular, rewrite the existing closed-
form solution from Oates et al. (2017) in terms of k+ rather than k0. In summary, CF is
described in Algorithm 1. In addition, Oates et al. (2017) suggested a simplified version
of CF, called the simplified CF estimator, which is simply the µX(sn) by setting m = n in
Algorithm 1. This estimator is described in Algorithm 2 for the sake of completeness.

2.4 Black-Box Importance Sampling

Another method derived from the kernelization of Stein’s identity is black-box importance
sampling (BBIS) introduced by Liu and Lee (2017), which has been shown to be an effective
approach for both variance and bias reduction. This method can be viewed as a relaxation of
conventional IS, in that it assigns weights over the samples assuming that the data are drawn
from a sampling distribution q in the black box, i.e., with no knowledge on the analytical
form of q. In this setting, standard importance weights cannot be calculated because the
likelihood ratio is unknown. In the situation where the noise Y does not appear, the black-
box importance weights are optimized based on a convex quadratic minimization problem:

arg min
w

{wTK0w : w ≥ 0, wT1 = 1} (5)

where 1 = (1, 1, · · · , 1) and K0 is the kernel matrix with respect to the RKHS H0 con-
structed in Section 2.2 which contains functions with mean zero under the distribution πX .
Suppose w is the (unknown) likelihood ratio between πX and qX , i.e., wi = 1

n
πX(xi)
qX(xi)

. Then

Exi∼qX [wik0(xi, xj)wj ] =
1

n
Exi∼πX

[k0(xi, xj)wj ] = 0

for any xj since the kernel function has mean zero under πX ; see (3). In addition, we have
EqX [wT1] = 1. Therefore the quadratic form achieves the minimum mean 0 under qX when
w is the likelihood ratio, which intuitively justifies (5).
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Algorithm 1: Stein-Kernelized Control Functional (CF)

Goal: Estimate θ := Eπ[f(X,Y )];
Input: A set of i.i.d. samples D = {(xj , zj = f(xj , yj))}j=1,··· ,n drawn from some
distribution q, the reproducing kernel k0 of H0 and k+ = k0 + 1 of H+;

Procedure: (1) We divide the dataset D into two disjoint subsets as
D0 = {(xi, f(xi, yi))}mi=1 and D1 = {(xi, f(xi, yi))}ni=m+1, where 1 ≤ m < n;

(2) D0 is used to construct the CF-adjusted sample

fm(x, y) = f(x, y) − sm(x) + µX(sm).

Let
ẑ = (f(x1, y1), · · · , f(xm, ym))T ,

K+ = (k+(xi, xj))i,j=1,··· ,m,

k̂+(x) = (k+(x1, x), · · · , k+(xm, x))T ,

β = (K+ + λmI)−1ẑ.

Then sm(x) = βT k̂+(x) and µX(sm) = βT1.
Output: CF estimator

θ̂CF :=

n
∑

j=m+1

1

n−m
fm(xj , yj).

Algorithm 2: Simplified CF Estimator (SimCF)

Goal: Estimate θ := Eπ[f(X,Y )];
Input: A set of i.i.d. samples D = {(xj , zj = f(xj , yj))}j=1,··· ,n drawn from some
distribution q, the reproducing kernel k0 of H0 and k+ = k0 + 1 of H+;

Procedure: Let
ẑ = (f(x1, y1), · · · , f(xn, yn))T ,

K+ = (k+(xi, xj))i,j=1,··· ,n,

k̂+(x) = (k+(x1, x), · · · , k+(xn, x))T ,

β = (K+ + λnI)−1ẑ.

Then µX(sn) = βT1.
Output: Simplified CF estimator

θ̂SimCF := µX(sn).
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We provide more details in the general situation. First, we define the empirical kernelized
Stein discrepancy (KSD) between the weighted empirical distribution of the samples and
πX :

S({xj , wj}, πX) =
∑

j,k∈D

wjwkk0(xj , xk) = wTK0w.

where
K0 = (k0(xj , xk))j,k∈D

is the n× n kernel matrix constructed on the entire data set D. The black-box importance
weights then form the optimal solution to the following convex quadratic optimization
problem (which can be solved efficiently):

ŵ = arg min
w







S({xj , wj}, πX), s.t.

n
∑

j=1

wj = 1, 0 ≤ wj ≤
B0

n







(6)

where B0 is a pre-specified bound that will be provided in the subsequent theorems. Here,
the upper bound B0 on the weights is a new addition compared to the original formulation
in Liu and Lee (2017), and is needed to control the MSE when there is the noise term Y .
The BBIS estimator is given by a weighted average of f(·, ·) on D, i.e.,

θ̂IS :=

n
∑

j=1

ŵjf(xj , yj).

In summary, BBIS is described in Algorithm 3.

Algorithm 3: Modified Black-Box Importance Sampling (BBIS)

Goal: Estimate θ := Eπ[f(X,Y )];
Input: A set of i.i.d. samples D = {(xj , zj = f(xj , yj))}j=1,··· ,n drawn from some
distribution q, the reproducing kernel k0 of H0;

Procedure: Let
K0 = (k0(xi, xj))i,j=1,··· ,n,

and ŵ is the optimal solution to the following quadratic optimization problem

ŵ = arg min
w







wTK0w, s.t.
n
∑

j=1

wj = 1, 0 ≤ wj ≤
B0

n







. (7)

If the noise Y does not exist, we simply set B0 = +∞. Otherwise, set B0 = 2B for
the canonical rate and B0 = 4B for a supercanonical rate (see Assumption 4 for
the definition of B and Theorem 8 for details).

Output: BBIS estimator

θ̂IS :=
n
∑

j=1

ŵjf(xj , yj).
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2.5 Related Work

To close this section, we discuss some other related literature. Variance and bias reduction
has been a long-standing topic in Monte Carlo simulation. Two widely used methods are
control variates and importance sampling (Chapter 4 in Glasserman (2003), Chapter 5 in
Asmussen and Glynn (2007), Chapter 5 in Rubinstein and Kroese (2016)). The control
variate method reduces variance by adding an auxiliary variate with known mean to the
naive Monte Carlo estimator (Nelson, 1990). The construction of this auxiliary variable can
follow multiple approaches. In the classical setup, a fixed number of control variates are
linearly combined, with the linear coefficients constructed by ordinary least squares (Glynn
and Szechtman, 2002). This approach maintains the canonical rate in general. Beyond this,
one can add a growing number of control variates (relative to the sample size) to get a
faster rate (Portier and Segers, 2018). The linear coefficients can also be obtained by using
regularized least squares to increase accuracy (South et al., 2022a; Leluc et al., 2021). These
methods require a pre-specified collection of well-behaved control variates (e.g., the control
variates are linearly independent or dense in a function space), which may not always be
easy to construct in practice.

To generalize the linear form and possibly obtain a supercanonical rate, the control
variate can be constructed via a fitted function learned from data. This function can be
constructed using adaptive control variates (Henderson and Glynn, 2002; Henderson and
Simon, 2004; Kim and Henderson, 2007). In order to have a supercanonical rate for adap-
tive control variate estimators, one of the key assumptions in these papers is the existence
of a “perfect” control variate (i.e., a control variate with zero variance), and the “perfect”
control variate can be approximated in an adaptive scheme. This assumption could be
unlikely to hold for some practical applications (Kim and Henderson, 2007). Another ap-
proach to construct the function is via L2 functional approximation (Maire, 2003). Maire
(2003) only focuses on the mono-dimensional function whose L2 expansion coefficients de-
crease at a polynomial rate. It is unknown how to extend this work to multi-dimensional
functions. Finally, the function can also be constructed, as described earlier, via RLS re-
gression (Oates et al., 2017) which provides a systematic approach to construct control
variates based on the kernelization of Stein’s identity. Compared with previous methods,
Oates et al. (2017) require less restrictive assumptions for supercanonical rates and avoid
adaptive tuning procedures.

Standard IS reduces variance by using an alternate proposal distribution to generate
samples, and multiplying the samples by importance weights constructed from the likelihood
ratios, or the Radon-Nikodym derivative, between the proposal and original distributions.
Likewise, it can also be used to de-bias estimates through multiplying by likelihood ratios
if the generating distribution is biased. IS has been shown to be powerful in increasing
the efficiency of rare-event simulation (Bucklew, 2013; Rubino and Tuffin, 2009; Juneja and
Shahabuddin, 2006; Blanchet and Lam, 2012). In contrast to conventional methods, BBIS
does not require the closed form of the likelihood ratio. We also note that both CF and
BBIS can be viewed as versions of the weighted Monte Carlo method since both of them
can be written in the form of a linear combination of f(xi), while their weights are obtained
in different ways. Other methods to construct weighted Monte Carlo can be found in, e.g.,
Glasserman and Yu (2005); Owen and Zhou (2000).
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Besides the Monte Carlo literature, CF utilizes a combination of two ideas: kernel ridge
regression (KRR) and the Stein operator. The theory of KRR has been well developed
in the past two decades. Its modern learning theory has been proposed in Cucker and
Smale (2002a) and Cucker and Smale (2002b), and further strengthened in Smale and Zhou
(2004), Smale and Zhou (2005) and Smale and Zhou (2007). Cucker and Zhou (2007) provide
comprehensive documentation on this topic. Most of these works assume that the input
space is a compact set. Sun and Wu (2009) further study KRR on non-compact metric
spaces, which provides the mathematical foundation of this paper. There are multiple
studies on extending the standard KRR. For instance, Sun and Wu (2010) study KRR
with dependent samples. Christmann and Steinwart (2007); Debruyne et al. (2008) study
consistency and robustness of kernel-based regression. To relieve the computation cost of
KRR estimators for large datasets, Rahimi and Recht (2008) propose the random Fourier
feature sampling to speed up the evaluation of the kernel matrix, and Zhang et al. (2013)
propose a divide-and-conquer KRR to decompose the computation.

The second idea used by CF is the kernelization of Stein’s identity, i.e., applying the
Stein operator to a “primary” RKHS. The resulting RKHS automatically satisfies the zero-
mean property under π which lays the foundation for constructing suitable control variates.
This idea has been used and followed up in Oates et al. (2017, 2019); Lam and Zhang
(2019); South et al. (2022b), and finds usage beyond control variates, including the Stein
variational gradient descent (Liu and Wang, 2016; Liu, 2017; Liu et al., 2017; Han and
Liu, 2018; Wang and Liu, 2019), the kernel test for goodness-of-fit (Chwialkowski et al.,
2016; Liu et al., 2016) and BBIS (Liu and Lee, 2017; Hodgkinson et al., 2020) that we have
described earlier.

3 Doubly Robust Stein-Kernelized Estimator

We propose an enhancement of CF and BBIS that can simultaneously perform both variance
and bias reduction. We call it the doubly robust Stein-kernelized (DRSK) estimator. In
brief, we divide the data D into two disjoint subsets as D0 = {(xi, yi)}mi=1 and D1 =
{(xi, yi)}ni=m+1, where 1 ≤ m < n. Based on the first subset D0, we construct the same
regression function sm(·) ∈ L2(πX) to derive the CF-adjusted sample fm(x, y) as in Section
2.3 for variance reduction. Based on the second subset D1, we generate the black-box
importance weights ŵ as in Section 2.4 for bias reduction. Finally, we take the weighted
average of fm(xj , yj) with weights ŵ on D1 to get the DRSK estimator. The detailed
procedure is described in Algorithm 4.

The terminology “doubly robust” in DRSK is borrowed from doubly robust estimators
in off-policy learning (Dud́ık et al., 2011, 2014; Jiang and Li, 2016; Farajtabar et al., 2018).
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In fact, we can rewrite the DRSK estimator as

θ̂DRSK :=
n
∑

j=m+1

ŵjfm(xj , yj)

=

n
∑

j=m+1

ŵj(f(xj , yj) − sm(xj) + µX(sm))

=µX(sm) +

n
∑

j=m+1

ŵj(f(xj , yj) − sm(xj)) (8)

The doubly robust estimator (Dud́ık et al., 2014) is known to be a combination of two
approaches: direct method (DM) and inverse propensity score (IPS). The second term in
(8) is an importance-sampling weighted average of the residuals from the regression, which
is similar to the part of IPS in doubly robust estimators. The first term in (8) is similar to
the DM by using sm as an approximation of f :

n
∑

j=m+1

1

n−m
sm(xj)

except that in our setting, there is no need to estimate the expectation of sm under π since
sm ∈ H+ has a known expectation by our construction. Note that the first term in (8) is
essentially the simplified CF estimator suggested by Oates et al. (2017) (Algorithm 2). In
this sense, CF is similar to DM.

3.1 Main Findings and Comparisons

We summarize our main findings and comparisons of DRSK with the existing CF and BBIS
methods. To facilitate our comparisons, recall that in Section 2.1 we have proposed a
general problem setting where input samples are both partially known (meaning we have a
noise term Y ) and biased (meaning (X,Y ) may not be drawn from the original distribution
π). Here, we elaborate and consider the following four scenarios in roughly increasing level
of complexity, where the last case corresponds to the general setting introduced earlier:
(1) “Standard”: there is no noise term Y and X is drawn from π.
(2) “Partial”: there is a noise term Y and (X,Y ) is drawn from π.
(3) “Biased”: there is no noise term Y and X is drawn from q.
(4) “Both”: there is a noise term Y and (X,Y ) is drawn from q.

