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Abstract

Empirical risk minimization (ERM) and distri-
butionally robust optimization (DRO) are pop-
ular approaches for solving stochastic optimiza-
tion problems that appear in operations manage-
ment and machine learning. Existing general-
ization error bounds for these methods depend
on either the complexity of the cost function
or dimension of the uncertain parameters; con-
sequently, the performance of these methods is
poor for high-dimensional problems with objec-
tive functions under high complexity. We pro-
pose a simple approach in which the distribution
of uncertain parameters is approximated using a
parametric family of distributions. This mitigates
both sources of complexity; however, it intro-
duces a model misspecification error. We show
that this new source of error can be controlled by
suitable DRO formulations. Our proposed para-
metric DRO approach has significantly improved
generalization bounds over existing ERM / DRO
methods and parametric ERM for a wide vari-
ety of settings. Our method is particularly ef-
fective under distribution shifts. We also illus-
trate the superior performance of our approach
on both synthetic and real-data portfolio opti-
mization and regression tasks.

1 Introduction

The goal of data-driven stochastic optimization is to solve

min {Z(z) := E¢p-[A(z; )]}, (D
where x € X is the decision, £ is a random perturbation
in the sample space = distributed according to P*, and
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h : X x 2 — R is the cost function. Here, we assume
P* is unknown and we only have access to i.i.d. samples
éi ~ P*, 4 = 1,...,n. This problem setting arises ubiq-
uitously from machine learning to various applications in-
volving decision making (Shapiro et al. (2014); |Birge and

Louveaux (2011)).

To tackle the above problem, the commonest method is
to replace the unknown P* with the empirical measure
P, = % Z?:l 551- in (1), leading to the empirical risk min-
imization (ERM) problem (Hastie et al.|(2009)):

min {Z(m) =

1< .
min Ep, [W(z;6)] = —~ ; h(z; &), } @
A second approach that is surging in popularity over recent
years is distributionally robust optimization (DRO), where
the unknown P* is replaced by the worst-case distribution
over a so-called ambiguity set A, giving rise to:

min {Z(m) = maxBp h(; g)]} . 3)

TeX

Here, A is constructed using the data and, at least intu-
itively, by selecting a A that covers the ground-truth P*
with high confidence, outputs a solution with a worst-
case performance guarantee. In order to guarantee a sta-
tistically consistent solution, it is common to set A =
{P|d(P,P,) < ,} for some statistical distance d and let
en, shrink to zero as n increases. This approach has been
studied with d set to Wasserstein distance (Esfahani and
Kuhn| (2018)); Blanchet and Murthy| (2019)), f-divergence
(Ben-Tal et al. (2013)), kernel distance (Staib and Jegelka
(2019)) and other variants.

In this paper, we are interested in bounding the generaliza-
tion error
E(E) = Z(2) — Z(x7), )

where 2 is an approximate solution and z* €
argmin,c y Z(x) denotes the oracle best solution. £(%)
captures the true objective performance of & relative to
x*, thus providing a direct measurement of the subopti-
mality of #. Bounds on £(Z) are typically of the form
£(#) < L where B,a > 0 are method-dependent: For

n«
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ERM, a = % and B depends on the complexity of the
hypothesis class, i.e., {h(z,§) : © € X}, represented by
well-known notions such as the Vapnik—Chervonenki (VC)
dimension (Vapnik (1999); Bartlett and Mendelson (2002))
and local Rademacher complexity (Bartlett et al.| (2005);
Xu and Zeevi|(2020)). On the other hand, DRO can be an-
alyzed by two mainstream viewpoints. One treats DRO as
aregularization of ERM (where the regularizer depends on
the choice of d (Duchi and Namkoong| (2019);|Gotoh et al.
(2021); |Lam|(2019); [Blanchet et al.|(2019b); Gao (2022)),
which gives rise to similar & and B as ERM. In the sec-
ond approach the ambiguity set A is constructed as a (non-
parametric) confidence region for P* resulting in a a worst-
case performance bound on % (Esfahani and Kuhn|(2018);
Bertsimas et al. (2018); Delage and Ye (2010); [Wiesemann
et al. (2014)). This can be converted into a bound for £(%)
where B depends only on h(z*, -) instead of the hypothesis
class (Zeng and Lam (2022)), but then « typically degrades
as D% where D¢ denotes the dimension of the randomness
. In other words, in all the existing bounds for ERM and
DRO, the generalization error £(Z) depends on either the
complexity of the cost function class or the dimension of
the distribution space. Thus, for a high-dimensional prob-
lem with complex cost function, both ERM and DRO are
likely to have poor performance.

Our main goal in this paper is to propose a simple approach
that aims to remove the dependence of the bound on the
generalization error £(&) on both the function complexity
and distributional dimension. Our approach operates by re-
placing the empirical distribution P, typically used as the
center of the ambiguity set in DRO with a suitable para-
metric distribution. For convenience we call our approach
parametric DRO (P—-DRO). Using the second analysis route
of DRO mentioned above, we obtain B that depends only
on h(x*, -) while, because of the use of parametric distribu-
tion, we also remove the dependence of D¢ in a.. Of course,
all of this come with the price of a model misspecification
error due to the use of parametric distributions. The main
insight is that by choosing the ambiguity set size properly,
the worst-case nature of P—DRO can be leveraged to con-
trol the impact of model misspecification, and ultimately
exhibit a gracious tradeoff between this latter error and the
removal of complexity/dimension dependence.

Under this framework, we demonstrate how the strength
of P-DRO is further amplified under distribution shift, i.e.,
when training and testing data statistically differ, thanks to
the hedge on model misspecification provided by P-DRO.
Our desirable generalization bound of P-DRO under dis-
tribution shift also serves as a propellant of DRO as truly
superior against model changes — While previous literature
has argued the advantages of DRO in protecting against
unexpected distribution shift, the arguments are based on
a worst-case bound applied on the attained objective (e.g.,
Van Parys et al.| (2020); Sutter et al.| (2021)), which does

not imply whether the obtained solution is good relative to
other possibilities or the oracle solution. Our generaliza-
tion bound, on the other hand, reveals how P—DRO can be
better than both ERM, conventional DRO, and also para-
metric analogs of ERM, meaning that our solution is better
under the shifted test distribution than other previous ap-
proaches. On the other hand, P-DRO requires potentially
more computation effort than these other methods, due to
the need to suitably discretize the parametric distribution
(if it is continuous) for optimization tractability. We will
also analyze the price of such a discretization effort.

In the following, we first explain the existing generalization
error bounds of ERM and DRO, including notably the key
reasoning behind their derivations (Section [2). Then, we
present P-DRO and its basic theory (Section[3). We gener-
alize the theory to distribution shift (Section[3.1) and incor-
porate discretization or Monte Carlo error (Section|3.3). Fi-
nally, we present numerical experiments on both synthetic
and real data to support the strengths of P~DRO (Section[4).

2 Background

We briefly discuss how existing generalization bounds for
&(z) for ERM and DRO are derived. This would reveal the
related literature and also set the stage for our new bounds
for P-DRO. First, it is customary to decompose:
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<[2(2) = 2@)] + [Z(") = Z(z")]. (5

In the above, & denotes either the ERM solution obtained
from (2) or DRO solution from (3). Z () refers to the corre-
sponding estimated objective function, namely the sample
average objective depicted in (2) and the worst-case objec-
tive in (3). The inequality in (5) that removes the middle
term in the decomposition thus follows from the optimality
of & in minimizing 7 (+) in either ERM or DRO. From (5),
one can proceed to bound the two terms and, in a sense,
optimizing the overall generalization bound relies on a bal-
ancing between the bounds on these two terms.

ERM. In ERM, the second term Z(z*) — Z(z*), which
relies only on the oracle optimal solution z* among the
decision space X', can be bounded easily using standard
bounds for sample mean. On the other hand, the first
term Z(2) — Z(&) depends on the random solution 7
and is bounded by its supremum sup, . |Z(z) — Z(z)]
(or localized versions). Using tools from empirical pro-
cesses (van der Vaart et al. (1996)), we obtain in general

a bound for £(2) of the form O(\/MZ(I*)COH“’(H) logmy

n

(Vapnik (1999); Boucheron et al.|(2005)), where Comp(H.)
is some complexity measure of the hypothesis class H =
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{h(z;-)|x € X}. For example, the VC Dimension. and
M = supgex [|h(; ) o-

DRO from regularization perspective. Analyzing £(%)
for DRO can take two viewpoints. One is its equivalence to
a variability regularization on ERM. To explain this, let us
now put subscript “ERM” and “DRO” under Z to denote
their respective estimated objective function. [Lam (2016);
Duchi and Namkoong|(2019);|Gao et al. (2022) show that,
for small enough ball size €, we have roughly speaking:

Zpro(®) = Zerym (2) +Va(x)Ve+0(e), Yo € X. (6)

Here V4(x) is a variability measure of the cost function h
that depends on the statistical distance d used in the am-
biguity set. For example, V4(x) is the Lipschitz norm
of h(z;-) if d is 1-Wasserstein (Blanchet et al.| (2019a);
Gao et al| (2022)), and +/Varp«[h(x,&)] if d is an f-
divergence (Lam (2016); Duchi and Namkoong| (2019);
Duchi et al.| (2021)). @ can be used to bound the second
term Z(z*) — Z(z*) in (5) by connecting to ERM. More-
over, with € properly chosen (depending on the hypothesis
class complexity), @ can be converted into the bound

1
Z(x) < Zpro(x) + O () , Ve e X
n
by using an empirical Bernstein inequality (Maurer and
Pontil (%009)), which can be used to bound the first term
Z(z)— Z(Z) in (5) as well. Putting these together arrives at

abound for £(%) given by O(Vy(z*)4/ Co%w) Compar-
ing with ERM, this DRO bound bears the constant Vg(x™*)
instead of M Z(z*), but both bounds require Comp(H).

DRO from robust bound perspective. As another per-
spective to understand DRO, if the ball size ¢ is chosen
large enough such that
Pld(P*,P,) <e]>1-6 @)
i.e., G covers the ground-truth P* with high probability
1 — 6, then the first term Z (&) — Z (&) in (3) is non-positive
with probability at least 1 — ¢ (Ben-Tal et al.| (2013); Bert-
simas et al. (2018)). Note that this choice of ¢ does not
depend on the cost function h. At the same time, the sec-
ond term Z(2*) — Z(z*) depends on &, but not Comp(H).
These altogether give rise to an overall bound that only de-
pends on H through h(z*, ) (Zeng and Lam|(2022)). How-
ever, for (7) to hold, we typically need to choose ¢ to scale

in O(n P¢), which in turn would degrade the bound for
the second term. This is the case if we use Wasserstein
(Esfahani and Kuhn| (2018)) and f-divergence, the latter
requiring a modification of PP, to a smoothed distribution
estimator due to absolute continuity requirement in defin-
ing the divergence (Jiang and Guan|(2018)). The only ex-
ception is Maximum Mean Discrepancy (MMD) that can

retain € to be O(1/4/n), but then the second term bound
requires strong reproducing kernel assumption on h(z*, ),
i.e. h(z*,-) € H in[Zeng and Lam|(2022). Overall, if the
assumption is mild, then we would have a bound for £(%)

1
given by O(n "¢).

Overview of our bound. The bounds discussed above
are shown in the first column of Table As we can
see, they either depend on the hypothesis class complex-
ity Comp(#) or the distributional dimension D¢. Our ap-
proach P—DRO, which uses a suitably fit parametric model
in the DRO ball center, replaces both Comp(#) and D,
with a potentially much smaller parametric complexity
Comp(©). However, in doing so, we incur a model mis-
specification term &,,,. The tradeoff between Comp(©)
and &, are shown in Table(shown at the bottom of the
second column): When sample size n is moderate, the gain
in Comp(©) over Comp(#) could be significant and out-
wash the loss from &,,,. Moreover, if we simply apply
the same parametric model into ERM, we obtain a bound
that depends less desirably on &,,, (shown at the top of the
second column).