We will frequently use the abbreviations “Standard”, “Partial”, “Biased”, “Both” to
refer to each case. Tables 1 summarizes the MSE rates of three different methods in each
scenario with some common assumptions specified in Section 3.2. In particular, the ground-
truth regression function f̄ := Eπ[f(X,Y )|X = x] ∈ Range(Lr

q) with 1
2 ≤ r ≤ 1 indicating

the regularity of f̄ in the space H+ where the positive self-adjoint operator Lq is formally
defined later in (10). M0 is given in Assumptions 2 that is the bound on the noise level of
Y given X.

Table 1 conveys the following:

1. Except that the noise part remains at the canonical rate, CF has a supercanonical rate in
the “Standard” and “Partial” cases, but subcanonical in the “Biased” and “Both” cases

12
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Algorithm 4: Doubly Robust Stein-Kernelized Estimator (DRSK)

Goal: Estimate θ := Eπ[f(X,Y )];
Input: A set of i.i.d. samples D = {(xj , zj = f(xj , yj))}j=1,··· ,n drawn from some
distribution q, the reproducing kernel k0 of H0 and k+ = k0 + 1 of H+;

Procedure: (1) We divide the dataset D into two disjoint subsets as
D0 = {(xi, f(xi, yi))}mi=1 and D1 = {(xi, f(xi, yi))}ni=m+1, where 1 ≤ m < n;

(2) D0 is used to construct the CF-adjusted sample

fm(x, y) = f(x, y) − sm(x) + µX(sm).

Let
ẑ = (f(x1, y1), · · · , f(xm, ym))T ,

K+ = (k+(xi, xj))i,j=1,··· ,m,

k̂+(x) = (k+(x1, x), · · · , k+(xm, x))T ,

β = (K+ + λmI)−1ẑ.

Then sm(x) = βT k̂+(x) and µX(sm) = βT1. (See Section 6.1 for details.)
(3) D1 is used to construct the importance weights ŵ. Let

K0 = (k0(xi, xj))i,j=m+1,··· ,n,

and ŵ is the optimal solution to the following quadratic optimization problem

ŵ = arg min
w







wTK0w, s.t.
n
∑

j=m+1

wj = 1, 0 ≤ wj ≤
B0

n−m







(9)

If the noise Y does not exist, we simply set B0 = +∞. Otherwise, set B0 = 2B for
the canonical rate and B0 = 4B for a supercanonical rate (see Assumption 4 for
the definition of B and Theorems 1 and 2 for details).

Output: DRSK estimator

θ̂DRSK :=
n
∑

j=m+1

ŵjfm(xj , yj).
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Table 1: This table displays the MSE rates of three different methods in each scenario with
some common assumptions specified in Section 3.2. The ground-truth regression
function f̄ := Eπ[f(X,Y )|X = x] ∈ Range(Lr

q) with 1
2 ≤ r ≤ 1. M0 is given in

Assumptions 2.
MSE Standard Partial Biased Both

CF (Ass. 1, 2, 3) O(n−1−r) O(n−1−r) +M0n
−1 O(n−r) O(n−r) +M0

BBIS (Ass. 1, 2, 4) O(n−1) O(n−1) O(n−1) O(n−1)

BBIS (Ass. 1, 2, 4, 5) o(n−1) o(n−1) +M0n
−1 o(n−1) o(n−1) +M0n

−1

DRSK (Ass. 1, 2, 4) O(n−
1
2
−r) O(n−

1
2
−r) +M0n

−1 O(n−
1
2
−r) O(n−

1
2
−r) +M0n

−1

DRSK (Ass. 1, 2, 4, 5) o(n−
1
2
−r) o(n−

1
2
−r) +M0n

−1 o(n−
1
2
−r) o(n−

1
2
−r) +M0n

−1

when r < 1. In the following, the supercanonical and subcanonical rates are referred to
as the property on the “dominating” factor X with the convention that the noise Y is
at the canonical rate.

2. BBIS in all cases has the canonical rate under a weak assumption and a supercanonical
rate under a strong assumption (Assumption 5).

3. DRSK always has a supercanonical rate either when r > 1
2 or under a strong assumption

(Assumption 5).

4. Suppose r > 1
2 . Then DRSK is strictly faster than CF and BBIS in the “Biased” and

“Both” cases, under both weak and strong assumptions. Moreover, DRSK is strictly
faster than BBIS in any case, under both weak and strong assumptions.

CF can handle extra noise quite well (in the “Standard” and “Partial” cases) since it
takes advantage of the functional approximation of f , but only partially reduce bias. In the
“Biased” and “Both” cases, a single component fm(X,Y ) (with finite m) in CF is generally
a biased estimator of θ. The uniform weight 1

n−m in the final step of constructing CF cannot
reduce the bias in fm − θ effectively, which leads to underperformance in the “Biased” and
“Both” cases. Therefore, the simplified CF estimator (Algorithm 2) could be a better
alternative by omitting the final step, as recommended by Oates et al. (2017). On the other
hand, our results also show that a single fm(X,Y ) is an asymptotically unbiased estimator
of θ (at the rate of O(m−r) when m→ ∞), indicating the bias reduction perspective of CF.

BBIS performs efficiently for bias reduction in general, although no higher order than
o(n−1) is guaranteed theoretically. The validity of reducing the MSE in the BBIS estimator
is entirely due to the black-box importance weights, ignoring the information of the function
f and the output data f(xi, yi). This implies that a more “regular” function f in the
RKHS may not be able to improve the rate in BBIS as CF does. Besides, the original BBIS
estimator faces an additional challenge of not controlling the noise term (though the latter
is not shown in Table 1).

Therefore, CF and BBIS both encounter difficulties when applying in the “Both” case.
Our DRSK estimator improves CF and BBIS by taking advantage of both estimators. The
weighting part in DRSK utilizes knowledge of πX to diminish the bias as in BBIS, and
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the control functional part in DRSK utilizes the information of f(xj , yj) to learn a more
“concentrated” function than f(x) as in CF. As shown in Table 1, it can reduce the overall
variance and bias efficiently.

3.2 Assumptions

To present our main theorems rigorously, we will employ the following assumptions.

Assumption 1 (Covariate shift assumption) πY |X(y|x) = qY |X(y|x).

Here we do not require πY |X(y|x) to be known or to be a continuous probability distribu-
tion. Covariate shift assumption holds, for instance, 1) when X is independent of Y , or
2) in stochastic simulation problems where the aleatory noise in the simulation output Y ,
conditional on the input parameter X, is not affected by the epistemic noise incurred by
the input parameter estimation (e.g., X is estimated via historical data independent of the
simulation model). Example 1 in Section 1 and the computer communication network in
Section 4.2 provide concrete examples where covariate shift assumption holds. Though not
directly relevant to our work, we note that the assumption is standard in transfer learning
or covariate shift problems (Gretton et al., 2009; Yu and Szepesvári, 2012; Kpotufe and
Martinet, 2021; Li et al., 2020). We remark that under this assumption, the ground-truth
regression function fπ(x) := Eπ[f(X,Y )|X = x] and fq(x) := Eq[f(X,Y )|X = x] are the
same so we denote it as f̄ . We will use crucially the decomposition

f(X,Y ) = f̄(X) + ε(X,Y )

where f̄(X) can be viewed as the contribution of the fluctuation on f from X, and ε(X,Y ) =
f(X,Y ) − f̄(X) is the error term. Note that, by definition, we have

E[ε(X,Y )] = 0, E[ε(X,Y )|X] = 0, E[ε(X,Y )f̄(X)] = 0

where the expectation can be taken with respect to π or q under Assumption 1. Next, we
introduce a basic assumption on the error term.

Assumption 2 Eq[ε(X,Y )2] ≤M0 <∞.

The following assumptions are considered in Liu and Lee (2017) for the biased input
samples.

Assumption 3 Ex∼qX [(πX(x)
qX(x) )2] = Ex∼πX

[πX(x)
qX(x) ] <∞.

Assumption 4 πX(x)
qX(x) ≤ B <∞ ∀x ∈ Ω.

Note that this assumption implies that

Ex∼qX

[

(
πX(x)

qX(x)
)2k0(x, x)

]

<∞,

Ex,x′∼qX

[

(

πX(x)

qX(x)

πX(x′)

qX(x′)
k0(x, x

′)

)2
]

<∞.
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The reason is that we assume supx∈Ω k0(x, x) < ∞ in our construction of H0 and we note

the fact that |k0(x, x′)| ≤ (k0(x, x)k0(x
′, x′))

1
2 . Therefore, Assumption 3 is the same as

Assumption B.1 in Liu and Lee (2017). Moreover, Assumption 4 implies Assumption 3.

Assumption 5 Suppose k0(x, x
′) has the following eigen-decomposition

k0(x, x
′) =

∞
∑

l=1

λlφl(x)φl(x
′),

where {λl}∞l=1 are the positive eigenvalues sorted in non-increasing order, and {φl}∞l=1 are the
eigenfunctions orthonormal w.r.t. the distribution πX(x), i.e., Ex∼πX

[φl(x)φl′(x)] = 1l=l′.
We assume that trace(k0(x, x

′)) =
∑∞

l=1 λl <∞ and supx∈Ω,l |φl(x)| <∞.

Assumption 4 plus Assumption 5 is the same as Assumption B.4 in Liu and Lee (2017). In
particular, we notice that

varx∼qX

[

(
πX(x)

qX(x)
)2φl(x)φl′(x)

]

≤
(

sup
x∈Ω

πX(x)

qX(x)

)4(

sup
x∈Ω,l

|φl(x)|
)4
.

To simplify notations, we denote M2 as the upper bounds in Assumptions 4 and 5, i.e.,

sup
x∈Ω

πX(x)

qX(x)
≤M2, sup

x∈Ω,l
|φl(x)| ≤M2, varx∼qX

[

(
πX(x)

qX(x)
)2φl(x)φl′(x)

]

≤M2

where the single value M2 is introduced only for the convenience of our proof.

Finally, the integral operator Lq : L2(qX) → L2(qX) is defined as follows:

(Lqg)(x) :=

∫

Ω
k+(x, x′)g(x′)qX(x′)dx′, x ∈ Ω, g ∈ L2(qX). (10)

This operator can be viewed as a positive self-adjoint operator on L2(qX). We can define
Lπ : L2(πX) → L2(πX) in a similar way. Note that the power function of Lq, L

r
q, is well-

defined as a positive self-adjoint operator as Lq is a positive self-adjoint operator. Denote
Range(Lr

q) the range of Lr
q on the domain L2(qX). Note that a larger r ≥ 1

2 in Range(Lr
q)

corresponds to a more regular (and smaller) subspace of L2(qX): Range(Lr1
q ) ⊂ Range(Lr2

q )
whenever r1 ≥ r2. Conventionally, we write L−r

q g ∈ L2(qX) if (1) g ∈ Range(Lr
q), (2) L−r

q g
is an element in the preimage set of g under the operator Lr

q on the domain L2(qX). Further
details about the operator Lr

q can be found in Section 5.

3.3 Convergence of Doubly Robust Stein-Kernelized Estimator

We are now ready to present the main theorems for our DRSK estimator (Algorithm 4).
All the theorems are understood in the following way: If the noise term Y does not exist,
then we drop Assumptions 1-2 (since they are automatically true) and set M0 = 0 in the
results; If π = q, then we drop Assumptions 3-4 (since they are automatically true) with
B = 1.
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Theorem 1 (DRSK in all cases under weak assumptions) Suppose Assumptions 1,

2, and 4 hold. Take an RLS estimate with λ = m− 1
2 and B0 = 2B in (9). Let m = αn where

0 < α < 1. If f̄ ∈ Range(Lr
q) (12 ≤ r ≤ 1), then Eq[(θ̂DRSK − θ)2] ≤ C1(Cfn

− 1
2
−r +M0n

−1)
where Cf = ‖L−r

q f̄‖2L2(qX) (which is a constant indicating the regularity of f̄ in H+), C1

only depends on α, κ,B.

Next we can obtain a better result with a stronger assumption.

Theorem 2 (DRSK in all cases under strong assumptions) Suppose Assumptions 1,

2, 4, and 5 hold. Take an RLS estimate with λ = m− 1
2 and B0 = 4B in (9). Let

m = αn where 0 < α < 1. If f̄ ∈ Range(Lr
q) (12 ≤ r ≤ 1), then Eq[(θ̂DRSK − θ)2] ≤

C1(Cf,nn
− 1

2
−r +M0n

−1) where Cf,n = ‖L−r
q f̄‖2L2(qX) · o(1) as n → ∞, C1 only depends on

α, κ,B.

Theorem 2 shows that except that the noise part remains at the canonical rate, DRSK
achieves effectively a supercanonical rate in all cases.