3 Main Results

Given i.i.d. sample {5, ', and a class of parametric dlS-
tributions Pg parametrlzed by ©, our P-DRO solves
where A = {P|d(P, Q) < e} is now centered around the
parametric distribution Q € Po. This Q is estimated from
the sample via a parametric fit. As a special case, we can
apply the same Q to ERM, giving rise to P-ERM (i.e., set-
ting € = 0 in P-DRO).

To analyze P-DRO, we first make the following general as-
sumption:

Assumption 1 (Oracle Estimator). Q € Peo satisfies
Comp(©)log(1/9)

noz

d(P*a Q) S 5(1;1)37 (IP*, P@) +
=1 A(4,0),

with probability 1 — 0, for some o > 0, Comp(©) is
the complexity of Pe, and Eqpy(P*, Pg) (sometimes ab-
breviated to &,py) is a non-negative function such that
Eapz(P*, Po) = 0if P* € Pe.

Assumption[I]holds under a wide range of parametric mod-
els, though its verification is case-by-case. Here we dis-
cuss two important settings (We leave the formal defini-
tions of popular metrics d including Wasserstein distance
and f-divergence, such as Kullback-Leibler (KL), x? and
Hellinger (H?), in the Appendix|A):

Example 1. d = [-Wasserstein distance, Po =
N, 2)|p € RP<} with known ¥, and marginals
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No Distribution Shift Additional Error Due to Distribution Shift
Method Standard Parametric Standard Parametric
ERM | /MEZECom() ) (p*), /Cm®) L g MEL, (PP, Pre) M (Comh) ) M(d(P'", Pt€))3
DRO with | Vi(z*) - 5= e 0
etrio d d(m ) /D¢ V4 (X*) Comp(©) + gapx . 0
Vv * Comp(H) n tr te\V)2 (% 1 Comp(H)\1
a(x )\ = d(P, P)VF (a7 ) M2 (=)

Table 1: Generalization error of different methods w/o distribution shift. In the case with distribution shift, we show the

additional term besides d(P*", P*¢)V,(x

of the random variable & is subGaussian with param-
eter with parameter o, i.e. Elexp(v' (¢ — E[¢]))] <

exp (W) Yo € RP<. Then Assumption|l| holds for

Q - N(%Zz 151'72): gapz = Wl(P*,Q*) with Q* =
N(E[£],%), a = & and Comp(©) = \/Dco.

We explain the rationale behind this example. It follows

by Wi(P*,Q) < Wi(P*,Q") + W1(Q",Q), where we
bound W7(Q*,Q) < W2(Q*, Q) and use the computa-
tion of W for two Gaussian distributions W5 (Q*,Q) =

\/Z]D:il |15 (&)); — E[€];]? in Dowson and Landau
(1982). Then we apply subGaussian concentration inequal-
ity (Wainwright (2019)) to all D¢ components and obtain

Wa(Q*,Q) < o/ 2ottt/

Example 2 (Extracted from Theorem 13 in|Liang (2021)).
d = KL-divergence, Pg is the class of all distributions gov-
erning go(Z) for some random variable Z and functlon go
parametrized by 0 € O. Then Assumptlonholds for Qas
the distribution of g4 (Z) and

Eape = supinf |log 2= — f,|| + Binf |log 2|,
o w Do oo 0 Pell o
1
Comp(©) = \/Pdin(F),a = 3,

where p, and py are the densities of P* and go(Z) if we
consider a GAN estimator with the discriminator class
F = {fo(z) : RP¢ — R} realized by a neural network
with weight parameter w, and generator class G = {gp(2) :
RP¢ — RP¢} realized by a neural network with weight pa-
rameter 0:

0, € argmin max {Ezf.(9o(Z)) —

w:

§
0:96€G |7l Tn

B, fu(X)},

with Pdim(F) as the Pseudo dimension of F.

Here &, reflects the expressiveness of the generator and
discriminator in Example 2| and Comp(©) describes the
statistical complexity of the discriminator. Note that « is
dimension-independent in both examples above, and this
is also generally the case for most interesting metrics (we
leave more details in the Appendix [B).

*), which would be paid for across all methods.

Next, to state our main result, we consider two main types
of distances d. First, the Integral Probability Metric (IPM)
(Miiller (1997)) is defined as

d(P,Q) := sup
{fva(f)<1}

Ep[f] - Eolf]],

for appropriately defined variability measure Vy(f). Exam-
ples include the 1-Wasserstein distance (Va(f) = || f||Lip)
Total Variation Distance (V4(f) = 2|/f||cc) and MMD
WVa(f) = |Iflln) (Zhao and Guan (2015)). Second, we
consider f-divergences beyond the IPM class. Here, we
can still link it to IPM, in particular the Total Variation Dis-
tance drv, if the following holds with some constant Cy:

dry (P,Q) < Cyv/d(P,Q). (8)

For example, KL-divergence holds with Cg;, = %

With these, letting 2P ~DRO pe the solution to P-DRO, we
have the following result.

Theorem 1 (Generalization bounds for P-DRO). Suppose
Assumption |l| holds and the size of the ambiguity set € >
A(6, ©). Then, with probability at least 1 — §, the general-
ization error of P—DRO satisfies the following:

(a) When d is an IPM metric,
E(xP~PROY < 2p,(z%)e.
(b) When d is a non-IPM satisfying , including
x*, KL, H?,

E(@P=PRO) <4Cq||h(z";-) oo VE.

(c) When d is the x?-divergence, we can improve the
bound to

2v/eVarg-[h(z*; €)] + 261 | (2% )| oo

Theorem |1| gives the bounds on &(x”~PRO) (excluding
constant factors) with probability at least 1 — ¢ for the fol-
lowing examples:

(1) 1-Wasserstein distance: ||h(z*;-)||LipA(, O)
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(2) KL-divergence: ||h(z*;-)|lcoy/A(d,©). In the Ap-
pendix [D.1.2] we further show an improvement to
\/Varp: [h(z*; -)]A(6, ©) under mild conditions.

In the above, A(d, ©) can be plugged in from Assumption
and the quantities discussed right after it.

The key ideas in proving Theorem [I]are as follows. Con-
sider the first and second terms in the right hand side in
the decomposition (5). Based on Assumption|[1} our choice
of ¢ ensures P[d(P*,Q) < ¢] > 1 — 4. Then under the
event d(P*,Q) < e, we have P* € A and Ep-[g(¢)] <
suppe_4[g(&)] for any measurable function g. This implies
that the first term Z(2) — Z(&) in (3) is non-positive with
probability at least 1 — §. This observation holds for all
three cases in Theorem On the other hand, when d is
IPM, the second term Z(z*) — Z(2*) can be written as

Z(a:*) — Z(z*) = max Ep[h(z";-)] — Ep: [h(z";")]

d(P,Q)<e

< Vy(z*) d(P,P)

max
P:d(P,Q)<e

< 2V4(z%)e.
When d is a non-IPM satisfying (8), we have
Z(z*) < Ep[h(2";-)];

max
drv (P,Q)<Cave
which allows us to reduce to the previous case. Moreover,
to obtain the improved result for the y2-divergence in part
(c) in particular, we borrow the Cauchy-Schwarz inequality

to relate to / Varp-« [h(z*; §)]:

|Ep[h(z*; §)]—Eg[h(z*; €)]| < v/2x2(P, Q) Varp[h(z*;£)].

©))
(9) helps us obtain the inequality suppc 4 Ep[h(z*;§)] —
Eglh(z*;§)] < 2eVarg[h(z*;§)] when d is the
x2-divergence, and we only need to bound the term
[Eg[h(z*;€)] — Ep-[h(z*; €)]| by applying (9) again.
Lastly, in Appendix [D.1.2] under additional mild con-
ditions, when d is the KL divergence or Hellinger dis-
tance, we improve the result in part (b) of Theorem |1|to

E(aP=PRO) < ey/eVarp: [h(@*; )] + coe [ A(a”;-)l|oo

with probability at least 1 — § for some constants ¢y, ¢s.

Next, letting ¥~ F5M be the solution to P-ERM, we have
the following result:

Theorem 2 (Generalization bounds for P-ERM). Suppose
Assumption |1| holds and the cost function |h(x;€&)| <
M, Nz, & Then with probability at least 1 — 0, the gen-
eralization error of P—ERM satisfies the following:

(a) When d is an IPM metric:

£(zP~ERM) < 9 (Sup vd(g;)> A(6,0).

reX

(b) When d is a non-IPM satisfying (8), including
x* KL, H?,

E(xP=ERMY < 4CyM+/A(6,0).

(c) When d is (modified) x*-divergence, we can improve
the bound to:

V2A(5, ©)\/Varp- [h(z*; €)] + 2M (A(5,0))1 .

Compared with Theorem 1] the bound for & (z”~FRM) in
Theoreminvolves the uniform quantity sup, ¢y Va(z) or
M, which can be much larger than V;(x*) or ||h(2*; )|
for £(z”~PRO) in Theorem |1, This amplifies the model
error £qp, When using P-ERM or, equivalently, demon-
strates the power of P-DRO in curbing the impact of model
error. Note that for y2-divergence, the first term in the im-
proved bound for P-ERM is the same as that for P-DRO
when ¢ = A(0,0), but P-ERM still incurs the uniform
quantity M in the second term.

We briefly outline the proof for Theorem [2| Consider the
decomposition and, without the worst-case machinery
of DRO here, we bound the two terms by sup,.c v |Z(x) —
Z(x)|, which leads to the appearance of sup,y V().
The improved x? result follows by replacing the uniform

bound sup, ¢ y v/ Varp- [h(z; £)] with
\/ Varg- [h(@F=ERM £)] < /Narp- [h(a* 6)

+2M (3 (P*, Q)5

The main results of this section are summarized under “No
Distribution Shift” in Table[1} As discussed in the Introduc-
tion, our P-DRO bounds do not depend on Comp(#) and
D¢ but instead the parametric complexity Comp(©) and
model error £,p,. In general, P-DRO compares favorably
with existing ERM/DRO when the hypothesis class is com-
plex or distributional dimension is high, and when the data
size is small so that the model error £, becomes relatively
less profound compared to Comp(©)/n. Our experimental
results in Section[4] will support these stipulations.

Note that in Table we suppress the dependency of
a and focus on the comparison of major terms, i.e.
Comp(©), Comp(H), Egpe- From the examples satisfying
Assumption to bound d(P*,Q), & = 1 can hold when
d is x2-divergence (Example 2) and o = % can hold when
d is 1-Wasserstein distance (Example 1), which implies the
results shown in the “Parametric” column under “No Dis-

tribution Shift” in Table[1]

3.1 Generalization to Distribution Shift

We extend our framework to the distribution shift setting.
We have i.i.d. sample from the training distribution P*" but
the test distribution IP*¢ # P, and % is computed using the
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sample from P". We are interested in the generalization
error £¢(2) = Epee [h(2;€)] — mingex Epee [h(x;€)]. We
have the following results:

Corollary 1 (Generalization bounds for P-DRO under dis-
tribution shift). Suppose Assumption|l| holds, and the ra-
dius ¢ > A(0,0) + d(Pt,P'"), then &£(xF~PRO) s
bounded by the same term in Theorem|[l|

Corollary 2 (Generalization bounds for P-ERM under
distribution shift). Suppose Assumption |I| holds, then
E(xP~ERM) is bounded by the same term in Theorem
except replacing A(5, ©) with A(5, ©) + d(Pte, PT).

The proof of the two results follows a similar structure as
Theorem 2| The right half of Table [1] summarizes the ad-
ditional errors incurred by the various methods because of
distribution shift. We see that P-ERM under distribution
shift suffers from the product of d(P'",P*¢) and uniform
quantities over X" including M and sup,¢ x Va().