We make a remark on the conditions f̄ ∈ Range(Lr
q) (12 ≤ r ≤ 1) appearing in Theorems

1 and 2 (as well as the subsequent theorems). The requirement of r = 1
2 is essentially

equivalent to saying that f̄ (potentially with a difference on a set of measure zero with
respect to the measure qX) is in the RKHS H+; See Section 5 for technical details. A larger
r ≥ 1

2 corresponds to a more restrictive assumption that f̄ is in a more regular (and smaller)
subspace of H+, and leads to a better MSE rate in our theorems (which is consistent with
intuition). Therefore, as long as f̄ ∈ H+, we can assert r ≥ 1

2 and apply Theorems 1 and 2.
In addition, we pinpoint that f̄ ∈ H+ is a common and necessary assumption in kernel-

based CF and IS (Oates et al., 2017, 2019; Liu and Lee, 2017). The KRR theory (Sun
and Wu, 2009) indicates that the approximation and estimation error of KRR can be as
large as O(1) if f̄ is merely in a large space like L2(qX). Therefore, we can foresee that
the supercanonical rate can be achieved only when the ground-truth regression function is
in a small regular space like the Stein-Kernelized RKHS. It is generally not easy to check
f̄ ∈ Range(Lr

q) or f̄ ∈ H+ in practice as the ground-truth regression function f̄ is typically
unknown. Nevertheless, our algorithms can still be applied and the experimental results in
Sections 4.1 and 4.2 show that our performance could still be superior despite the challenge
in assumption verification.

Another version of Theorem 1 (and similarly, Theorem 2) to replace the requirement
f̄ ∈ Range(Lr

q) is to assume that there exists a ε > 0 and g ∈ Range(Lq), such that ‖f̄ −
g‖2H+

≤ ε. This assumption holds, for instance, if f̄ ∈ Range(L
1
2
q ) (Proposition 16 in Section

5). Then under this assumption, Eq[(θ̂DRSK−θ)2] ≤ C1(‖L−1
q g‖2L2(qX)n

− 3
2 +M0n

−1+εn−1)
where C1 only depends on α, κ,B.

A proof outline of Theorems 1 and 2 is in Section 3.6. Detailed proofs are given in
Section 6.3.

3.4 Convergence of Control Functional

We present our main results for CF (Algorithm 1) including the results for SimCF (Algo-
rithm 2), which provide comparisons to our results for DRSK.
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Theorem 3 (CF in the “Standard” case) Take an RLS estimate with λ = m− 1
2 . Let

m = αn where 0 < α < 1. If f ∈ Range(Lr
π) (0 ≤ r ≤ 1), then Eπ[(θ̂CF −θ)2] ≤ C1Cfn

−1−r

where Cf = ‖L−r
π f‖2L2(πX) (which is a constant indicating the regularity of f in H+), and

C1 only depends on α, κ. In particular, Eπ[(µX(sm) − θ)2] ≤ C1Cfm
−r.

Theorem 4 (CF in the “Partial” case) Suppose Assumption 2 holds and take an RLS

estimate with λ = m− 1
2 . Let m = αn where 0 < α < 1. If f̄ ∈ Range(Lr

π) (0 ≤ r ≤
1), then Eπ[(θ̂CF − θ)2] ≤ C1(Cfn

−1−r + M0n
−1) where Cf = ‖L−r

π f̄‖2L2(πX) (which is a

constant indicating the regularity of f̄ in H+), and C1 only depends on α, κ. In particular,
Eπ[(µX(sm) − θ)2] ≤ C1(Cfm

−r +M0).

Theorem 4 shows that in the “Partial” case, even if the noise Y is fully unknown, CF
applied on only X still improves the Monte Carlo rate except that the noise part remains
at the canonical rate. The same choice of λ is also suggested by Theorem 2 in Oates et al.
(2017). 4 Our refined study in Section 5 contributes to obtaining a better rate in Theorem
4 compared with Oates et al. (2017).

Theorem 5 (CF in the “Biased” case) Suppose Assumption 3 holds and take an RLS

estimate with λ = m− 1
2 . If f ∈ Range(Lr

q) (0 ≤ r ≤ 1), then Eq[(θ̂CF − θ)2] ≤ C1Cfm
−r

where Cf = ‖L−r
q f‖2L2(qX) (which is a constant indicating the regularity of f in H+), and

C1 only depends on κ, Ex∼πX
[πX(x)
qX(x) ]. In particular, Eq[(µX(sm) − θ)2] ≤ C1Cfm

−r.

Theorem 5 implies that the CF estimator retains consistency regardless of the generating
distribution of X, as long as this distribution is not too “far from” the target distribution in
the sense of a controllable likelihood ratio. This shows that CF can partially reduce the bias
in addition to variance reduction, yet it may be less favorable since a supercanonical rate
is not guaranteed theoretically. Note that the above bound has nothing to do with n −m
since in this case, a single fm(X,Y ) is not necessarily an unbiased estimator of θ and hence
taking the average of fm(xj , yj) may not improve the rate. Therefore it is reasonable to
take m = n to minimize the upper bound and use the simplified CF estimator (Algorithm
2) in this case.

Theorem 6 (CF in the “Both” case) Suppose Assumptions 1, 2, and 3 hold. Take an

RLS estimate with λ = m− 1
2 . Let m = αn where 0 < α < 1. If f̄ ∈ Range(Lr

q) (0 ≤ r ≤ 1),

then Eq[(θ̂CF − θ)2] ≤ C1(Cfn
−r + M0) where Cf = ‖L−r

q f̄‖2L2(qX) (which is a constant

indicating the regularity of f̄ in H+), and C1 only depends on α, κ, Ex∼πX
[πX(x)
qX(x) ]. In par-

ticular, Eq[(µX(sm) − θ)2] ≤ C1(Cfm
−r +M0).

Another version of Theorem 6 to replace the requirement f̄ ∈ Range(Lr
q) is to assume

that there exists a ε > 0 and g ∈ Range(Lq), such that ‖f̄ − g‖2L2(qX) ≤ ε. This assumption

holds, for instance, if f̄ ∈ H+
q

(the closure of H+ in the space L2(qX)) (Proposition 15 in

4. In general, λ > 0 is required to prevent overfitting and stabilize the inverse numerically by bounding the
smallest eigenvalues away from zero (Hastie et al., 2009; Welling, 2013).
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Section 5). Then under this assumption, Eq[(θ̂CF − θ)2] ≤ C1(‖L−1
q g‖2L2(qX)n

−1 + M0 + ε)

where C1 only depends on κ, Ex∼πX
[πX(x)
qX(x) ].

Detailed proofs of the above theorems can be found in Section 6.1.

3.5 Convergence of Black-Box Importance Sampling

We present the main theorems for BBIS (Algorithm 3) as follows. The first theorem in the
“Standard” and “Biased” cases (where the noise Y does not exist) is proved by Liu and Lee
(2017).

Theorem 7 (BBIS in “Standard” & “Biased” cases) Suppose f ∈ H+. BBIS θ̂IS
satisfies the following bounds (with B0 = +∞):
(a) Suppose Assumption 3 holds. Then Eq[(θ̂IS − θ)2] = O(n−1).

(b) Suppose Assumptions 4 and 5 hold. Then Eq[(θ̂IS − θ)2] = o(n−1).

In the “Partial” case and “Both” case, we have an extra noise term Y . Note that the
weights constructed in the BBIS only depends on the X factor, free of Y . Therefore the
noise cannot be controlled by the weights. To address this issue, we impose an upper bound
on each weight in (6) to ensure that the noise will not blow up.

Theorem 8 (BBIS in “Partial” & “Both” cases) Suppose Assumptions 1, 2, and 4
hold and f̄ ∈ H+. BBIS θ̂IS satisfies the following bounds:
(a) Take B0 = 2B in (6). Then Eq[(θ̂IS − θ)2] = O(n−1).

(b) Suppose Assumption 5 holds in addition. Take B0 = 4B in (6). Then Eq[(θ̂IS − θ)2] ≤
o(n−1) + 2M0B

2
0n

−1.

Note that f̄ ∈ H+ is essentially the same as f̄ ∈ Range(L
1
2
q ) in our setting (see Section

5 for details). Assuming f̄ in a more “regular” space such as Range(Lr
q) (r > 1

2) does
not improve the above rate since the construction of BBIS weights is independent of this
function. Consider a case where M0 is a relatively small number. Then the bound in
Theorem 7 part (b) essentially gives us a supercanonical rate

Eq[(θ̂IS − θ)2] = o(n−1).

There is a difference regarding the construction of weights between our Theorem 8 and
the original BBIS work, on the imposition of the upper bound B0

n on the weights in the
quadratic program. This is to guarantee that the error term ε is controlled to induce at
least the canonical rate, otherwise the error may blow up. This modification leads us to
redevelop results for BBIS. The detailed proof of Theorem 8 can be found in Section 6.2.

3.6 Proof Outline

We close this section by briefly outlining our proofs for the three estimators in the “Both”
case. Write f̄m(xj) := f̄(xj) − sm(xj) + µX(sm). To see Theorems 1 and 2 (and obtain

Theorem 8 along the way), we first express (θ̂DRSK − θ)2 as
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(θ̂DRSK − θ)2 =





n
∑

j=m+1

ŵj(f̄m(xj) + ε(xj , yj) − θ)





2

≤ 2









n
∑

j=m+1

ŵj(f̄m(xj) − θ)





2

+





n
∑

j=m+1

ŵjε(xj , yj)





2



≤ 2



‖f̄m − θ‖2H0
· S({ŵj , xj}, πX) +





n
∑

j=m+1

ŵjε(xj , yj)





2



where we have used the Cauchy-Schwarz inequality in both inequalities and additionally
the reproducing kernel property in the last inequality. By the construction of the RKHS,
we can readily see that

‖f̄m − θ‖2H0
≤ ‖f̄ − sm‖2H+

.

By the construction of ŵ and Assumption 2, we can prove that

Eq[(θ̂DRSK − θ)2] ≤ 2
(

Eq[‖f̄m − θ‖2H0
] · Eq[S({ŵj , xj}, πX)] +M0B

2
0(n−m)−1

)

.

≤ 2
(

Eq[‖f̄ − sm‖2H+
] · Eq[S({ŵj , xj}, πX)] +M0B

2
0(n−m)−1

)

. (11)

Therefore, the main task is to analyze two terms:

Eq[‖f̄ − sm‖2H+
] and Eq[S({ŵj , xj}, πX)].

Note that the first term measures the learning error between the true regression function
and the KRR function under the H+ norm. This term can be analyzed using the theory of
KRR in Section 5. The theory indicates that

Eq[‖f̄ − sm‖2H+
] = O(m−r+ 1

2 ). (12)

The second term is about the performance guarantee of black-box importance weights, and
could be analyzed by applying similar techniques from Liu and Lee (2017). However, since
we have modified the original BBIS algorithm by adding an additional upper bound on each
weight, we need to re-establish new results. This term will be analyzed in Section 6.2. Note
that analyzing this term provides us with the result for BBIS, Theorem 8, at the same time.
We will show that

Eq[S({ŵj , xj}, πX)] = O((n−m)−1) (Ass. 3) or o((n−m)−1) (Ass. 4, 5). (13)

Plugging (12) and (13) into (11), we obtain Theorems 1 and 2.

Next, to see Theorem 6, we look at one item fm(xj , yj) − θ in the summation and
separate the error term ε:

Eq[ν((fm − θ)2)] ≤ 3
(

Eq[νX((f̄ − sm)2)] + Eq[(µX(sm) − θ)2]) + Eq[ε
2]
)

20



Doubly Robust Stein-Kernelized Monte Carlo Estimator

For the second term, by applying Cauchy–Schwarz inequality, we have that

Eq[(µX(sm) − θ)2] ≤ Eq[νX((f − sm)2)]Eq

[

(

πX
qX

)2
]

.

Hence, in order to analyze fm(xj , yj) − θ, we only need to estimate

Eq[νX((f̄ − sm)2)].

This measures the learning error between the true regression function and the KRR function
under the L2 norm, which can be analyzed using the theory in Section 5. The theory
indicates that

Eq[νX((f̄ − sm)2)] = O(m−r). (14)

showing that a single fm(X,Y ) is an asymptotically unbiased estimator of θ (at the rate
of O(m−r) when m → ∞). Nevertheless, fm(X,Y ) with finite m is in general a biased
estimator of θ under the biased generating distribution q so it is not necessary that taking
the average in the final step of θ̂CF can enhance a single fm(X,Y ). In this case, Theorem
6 follows from (14).

4 Numerical Experiments

We conduct extensive numerical experiments to demonstrate the effectiveness of our method.
In addition to the CF, modified BBIS (which includes the original BBIS by setting B0 =
+∞, and which we refer to simply as BBIS in this section), and DRSK estimators described
in Algorithms 1, 3, 4 respectively, we consider two more estimators:

1. The DRSK-Reuse (DRSK-R) estimator: This estimator is similar to the DRSK es-
timator except that it reuses the entire dataset D (not only D0 or D1 in DRSK)
to construct the CF-adjusted sample fn(x, y) = f(x, y) − sn(x) + µX(sn) and the
importance weights ŵj (j = 1, · · · , n), so that the final DRSK-R estimator is given by

θ̂DRSK−R :=

n
∑

j=1

ŵjfn(xj , yj).

The reuse of D will cause some dependency between the CF-adjusted sample and the
weights. 5 Nevertheless, we will observe in experiments the high effectiveness of the
DRSK-R estimator in terms of reducing MSE.

2. The Simplified CF (SimCF) estimator, described in Algorithm 2.

5. For DRSK-R, although it is hard to theoretically analyze the mean squared error Eq[(θ̂DRSK−R − θ)2]
due to the dependency, it is indeed feasible to analyze the mean absolute error Eq[|θ̂DRSK−R − θ|]. In
fact, similarly as in (11), we can show that

(Eq[|θ̂DRSK−R − θ|])2 ≤ 2
(

Eq[‖f̄n − θ‖2H0
] · Eq[S({ŵj , xj}, πX)] +M0B

2
0n

−1)

where we use the fact that (Eq[‖f̄n − θ‖H0
·
√

S({ŵj , xj}, πX)])2 ≤ Eq[‖f̄n − θ‖2H0
] · Eq[S({ŵj , xj}, πX)]

by Cauchy-Schwarz inequality regardless of the dependency in f̄n and S({ŵj , xj}, πX). Therefore, the
upper bounds in Theorems 1 and 2 apply to (Eq[|θ̂DRSK−R − θ|])2.
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Note that the ground-truth population MSE, i.e.,

MSE := E[(θ̂ − θ)2]

where θ̂ is the estimator, cannot be computed in closed form due to the sophisticated
expression of θ̂. Therefore, we use the following alternative to compute the MSE. For
each data distribution and each size n, we simulate the whole procedure 50 times: At
each repetition j = 1, · · · , 50, we generate a new dataset of size n drawn from the data
distribution, and derive estimators θ̂i,j of the target parameter θ based on this dataset

where i = 1, · · · , 5 indicates the five considered approaches. Thus (θ̂i,j − θ)2 represents
the squared error in the j-th repetition. Then we regard the average of all squared errors
(empirical MSE) as the proxy for the population MSE, i.e.,

ˆMSEi :=
1

50

50
∑

j=1

(θ̂i,j − θ)2, i = 1, · · · , 5.

Kernel Selection. Throughout this section, the reproducing kernel of the “primary”
RKHS (i.e., the H in Section 2.2) is chosen to be the widely used radial basis function
(RBF) kernel (also known as the Gaussian kernel):

k(x, x′) = exp

(

− 1

h1
‖x− x′‖22

)

.

This kernel satisfies the conditions in Section 2.2 for any continuously differentiable densities
supported on R

d whose score function u(x) is of polynomial growth rate. Therefore, it is
an ideal kernel to be used.

Hyperparameter Selection. As suggested by our theorems, we select the following
hyperparameters:

1. m = 0.5n. Theorems 1-6 suggest that m should be taken as αn where 0 < α < 1.
α = 0.5 is a simple middle-ground choice and has also been used in Oates et al. (2017).

2. λ = 0.01m− 1
2 . Theorems 1-6 suggest that α should be taken as Θ(m− 1

2 ). We choose a
small multiplier 0.01 since a small regularization term under the premise of stabilizing
the inverse numerically is preferrable in practice (Oates et al., 2017, 2019). Other

larger or smaller choices of λ such as λ = m− 1
2 or λ = 0 may have less satisfactory

performance. We will illustrate this in Section 4.1.

3. B0 = 50. B0 is explicitly provided by Theorems 1,2,8. A large value of B0 obviously
satisfies the conditions therein. In our experiments, we observe that the performance
of all estimators is robust to the choice of B0 (including the “+∞” in the original
BBIS) as long as B0 is relatively large. We will illustrate this in Section 4.1.

4. The bandwidth h1 in the kernel is typically chosen to be the median of the pairwise
square distance of the input data, as suggested by Liu and Lee (2017); Gretton et al.
(2012). We follow this approach in our experiments.
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We emphasize that the same hyperparameters are used in all approaches for a fair compar-
ison.

Experimental results are displayed using plots of log MSE against the sample size n.
Log MSE is used as it allows easy observation on the polynomial decay. In the following,
we conduct experiments on a wide range of problem settings.

4.1 Basic Illustration

In this section, we consider a synthetic problem setting borrowed from Oates et al. (2017).
Our goal is to estimate the expectation of f(X,Y ) = sin(πd

∑d
i=1Xi) + Y under the target

distribution π where πX = N (0, Id) is a d-dimensional standard Gaussian distribution, and
πY is a zero-mean distribution. By symmetry, the ground-true expectation is Eπ[f(X,Y )] =
0. We consider the dimension d = 4.

Illustration of Different Scenarios. We consider 9 different scenarios as introduced
in Section 3.1, using 3 noise settings and 3 biased distribution settings as described below:

1. Noise settings: (1) πY |X = 0 (no noise), (2) πY |X = N (0, 0.12) +
∑d

i=1Xi, (3) πY |X =
N (0, 0.12) .

2. Biased distribution settings: (A) qX = πX (no bias), (B) qX = N (0.5, 1), (C) qX =
N (1, 1).

The results are shown in Figure 1. We observe that

1. DRSK-R and SimCF are the top two approaches in most scenarios. Empirically,
DRSK-R appears to be a better alternative to DRSK, and SimCF appears to be a
better alternative to CF.

2. DRSK-R is the best when the sampling distribution is biased (e.g., biased distribution
setting (C)) and the noise is small (e.g., noise setting (1)); See Plots (A1), (B1), (B2),
(C1), (C2), (C3). In these scenarios, it can outperform SimCF (the second-best
approach) by up to 25 percent.

3. The superior performance of DRSK-R decreases when the sampling distribution is
exact or the noise becomes larger; See Plots (A2), (A3), (B3). In (A2) and (B3),
DRSK-R and SimCF perform similarly. (A3) is the only scenario where DRSK-R is
less effective than SimCF.

These observations coincide with our theory. DRSK (DRSK-R) performs well, especially
when the noise is small and the sampling distribution is not exact, consistent with our Table
1. As discussed in Section 3.1, CF (SimCF) is resistant to noise since it takes advantage of
the functional approximation of f while the importance weight in BBIS ignores f . Thus,
increasing noise typically hurts the performance of BBIS, but DRSK (DRSK-R) and CF
(SimCF) can maintain some similarly good performance. On the other hand, CF is not
resistant to bias because the uniform weight in the final step of constructing CF cannot
reduce the bias effectively. Thus SimCF by omitting the final step is a better alternative to
CF. Note that this observation holds in almost all scenarios regardless of the bias (including
the subsequent experiments). In fact, Oates et al. (2017) indicates a similar empirical
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(A2)(A1) (A3)

(B1) (B2) (B3)

(C2)(C1) (C3)

Figure 1: Illustration of different scenarios: The title of the Plot (A1) means the combina-
tion of noise setting (1) and biased distribution setting (A). The rest is similar.
(1) πY |X = 0, (2) πY |X = N (0, 0.12) +

∑d
i=1Xi, (3) πY |X = N (0, 0.12). (A)

qX = πX , (B) qX = N (0.5, 1), (C) qX = N (1, 1).
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increases. In addition, DRSK-R achieves better results than CF and SimCF in almost
all experiments. DRSK-R outperforms BBIS in most experiments while the relative
performance of BBIS tends to be variable among different experiments.

3. In the realistic computer communication network example consisting of 12 estimated
input parameters and a sophisticated black-box simulation model, the experiments
indicate that our DRSK-R achieves the best results consistently across multiple model
settings and also shows its better relative performance against CF (SimCF).

4. DRSK-R may be less effective when the sampling distribution is exact (e.g., Plot (A3)
in Figure 1), or for some specific target distributions (e.g., Beta distributions in Figure
6). It may sometimes perform similarly to BBIS (e.g., Setting (A2) in Figure 8) or
SimCF (e.g., Setting (B3) in Figure 1). Nevertheless, by taking advantage of both CF
and BBIS, it achieves the smallest MSE in most experiments.

5 Theory for Regularized Least Square Regression

In this section, we first review basic facts about RLS regression (aka KRR), whose framework
follows Smale and Zhou (2005) and Sun and Wu (2009). Next, we develop some theoretical
results for the purpose of our analysis in Section 6.

Suppose we have i.i.d. samples {(xj , f(xj , yj)) : j = 1, · · · ,m} where (xi, yi) are i.i.d.
drawn from the sampling distribution q. We denote ẑ = (f(x1, y1), · · · , f(xm, ym))T . We
call fq the (ground-truth) regression function defined by

fq(x) = Eq[f(X,Y )|X = x].

The goal of KRR is to learn the regression function by constructing a “good” approx-
imating function sm from the data. Let H be a generic RKHS with the associated kernel
k(x, y)7. Let ‖ · ‖H denote the norm on H. Note that kx = k(x, ·) is a function in H.

For this section, we only impose the following assumption:

Assumption 6 κ := supx∈Ω

√

k(x, x) < ∞, M0 := Eq[(z − fq(x))2] < ∞. For any g ∈ H,
g(x) is q-measurable. fq ∈ L2(qX).

It follows that for any g ∈ H,

sup
t∈Ω

|g(t)|2 = sup
t∈Ω

|〈g, kt〉|2 ≤ sup
t∈Ω

‖g‖2H‖kt‖2H ≤ κ2‖g‖2H.

So under Assumption 6, any g ∈ H is a bounded function. We point out the following
inequality that we will use frequently:

‖g‖Lp(qX) ≤ κ‖g‖H, ∀1 ≤ p ≤ ∞. (15)

The RLS problem is given by

sm(x) := arg min
g∈H







1

m

m
∑

j=1

(f(xj , yj) − g(xj))
2 + λ‖g‖2H







7. In this Section, H is generic, not necessarily associated with the ones introduced in Section 2. We will
specify H in Section 6 for the proofs of our theorems in Section 3.
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where λ > 0 is a regularization parameter which may depend on the cardinality of the
training data set. Note that the data needed in this problem are only the values {xj}j=1,··· ,m

and {zj := f(xj , yj)}j=1,··· ,m, so yj and f can be in a black box. A nice property of RLS is
that there is an closed-form formula for its solution, as stated below.

Lemma 9 Let K = (k(xi, xj))m×m ∈ R
m×m be the kernel Gram matrix and

k̂(x) = (k(x1, x), · · · , k(xm, x))T .

Then the RLS solution is given as sm(x) = βT k̂(x) where β = (K + λmI)−1ẑ.

Lemma 9 shows a direct way to calculate sm. From a theoretical point of view, to
derive the property of sm, we need to use some tools from functional analysis. To begin,
we give an equivalent form of sm in terms of linear operators. Define the sampling operator
Sx : H → R

m associated with a discrete subset {xi}mi=1 by

Sx(g) = (g(xi))
m
i=1, g ∈ H.

The adjoint of the sampling operator, ST
x : Rm → H, is given by

ST
x (c) =

m
∑

i=1

cikxi
, c ∈ R

m.

Note that the compound mapping ST
x Sx is a positive self-adjoint operator on H. Let I

denote the identity mapping on H. We have:

Lemma 10 The RLS solution can be written as follows:

sm =

(

1

m
ST
x Sx + λI

)−1 1

m
ST
x (ẑ).

A proof can be found in Smale and Zhou (2005). It is also easy to derive this result
directly from Lemma 9.

Denote

Hq
0 := {g ∈ H : g = 0 a.e. with respect to q} and

Hq
1 := (Hq

0)
⊥, the orthogonal complement of Hq

0 in H.
If q is clear from the context, we write H0 = Hq

0, H1 = Hq
1 for simplicity. Note that both

H0 and H1 are closed subspaces in H with respect to the norm ‖ · ‖H. It is well-known
that H/H0 is isometrically isomorphic to H1. So H1 is essentially the quotient space of H
induced by the equivalence relation “a.e. with respect to q”, the same equivalence relation
in L2(qX). If f ∈ H, we may replace the original f ∈ H with a equivalent f̃ ∈ H1 (f = f̃
a.e. with respect to q) since this will not effect the estimation of the parameter. For this
purpose, we may treat H1 as H. (But they are substantially different in some way, see Sun
and Wu (2009).) Let H1

q
(which is the same as Hq

) be the closure of H1 in L2(qX).
Next, we introduce a standard result from functional analysis. This result can be found

in Theorem 2.4 and Proposition 2.10 in So ltan (2018).
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Theorem 11 Let A be a bounded self-adjoint linear operator. Let C(σ(A)) be the set of
real-valued continuous functions defined on the spectrum of A. Then for any g ∈ C(σ(A)),
g(A) is self-adjoint and ‖g(A)‖ = supx∈σ(A) |g(x)|.

Define Lq : L2(qX) → L2(qX) as the integral operator

(Lqg)(x) :=

∫

Ω
k(x, x′)g(x′)q(x′)dx′, x ∈ Ω, g ∈ L2(qX).