In the literature, the evaluation metric in distribution shift
is called “discrepancy metric”’, which can be defined
as diSCL(H; Pte, P”) = SUDp, hoeH |E]pteL(h1, hg) —
Eptr L(hq, ho)| for some loss function L : H x H — R
(Mansour et al. (2009); Ben-David et al.| (2010); [Zhang
et al.|(2019)). This metric depends on the hypothesis class
H. Instead, the metric d(P*®, P*") to measure the distribu-
tion shift in our generalization error bound does not con-
sider the interactions between H and P!", P*¢. Meanwhile,
we do not need to get access to samples of IP*¢, but we need
the value (or an upper bound) of d(P‘¢, P'"). [Lee and Ra-
ginsky (2018) uses the same discrepancy measure and ob-
tains a similar generalization error bound when Q is taken
to be the empirical distribution and d is the p-Wasserstein
distance, which inherits the curse of dimensionality in stan-
dard Wasserstein-DRO approaches. This challenge is also
shown in the numerical results in Section [4]

As mentioned, we do not assume any specific structure
in the distribution shift but only d(P*¢,P"). This distin-
guishes our result from those associated with some specific
types of distribution shift, such as group-based approaches
(Sagawa et al.| (2020)), latent covariate shifts (Duchi et al.
(2020)), and conditional shifts (Sahoo et al. (2022)). It
would be interesting to extend the P—DRO idea to these
specific types such that the approach is more realistic to
downstream tasks, e.g. representing PtYe‘ , Dy some para-
metric distributions and then robustifying in [Sahoo et al.
(2022).

3.2 Error Tradeoffs Compared to Existing Bounds

We discuss several implications of P-DRO regarding gen-
eralization. It is designed to hedge against function class
complexity and distributional dimension, while paying a
controllable price of model misspecification in our para-
metric approximation. Illustrated in Figure |1} when the

sample size is not too large, i.e. when n < n*, by replac-
ing Comp(#) in ERM or 1/D, in DRO with Comp(©)
plus &;pz, P-DRO can enjoy better generalization. Be-
sides, under distribution shift, both ERM and P—-ERM are
further negatively impacted by the amplification of the im-
pact of function class complexity and indicate the strength
of P-DRO.

We point out that our P-DRO framework hinges on the
availability of a parametric model with low &,p, mea-
sured by the metric d. While this presumption may not
hold in all cases, fortunately there is a rich literature in
statistics for selecting and estimating parametric models:
information-based model selection (Anderson and Burn-
ham (2004)), and decision-driven parameter calibration
(Ban et al./(2018)). Our approach is not to create new meth-
ods for parametric model estimation; rather takes advan-
tage of this rich existing literature. More precisely, P-DRO
turns the P-ERM solutions obtained from directly using
these models into consistently better solutions via robus-
tiﬁcagtion — the error in P-ERM has an extra uniform term
M E4ps in addition to the error in P-DRO when there is no
distribution shift (see Table[T).

Figure[l]also demonstrates that the performance of P~DRO
may be dominated by others. If Comp(H) ~ Comp(O),
and the parametric class Pg provides a poor approxima-
tion for P*, i.e. &4, is large, the ambiguity size ¢ has to
be set large in order to cover the true distribution. In such
setting, P—DRO underperforms against nonparametric ap-
proaches even for small n. In the limit n — oo, the error
of nonparametric approaches converges to 0; however, the
error of P~DRO is lower bounded by &,

(b) With Shift

(a) Without Shift

Figure 1: Concept of model performance when
Comp(H) > Comp(O), where dp = d(P" P'*)
and n* increases with Comp(#) and decreases with
Comp(0), Eape-

Moreover, when the distribution center Q is continu-
ous, the inner maximization term suppc 4 Ep[h(z;&)] in
becomes an infinite-dimensional optimization prob-
lem even after dual reformulation. For example, for 1-
Wasserstein distance (Esfahani and Kuhn (2018)) and f-
divergence (Bayraksan and Love| (2015)), the inner prob-
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lem suppc 4 Ep[h(z; £)] would be reformulated as:
nf{Ae + Egow@[ggg{h(ﬂc; & — A& = €I} A-W)

{4 de B gl (@) = 0]} ()
where the objective involves a high-dimensional integral
over Q instead of the empirical distribution. This makes the
problem even harder to evaluate and optimize than DRO
based on the empirical distribution. There are two ap-
proaches to handle this issue. One is through Monte Carlo
and sample average approximation that reduce the problem
to a structure resembling DRO based on the empirical dis-
tribution. Another is through stochastic approximation. In
the next subsection we discuss the first approach and how
its error can be controlled. We leave the discussion of the
second approach in the Appendix [D.5]

3.3 Incorporation of Monte Carlo Errors

Suppose for tractability purpose we generate Monte Carlo
sample & ~ Q, ¢ = 1,...,m to construct Q,, :=
Ly dz,» which approximates the ball center of the am-
biguity set A in (3), i.e., we now use A = {P|d(P, Q,,) <
e}. Let xP~PHEOm be the corresponding solution. We

investigate the required Monte Carlo size m such that
E(xP=PROm) ~ €(2P~PRO) in Theorem|l]

The approximated reformulation now incurs both the sta-
tistical generalization error from the data and the Monte
Carlo sampling error, and we would like the latter error
to be dominated by the former. We assume h(z;&) €
[0, M],Vz, £ throughout this subsection.

Theorem 3 (Generalization bounds for Wasserstein
P-DRO with Monte Carlo errors). Suppose Assumption
holds and the size of the ambiguity set satisfies 5 >
A(6,0). If our Monte Carlo size m > C(2)P¢ for some
constant C, when d is 1-Wasserstein distance, then with
probability at least 1 — §, we have:

E(aP=PROmY < 2||h(z*; )| e

Note that when &, ~ 0 in A(4,0) and we set ¢ =
A(8,©), the required Monte Carlo size m =~ n®P¢, which
depends on the distribution dimension. A key observa-
tion in proving Theorem |3|is that we can still establish
P*[d(P*,Q,) < & > 1 — & since Wi(P*,Q,) <
Wl (P*, Q) + Wl (Q, Qm) <e for large m.

However, the argument of Theorem 3| does not hold more
generally since, for instance, d(P*||Q,,,) = oo for any m
and continuous distribution P* for general f-divergence d.
Leveraging on the equivalence between DRO and regular-
ization, we provide another result below:

Theorem 4 (Generalization bounds for general P-DRO
with Monte Carlo errors). Suppose Assumption |1| holds

and the size of the ambiguity set ¢ > A(§,0), when d
is x2-divergence or 1 —Wasserslgein distance, if the Monte
Carlo size m > C (%) Comp(H) logm for some
constant C' and k, then with probability at least 1 — 9§,
E(xP—PROmY < 28, where &, is the corresponding gen-
eralization error upper bound in Theorem|l]

The key idea here is to control the following term Vo € X:

sup Ep[h(z;§)] —  sup
d(P,Q)<e d(P,Qm)<e

Ep[h(x; )],

via the variability regularization property of DRO so
that can be dominated by £&; when m ~ Comp(H)n®,
which is now independent of the distribution dimension
but depends on hypothesis class complexity. In Ap-
pendix we further show the metric d in Theorem [4]
can be extended to p-Wasserstein distance for p € [1, 2].

Computational Issues. Theorems [3] and [4] provide the
required Monte Carlo sizes such that &(zf~PROm) ~
E(xP~PRO) With this use of Monte Carlo, P-DRO can
be viewed as translating the statistical errors entailed by
the distribution dimension to the model error and additional
computational effort. The latter involves two aspects, one
is the Monte Carlo sampling of the parametric model Q
in lieu of the original data, which is considered acceptable
since this is typically cheap for common models. In other
words, the m in 2 ~PFOm can be much bigger than the
original data size n drawn from P*. Second is the optimiza-
tion complexity for DRO. Since our optimization model re-
duces to the same formulation as DRO based on the em-
pirical distribution of m data points after the Monte Carlo
sampling, we can borrow the same existing procedures for
empirical-based DRO. This is conceptually attractive, but
we should caution that solving the latter is not always easy
to do, and certainly more difficult than solving ERM. On
the other hand, we can leverage recently proposed large-
scale DRO procedures specially designed for f-divergence
in|Levy et al. (2020); Jin et al.|(2021) and Wasserstein dis-
tance in Sinha et al. (2018) via variants of stochastic gra-
dient method. We hope the current and future active inves-
tigation of large-scale DRO computation would make the
procedure for solving P-DRO much more efficient.

Similarly, we also provide the required Monte Carlo size
of P—ERM such that £ (a7~ FEMm) ~ £(xP~ERM) in Ap-
pendix [D.4] where m also depends on the hypothesis class
complexity.

Other Related Work. We conclude our theoretical dis-
cussion by pointing out our differences with other work
that uses parametric models in DRO. First, despite the pop-
ularity of such models in statistics and machine learning,
they have not been investigated in DRO until recently. |Sut-
ter et al.| (2020) establish the optimality of DRO methods
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by using a Pareto-optimality argument for KL divergence,
based on the criterion of out-of-sample “disappointment”
instead of the generalization error. Shapiro et al.|(2021) for-
mulates and derives asymptotic results similar to variabil-
ity regularization for so-called Bayesian risk optimization
under parametric uncertainty. [Michel et al.|(2021][2022)
propose ambiguity sets that only contain parametric dis-
tributions, but without theoretical generalization guarantee
under misspecified parametric distribution class. Besides,
they evaluate model performances via loss robustness in-
stead of the excess risk that we investigate.

Compared with previous work, our framework differs by:
1) focusing on the generalization error measured by the ex-
cess risk against the oracle solution; 2) providing finite-
sample theoretical guarantees; 3) demonstrating our advan-
tages both with and without distribution shift; 4) general-
ity in accommodating most of the commonly used distance
metrics including Wasserstein distance and f-divergence.

4 Numerical Studies

We present experiments to illustrate the properties of our
models under different scenarios on both synthetic and
real-world datasets. Existing ERM and DRO models
in literature using the empirical distribution are denoted
NP-ERM and NP-DRO and serve as our benchmarks. We
tune the ambiguity size ¢ through cross validation in DRO
methods and set Monte Carlo size m = 50n for each para-
metric model under sample size n (unless noted otherwise).
Because of page limit, detailed setups and full experimental
results can be found in the Appendix

Synthetic Example We consider the problem of mini-
mizing the following objective:

[e3

h(z;€) = | min{0,§ Tz —p}| = (n—€ )T, (10)

where £ are asset return and g is the target return. The
vector x € A represents the allocation weights, where
X = {>,z;, = 1,x; > —7}. This objective is called
the downside risk when a« = 2 in practical portfolio op-
timization in|Sortino et al.|(2001). Here Comp(H) grows
with 7 and « and is provably large. We vary 7 € {2,10}
and o € {1,2,4}. Our base case is that each marginal (£);
is fully parameterized, following a location variant of Beta
distribution Beta(w;,2) from the domain [0, 1] to [—r, 7]
with o; € [ar, arr]. We use y2-divergence as the DRO
metric here.

Besides the empirical measure B, (Empirical-*), @ in
is fit with the location variant of the Beta distribution class
(Beta-*), where &,,, = 0 in the base case. We also fit
the data with the normal class (Normal-*) and find that this
type of P~DRO approach still enjoys relatively good perfor-
mance. We show the results of one base case setup in Fig-

ure(a). Since Comp(#) is much larger than Comp(©O)
here (shown in Appendix, it is natural to see that para-
metric models perform much better than the nonparametric
counterpart. Besides although P—~DRO outperforms P -ERM
with statistical significance (p < 0.001) under all cho-
sen sample size, the absolute margins between P-DRO and
P-ERM are not very obvious especially under large sample
size. We show variants where distribution is misspecified
(in Appendix or under distribution shift reported in
Figure (b). Here we find that P-DRO enjoys larger gains
than other models, which is consistent with our theoretical
argument. Other complexity setups («a, 7) in the Appendix
show similar results and the gap of the performance gain of
P-DRO compared with other methods is larger with grow-

ing (o, 7).

(a) Base Case

(b) Distribution Shift

Figure 2: Average Z (&) across different ERM-DRO mod-
els varying n with (1, @) = (2, 2).

Real Data I: Portfolio Optimization We now consider
portfolio allocation in the real datasets and continue to use
the objective with @ = 2 and 7 € {2,10}. We use
four real-world datasets from Kenneth French website with
D¢ € {6,10,25,30}. Note that the asset returns are nei-
ther stationary nor generated from some simple paramet-
ric families. Therefore, any approach would face distribu-
tion shift and model misspecification. We test our method
against the benchmarks under the commonly implemented
“rolling-sample” approach to evaluate the empirical out-of-
sample cost h = Zi\;l(,u —7;)% of N out-of-sample re-
turns {#; }7_; . We still fit parametric models with the loca-
tion variant of Beta distributions and normal distributions.

Tableshows that parametric models (beta, normal) per-
form better than directly implementing the empirical dis-
tribution, especially under large D¢. The performance of
NP-DRO / NP-ERM is very sensitive to the choice of 7, and
thus significantly dominated by parametric approaches in
that regime. P-DRO can reduce the problem of misspecifi-
cation from P-ERM. Besides, we find that fitting with beta
parametric models can generate better decisions than the
normal in this case.

Real Data II: Regression on LDW Data Finally, we
consider a regression problem with a relatively large
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Table 2: Comparison of performance I under different models in the portfolio allocation problem with 7 = 2 (the term
in bracket shows the multiples of the empirical A with 7 = 10 for the corresponding model)." means the DRO model
outperforms the ERM counterpart with statistical significance; * means P-DRO outperform empirical-DRO with statistical

significance (p < 0.001).

empirical beta normal
dataset / method ERM DRO | ERM DRO | ERM DRO
10-Industry 36.26 (1.00)  33.35(1.00)* | 31.27 (1.00)  30.64 (1.00) | 354 (1.00) 31.88 (1.00)"
6-FF 2891(1.02)  27.98(1.01) | 35.93(1.00) 35.81(1.00) | 28.75(1.01)  27.93(1.00)
30-Industry 210.07 (9.97)  195.1 (9.58)" | 35.26 (1.00)  34.33 (1.00)* | 84.58 (1.03) 62.06 (1.01)"*
25-FF 60.86 (2.90)  53.39 (2.94)" | 37.62 (1.00) 36.94 (1.00)* | 48.58 (1.11) 37.41 (1.04)**

dataset. We choose the benchmark dataset psi(ﬂ which
is an observational dataset from economic surveys with
dim(z) = 8 pretreated variables. The goal is to predict
residents’ earnings in 1978 given those features. Given n
samples {(z;, y;) }1_, where the feature vector z € R3]
and the label y € R, we can express loss minimization un-
der DRO to be:

min max B, )~z [l(y: h(z))], (1D
heH qpBy<e
where H is the class of linear functions with
quadratic  interactions  between  features, ie.
[1,21,..., 28, T1%2, ..., 247, ...] € R*" as our function

class H, and ¢ is the squared loss. For DRO models, we
choose d as 2-Wasserstein distance with £5 norm in i.e.
the result of Theorem 1 in|Blanchet et al.|(2019b). We fit
{(x;,y;)}_; with a mixture of Gaussian distributions for
joint (z,y), where each subpopulation is based on each
possible combination of category variables in x.

In Figure(a), we only report out-of-sample R for dif-
ferent methods averaged over 50 independent runs in each
dataset for each sample size. Under this setup, all models
enjoy better performance as the sample size grows. How-
ever, due to high function complexity, ERM models are
dominated by DRO models, especially when the sample
size is not too large. And P-DRO enjoys much better and
statistically significant performance than NP-DRO under
smaller sample size, which is consistent with the perfor-
mance trends with larger n in Figure

In the case of distribution shift, we consider one type of
marginal distribution shift on the feature vector in Figure
(b). We focus on the case where individuals in the train-
ing dataset are above 25 years old but the ones in the test
datasets are below that. And we tune the ambiguity size
¢ from an separate validation dataset to approximate the
extent of distribution shift also from the same candidate
hyperparameter set before. Under such case, P-DRO is
slightly better than NP—DRO but not statistically significant,

'available at https://users.nber.org/ rdehejia/nswdata2 html
Under squared loss ¢, Z(#) = K(1 — R?) for some K > 0.

but they both have significantly superior results than ERM
models under distribution shift.

(a) Without Shift

-

(b) With Age Shift

Figure 3: Comparison of average R? (%) under different
models in LDW Datasets (ERM models without points in
small sample size represents instability results, i.e. R? <
—1 with too large estimated ||6])). P-DRO is statistically
significant than NP-DRO (p < 0.001) in all sample sizes
without shift and n = 200 with age shift.

5 Conclusion and Future Direction

We develop a distributionally robust framework that builds
on the parametric distribution, investigate its generalization
error properties and demonstrate its superiority against ex-
isting benchmarks. In the future, we plan to study the fol-
lowing directions. First is to extend to more complex gener-
ative models and incorporate data-driven model selection to
balance between nonparametric and parametric approaches
under different regimes like Figure Second, it is natu-
ral to consider contextual optimization with better robusti-
fication of the contextual or policy distribution estimators.
We can also incorporate other social concerns such as fair-
ness and causality to make more interpretable ambiguity
sets through the lens of parametric approximation. Besides,
desirable representation of unknown distributions can also
apply to other areas of data-driven decision-making such as
online problems and offline policy learning.
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A Basic Definition

Definition 1 (Wasserstein distance). Let P and Q be two distributions supported on Z, the p-Wasserstein distance W, :
= X 2 — R is defined by:

WyP.Q) = { ([ _teslrmas.ay)” <o, =, - @} 7

where 11 is the joint distribution of x and y, 11, and 11, are the corresponding marginal distributions of 11.

We also need the standard measure concentration result of 1-Wasserstein distance in our analysis.

Lemma 1 (Measure concentration, from Theorem 2 in|Fournier and Guillin (2015)). Suppose P is a light-tailed distribution
such that A := Eplexp(]|£]|*)] < oo for some a > 1. Then there exists some constants c1, ¢z only depending on a, A and
De such that V6 > 0, if n > 1280 then W (P, B,) < (18L/0))1/ max{De.2)},

Definition 2 (f-divergence). Let P and Q be two distributions and P is absolutely continuous w.r.t. Q. For a convex
Sunction f : [0,00) — (—00, 00| such that f(x) is finite Vo > 0, f(1) = 0, f-divergence of P from Q is defined as:

D;(P,Q) :/f <j(g) 40 =Eq {f <5<g)]'

Remark 1. In terms of specific metrics d in Assumption[I]in the main text, we define them as:

Name Notation in terms of d(P,Q) | f(t) in Deﬁm’tion[ﬂ
Total Variation (TV) distance drv (P,Q) @
x2-divergence Y:(P,Q) %
Modified x*-divergence :(Q,P) (t;z)
KL divergence KL(P,Q) tlogt — (t—1)
squared Hellinger distance H?(P,Q) (Vt—1)2

The following inequality shows that (modified) x2-divergence, K L-divergence and squared Hellinger distance satisfy (8).

Lemma 2 (Pinsker’s inequality). For distributions P, Q, under our definitions of specific f-divergences above, we have:

dry(P,Q) < \/ SKL(P.Q) < w.

The following result shows that (modified) y2-divergence can also be represented as similar forms like IPM in the main
text with V,;(z) = /Varp«[h(x; £)] when d is taken as x2-divergence.

Lemma 3 (Pseudo IPM property for (modified) x2-divergence). For distributions P, Q, under our definitions of specific
f-divergences above, we have:

Ee~plg(6)] - Es~@[9<§>]] < \/2min{ (P, Q) Vare. e 9(6)]. \*(Q. P)Vare g (€)]}.

Proof. This result follows directly from the definition of y2-divergence and the Cauchy-Schwarz inequality. Denote M* =
Eg[g(§)]. Then we have:

Eelo(6)] — Eolo(6)] = Eo | (55— 1) (00—~ 1) = /Bo (55— 1) y/Varclu(@)
= \/23(P, @) Varg[g(€)].
Belo(6) ~ Eolu(6)] ~ Eo | (55 —1) 66~ 31%)] 2 — /(P Q) Varclo(©)

The other side follows by considering the term Eq[g(£)] — Ep[g(&)]. O
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Following this result, all the properties for our derived generalization error bounds hold both for y2-divergence and modi-
fied y2-divergence.

In the following proofs, if not specially noted, all C' with different superscripts and subscripts are denoted as some constants
independent of problem-dependent complexity terms. Besides, regarding the statement in Section 3.3|in the main text, we
ignore the polynomial dependence on log(1/4) for the required Monte Carlo size for each case.

B Parametric Estimators under Assumption 1|

Back to Assumption |1]in the main text, distribution estimation is a fundamental and longstanding topic in statistics and
machine learning. Compared with nonparametric approaches, learning distributions in the parametric regime reduces to
finite-dimensional estimation of some parameters 0. The classical Maximum Likelihood Estimator (MLE) and Methods of
Moment can provide some finite-sample guarantee of ||é — 6*|| with and without distribution misspecification (Spokoiny
(2012); Boucheron et al. (2013)) in general. Under complex parametric classes where computing likelihood is intractable,
minimum distance estimators (Bernton et al.|(2019); Briol et al.[(2019)) and generative models such as Generative Adver-
sarial Network (GAN) (Goodfellow et al.|(2020)) are efficiently implemented in practice to represent complex distributions.
These methods can provide generalization guarantees to bound the distribution distance between P* and the output estima-
tor Q with some distribution complexity measures (e.g.,[Zhang et al. (2017);|Liang| (2021)).

Other Examples for Assumptionin the Main Text. We talk about two examples where d is the Wasserstein distance
or KL-divergence. We illustrate some additional estimators @, and pairing distribution metrics d, that satisfy Assumption

(1) d is the squared Hellinger distance, Pg is the class of all distributions governing g¢(Z) for some random variable Z
and function gy parametrized by § € ©. Then Assumptionholds for Q as the distribution of 96, (Z) and

Eapaw = sup inf ‘M — foll + Binf VPx — /Py ’
0w |[vDx+ /Do ~ 0 || /D= + /Do N

1

Comp(©) = /Pdin(F),a =,

where p, and py are the density of P* and g¢(Z) if we consider GANs estimator with the discriminator class F and
generator class G:

6,, € argmin max. {Ezfu(96(2)) — Enfu(X)},

w

0:90€9 |5 io<n

and Pdim(F) is the Pseudo dimension of F, which is shown in|Liang (2021).

(2) d is x2-divergence and P* € Pg itself is a location variant of Beta distribution. See Proposition |1|for the specific
result of Comp(©) and «a.

(3) dis 1-Wasserstein distance. We consider the following two different mixture models:

* First, we consider the special case of standard mixture Gaussian models P* € Pg = {%N (1, X)) +
SN (—p, 2)|p € RPe} with known X := olp, « p, -

Then Assumptionholds for Q < IN (i, ) + 2N (—f, ) with the output of EM algorithm with . Besides,

Comp(©) = /Dgo and a = %, which is implied by Wy (P*,Q) < ||i — p*[ls = O(oy/ 280y py
2

la— al3 = O(%’g(l/é)) in Theorem 6 of [ Xu and Zeevi| (2020) and Corollary 2 of Balakrishnan et al.

(2017) under some additional mild conditions.

* Second, consider P* := Zszl piIP; for some unknown probability pj, with distribution % in terms of each
group. We define Po = {30, prN (1, )| (01, - - -, D) € Ase, e € RP<,VE € [K]for some known X.
Besides, we are given group labels {g; }?_; associated with {&;}?_,, where each g; € [K].