This operator can be viewed as a linear operator on L2(qX) or on H. Unless specified
otherwise, we always assume the domain of Lq is L2(qX). Sun and Wu (2009) shows that
Lq is a compact and positive self-adjoint operator on L2(qX). Theorem 11 shows that Lr

q is
a well-defined self-adjoint operator on L2(qX) for 0 ≤ r ≤ 1. Denote Range(Lr

q) the range
of Lr

q on the domain L2(qX). When we write L−r
q g ∈ L2(qX), it should be understood that

(1) g ∈ Range(Lr
q), (2) L−r

q g is an element in the preimage set of g under the operator Lr
q

on the domain L2(qX).

We will frequently use the following lemma, which indicates a useful property of the
integral operator Lq (a proof can be found in Sun and Wu (2009)).

Lemma 12 L
1
2
q f ∈ H1 for any f ∈ L2(qX), and L

1
2
q is an isometric isomorphism from

(H1
q
, ‖ · ‖L2(qX)) onto (H1, ‖ · ‖H).

Note that Lemma 12 implies that Range(L
1
2
q ) = Range(L

1
2
q |H1

q) = H1.

Next, consider an oracle or a data-free limit of sm as

fλ := arg min
g∈H

{

‖g − fq‖2L2(qX) + λ‖g‖2H
}

.

We have the following explicit expression (a proof can be found in Cucker and Smale
(2002a)):

Lemma 13 The solution of fλ is given as fλ = (Lq + λI)−1Lqfq.

To show that sm − fq is small, we split it into two parts

sm − fq = (sm − fλ) + (fλ − fq). (16)

The first part in (16) comes from the statistical noise in the RLS regression, whereas the
second part can be viewed as the bias of the functional approximation. In terms of termi-
nology in machine learning, the first term is called the estimation error (or sample error)
and the second term called the approximation error. We study the asymptotic error of each
part in the next set of results.

Proposition 14 Suppose that L−r
q fq ∈ L2(qX) where 0 ≤ r ≤ 1. Then

(1) ‖fλ − fq‖L2(qX) ≤ λr‖L−r
q fq‖L2(qX).

(2) ‖fλ − fq‖H ≤ λr−
1
2 ‖L−r

q fq‖L2(qX) for
1
2 ≤ r ≤ 1 only.
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Proof We remark that ‖L−r
q fq‖L2(qX) measures a complexity of the regression function

(Smale and Zhou, 2007). Using Lemma 13, we write

fλ − fq = (Lq + λI)−1Lqfq − fq = −λ(Lq + λI)−1fq.

(1) For the first part, we write

‖fλ − fq‖L2(qX) = λ‖(Lq + λI)−1Lr
qL

−r
q fq‖

L2(qX )
≤ λ‖(Lq + λI)−1Lr

q‖‖L−r
q fq‖

L2(qX )
.

Here we regard Lq as a bounded positive self-adjoint operator on L2(qX). Then Theorem
11 states that ‖(Lq + λI)−1Lr

q‖ ≤ ‖h‖∞ where h(x) = xr

x+λ is defined on x ∈ [0,∞) (Lq is

positive so σ(Lq) ⊂ [0,∞)). Note that ‖h‖∞ ≤ λr−1. So

‖fλ − fq‖L2(qX) ≤ λλr−1‖L−r
q fq‖2

L2(qX )
= λr‖L−r

q fq‖L2(qX).

(2) For the second part, we exhibit an intuitive proof here. We write

‖fλ − fq‖H = λ‖L
1
2
q L

− 1
2

q (Lq + λI)−1fq‖H = λ‖L− 1
2

q (Lq + λI)−1fq‖L2(qX).

The last equality is intuitively correct due to Lemma 12. (However, this statement is not

rigorous because L
− 1

2
q (Lq + λI)−1fq is not necessarily in H1

q
. A rigorous argument can be

found in Sun and Wu (2009).) Next we notice that

‖L− 1
2

q (Lq + λI)−1fq‖L2(qX) = ‖L− 1
2

q (Lq + λI)−1Lr
qL

−r
q fq‖L2(qX)

≤ ‖L− 1
2

q (Lq + λI)−1Lr
q‖‖L−r

q fq‖L2(qX).

Theorem 11 states that ‖L− 1
2

q (Lq + λI)−1Lr
q‖ ≤ ‖h‖∞ where h(x) = xr− 1

2

x+λ is defined on

x ∈ [0,∞) (Lq is positive so σ(Lq) ⊂ [0,∞)). Note that ‖h‖∞ ≤ λr−
3
2 . So

‖fλ − fq‖H ≤ λλr−
3
2 ‖L−r

q fq‖L2(qX) = λr−
1
2 ‖L−r

q fq‖L2(qX).

If we want to obtain a better bound for fλ − fq by using this proposition, we may want
r to be as large as possible, but meanwhile L−r

q fq ∈ L2(qX) becomes a more restrictive
constraint. However, we have the following proposition that can bypass this tradeoff.

Proposition 15 The range of Lq satisfies

Range(Lq)
q

= Range(Lq|H1
q)

q
= H1

q
(= Hq

).

Proof Take any f1 ∈ H1
q
. For any ε > 0, there exists f2 ∈ H1 such that ‖f1−f2‖L2(qX) ≤ ε.

It follows from Lemma 12 that there exists g1 ∈ H1
q

such that L
1
2
q g1 = f2. There exists
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g2 ∈ H1 such that ‖g1 − g2‖L2(qX) ≤ ε
κ . Again, it follows from Lemma 12 that there exists

h1 ∈ H1
q

such that L
1
2
q h1 = g2. Then we have

‖Lqh1 − f2‖L2(qX) ≤ κ‖Lqh1 − f2‖H = κ‖L
1
2
q g2 − L

1
2
q g1‖H = κ‖g2 − g1‖L2(qX) ≤ ε

and
‖Lqh1 − f1‖L2(qX) ≤ ‖Lqh1 − f2‖L2(qX) + ‖f2 − f1‖L2(qX) ≤ 2ε.

This implies that f1 ∈ Range(Lq|H1
q)

q
so

Range(Lq|H1
q)

q ⊃ H1
q
.

On the other hand, Lemma 12 indicates that

Range(Lq|H1
q) ⊂ Range(Lq) ⊂ Range(L

1
2
q ) = H1.

Hence we have
Range(Lq)

q
= Range(Lq|H1

q)
q

= H1
q
.

Denote Range(Lq)
H

the closure of Range(Lq) in H with respect to the norm of H. We
have the following similar proposition in terms of the norm in H.

Proposition 16 The range of Lq satisfies

Range(Lq)
H

= Range(Lq|H1
q)

H
= H1.

Proof Take any f1 ∈ H1. It follows from Lemma 12 that there exists g1 ∈ H1
q

such that

L
1
2
q g1 = f1. For any ε > 0, there exists g2 ∈ H1 such that ‖g1 − g2‖L2(qX) ≤ ε. Again, it

follows from Lemma 12 that there exists h1 ∈ H1
q

such that L
1
2
q h1 = g2 and we have

‖Lqh1 − f1‖H = ‖Lqh1 − L
1
2
q g1‖H = ‖L

1
2
q h1 − g1‖L2(qX) = ‖g2 − g1‖L2(qX) ≤ ε.

This implies that f1 ∈ Range(Lq|H1
q)

H
so

Range(Lq|H1
q)

H ⊃ H1.

On the other hand, Lemma 12 indicates that

Range(Lq|H1
q) ⊂ Range(Lq) ⊂ Range(L

1
2
q ) = H1.

Note that H1 is a closed subspace in H. Hence we have

Range(Lq)
H

= Range(Lq|H1
q)

H
= H1.

Propositions 15 and 16 give a theoretical explanation that if we have a result in the
space Range(Lq), we may anticipate that it is also (approximately) valid in Hq

or H1.
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Proposition 17 We have

‖sm − fλ‖H ≤ 1

λ
‖∆‖H

where

∆ :=
1

m

m
∑

i=1

(zi − fλ(xi))kxi
− Lq(fq − fλ).

Proof By definition,

sm − fλ =

(

1

m
ST
x Sx + λI

)−1( 1

m
ST
x (z) − 1

m
ST
x Sxfλ − λfλ

)

.

Direct computation leads to

1

m
ST
x (z) − 1

m
ST
x Sxfλ =

1

m

m
∑

i=1

(zi − fλ(xi))kxi
, and λfλ = Lq(fq − fλ)

so

sm − fλ =

(

1

m
ST
x Sx + λI

)−1

∆.

View ST
x Sx as a positive self-adjoint operator on H. By Theorem 11, we have

∥

∥

∥

∥

∥

(

1

m
ST
x Sx + λI

)−1
∥

∥

∥

∥

∥

H→H

≤ 1

λ
.

Hence we obtain

‖sm − fλ‖H ≤ 1

λ
‖∆‖H

as desired.

Next we have the following:

Proposition 18 We have

Eq[‖∆‖2H] ≤ 1

m
κ2(νX((fq − fλ)2) +M0).

Proof Consider

‖∆‖2H = 〈 1

m

m
∑

i=1

((zi − fλ(xi))kxi
− Lq(fq − fλ)),

1

m

m
∑

i=1

((zi − fλ(xi))kxi
− Lq(fq − fλ))〉.

Direct computation shows that, for the first term,

〈(zi − fλ(xi))kxi
, (zj − fλ(xj))kxj

〉 = (zi − fλ(xi))(zj − fλ(xj))k(xi, xj)
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For i 6= j, we have

Eq〈(zi − fλ(xi))kxi
, (zj − fλ(xj))kxj

〉

=

∫

Ω

∫

Ω
(fq(xi) − fλ(xi))(fq(xj) − fλ(xj))k(xi, xj)q(xi)q(xj)dxidxj

For i = j, we have

Eq〈(zi − fλ(xi))kxi
, (zj − fλ(xj))kxj

〉 = Eq[(zi − fλ(xi))
2k(xi, xi)]

For the cross item, we have

〈(zi − fλ(xi))kxi
, Lq(fq − fλ)〉 =

∫

Ω
k(xi, xj)(zi − fλ(xi))(fq(xj) − fλ(xj))q(xj)dxj ,

so

Eq〈(zi − fλ(xi))kxi
, Lq(fq − fλ)〉

=

∫

Ω

∫

Ω
(fq(xi) − fλ(xi))(fq(xj) − fλ(xj))k(xi, xj)q(xi)q(xj)dxidxj .

For the last item, we have

〈Lq(fq−fλ), Lq(fq−fλ)〉 =

∫

Ω

∫

Ω
(fq(xi)−fλ(xi))(fq(xj)−fλ(xj))k(xi, xj)q(xi)q(xj)dxidxj ,

so

Eq〈Lq(fq − fλ), Lq(fq − fλ)〉

=

∫

Ω

∫

Ω
(fq(xi) − fλ(xi))(fq(xj) − fλ(xj))k(xi, xj)q(xi)q(xj)dxidxj .

We observe that for i 6= j,

Eq〈(zi − fλ(xi))kxi
− Lq(fq − fλ), (zj − fλ(xj))kxj

− Lq(fq − fλ)〉〉 = 0.

For i = j, we have

Eq〈(zi − fλ(xi))kxi
− Lq(fq − fλ), (zj − fλ(xj))kxj

− Lq(fq − fλ)〉〉
=Eq[(zi − fλ(xi))

2k(xi, xi)] − Eq〈Lq(fq − fλ), Lq(fq − fλ)〉
≤Eq[(zi − fλ(xi))

2k(xi, xi)]

≤κ2Eq[(zi − fλ(xi))
2]

=κ2(Eq[(fλ(xi) − fq(xi))
2] + Eq[(zi − fq(xi))

2])

=κ2(νX((fq − fλ)2) +M0).

Therefore

Eq[‖∆‖2H] ≤ 1

m
κ2(νX((fq − fλ)2) +M0).

With this, we have the following estimate:
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Corollary 19 We have

Eq[‖sm − fλ‖2H] ≤ κ2(νX((fq − fλ)2) +M0)

λ2m
,

Eq[νX((sm − fλ)2)] ≤ κ4(νX((fq − fλ)2) +M0)

λ2m
.

Proof Combining Proposition 17 and Proposition 18, we obtain

Eq[‖sm − fλ‖2H] ≤ κ2(νX((fq − fλ)2) +M0)

λ2m
,

and we also note that
νX((sm − fλ)2) ≤ κ2‖sm − fλ‖2H.

Corollary 19 shows that to estimate sm − fq = (sm − fλ) + (fλ − fq), we only need
to handle fλ − fq. Finally, putting everything together, we establish the following two
corollaries that will be frequently used in our analysis:

Corollary 20 Suppose that L−r
q fq ∈ L2(qX) where 0 ≤ r ≤ 1. Then

Eq[νX((fq − sm)2)] ≤
(

2κ4

λ2−2rm
+ 2λ2r

)

νX((L−r
q fq)

2) +
2κ4M0

λ2m
.