Then Assumptionholds for Q 4 Zke[K] PN (fig, X), where pr, = Zim Moi=ny [l = Myk c

n ’ npr
[K). €ape = Wi(B*, Q") with @ £ Y ) PN (Eenry (€] ). @ = 3, Comp(®) = C'\/Deo K with some
1 and max; je (k) [[Ee~pr [§] — E£~P; (€11D-

. . )
constant C' depending on P* (e.g. scales with e BT

3 Ak represents K -dimensional probability simplex. Here Pe corresponds to the model in our last numerical example.
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Remark 2. The derivation of the term in the second case above follows by:
WI(P*7 @) S Wl(]P)*7 Q*) + WI(Q*7 @) + Wl(@7 Q)7

where Q 2 e PN (Eenpy [€], ).

As a complement, we also mention some smooth nonparametric estimators Q instead of the empirical distribution P,
used in the DRO literature if the density of P* is smooth. A series of suggestions include the histogram density estimate

(Mevissen et al.|(2013);|de Klerk et al. (2020)) and kernel density estimate (KDE) (Jiang and Guan|(2018);/Zhao and Guan
(2015); |Chen et al. (2022)). For example, with the Wasserstein distance, the ambiguity size & = O((nhijm(g))_% V h2)
(hy is the bandwidth of KDE, where the density of Q is f(&) = ﬁ Y K (5;5) for some kernel function K (-))
can include P* in the ambiguity set .4, where this size € can be slightly smaller than directly implementing the empirical
distribution in terms of n. However, the nature of nonparametric approaches determines that they cannot bypass the curse

of dimensionality.

C Formal Derivation of Existing Empirical Approaches

In the following, we detail some steps on how existing approaches are derived specifically in Section [2]in the main text.
In each approach, we look at the generalization error Z(Z) — Z(x*) where Z is a data-driven minimizer. In particular,
denoting Z(-) as the data-driven objective, we use the decomposition roadmap:

Z(&) = Z(a") = [2(2) — Z(2)] + [2(%) - Z(«")] + [Z(z") — Z(a")]

where the middle term [Z(&) — Z(2*)] is at most 0 by definition of Z as a minimizer of Z(-). Thus, we would focus on
bounding w.h.p. R R

(Z(&)— Z(@&) + [Z(z") — Z(z")). (C.1
The traditional approach is to replace the true distribution in the problem with the empirical distribution, i.e. P, =
% >-7_, ¢, and obtain the empirical optimization objective of (2) with solution N -ERM,

Lemma 4 (Adapted from Boucheron et al. (2005)). Consider zN~FFM s the minimizer of min,, Z(x) in (2), denote
M = sup,cy ||h(x; ) || oo, then we have the following generalization error of N ~EEM vith probability at least 1 — §:

Z(aNTEEM) — Z(2*) < log(1/9)

\/MZ(x*)Comp(H) logn n Comp(H)M C2)

n n

This result is minimax optimal w.r.t. the function complexity Comp(?#), e.g. the case of VC(#) shown in Section 5 of
Boucheron et al.|(2005).

As discussed in the main text, DRO follows another route of setup that relies on optimizing the worst-case objective over
an ambiguity set A = {P : d(P,P,,) < ¢} constructed from some distance / divergence metric d(-,P,) (f-divergence,
Wasserstein distance, MMD etc). Denote the optimal solution to as N ~PEO_ To evaluate the quality of a solution,
by letting & := 2V ~"PEO and ZN-PRO(.) .= Z(.) in (C.I), the second term will lead to an error O(Evdi\/(g)) The key

lies in the first term, i.e. Z(xN~PRO) . zN-DRO(N=DRO) [ the literature, there are two interpretations to bound
the first term, one using the equivalence of DRO with regularization, and one using the confidence guarantee in bounding
Z(ZN-PRO) yith the worst-case objective if the ambiguity set is chosen large enough to be a confidence region for P*.
For convenience, in the sequel we sometimes call the first interpretation as the regularization perspective and the second as
the pessimism perspective.

Comp(H)
n

Theorem 5. For some certain metric, when the ambiguity size ¢ = Q(( )ﬁ) with B € {11}, we have the following

generalization error of £ ~PRO with probability at least 1 — §:

Z(2N-PROY _ 7(2*) <log(1/6) [Eﬂvd(x*) n Comp(H)(sup,ecx Va(z))
10" " C3)
1\

vn

+ + 52(%‘*,8):| ,
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where (3 is a constant depending on different metrics d used here. £1(x*) only depends on h(x*;§) and P*, Eo(x*,¢e) =~
Va(x*)e??, which is of order .

1
When the ambiguity size ¢ = Q(n  *P€)), we may also have:

*)log(1/6
N0
where a(D¢) is some function of the domain dimension of the distribution P.
Proof. For the bound (C.3), it is a combination of the following results:
* Variability regularization in the form:
C 3
Z(Q?) < ZN—DRO(.%,) + Omp(%) SUPzex Vd(fﬂ) (C.5)

n
* DRO expansions in the form:

ZN=PRO (%) < 7, (2*) + P Vg(x*) + Ex(x*, €).

 Standard concentration bound for the empirical mean:

5 () — 7(2)| < 1)
1Zn (") — Z(z")| < N

For the bound (C.4), it is achieved by using a ball size ¢ large enough to cover the true P* with probability at least 1 — 4.
Under such event, we have:

ZN=DRO (%) — Z(2*) < Vy(z*)e. (C7
Typically, to ensure that the ball size is large enough to cover the true distribution with probability at least 1 — ¢, the
ambiguity size is usually needed to depend on De. O

. . . . . VC(H) log(veisry)
This result unifies several streams from previous literature. Besides we denote 7, < — S VeG)-

some sub-root Rademacher Complexity. For example:

as the fixed point of

n

Example 3 (Gao (2022)). In the case of 1-Wasserstein distance, f = 1, ¢ = \/Tlog(N(Z’%’n)/é) (or\/TlogT(Ll/é) +\TE+
1

N ) to ensure that the variability regularization bound (C.5) holds with probability at least 1 — 6, where T only depends
on P* with Vi, (z) = [|h(z; )| Lip-

1
Example 4 (Duchi and Namkoong (2019)). In the case of x*-divergence, 3 = %, & = log(N(HTﬁ’")/é) (or & loi(l/5)

Moreover, the second term in the RHS of (C.5) is also of order 1}, with V2 (x) = +/Varp-[h(x;-)].

+rk).

D Proofs and Explanations

D.1 Proof before Section

D.1.1 Proof of Theorem[1}

In the case (a) when d is an IPM metric, we have:
(a)
Z(zP~PROY — Z(z*) < sup  Eplh(2*;€)] — Ep- [h(2";€)]
d(P,Q)<e

(b)
< sup  Es[h(a®;€)] — Ee-[h(a"; )] (D-1)
d(P,P*)<2e

(c)
< 2V4(z")e,
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where (a) follows from the fact that when ¢ > A(4, ©), by Assumption |1} we have P* € AQ;d, ) (e. d(P*,Q) < ¢
with probability at least 1 — §). Therefore, the term Z(z) — Z(x) in (C.1) is non-positive with probability at least 1 — 4.
Furthermore, (b) follows from the triangular property of distance, VP € A(Q; d, ¢), d(P,P*) < d(P, Q) 4+ d(Q, P*) < 2e.

And (c) follows from the fact that d is IPM with d(P, Q) = sup .y, (s<1 ’Ep[f] — Eglf] ’
In the case (b) when d satisfies the inequality (8), we have:
E(@MPRO) < sup  Ep[h(2*;€)] — Epe[h(a"; )]

d(P,Q)<e

< sup  Ep[h(z";€)] — Ep-[h(2"; )]
dry (P,Q)<Cave

< ACaVE|h(z*; ) |l so,

where the first inequality follows by P* € A(Q; d, ) with probability at least 1 — §. The second inequality follows by

the fact that dpy (P, Q) < Cyg1/d(P, Q) such that {P : d(P,Q) < e} C {P: dpy (P,Q) < C4y/2}. The remaining parts
follow the same in (D.1) above since TV distance is IPM.

Specially, in the case (c), when d is (modified) x2-divergence, we have:

E(xP~PRO) (%) sup  Ep[h(27;€)] — Ep- [h(z7;€)]
x2(P,Q)<e

(%)]EQ[h(x*;f)]—k 2eVarg [h(z*; €)] — Ep- [h(2"; )]

(2 2y /eVarg[h(z*; £)]

() 3

< 2/Vare o €)] + 28t [ (Vare- 022" ))F + 2 |A(a"s )| & (Vare- [b(a*: )]

eVarp- [A(w*5 )] + 422 7@ ) oo,

where (a) still follows from the fact that x2-divergence satisfies Assumption w.h.p. (b), (c) follows from Lemrna for
two pairs (P, Q) and (P*, Q). And (d) follows by:

Varg[h] — Vare: [A] < [Eg[h?] — Ep- [2%]] + 2llhlloc [Eg[h] — Ee-[1] .

< /2x2(P*, Q) Varp- [12] + 2{ oo \/2x2(P*, Q) Varp- [B]. O

D.1.2 Proof of Improved Results of Theorem|[1]for General f-divergence

In fact, the result in Theoremlcan be improved for general f-divergence from ||h(z*; )|/ to v/ Varp« [h(z*; )], without
requiring (8) as long as some mild conditions hold for the cost function h(z;-) and sample size n. We present some
technique non-asymptotical results for general f-divergence to bound Z(z*) — Z(x*) with the help of duality in DRO
under f-divergence. These types of results hold for any f-divergence DRO problem with continuous or discrete ball center
Q. Before that, we first present some known asymptotical results.

Remark 3 (Adapted from Theorem 1 in Duchi et al.| (2021)). For general f-divergence, we can obtain the following
equality asymptotically under some mild conditions for h and €:

1
K%&@MW%Q—%M@M+VWHW@H%M+%<J-

i 18)) = Eglh(z;€)] — iaw x; 1
o Eelh(a: )] = Eqlhasc)] ¢ﬂmv@w7m+%(g.
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Theorem 6. When the sample size 1 is large enough and € — 0 when n — oo, for general metric dy in f-divergence and

[I(z*; ) ||oo < 00, we have:
sup  Ep[h(z;€)] < Eglh(z;€)] + C(f)y/ Varg h(z; )le, (D.3)

]P’G.A(@;df,s)

inf — Eplh(z;§)] > Bglh(z;€)] = C(f)y/ Varg[h(x; e, (D.4)
PEA(Qidy,e)

where C(f) only depends on the metric dy and P*.

Then the result in the case (b) in Theoremcan be improved to:

E(@P PROY < sup  Eplh(z*;€)] — Ep«[h(z*;€)]
dy(P,Q)<e

< Eg[h(z™;§)] — Ep- [n(z"; )] + C(f)/ Varg[h(z*; §)]e

B ) —_inf  Belha®:€)] + O(),Margh(e )
3af,€

< 20(f)y/Varglh(z*; €)le,

where the second and fourth inequality follows by the result in Theorem [6] And the first and third inequality is a result
of P[P* € A(Q;dy,e)] > 1 — § such that inf, »g)<- Eplh(z*;€)] < Ep«[h(x*;€)] < SUP g, (p.0)<e Eplh(z*;£)] with

probability at least 1 — &. After that, we can use the same argument before to bound , / Varg [h(z*; §)].

Proof of Theorem|6] We first show (D.3). We have:

sup  Ep[h(z";§)] < min AEg [f* h(ac*,f)—u)] + e+

PeA(Q;dy e) T A0
3 ;&) — [ Varg|h(x*;
<3 | (M) m%%fm+%Wﬁm
= Feltteridl+ < f}'(l) " f”(l)(f*)Q (O)C(f’P*)> Varg[h(z*; )]e,

where the first inequality above is based on the weak duality condition, i.e. Theorem 1 in Ben-Tal et al. (2013' and

the second inequality above is given by A = W, o= E@[h(x*; £)] as the feasible dual solution, and the third

inequality plugging in the value of A and [, then we take the Taylor expansion up to the second order for f* with a proxy
of Maclaurin remainder C'(f,P*) — 1 when ¢ — 0:

AEq {f* (h(:cf)_“)] < AEq [f*(o) +(f)(0) (h(x*;f) —ﬂ) . (f*)”(o)f(f,lp*) (h(x*;)\f) _ﬂﬂ |

A
:xEQ[U””wgﬂf&M>(h@a§>—ﬂ>1 ()" (0)C(f, P*)Varg [h(2*; )

where the equality holds by f*(0) = 1 and i = Eg[h(2*; §)].