In particular, taking λ = m− 1
2 , we have

Eq[νX((fq − sm)2)] ≤ Cκm
−rνX((L−r

q fq)
2) + 2κ4M0

where Cκ = 2κ4 + 2 only depends on κ.

Taking λ = m− 1
2+2r , we have

Eq[νX((fq − sm)2)] ≤ C1m
− r

1+r (νX((L−r
q fq)

2) +M0)

where C1 only depends on κ.

Proof Proposition 14 shows that if L−r
q fq ∈ L2(qX), then

νX((fλ − fq)
2) ≤ λ2rνX((L−r

q fq)
2).

We note that
νX((fq − sm)2) ≤ 2(νX((fq − fλ)2) + νX((fλ − sm)2)).

So taking the expectation and using Corollary 19, we have

Eq[νX((fq − sm)2)] ≤
(

2κ4

λ2m
+ 2

)

νX((fq − fλ)2) +
2κ4M0

λ2m

≤
(

2κ4

λ2−2rm
+ 2λ2r

)

νX((L−r
q fq)

2) +
2κ4M0

λ2m
.
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Corollary 21 Suppose that L−r
q fq ∈ L2(qX) where 1

2 ≤ r ≤ 1. Then

Eq[‖fq − sm‖2H] ≤
(

2κ2

λ2−2rm
+ 2λ2r−1

)

νX((L−r
q fq)

2) +
2κ2M0

λ2m
.

In particular, taking λ = m− 1
2 , we have

Eq[‖fq − sm‖2H] ≤ Cκm
−r+ 1

2 νX((L−r
q fq)

2) + 2κ2M0

where Cκ = 2κ2 + 2 only depends on κ.

Taking λ = m− 1
1+2r , we have

Eq[‖fq − sm‖2H] ≤ C1m
− 2r−1

2r+1 (νX((L−r
q fq)

2) +M0)

where C1 only depends on κ.

Proof Proposition 14 shows that if L−r
q fq ∈ L2(qX), then

‖fλ − fq‖2H ≤ λ2r−1νX((L−r
q fq)

2),

and
νX((fλ − fq)

2) ≤ λ2rνX((L−r
q fq)

2).

We note that
‖sm − fq‖2H ≤ 2(‖fλ − sm‖2H + ‖fλ − fq‖2H).

So taking the expectation and using Corollary 19, we have

Eq[‖fq − sm‖2H] ≤ 2κ2

λ2m
νX((fλ − fq)

2) +
2κ2M0

λ2m
+ 2‖fλ − fq‖2H

≤
(

2κ2

λ2−2rm
+ 2λ2r−1

)

νX((L−r
q fq)

2) +
2κ2M0

λ2m
.

Corollaries 20 and 21 show that sm computed through RLS approximates fq closely,
measured by the expected L2 norm under q and by the expected distance in H respectively.
Note that the latter metric is stronger than the former metric by (15). The error bounds
are related to the sample size m and the regularization parameter λ. Corollary 20 will be
employed for CF and Corollary 21 for DRSK. We pinpoint that both corollaries are more
refined and elaborate than the theory cited by Oates et al. (2017). Accordingly, we will
obtain better convergence results in this paper.

6 Proofs of Theorems in Section 3

6.1 Control Functionals

This section presents the properties of θ̂CF . We first justify the closed-form formula of
fm(x, y) in Algorithm 1 by applying the theory from Section 5. Then we prove the theorems
in Section 2.3.
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We check that the setting here accords with the conditions in Section 5. Recall that
the set of samples in Section 5 corresponds to {(xj , zj = f(xj , yj))}j=1,··· ,m in D0, and the
fq(x) there corresponds to f̄(x) here under Assumption 1. Let the generic H in Section 5
be the H+ in Section 2.1. It follows from supx∈Ω k0(x, x) < ∞ specified in Section 2.2 and
k+(x, x′) = 1 + k0(x, x

′) that

κ := sup
x∈Ω

√

k+(x, x) <∞.

Besides, M0 in Assumption 6 is exactly M0 in Assumption 2 since by the definition, we
have

M0 = Eq[(z − fq(x))2] = Eq[(f(x, y) − f̄(x))2] = Eq[ε(x, y)2] <∞.

Lemma 22 Let
ẑ = (f(x1, y1), · · · , f(xm, ym))T ,

K+ = (k+(xi, xj))m×m,

k̂+(x) = (k+(x1, x), · · · , k+(xm, x))T .

Then the RLS solution is given as sm(x) = βT k̂+(x) where β = (K+ +λmI)−1ẑ. Moreover,
µX(sm) = βT1.

Proof The first part of the expression of sm is a direct consequence of Lemma 9. By the
definition of two reproducing kernel Hilbert spaces,

k̂+(x) = k̂0(x) + 1

so
µX(sm(x)) = βTµX(k̂0(x)) + βT1.

Note that µX(k0(xi, ·)) = 0 for any given xi. Therefore we conclude that

µX(sm) = βT1.

For a given underlying function f , a more precise notation is to write sfm as the solution
to the RLS problem, but we will simply use sm for short if no confusion arises. We observe
a fact that sm is a linear combination of ẑ and thus a linear functional of f , that is,
sf1m + sf2m = sf1+f2

m for any two functions f1, f2. We will leverage this fact several times later
in the paper. Moreover, these linear coefficients only depend on the RKHS H0, free of the
function of interest f .

We explain some connections between π, q and H+ when constructing the CF estimator
in the “Biased” case. Note that the theoretical results on RLS that we developed in Section
5 does not require any connection between H+ (which can be a general RKHS) and q
(the underlying distribution of the samples). In CF, we specify the choice of H+ which
is constructed from the original distribution πX . Meanwhile, sm is learned from the data
drawn from q (note that sm only depends on H+ and the data). Therefore the formula for
µX(sm) in Lemma 22 is also valid in the “Biased” case.

We first establish the following lemma for CF when the extra component Y appears.
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Lemma 23 Suppose g ∈ L2(πX) and Eπ[g(X,Y )] = θ. For any constant a, we have

Eπ[(ḡ(X) − a)2] = Eπ[(g(X,Y ) − θ)2] + (θ − a)2 − Eπ[εg(X,Y )2]

where ḡ(X) = Eπ[g(X,Y )|X] and εg(X,Y ) = g(X,Y ) − ḡ(X). In particular,

Eπ[(ḡ(X) − a)2] + Eπ[εg(X,Y )2] ≥ Eπ[(g(X,Y ) − θ)2].

Proof Note that, by definition, we have

Eπ[εg(X,Y )] = 0, Eπ[εg(X,Y )ḡ(X)] = 0.

Hence

Eπ[(ḡ(X) − a)2]

=Eπ[(g(X,Y ) − θ) + (θ − a− εg(X,Y ))2]

=Eπ[(g(X,Y ) − θ)2] + Eπ[(θ − a− εg(X,Y ))2] + 2Eπ[(g(X,Y ) − θ)(θ − a− εg(X,Y ))]

=Eπ[(g(X,Y ) − θ)2] + (θ − a)2 + Eπ[εg(X,Y )2] − 2Eπ[εg(X,Y )(g(X,Y ) − θ)]

=Eπ[(g(X,Y ) − θ)2] + (θ − a)2 + Eπ[εg(X,Y )2] − 2Eπ[εg(X,Y )2]

=Eπ[(g(X,Y ) − θ)2] + (θ − a)2 − Eπ[εg(X,Y )2].

Considering CF estimator applied to the “Partial” case introduced in Section 3.1, we
have the following result:

Theorem 24 (CF in the “Partial” case) Suppose Assumption 2 holds and take an RLS

estimate with λ = m− 1
2 . Let m = αn where 0 < α < 1. The CF estimator θ̂CF is an

unbiased estimator of θ that satisfies the following bound.
(a) If f̄ ∈ Range(Lr

π) (0 ≤ r ≤ 1), then Eπ[(θ̂CF − θ)2] ≤ C1(Cfn
−1−r + M0n

−1) where
Cf = ‖L−r

π f̄‖2L2(πX) (which is a constant indicating the regularity of f̄ in H+), C1 only

depends on α, κ. In particular, Eπ[(µX(sm) − θ)2] ≤ C1(Cfm
−r +M0).

(b) Suppose that there exists a ε > 0 and g ∈ Range(Lπ), such that ‖f̄ − g‖2L2(πX) ≤ ε. This

assumption holds, for instance, if f̄ ∈ H+
π
(the closure of H+ in the space L2(πX)). Then

Eπ[(θ̂CF − θ)2] ≤ C1(‖L−1
π g‖2L2(πX)n

−2 +M0n
−1 + εn−1) where C1 only depends on α, κ.

Proof (a) Suppose f̄ ∈ Range(Lr
π) (0 ≤ r ≤ 1). We apply Corollary 20 (with r) to the

samples {(xi, f(xi, yi))} to obtain

Eπ[µX((f̄ − sm)2)] ≤ Cκm
−rµX((L−r

π f̄)2) + (Cκ − 2)M0 ≤ CκCfm
−r + (Cκ − 2)M0
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where Cκ = 2κ4 + 2. Note that

(µX(sm) − θ)2 =

∣

∣

∣

∣

∫

Ω
(sm(t) − f̄(t))πX(t)dt

∣

∣

∣

∣

2

≤
(∫

Ω
|sm(t) − f̄(t)|πX(t)dt

)2

≤
∫

Ω
|sm(t) − f̄(t)|2πX(t)dt by Cauchy-Schwarz inequality

=µX((f̄ − sm)2)

Thus we obtain a bound for µX(sm):

Eπ[(µX(sm) − θ)2] ≤ Eπ[µX((f̄ − sm)2)] ≤ CκCfm
−r + (Cκ − 2)M0.

In Lemma 23, we choose g = fm and a = µX(sm). In this case, ḡ = f̄m = f̄−sm+µX(sm)
and εg = ε. So it follows from Lemma 23 that

µ((fm − θ)2) ≤ µX((f̄m − µX(sm))2) + Eπ[ε(X,Y )2]

= µX((f̄ − sm)2) +M0

and thus Eπ[µ((fm−θ)2)] ≤ Cκ(Cfm
−r +M0). Furthermore, note that given D0, fm(xj , yj)

is an unbiased estimator of θ so

Eπ









1

n−m

n
∑

j=m+1

fm(xj , yj) − θ





2 ∣
∣

∣

∣

∣

D0



 =
1

(n−m)2

n
∑

j=m+1

Eπ

[

(fm(xj , yj) − θ)2|D0

]

=
1

n−m
Eπ[µ((fm − θ)2)]

Therefore,

Eπ

[

(θ̂CF − θ)2
]

≤ Cκ(Cfm
−r +M0)

n−m
,

which implies that

Eπ[(θ̂CF − θ)2] ≤ C1(Cfn
−1−r +M0n

−1)

since m = αn.

(b) We first note that Proposition 15 shows that H+
π

= Range(Lπ)
π
. Therefore, the

assumption holds if f̄ ∈ H+
π
. Note that f̄ ∈ H+

π
is a mild assumption (which is weaker

than the assumptions in Oates et al. (2017) and Liu and Lee (2017)) and in some cases,
H+

π
= L2(πX) (Lemma 4 in Oates et al. (2019)). This result shows that we can establish

similar results even with a very weak assumption.

Let h = f − g so h̄ = f̄ − g. Let shm, sgm be the RLS functional approximation of h, g
respectively. As we point out after Lemma 22, shm is a linear functional of h, so we have

h− shm = (f − sm) − (g − sgm).
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Next we apply Corollary 20 (with r = 1) to the samples {(xi, g(xi))}: since g ∈ Range(Lπ)
and g is a function of x only, Mg

0 = 0 and

Eπ[µX((g − sgm)2)] ≤ Cκm
−1µX((L−1

π g)2).

Again, we apply Corollary 20 (with r = 0) to the samples {(xi, h(xi, yi))}: we note that
h̄ ∈ L2(πX) = Range(L0

π) and ḡ = g so

Mh
0 := Eπ[(h(x, y) − h̄(x))2] = Eπ[(f(x, y) − f̄(x))2]

which is the same as M0 and thus

Eπ[µX((h̄− shm)2)] ≤ CκµX(h̄2) + (Cκ − 2)M0 ≤ Cκε+ (Cκ − 2)M0.

Combining the above inequalities, we obtain by Cauchy–Schwarz inequality that

Eπ[µX((f̄ − sm)2)] ≤ 2(Eπ[µX((g − sgm)2)] + Eπ[µX((h̄− shm)2)])

≤ 2Cκ(ε+M0 +m−1µX((L−1
π g)2))

= 2Cκ(ε+M0 +m−1‖L−1
π g‖2L2(πX)).

The rest is similar to part (a). We finally conclude

Eπ[(θ̂CF − θ)2] ≤ C1(‖L−1
π g‖2L2(πX)n

−2 +M0n
−1 + εn−1).

Theorem 4 in Section 3 is part (a) of Theorem 24. In addition, we remark that λ =

Θ(m− 1
2 ) is the best choice of λ leading to the best rate in theory due to the following

reasons:

1. On the one hand, if there exists the noise Y , one might wish to diminish the effect of

M0 in the RLS regression by selecting another λ such as λ = m− 1
2+2r in Corollary 20.

However, doing so will offer a worse rate than O(m−r) for the term Eπ[µX((f̄−sm)2)]
and at the same time, the MSE bound of CF still contains the term M0n

−1 because
the effect of the error ε cannot be eliminated in the MSE. So λ = Θ(m− 1

2 ) is preferred.

2. On the other hand, if there does not exist the noise Y (implying M0 = 0), Corollary

20 with M0 = 0 shows that the best upper bound is achieved by setting λ = Θ(m− 1
2 ).

As a special case, we immediately get the following result when considering the CF
estimator applied to the “Standard” case:

Theorem 25 (CF in the “Standard” case) Take an RLS estimate with λ = m− 1
2 . Let

m = αn where 0 < α < 1. The CF estimator θ̂CF is an unbiased estimator of θ that satisfies
the following bound.
(a) If f ∈ Range(Lr

π) (0 ≤ r ≤ 1), then Eπ[(θ̂CF − θ)2] ≤ C1Cfn
−1−r where Cf =

‖L−r
π f‖2L2(πX) (which is a constant indicating the regularity of f in H+), C1 only depends

on α, κ. In particular, Eπ[(µX(sm) − θ)2] ≤ C1Cfm
−r.

(b) Suppose that there exists a ε > 0 and g ∈ Range(Lπ), such that ‖f − g‖2L2(πX) ≤ ε. This

assumption holds, for instance, if f ∈ H+
π
(the closure of H+ in the space L2(πX)). Then

Eπ[(θ̂CF − θ)2] ≤ C1(‖L−1
π g‖2L2(πX)n

−2 + εn−1) where C1 only depends on α, κ.
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Theorem 3 in Section 3 is part (a) of Theorem 25.

Theorem 26 (CF in the “Biased” case) Suppose Assumption 3 holds and take an RLS

estimate with λ = m− 1
2 . Then the CF estimator θ̂CF satisfies the following bound.

(a) If f ∈ Range(Lr
q) (0 ≤ r ≤ 1), then Eq[(θ̂CF−θ)2] ≤ C1Cfm

−r where Cf = ‖L−r
q f‖2L2(qX)

(which is a constant indicating the regularity of f in H+), C1 only depends on κ, Ex∼πX
[πX(x)
qX(x) ].

In particular, Eq[(µX(sm) − θ)2] ≤ C1Cfm
−r.

(b) Suppose that there exists a ε > 0 and g ∈ Range(Lq), such that ‖f − g‖2L2(qX) ≤ ε. This

assumption holds, for instance, if f ∈ H+
q
(the closure of H+ in the space L2(qX)). Then

Eq[(θ̂CF − θ)2] ≤ C1(‖L−1
q g‖2L2(qX)m

−1 + ε) where C1 only depends on κ, Ex∼πX
[πX(x)
qX(x) ].

Proof Note that in this theorem, only m rather than n appears in the upper bound. In the
“Biased” case, the second subset of data D1 may have no contribution to the MSE bound
of CF because of the bias.

(a) Note that

(µX(sm) − θ)2

=

∣

∣

∣

∣

∫

Ω
(sm(t) − f(t))πX(t)dt

∣

∣

∣

∣

2

≤
(∫

Ω
|sm(t) − f(t)|πX(t)dt

)2

≤
(∫

Ω
|sm(t) − f(t)|2qX(t)dt

)(∫

Ω

(πX(t))2

qX(t)
dt

)

by Cauchy-Schwarz inequality

=νX((f − sm)2)Ex∼πX

[

πX(x)

qX(x)

]

.

Therefore we obtain

Eq[(µX(sm) − θ)2] ≤ Eq[νX((f − sm)2)]Ex∼πX

[

πX(x)

qX(x)

]

.

Moreover, since we have fq = f and M0 = 0 in the “Biased” case. It follows from Corollary
20 that

Eq[νX((f − sm)2)] ≤ Cκm
−rνX((L−r

q f)2) (17)

where Cκ = 2κ4 + 2. Combining the above inequalities, we obtain by Cauchy–Schwarz
inequality that

Eq[νX((fm − θ)2)] ≤ 2
(

Eq[νX((f − sm)2)] + Eq[(µX(sm) − θ)2]
)

≤ 2

(

Ex∼πX

[

πX(x)

qX(x)

]

+ 1

)

Eq[νX((f − sm)2)]

≤ 2

(

Ex∼πX

[

πX(x)

qX(x)

]

+ 1

)

Cκm
−rνX((L−r

q f)2)

≤ C1Cfm
−r.
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Nevertheless, given D0, fm(xj) is not necessarily an unbiased estimator of θ so we can only
assert that

Eq

[

(θ̂CF − θ)2
]

= Eq









n
∑

j=m+1

1

n−m
fm(xj) − θ





2

 ≤ Eq

[

ν
(

(fm − θ)2
)]

by Cauchy–Schwarz inequality. (Note that the cross terms may not vanish.) Therefore,

Eq

[

(θ̂CF − θ)2
]

≤ C1Cfm
−r.

(b) We only need to replace inequality (17). The rest of the proof is the same as part
(a).

We note that Proposition 15 shows that H+
q

= Range(Lq)
q
. Therefore, the assumption

holds if f ∈ H+
q
. Let h = f − g. Let shm, sgm be the RLS functional approximation of h, g

respectively. shm is a linear functional of h, so we write

h− shm = (f − sm) − (g − sgm)

Next we apply Corollary 20 (with r = 1) to the samples {(xi, g(xi))}: Since g ∈ Range(Lq)
and g is a function of x only, then Mg

0 = 0 and

Eq[νX((g − sgm)2)] ≤ Cκm
−1νX((L−1

q g)2)

Again, we apply Corollary 20 (with r = 0) to the samples {(xi, h(xi))}: We note that
h ∈ L2(qX) and h is a function of x only so Mh

0 = 0 and thus

Eq[νX((h− shm)2)] ≤ CκνX(h2) ≤ Cκε

where Cκ = 2κ4 + 2.
Adding these two parts we obtain

Eq[νX((f − sm)2)] ≤ 2Cκ(ε+m−1νX((L−1
q g)2)).

Finally, we conclude that

Eq

[

(θ̂CF − θ)2
]

≤ C1(‖L−1
q g‖2L2(qX)m

−1 + ε).

Theorem 5 in Section 3 is part (a) of Theorem 26.

Theorem 27 (CF in the “Both” case) Suppose Assumptions 1, 2, and 3 hold. Take

an RLS estimate with λ = m− 1
2 . Let m = αn where 0 < α < 1. Then the CF estimator

θ̂CF satisfies the following bound.
(a) If f̄ ∈ Range(Lr

q) (0 ≤ r ≤ 1), then Eq[(θ̂CF − θ)2] ≤ C1(Cfn
−r + M0) where Cf =

‖L−r
q f̄‖2L2(qX) (which is a constant indicating the regularity of f̄ in H+), C1 only depends
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on α, κ, Ex∼πX
[πX(x)
qX(x) ]. In particular, Eq[(µX(sm) − θ)2] ≤ C1(Cfm

−r +M0).

(b) Suppose that there exists a ε > 0 and g ∈ Range(Lq), such that ‖f̄ − g‖2L2(qX) ≤ ε.

This assumption holds, for instance, if f̄ ∈ H+
q
(the closure of H+ in the space L2(qX)).

Then Eq[(θ̂CF − θ)2] ≤ C1(‖L−1
q g‖2L2(qX)n

−1 + M0 + ε) where C1 only depends on α, κ,

Ex∼πX
[πX(x)
qX(x) ].

Proof It follows from combining the proofs of Theorem 24 and 26. In fact,

θ̂CF − θ =
1

n−m

n
∑

j=m+1

(f̄(xj) − sm(xj) + µX(sm) − θ + ε(xj , yj))

so we only need to analyze the following two terms separately:

Eq









1

n−m

n
∑

j=m+1

(f̄m(xj) − θ)





2

 , Eq









1

n−m

n
∑

j=m+1

ε(xj , yj)





2

 .

The first term can be studied as in Theorem 26:

Eq









1

n−m

n
∑

j=m+1

(f̄m(xj) − θ)





2



≤Eq[νX((f̄m − θ)2)]

≤2

(

Ex∼πX

[

πX(x)

qX(x)

]

+ 1

)

Eq[νX((f̄ − sm)2)].

For the second term, we note that with Assumption 1, we have Eq[ε(xj , yj)] = 0 and thus

Eq









1

n−m

n
∑

j=m+1

ε(xj , yj)





2

 =
1

n−m
Eq

[

ε(xm+1, ym+1)
2
]

≤ M0

n−m

by Assumption 2.

Theorem 6 in Section 3 is part (a) of Theorem 27. Although M0 appears non-vanishing in
Theorem 27, it is merely a matter of the bound that we use on the term Eq[νX((f̄ − sm)2)].

There are several ways to overcome this. The first approach is to choose λ = m− 1
2+2r

(instead of λ = m− 1
2 ) to obtain, by Corollary 20,

Eq[νX((fq − sm)2)] ≤ C1m
− r

1+r (νX((L−r
q fq)

2) +M0)

with a vanishing rate m− r
1+r for the M0 term, but at the cost of a worse rate m− r

1+r than
m−r for the Cf term. The second approach is to leverage refined error bounds in Sun and

Wu (2009, 2010), e.g., by keeping λ = m− 1
2 , we can obtain

Eq[νX((fq − sm)2)] ≤ C1(m
−rνX((L−r

q fq)
2) +m− 1

2M0).

However, none of these approaches can provide a bound that is better than the bound
o(n−

1
2
−r) +M0n

−1 in our DRSK.

46



Doubly Robust Stein-Kernelized Monte Carlo Estimator

6.2 Black-box Importance Sampling

In this section, we prove the theorems in Section 3.5.
Proof [Proof of Theorem 7 in Section 3] See Liu and Lee (2017).

To prove Theorem 8, we split our proof into three lemmas. First we demonstrate that
with the upper bound on each weight, we can control the noise term. Then since the
optimization problem (6) we consider here is different from Liu and Lee (2017), Theorem
3.2 and 3.3 in Liu and Lee (2017) cannot be applied straightforwardly to Theorem 8 which
thus needs to be redeveloped. This is done in Lemma 29 and 30 which consider Part (a)
and Part (b) of Theorem 8 respectively.

Lemma 28 Suppose Assumptions 1 and 2 hold. Then

Eq









n
∑

j=1

ŵjε(xj , yj)





2

 ≤ M0B
2
0

n
.

Proof The covariate shift assumption implies that Eq[ε(xj , yj)|xj ] = Eπ[ε(xj , yj)|xj ] = 0.
Since ŵj is a function of the X factor x = (x1, · · · , xn), it follows that Eq[ŵjε(xj , yj)|x] = 0
and conditional on x, ŵjε(xj , yj) is conditionally independent of each other. So we assert
that

Eq









n
∑

j=1

ŵjε(xj , yj)





2
∣

∣

∣

∣

x



 =

n
∑

j=1

Eq

[

(ŵjε(xj , yj))
2

∣

∣

∣

∣

x

]

,

and thus

Eq









n
∑

j=1

ŵjε(xj , yj)





2

 =
n
∑

j=1

Eq

[

Eq

[

(ŵjε(xj , yj))
2

∣

∣

∣

∣

x

]]

.

The upper bound on ŵj (in the BBIS construction) and ε(xj , yj) (in Assumption 2) implies
that

Eq

[

Eq

[

ŵ2
j ε(xj , yj)

2|x
]]

= Eq

[

ŵ2
jEq

[

ε(xj , yj)
2|x
]]

≤ Eq

[

B2
0

n2
Eq

[

ε(xj , yj)
2|x
]

]

=
B2

0

n2
Eq

[

Eq

[

ε(xj , yj)
2|x
]]

=
B2

0

n2
Eq

[

ε(xj , yj)
2
]

≤ M0B
2
0

n2
.

Hence we obtain that

Eq









n
∑

j=1

ŵjε(xj , yj)





2

 ≤ M0B
2
0

n
.
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Lemma 29 Suppose Assumption 4 holds. Take B0 = 2B in (6). We have

Eq[S({ŵj , xj}, πX)] = O(n−1).

Proof We define the weights as constructed in Liu and Lee (2017):

w∗
j =

1

Z

πX(xj)

qX(xj)
, Z =

n
∑

j=1

πX(xj)

qX(xj)
.

Notice that 1
n
πX(xj)
qX(xj)

∈ [0, Bn ]. By Hoeffding’s inequality (Hoeffding, 1963), we have

P

(

1

n
Z − 1 ≤ −1

2

)

≤ exp(− n

2B2
)

where the probability is with respect to the sampling distribution qX (the same below). Let

E :=

{

1

n
Z − 1 ≥ −1

2

}

.

The above statement demonstrates that P(Ec) ≤ exp(− n
2B2 ). Furthermore, note that given

E , we have

w∗
j ≤ B

n/2
=

2B

n
.

So

E ⊂
{

0 ≤ w∗
i ≤ 2B

n
, ∀i = 1, · · · , n

}

.