A

i )

2

Then if ¢ is small, we let C(f,P*) > \/f},(l) + f//(l)(f*)z OCUE) and obtain (D.3). For (D.4), we only need to
consider —h(z; -) and plug in the result of (D.3). O

We now show several common divergences satisfying (8) and give some concrete values for the result above. We focus on
the counterpart w.r.t. (D.3).

4 Although strong duality holds generally in this problem, we only need weak duality in our proof.
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Example 5 (KL divergence). We take f(t) = tlogt—(t—1). Then f*(t) = e!'—1with f* (1) = 1. We use Taylor inequality
el —1<t+t>whent € (—1,1), i.e. we need ’Lf)_“’ < 1, which implies when w =X > 2[|h(z*; )| oo

. Varg[h(z™;€)]
< P .
e € < gL then we have:

sup  Eplh(z";§)] < Eg[h(z™;€)] 4 34/ Varg[h(z*; §)]e.

PeA(Q;KL,e)

Example 6 (Hellinger distance). Similarly, we apply f(t) = (vt — 1)? and f”(l) = % Then fort < 1, f*(t) = L

. Varg[h(x" ;€
& —1<t+2t* whent € [—5, 3. Thus if e < %@;)ng’ we have:

sup  Eplh(z;€)] < Eglh(z™;€)] + (2 + V2) Varg[h(z*; €)e.

PeA(Q;H2 )

Therefore, following the same argument in the case (c) of Theorem if A(5,0) <e < %, E(zP~PRO)Y can
be improved to ¢ /eVarp- [l(x*; €)] + c2e | h(z*; -) || oo for KL divergence and Hellinger distance with probability at least
1-—9.

D.1.3 Proof of Theorem 2]

In the case (a) when d is an IPM metric, we have:

E(a”ERM) < [Bglh(@” MM, )] - Ep- [b(a”~EP; )| + [Eglh(a": )] — Be- [n(a":€)]

(a)
< 2sup |Ep-[h(z;§)] — Eg[h(z; )]
rzeX

®) .
< 2sup Va(2)d(P", Q).

TeEX

where (a) follows from the uniform bound Vz € X, (b) follows from the fact that d is IPM such that d(P, Q)
supy, (s)<1 |Ep[f] — Eqlf]l-

In the case (b) where d satisfies the inequality (8), similarly, we have:

£(a"EIM) < [Bqlh(e” MM ¢)] — By [b(@” )] + [Bylh(a*: )] — Er-(b(a": )]

o

<2 sup [Bp- [h(a: )] — Eq [h(a s)]]

rzeX

<4AMdry (P*,Q) < 4C4 M/ d(P*, Q).

Specially, in the case (c), when d is (modified) y2-divergence, following the previous decomposition and Lemma we
have:

E(a" M) < |Eglh(a"FFM €)] - Ep [A(« " FRM €)]| + [Eg [A(2™; )] — Ee-[h(2"; €]

< 203(@ P) (yNare- (BRI E)] + Ve a7 )
< 24/2x2(Q, P*)\/Varp. [h(z*: )] + |/ 2X2(Q,P*)\/|]E1P* [h2 (2P = ERM &) — Ep- [h?(z*; )]|
v 21/2x2(Q, P*)\/Varp- [h(z*; £)] + \/QXZ 0, ]P’*)\/4M2dTV(Q,IP’*)
<2w/2x (Q, P*)/Varg: [h(z*; )] + 2M (x*(Q, P*))1,
where the inequality (a) follows by the following argument:
Ep- [p? (a7~ PN €)] — Bp- [h% (2 €)] < Bpe [(R(2" =P €) + h(z*; €))((h(z
< 2MEp- [n(2" =M £) — h(a*;€)] < AM3dry (Q.P¥),

P—ERM
3

~
|
>
—~
8
*
i
~
P
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where the last inequality is from the definition of TV distance. And the inequality (b) follows from Lemma (2).

For each part above, we then use Assumption|l]to obtain the result. U

D.2 Proof and Detailed Analysis in Section3.1]

Here, we illustrate the main parts in the generalization error in the right part of Table[1} Besides the notations in the main
text, we denote z*” € arg min, . » E*[h(z; €)).

We first illustrate some discussion of the generalization error of existing approaches for ERM and DRO under the
empirical distribution PP,,. Again we focus on the generalization error

Zte(iﬁ) _ Zte(x*)
and will use the decomposition
Z'(&) = Z2'(a") = [2'(&) = Z(@)] + [2(2) — Z(2")] + [2(a") = 2" (2")]

where the middle term [Z(2) — Z(x*)] is at most 0 by definition of Z as a minimizer of Z(-). Thus, we would focus on
bounding w.h.p. . X
[2'(2) = Z(2)] + [2(27) = 2" (a")] (D.5)

where the second term above can be further decomposed as:

(Z(x") = 2"(@%) + (2" (a%) = 2" (")) < Z(2) = 2" (2*) + Vala*)d(P"", P*),

where the term Z!" (z*) — Z'¢(x*) can also be decomposed using Lemma such that:

2" (x*) — Z'(x") < /23 (P, P¥e) Varpee [A(a*; €]

The term Z'" (x*) — Z'*¢(z*) cannot be avoided through all the methods based on the error decomposition, which can be
regarded as the “best decision distance” under distribution shift. We make the following simplifications in the analysis part
of existing regularization approaches.

» We use x2-divergence between P*® and P!" to evaluate the extent of distribution shift.

* Vary, [h(z'; €)] = Varg [h(z*; €)]. The “variablity” does not change across shift, i.e. Vg(2'") under P'" is the same
order as Vg (') under P*.

ERM: Consider z7RM as the minimizer of min,e y B [h(z; €)] where E'"[-] denotes the empirical expectation from the
training set. Now, consider

Zte(l,ERIM) _ Ztr(xERhI) _ [Zte(IERM) _ Ztr(xERM)] + [Ztr(xERM) _ Ztr(xERM)]

)

where the first term can be further bounded by:

Zte(:cER]\/[) o ZtT((EER]\/[) _ Etr[( ;ig;zf o 1)h(ZCERA/[; f)} < \/2X2(Pte, IP““)Vartr[h(:vERM; g)}
<\ [ 2x2(Pte, Pir) <Vartr (B2 (275 €)] + M 7(30‘“?75}‘)]” )

where the last inequality is bounded by E" [h2 (2 PEM: £)] — BT [h2(2!7; €)] < 2M (Z1 (xEEM) — Ztr (2'7)), which then
reduces to Lemma For the N-ERM case, denoting the generalization error in Lemma |4 as Ex (n, P, H, ') (e.g.,
in Lemma |4 where there is no distribution shift, we have P = P* x!" = z*). Besides, denote £(P'", Pt¢ H) :=
| Zte(xERMY — Ztr (xERMY| 4| Zte(z*) — Z!"(2*)| bounded before. which characterizes the distribution shift effects on
the optimization models over the complexity class. Thus, overall we have the generalization error:

Zte(INfERM) _ Zte(x*) < g(]P)tr,]P)te,fH) +8N(TL,]P>tr,fH,xtr),
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where we would incur an additional term & (P!, P¢, H) = \/ d(Pte, Ptr)(V3(z*) + M w) comparing with the

case without distribution shift. In addition to d(P*¢, P*")(V,;(z*), the additional error of N—-ERM due to distribution shift is
d(]P’te, Ptr)M% (Comp(H) )% .

We turn to consider the DRO perspective, ie. ¥ PR € argmin, ¢y max, g gy Eolh(;€)], where P! is the
empirical distribution of the training set.

DRO from the regularization perspective: Similarly, by choosing the ambiguity size € properly such that it satisfies the
condition in order for to hold and denote RHS of to be EPEO(n, Pt H, a*; A) = |Zt¢(xN-DPEO) —
Ztr (eN=DPROY| 4| Zte(2*) — Z (x*)| without distribution shift. By the error decomposition in the shifted case, fol-
lowing similar analysis, we would get the following bound w.h.p.:

Zte(xN-PROY _ Zte(g*) < | d(Pte, Ptr) (vg(a:*) + MVy(z*) C°mnp<H)> + EPRO(n, PI" U, z*; A).

In addition to d(P',P")V4(z*), the additional error of N-DRO due to distribution shift is
1
d(P'e, P)V3 (o) M3 (i3

DRO from the pessimism perspective: For those d in the ambiguity set which is IPM, by choosing the radius ¢ >

R
d(P*,P') + O(n =) to cover the test distribution P*® properly, we could get

Zte(xN—DRO) _ Zte(x*) < Vd(a:*)(n_"(}’ﬁ) +d(PtG7PtT‘))7 (D6)

where a(Dy) is some function of the dimension measure of the distribution P. where dim is some dimension measure of
the distribution P"". Thee bound is achieved by using a ball size ¢ large enough such that it covers the true P*¢ w.h.p.,
where in the case of distribution shift for the empirical distribution under Wasserstein distance, this would be typically
77,1/%& + d(IP’”, Pte). Formal type of the results have been established in Theorem E.3 in Zeng and Lam|(2022). Note that

this requires knowledge of the extent of distribution shift, i.e., d(IP*", P*¢) (or an upper bound of it).

Now, comparing the pessimism-based DRO with ERM or regularization-based DRO, if the upper bound of d(P!", P*) is
not too loose, the former avoids the product of a distance between P!" and P*¢ and a term that depends on the complexity
measure of the loss function class. Nonetheless, pessimism-based DRO would depend on the dimension of the training
distribution, but in this case possibly acceptable as the dominant quantity can be the distribution shift amount d(P!", P‘¢).

Although triangular inequality does not hold for general f-divergence, we can apply some “pseudo distance” decomposi-
tion in some f-divergence below when the support of P*¢, P'" Q is the same.

Lemma 5 (“Almost” triangular inequality for some f-divergence). Considering the relationship between P*¢ P Q
(under the same support), we have:

tr

A dP
2]P>te _
X ( ,Q)<2H B

X2 (I[Dte7 ]P)tr) + 2X2 (P”, Q)

o0

te

KL(P", Q).

oo

R dP
te < te tr
KL(P*,Q) < KL(P™,P )+HdPtr

Proof. Proof of Lemma Since we are only considering the continuous distribution class, we denote the density of
Pte, PI". Q as f, g, h respectively.

For x2-divergence, we have:

/(fhh)QduS/%fg)Q;:Q(gh)QduSQHZHO@/Ugg)2du+2/(ghh)zdu-

For KL-divergence, we have:

/flniduz/f(lnjgc—&—lnz) dug/flnjgcdu+H£Hm/glnzdu.D
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This types of inequalities means that we can derive similar upper bounds in for the nonparametric estimators such as
1

KDE for smooth and absolute continuous densities to obtain Vg(z*)(n “®< + d(P* P!")) for some large n.

We next analyze the parameteric methods in Section|[3.1]

Proofs of Corollaryand These results directly follow assuming the exact or “almost” triangular inequality holds for
the metric d(P*¢, Q) < c¢1d(P', P¥") + cod (P, Q) under appropriate conditions.

For the P-DRO problem (i.e. Corollary , ignoring the constant, if e > A(4, ©) + d(P,P'"), when d is an IPM metric,
by (D.5), with probability at least 1 — §, we have:

g(foDRO) < |Zte(mP7DRO) _ Z(:L,PfDRO” + Z(x*) _ Zte(l’*)
<0+ max Ep[h(z*;€)] —E*[h(z";)]
d(P,Q)<e
< 2Vy(z")e,

where the second inequality holds due to P[P** € A(Q;d,e)] > 1 — & such that Z'¢(-) < Z(.) with probability
at least 1 — 0. And the third inequality returns to the case (a) in the proof of Theorem The other cases of the
metric d under (b) and (c¢) follow similarly. This result follows the same proof structure compared with the previous
DRO from the pessimism perspective, and does not pay for additional terms due to the distribution shift besides d(P*¢, P'").

For the P-ERM case (i.e. Corollary , when d is an IPM metric, we have:

E(xP=FRMY < 9 qup |2 (x) — Z(z)|
TEX

< 2(81612 Va(@))d(P', Q) < Q(Sgg Va(a))(d(P*,P") + d(P'", Q)).

Therefore, in Corollary with respect to all the sub cases in Theorem by replacing A(§, ©) with A(§, ©) + d(Pte, P'"),
in addition to the Vy(x*)d (P!, P'") term, the additional error of P—ERM still need to pay due to distribution shift is at least
Md(P',P'")3 4 \/2d(PPe, Pir)\/Var [h(x*; €)] by part (c).

D.3 Required Monte Carlo Size for P-DRO in Section[3.3]

In this part, we denote z” =P 9 € argmin, ¢y max,; g, <. Ep[h(z;€)]. We generally would like to investigate the

required sample size m such that £ (z7~PROm) ~ £(2P~PRO) in Theorem|1] The idea is to let the Monte Carlo sampling
error dominated by the statistical generalization error in each P-DRO case. In the main text, for simplicity of the notation,
we ignore the dependency of log(1/4), but the sample size is at most polynomial level of that term, i.e. m = log(1/4))*
for some constant k.

. Comp,,

we concretize the complexity term appearing in the main text (e.g. Table Theorem Comp(H) =~ U4 for some

(logn)*
constant & as the log of Covering number. And we mainly use Comp,,, () in the proof here. We follow the notations of
covering number from Section 2.2.2 in Maurer and Pontil| (2009); Duchi and Namkoong (2019). That is to say, for € > 0,

a function class H and an integer n, the “empirical £, covering number” N, (H, &, n) is defined to be:

NOO(H,E,N) = Sup’J\/‘(H(ﬁ),E, |+ lloo)s D.7

where H(€) = {(h(&1),...,h(&,)) : h € H} CR™and for A C R”, the number N (A4, €, || || ) is the smallest cardinality
|A'| of aset A’ C Asuchthat A C Uygea{z : ||z — zo||oc < }. We denote Comp,, () := log N (H, 1, n) below,
which usually scales as (logn)* in n for A in practice.

We also suppress the log(1/d) dependency inside Comp,,, (). That is to say, when we use the argument “with probability
atleast1 — 4, --- < y/Comp,, (H)”, we are referring to **- - - < y/Comp,,, (H) + log(1/5)".

We first present the proof of generalization bounds for Wasserstein P~DRO with Monte Carlo errors, i.e. Theorem|[3|where
m ~ n*Pe,
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D.3.1 Proof of Theorem|[3}

In this case, we assume each distribution in Pg satisfies the conditions in Lemma

Comparing it with Theorem we only need to show that P* € A(Qm; W1, €) with probability at least 1 — J. And other
parts follow directly by the case (a) in Theoremonly need to consider V() = ||h(x;-)||Lip. By triangular inequality of
Wasserstein distance, we have:

W1 (P*, Q) < Wi (P*,Q) + W1(Q, Q)

<ty (C) " log(1/6) <=,

m

1
where the last inequality holds when § > A(4, ©) in Assumptionand (£)P¢ log(1/6) < &,ie.m > C(M%W)Df

for some constant C. Then the subsequent steps are analogous to proof of the first part in Theorem only replacing Q
with P*. O

D.3.2 Statement of Theorem 4]

Below, we present our specific results as well as their proofs with respect to y2-divergence and general Wasserstein
distance where m ~ Comp(7{)n® which is independent with D, but dependent with the complexity term Comp(7).
Then, the general case in Theorem [4]in the main text is made up of the following sub results with more specific conditions.

Theorem 7 (Generalization bounds for Y2 P-DRO with Monte Carlo errors). Suppose Assumption|1|holds and the cost
Sunction h(x;§) € [0, M],Vx, £ with Varp«[h(x*;-)] > 0. The size of the ambiguity set ¢ > A(6,©). If Monte Carlo size
2

m > Cy (%) Comp,,, (H) for some numerical constant Cy, when d is x*-divergence, then with probability
arp* x*;)le

at least 1 — 8, we have:

)

£(uP~PROm) < 26,2 + Cr\/EM,  if Varg[h(zP~PROm; )] < 2eM?
T 28,2, otherwise

where L > 1 and &, is the generalization error upper bound in the case (c) of Theoremin the main text.

Remark 4. Although this result depends on another term L, due to “incomplete” exact variance regulariza-
tion of x>-divergence, when Varp-|h(x;€)] is sufficiently large, as long as the required Monte Carlo size m >
2

M P—DRO,,
@ <m> Compy (M), £(x ) < 26

On the other hand, even if the variance is not enough, as long as /=M < &2 < \/Varp-[h(z*;-)]e, i.e. L > Wﬁr*)]

\/ Varp= [h(x*;-)]

The dependence of the required sample size m is also independent with the distribution dimension and we hope to bridge
the variance gap in our later work in this region.

6
and therefore m > (LM) Comp,,,(H) for some numerical constant Cy, we still have £(x¥=PREOm) < 3, 2.
€

Similarly, following similar proof structure, we can also obtain a dimension-free required Monte Carlo sample size for the
Wasserstein case. This may be better than the result in Corollary of main text where the degrading effects of Comp(H)
is smaller than that of D, to the generalization error. We consider 1-Wasserstein distance here.

Theorem 8 (Generalization bounds for 1-Wasserstein P~DRO with Monte Carlo errors). Suppose Assumption[Iholds and

the cost function |h(x;€)| < M,Vz, & with ||h(z*;-)||Lp > 0 with some proper conditions of H in Lemma The size of

the ambiguity set € > A(0,©). If Monte Carlo size m > CO(WVCompm (H) for some numerical constant Cy,
M

when d is 1-Wasserstein distance, then with probability at least 1 — &, we have: €(x=PROm)||h(x*; )| Lipe.

Since the overall proof of these two results are a bit involved, we move them to the next two subsections. We first present
two uniform concentration inequalities under H for the empirical mean and variance here under the assumptions listed
here, i.e. 0 < h(x; &) < M, Vz,&.
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Lemma 6 (Uniform Hoeffding Inequality, based on Maurer and Pontil (2009)). Under the problem setup, with probability
at least 1 — §, we have:

Eglh(x;€)] — By [h(x;)] < C1M C‘)%mm) (D.8)

)

where C is some numerical constant independent with the function complexity and sample size.

Lemma 7 (Uniform Variation Concentration Inequality). Under the problem setup, with probability at least 1 — §, we

have:
2
Varg, (i8] 2 /1 = Narg (6] - 20— gy ) (D.9)

where Cy is some numerical constant independent with the function complexity and sample size.

Proof. These properties are directly based on the variance concentration inequality (adapted from Lemma A.1 in Duchi
and Namkoong|(2019)), Vo € X', when m > 3, we have with probability at least 1 —

Varg, [h(w;6)] > H\/m— QZQ \/W (D.10)
\/‘WS m\/\meM\/mogmw. (D.11)

Then the second term of RHS in (D.10), we taking (D.10) for the uniform covering number version to obtain (D.9). O

D.3.3 Proof of Theorem[7

The proof is divided into the following three steps. For simplicity, we denote Z(z) = SUP, 2(p )< Bp[h(2; §)] and our

discrete approximation in practice Z,,(z) = SUP, 2p g, )< Ep[A(2;€)]. We will show that sup,,¢ x \Z (2) = Zm(z)] is
small so that we can leverage on results in Theorem|1| Before beginning our main proof, we first state an decomposition
result for the empirical variance compared with the true variance under with probability at least 1 — §,Vx € X:

Varg, [h(w;€)] = Vare- [n(a3 €)]| = |Varg, [h(w5€)] — Varg (w3 €)]| + [Varg [h(a; €)] — Varp- [h(w;€)]

(D.12)
< M? <01 Comfnm(mat?)\/%)

where the first term in the inequality follows from the uniform Hoeffding inequality. And the second term in the inequality
follows by the value of ¢ such that \?(P*, Q) < ¢ and ||h||oc < M in (D.2).

Step 1: Variance Regularization. Following Lemma we have:

sup  Ep[h(z;§)] < Eglh(z;§)] + /2 Varg[h(z; )], (D.13)
x2(P,Q)<e
Eg, [z )] < sup  Ep[h(z;€)] < Eg, [h(z;8)] + (/2eVarg [h(2;E)], (D.14)
x2(P,Qm)<e

We now show the condition for n so that the exact equality of RHS holds in - Note that sup, »p g, <. Ep[h(; )]
is equivalent to the value of the following optimization problem:

m m m

ma > pih(r; ), st Z@i ) < sz—l

The the maximizing value of this problem is attainable to RHS in the second inequality of (D.14) whenever

v 26%@&:(;]&)] > —1. Since h(x; &) € [0, M],Vx, &, it is sufficient to satisfy the following inequality:

Varg [h(z;€)] > 2eM? Ve € X, (D.15)
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In general, based on the analysis of the equality condition of Cauchy inequality, we reach the following result as a more
refined variance-dependent lower bound of sup, 2 p g ) <. Ep[h(z;§)]:

sup  Ep(h(z; )] = By [h(x;8)] 4/ AVarg [h(z;8)], (D.16)
X2 (P, Qum)<e
as long as Varg [h(x;€)] > AM?>.
For any integer L > 1 and a given Q output from the distribution estimator, we split the decision space X into the following
regions Xp U Xy U ... X411 U X9, Where Xp 0 = {2 € X : VarQ[h(x;f)] > 2eM?}, and:
0 —

X, = {:c € X : Varg[h(x;€)] € { 125M2, 2251\42) } Vee{l,...,L+1}.

Before conducting detailed analysis of this variance regularization effect, we first let the Monte Carlo size satisfy for (D.8):

C 2e M
MCyy ) 0P (M) A 2EM (D.17)
m L
so that with probability at least 1 — 4, by (D.12) we have:
2 M?
Varg[h(x;§)] — Varg, [h(x;g)]’ < 7 Ve e X (D.18)

Step 2: Monte Carlo Error Decomposition to bound Z(z) — Z,,(x). We consider the decision variable under different
regimes.

(a) Yz € X429, by (D.18), holds and therefore by and (D.16), we obtain:
Z(x) = Zm(w) < Eglh(; €)] + | /2eVarg[(w;€)] — Eg [h(z;€)] - 2€Var@ [h(: )]
= (Eqlh(w:€)] —Eq, [h(w;€))) + V22 Varg [h(w; )] — | Varg, [h(w:))).

(D.19)

For the first term RHS in (D.19), we let the Monte Carlo size m satisfies C7 M4/ COL”(H) = Ag < 2ZM jp in

Lemma[6] Then, combining (D.8) and (D.9) into (D.19), we obtain with probability at least 1 — 4, Vo e X:

2(x) = Zm(x) < Ag + V2 (@M«/Compm 1- = VarQ ; 5)]

2eComp,,, (H) . V2e(2M? + Var@[h(x; 3))

m m

< Ag + CoM

2e M?
<Cyrp+ 22 oo

where C'3, C% is another numerical constant independent with the function complexity and sample size. The second in-
equality follows by the IPM property of TV distance.