This demonstrates that given E , w∗
j is a feasible solution to the problem (6) and thus

S({ŵj , xj}, πX) ≤ S({w∗
j , xj}, πX).

Moreover, we observe that since 0 ≤ ŵj ≤ 2B
n ,

0 ≤ S({ŵj , xj}, πX) =

n
∑

j,k=1

ŵjŵkk0(xj , xk)

≤
n
∑

j,k=1

|ŵjŵkk0(xj , xk)| ≤
n
∑

j,k=1

(
2B

n
)2κ20 = 4B2κ20.

where κ0 := supx∈Ω

√

k0(x, x) < ∞ by our construction of H0. Therefore we can express
Eq[S({ŵj , xj}, πX)] as

Eq[S({ŵj , xj}, πX)] = Eq[S({ŵj , xj}, πX)|E ] · P[E ] + Eq[S({ŵj , xj}, πX)|Ec] · P[Ec]

≤ Eq[S({w∗
j , xj}, πX)|E ] · P[E ] + Eq[S({ŵj , xj}, πX)|Ec] · exp(− n

2B2
)

≤ Eq[S({w∗
j , xj}, πX)] + 4B2κ20 · exp(− n

2B2
).
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It follows from Theorem B.2 in Liu and Lee (2017) that

Eq[S({w∗
j , xj}, πX)] = O(n−1).

Obviously we also have

4B2κ20 · exp(− n

2B2
) = O(n−1).

Hence, we finally obtain
Eq[S({ŵj , xj}, πX)] = O(n−1).

Lemma 30 Suppose Assumptions 4 and 5 hold. Take B0 = 4B in (6). We have

Eq[S({ŵj , xj}, πX)] = o(n−1).

Proof Without loss of generality, assume n is an even number, and we partition the index
of the data set D1 into two parts D2 = {1, · · · , n2 } and D3 = {n

2 + 1, · · · , n}. We define the
weights as constructed in Liu and Lee (2017):

w∗
i =

{

1
n
πX(xi)
qX(xi)

− 2
n2

∑

j∈D3

πX(xi)
qX(xi)

πX(xj)
qX(xj)

kL(xj , xi) ∀i ∈ D2,

1
n
πX(xi)
qX(xi)

− 2
n2

∑

j∈D2

πX(xi)
qX(xi)

πX(xj)
qX(xj)

kL(xj , xi) ∀i ∈ D3,

where kL(x, x′) =
∑L

l=1 φl(x)φl(x
′) and L = n1/4. The proof here follows the proof of

Theorem B.5. in Liu and Lee (2017). Obviously, we only need to consider i ∈ D2. Let

T =
2

n

∑

j∈D3

πX(xj)

qX(xj)
kL(xj , xi).

Lemma B.8 in Liu and Lee (2017) implies that

P

(

n
∑

i=1

w∗
i <

1

2

)

≤ 2 exp(− n

4L2Ms
) where Ms = M2

2 (M2
2 +

√
2)2/4,

P(w∗
i < 0) = P(T > 1) ≤ exp(− n

L2M4
2

).

Note that 1
n
πX(xj)
qX(xj)

∈ [0, Bn ] and w∗
i (x) = 1

n
πX(xj)
qX(xj)

(1 − T ). So w∗
i (x) ≥ 2B

n implies that

T ≤ −1. Using the similar argument, we obtain (by Hoeffding’s inequality)

P(w∗
i ≥ 2B

n
) ≤ Q(T ≤ −1) ≤ exp(− n

L2M4
2

).

Let

E =

{

n
∑

i=1

w∗
i ≥ 1/2, 0 ≤ w∗

i ≤ 2B

n
, ∀i = 1, · · · , n

}

.
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The above statement demonstrates that Q(Ec) ≤ 2n exp(− n
L2M4

2
)+2 exp(− n

4L2Ms
). Next we

consider the following weights

w+
i =

max(0, w∗
i )

∑n
i=1 max(0, w∗

i )
.

Given the event E , 0 ≤ w+
j ≤ 4B

n is a feasible solution to the problem (6) and thus,

S({ŵj , xj}, πX) ≤ S({w+
j , xj}, πX).

Then we can express Eq[S({ŵj , xj}, πX)] as

Eq[S({ŵj , xj}, πX)]

=Eq[S({ŵj , xj}, πX)|E ] · P[E ] + Eq[S({ŵj , xj}, πX)|Ec] · P[Ec]

≤Eq[S({w+
j , xj}, πX)|E ] · P[E ] + Eq[S({ŵj , xj}, πX)|Ec] · P[Ec]

≤Eq[S({w+
j , xj}, πX)] + 16B2κ20 ·

(

2n exp(− n

L2M4
2

) + 2 exp(− n

4L2Ms
)

)

.

by noting that 0 ≤ S({ŵj , xj}, πX) ≤ 16B2κ20. It follows from the remark below Theorem
B.5 in Liu and Lee (2017) that

Eq[S({w+
j , xj}, πX)] = o(n−1).

Obviously we also have

2n exp(− n

L2M4
2

) + 2 exp(− n

4L2Ms
) = o(n−1).

Hence, we finally obtain
Eq[S({ŵj , xj}, πX)] = o(n−1).

Now we are ready to prove Theorem 8.
Proof [Proof of Theorem 8 in Section 3] Proposition 3.1 in Liu and Lee (2017) shows that

(θ̂IS − θ)2 =





n
∑

j=1

ŵj(f̄(xj) + ε(xj , yj) − θ)





2

≤ 2









n
∑

j=1

ŵj(f̄(xj) − θ)





2

+





n
∑

j=1

ŵjε(xj , yj)





2



≤ 2



‖f̄ − θ‖2H0
· S({ŵj , xj}, πX) +





n
∑

j=1

ŵjε(xj , yj)





2



Note that ‖f̄ − θ‖2H0
is a constant. Combining Lemma 28 and Lemma 29, we obtain part

(a). Combining Lemma 28 and Lemma 30, we obtain part (b).
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6.3 Doubly Robust Stein-Kernelized Estimators

We present and prove the following theorems that subsume the ones on our DRSK estimator
in Section 3.

Theorem 31 (DRSK in all cases under weak assumptions) Suppose Assumptions 1,

2, and 4 hold. Take an RLS estimate with λ = m− 1
2 and B0 = 2B in (9). Let m = αn

where 0 < α < 1. The DRSK estimator θ̂DRSK satisfies the following bound.
(a) If f̄ ∈ Range(Lr

q) (12 ≤ r ≤ 1), then Eq[(θ̂DRSK − θ)2] ≤ C1(Cfn
− 1

2
−r +M0n

−1) where
Cf = ‖L−r

q f̄‖2L2(qX) (which is a constant indicating the regularity of f̄ in H+), C1 only
depends on α, κ,B.
(b) Suppose that there exists a ε > 0 and g ∈ Range(Lq), such that ‖f̄ − g‖2H+

≤ ε.

This assumption holds, for instance, if f̄ ∈ Range(L
1
2
q ). Then under this assumption,

Eq[(θ̂DRSK−θ)2] ≤ C1(‖L−1
q g‖2L2(qX)n

− 3
2 +M0n

−1+εn−1) where C1 only depends on α, κ,B.

Proof Similarly to the proof of Theorem 8, we express (θ̂DRSK − θ)2 as

(θ̂DRSK − θ)2 =





n
∑

j=m+1

ŵj(f̄m(xj) + ε(xj , yj) − θ)





2

≤ 2









n
∑

j=m+1

ŵj(f̄m(xj) − θ)





2

+





n
∑

j=m+1

ŵjε(xj , yj)





2



≤ 2



‖f̄m − θ‖2H0
· S({ŵj , xj}, πX) +





n
∑

j=m+1

ŵjε(xj , yj)





2



where f̄m = f̄ − sm + µX(sm). To see that f̄m − θ ∈ H0 in the above equation, we
note that f̄ ∈ Range(Lr

q) ⊂ H+ whenever 1
2 ≤ r ≤ 1 and sm ∈ H+, which implies that

f̄m − θ = f̄ − sm + µX(sm) − θ is a function in H+. We can further claim that f̄m − θ is a
function in H0 since µX(f̄m−θ) = µX(f̄−sm+µX(sm)−θ) = θ−µX(sm)+µX(sm)−θ = 0.
Note that

f̄ − sm = (f̄ − sm + µX(sm) − θ) + (θ − µX(sm)),

so we can express

‖f̄ − sm‖2H+
= ‖f̄m − θ‖2H0

+ ‖θ − µX(sm)‖2C .

Thus we have

‖f̄m − θ‖2H0
≤ ‖f̄ − sm‖2H+

.
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Since S({ŵj , xj}, πX) depends only on D1 and ‖f̄m − θ‖2H0
depends only on D0, they are

independent of each other. Hence,

Eq[(θ̂DRSK − θ)2]

≤2



Eq[‖f̄m − θ‖2H0
] · Eq[S({ŵj , xj}, πX)] + Eq









n
∑

j=m+1

ŵjε(xj , yj)





2







≤2
(

Eq[‖f̄ − sm‖2H+
] ·O((n−m)−1) +M0B

2
0(n−m)−1

)

(18)

by Lemma 28 and Lemma 29.
(a) We apply Corollary 21 (with r) to the samples {(xi, f(xi, yi))} to get

Eq[‖f̄ − sm‖2H+
] ≤ CκνX((L−r

q f̄)2)m−r+ 1
2 + 2κ2M0 (19)

where Cκ = 2κ2 + 2. Plugging (19) into (18), we obtain the desired result.

(b) We note that Proposition 16 and Lemma 12 show that Range(L
1
2
q ) = (H+)q1 =

Range(Lq)
H+

. Therefore, the assumption holds if f̄ ∈ Range(L
1
2
q ).

Let h = f − g so h̄ = f̄ − g. Let shm, sgm be the RLS functional approximation of h, g
respectively. Note that shm is a linear functional of h, so we can write

h− shm = (f − sm) − (g − sgm).

We apply Corollary 21 (with r = 1) to the samples {(xi, g(xi))}: Since g ∈ Range(Lq) and
g is a function of x only, then Mg

0 = 0 and

Eq[‖g − sgm‖2H+
] ≤ Cκm

− 1
2 νX((L−1

q g)2).

Again we apply Corollary 21 (with r = 1
2) to the samples {(xi, h(xi, yi))}: We note that

h̄ = f̄ − g ∈ Range(L
1
2
q ) = (H+)q1 and ḡ = g so

Mh
0 := Eπ[(h(x, y) − h̄(x))2] = Eπ[(f(x, y) − f̄(x))2] = M0

and thus

Eq[‖h− shm‖2H+
] ≤ CκνX((L

− 1
2

q h̄)2) + 2κ2M0 = Cκ‖h̄‖2H+
+ 2κ2M0 ≤ Cκε+ 2κ2M0

where Cκ = 2κ2 + 2.
Adding these two parts we obtain

Eq[‖f̄ − sm‖2H+
] ≤ 2Cκ(ε+m− 1

2 νX((L−1
q g)2)) + 4κ2M0 = C1(ε+M0 + ‖L−1

q g‖2L2(qX)m
− 1

2 ).
(20)

Plugging (20) into (18), we obtain the desired result.

Theorem 1 in Section 3 is part (a) of Theorem 31.
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Theorem 32 (DRSK in all cases under strong assumptions) Suppose Assumptions

1, 2, 4, and 5 hold. Take an RLS estimate with λ = m− 1
2 and B0 = 4B in (9). Let m = αn

where 0 < α < 1. The DRSK estimator θ̂DRSK satisfies the following bound.
(a) If f̄ ∈ Range(Lr

q) (12 ≤ r ≤ 1), then Eq[(θ̂DRSK − θ)2] ≤ C1(Cf,nn
− 1

2
−r +M0n

−1) where
Cf,n = ‖L−r

q f̄‖2L2(qX) · o(1) as n→ ∞, C1 only depends on α, κ,B.

(b) Suppose that there exists a ε > 0 and g ∈ Range(Lq), such that ‖f̄ − g‖2H+
≤ ε.

This assumption holds, for instance, if f̄ ∈ Range(L
1
2
q ). Then under this assumption,

Eq[(θ̂DRSK − θ)2] ≤ C1(Cg,nn
− 3

2 + M0n
−1 + εn−1) where Cg,n = ‖L−1

q g‖2L2(qX) · o(1) as
n→ ∞, C1 only depends on α, κ,B.

Proof Similarly to the proof of Theorem 31 but leveraging Lemma 28 and Lemma 30 in
this Theorem, we obtain that

Eq[(θ̂DRSK − θ)2]

≤2



Eq[‖f̄m − θ‖2H0
] · Eq[S({ŵj , xj}, πX)] + Eq









n
∑

j=m+1

ŵjε(xj , yj)





2







≤2
(

Eq[‖f̄ − sm‖2H+
] · o((n−m)−1) +M0B

2
0(n−m)−1

)

.

The rest of the proof is similar to Theorem 31.

Theorem 2 in Section 3 is part (a) of Theorem 32.
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