(b)Vz € Xj,i € {1,..., L+ 1}, we have Varg [h(z;&)] > max{522:M?, 0}.
(b.1) If ¢ > 2, by (D.13) and (D.16) as well as the definition of X;, we have:

2(2) ~ Zn(a) < (Bglh(a:)] ~ Eq, [h(x:6)]) + \/ © 9eVarg h(a; €)] - J %zevﬂ» (hz:€)]

< Ag + 4/ @ <\/Var@[h( \/Var h(z;§) ) +4/ —VarQ

2(1—2) Varg[h(z; )] — Varg, [h(x; )] e 2i (D.20)

< Ag + +\/ - M?
\/Var ()] + \/Var h(z; )] LL
2(i — 2)e 2eM?/L , e € , e
< Ag + Ciy| =M < Ag+Cy—M + Cyy | =M.
- L 220-2e?/L VLT =TT Vi
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(b.2) If ¢ = 1, by (D.13)), by definition of X;, we have:

2(e) ~ Zn(a) < (Balh(w:)] ~ By, [ )]) + 1/ Varg [h(a; )]
25M
L

(D.21)
< Ag +

In general, combining different subcases in (b), with probability at least 1 — d, Vo € X\XL o, if we let £ < \/% <1,
then we finally have:

2(z) — Zy(x) < Coy/ =M. (D.22)

Step 3: Generalization Error Decomposition. Plugging the solution 2" =19 into (D.22), we have:

Z(foDROm) _ Zm (foDROm)

S Z(xP_DROm) . ZAm(xP_DROm) S A]E + CO\/%M lfvr ¢ A.)(‘LJ,-Q ] (D23)
CyAg otherwise

for some constant Cjy when L is large, where the first inequality follows by Assumption|IJand Theorem|[I] with probability
atleast 1 — 0, P* € A(Q; x2,¢) when e > A(J,©). Finally:

Zn(a*) = Z(a") < (Bg, [h(a™; )] — Epe [h(";€)]) + | /2¢Varg, [h(a=;€)],

m,

where the first term is bounded by Bernstein inequality, with probability at least 1 — §:
Eq, [h(a";8)] = Ep« [n(275 )] < (Bq, [h(x"; )] — Eglh(2™;€)]) + (Eg[h(z™; §)] — Ep- [n(27;)))
. \/ arg (' )108(1/0) | (e ) e og(1/8)

m 3m 2¢ Varp- [h(2"; )] (D.24)
< Ih(a; Ve < ZostL0) 4 1°g§,fjn/5)> N TS )
And for the second term, by (D.I1), we have with probability at least 1 — ¢:
VJ2eVarg, (@ 6)] < \f22Varg (@™ )] + 20 () “OgT(l/‘” (D.25)

Therefore, based on the RHS of (D.23),(D.24) and (D.25), following the same decomposition procedure,

Z(aP=PROn) — 7(5*) < (Z(&T7PROm) = 2, (2P ~PROM)) 4 (Zn(2) = Z(27).
Therefore, comparing the preliminary results in the case (¢) of Theorem as long as m is large enough, we can attain the
similar generalization bound then. O

D.3.4 Proof of Theorem|[8
Before providing the proof, we first present the following lemma:

Lemma 8 (Based on Theorem 6.3 of Esfahani and Kuhn (2018) and Corollary 2 of (Gao et al. (2022)). Assume

h(z;€) is Lipschitz continuous and convex w.rt. £ If E is unbounded and there exists §§ € Z such that

h(z;§) —h(x;80) _ (| A

lim Sup) ¢ 500 ol x; )| Lip, then for any P we have:

sup  Ep[h(z;§)] = Egp[h(z; )] + el ;) |ip-
Wi (PP)<e
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We follow similar arguments in Step 3 of proof in Theorem |7} That is,

(@)
Ep-[h(@:6)] < sup  Eplh(#:6)] 2 sup  Ep[h(:6)] + (Eglh(#:6)] — g
W1 (P,Q)<e Wi (P,Qm)<e

[h(;€))), (D.26)

m

where (a) is given by Wy (P*, Q) < ¢ if we take the ambiguity size ¢ to cover the true distribution with probability at least
1 — 4. And (b) is given by applying Lemma with the ball center is Q and Q,,, respectively.

On the other hand, we have:

sup  Ee, [h(2"5 )] < Eg [A(2756)] + el A (275 )l|Lip
WI(P7Q’"L)SE

< Ep-[h(z"; )] + (Eg, [h(z"; §)] — Eg[h(z™;§)]) + 2e||h(z”; ) ||Lip-

Therefore, we have:

m

€ < 2h(s" 5 upe +2 sup \E@[h@;sﬂ _E, [h(x;m\

* Comp,, (H
< 2||h(2*; ) |lLipe + 2C1 M PT()
Letting the second term smaller than ||h(z*; -)||Lipe, We obtain the sample size required in Theorem 8] O

D.3.5 Generalization Result in p-Wasserstein distance

More generally, this argument to control the following Monte Carlo error term Vo € X

sup Ep[h(z;§)] — sup  Ep[h(z;§)]
d(P,Q)<e d(P,Qum)<e

)

can be extended to the case of p-Wasserstein distance with p € (1, 2] with the help of the following Lemma.

Lemma 9 (Adapted from Lemma 1 in|Gao et al.|(2022)). Under some mild first-order conditions for h(x;-) € H (i.e.,

Assumption 1 and 2 in|Gao et al.|(2022)), given p-Wasserstein distance with p € (1, 2], for any distribution (@ there exists
C > 0 such that:

| swp Eelhan )] - Bglh(w: )] - Vg (h(a: )| < =
W, (P,Q)<e

where Vg  (h(x;+)) is the Lq norm of the random variable %ﬁff) under the measure Q with % + % =1

Note that Lemma 1 in |Gao et al. (2022) is originally meant for problems with the empirical distribution Qm, but when
p € (1, 2] it can be directly extended to a ball center with continuous distribution.

Corollary 3. Suppose Assumption|l|in this main text and Assumption 1 and 2 in|Gao et al.|(2022) hold. The size of the
ambiguity set £ > A(0,©), when d is p-Wasserstein distance with p € (1, 2], if the Monte Carlo size satisfies:

Cy + CoM~/Comp, (O(H)) \ M\
"= max{ < Ve q(h*) ) o <EVP*,q(h*)> Compm(H)} ’

Oh(z;€)

where M := SUDgex ccx H%?E)’L and O(H) = { T&HQ rT € X}far some constant Cy, Cy, Cy, Then with prob-

ability at least 1 — &, we have E(zF~PEOm) < 4eVp. ,(h(z*;+)) + CeP.

Proof. For simplicity, we abbreviate h := h(x;-),h* := h(z*;-) in the following. Similarly in (D.26), by the result in
Lemmal9] we have the Monte Carlo error bounded by:

Ep«[h]— sup  Ep[h] < sup Eplh]— sup  Ep[h] < (Eg[h]-Egy [h])+e(Vy ,(h)—Vg, ,(h))+2CeP.
Wp (]P}a@m)ge Wp (P,@)SE Wp(Pv(@m )SE
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Therefore, we would obtain:

E(xP~PROmY < 26Vp. ((h*) + CeP + sup |Ep[h] — E

sup o [h]‘ +esup [V () — Vg, (D)

heH
Comp,,,(H)/9)

m

te [Cl + CQM\/(W] me Y,

And the last term of the last inequality is obtained from the uniform concentration inequality of L,-norm for
SUPp ey |V®’q (h) — Vo, q(h)|. Concretely to say since ¢ > 2, by Theorem 6.10 in Boucheron et al.|(2013) and Lemma 7
in|Duchi and Namkoong|(2021), we first have:

Vo o(h) —EVy ()] < Mm~3/log(1/5).

Then uniformly bounded in () of the covering number argument, we obtain Vi € H, with probability at least 1 — 4:

< 2EVP*’q(h*) + Ce? + CoM

Vo, o(h) —EVy (W] < CaMm™ s /Comp,, (D(H)). (D.27)
And by Lemma 9 in Duchi and Namkoong|(2021), under some situation conditions, by definition of Vg 4(h), we have:
2 1
Vo.qo(h) — ;9\/571 ¢ <ENVy, ()] < Vg, (h). (D.28)
Combining (D.27) and would obtain the bound for [Vg (7)) — Vg, (). O

In general, as long as the ambiguity metric d satisfies the following “almost exact” regularization effect with some
variability measure V,; (), i.e.:

sup  Eplh(z;8)] — Eglh(z;8)] — e*Va(z)| = o(e?),
PeA(Q;d,e)
then if the Monte Carlo size exceeds some term w.r.t. the overall complexity class m > C(Comp,, (H))* for some constant
k, we would obtain & (27~ PEOm) ~ (2P ~DRO),
D.4 Required Monte Carlo Size for P-ERM

P—ERM

We use similar notations with z m € argming,c y Eg [h(z;£)] and investigate the required Monte Carlo size.

Theorem 9 (Generalization bounds for P-ERM with Monte Carlo errors). Suppose Assumption |I| holds with metric d,
denote the corresponding generalization error upper bound in Theorem[2]as Ep. If the Monte Carlo size m satisfies:

m > ma 1 Z(x*)+Ep
MComp,,,(H) — * Z(z*)+Ep’ &2 ’

then with probability at least 1 — 6, £(xP~ERMm) < 2€p.

Note that no matter whether we ignore distribution misspecification error in £p, then the Monte Carlo size required here
scales with the function complexity M Comp,,, (#) as well as n® for some « independent with D,.

Proof. The result is directly from Lemma and Theorem Denote Ep is the upper bound of Z(xF=FRM) — 7(z) for
the generalization error result for the given continuous version, i.e. in RHS for each case in Theorem[2] Then we have:

Z (P~ ERM=5) _ 7(2*) < Ep 4 2 sup
reEX

Eglh(z: )] — Eq, [h(z; 5)]’

P—ERM (;P—ERM
<Ept2 <\/Z (x )Comp,,, (H)M n Compm(H)M>

m m

m

<Ep+3 <\/(Z(x*) * EP)Compm(H)M) < 26p,
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where the second inequality follows from Lemmasince pP—ERM

is a result of the following chain inequality:

€ argmin,cy Eg[h(2;§)]. And the third inequality

ZP—ERM (xP—ER]\/I) < ZP—ERI\/I (SL‘*)

= 2(a") + (27 ERM(7) - Z(a")

; : MComp,,, (H) ; ;
as in Theorem |2| and the Monte Carlo size m > e The last inequality holds as long as m >
(Z(")+ep gé”c"mpm(”) further. O

P
D.5 A Short Discussion of Stochastic Approximation Methods

Besides the Monte Carlo approach mentioned in the main text, another approach investigated in the literature to directly
tackle stochastic optimization with underlying continuous distribution Q) is through stochastic approximation (SA).

In SA, we apply stochastic gradient descent (SGD) to obtain a batch of samples from Q in each step in each iteration. For
example in Param—ERM case, after a number of iterations, we can obtain a solution & with the expected generalization
error (since SGD introduces another type of uncertainty due to random sampling to compute gradients) with a polynomial
number of iterations w.r.t. %(’y > 0) (such as|Nemirovski et al. (2009)):

E;[Z(8) — Z(a")] < E@77 M) 4. (D.29)

For some DRO approaches, we can still express our optimization objective as ming yexxy E@ [G(z,y)] for some auxiliary
variable y to apply this method. For example, by duality under general f-divergence, shown in Theorem 5.3 of Rahimian
and Mehrotra|(2019), our optimization problem can be reformulated as:

Inf AZ{)I}EGR{/L + e + B g[(Af)"(h(z;€) — )]}

Then we can solve the DRO problem under general f-divergence by SA. We will also investigate the properties of them in
our future work.

E Complete Experiment Setups and Results

The optimization problems throughout this paper are all convex and solved by CVX and Gurobi implemented by Python
3.8.5. The computational environment is an Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz personal computer.

E.1 Detailed Setups and Results for another Synthetic Example

We conduct a small synthetic-data experiment with Vg(2*) = 0 similar to Section 5.2 in|Duchi and Namkoong|(2019).

To illustrate the model performance under this subcase, we follow an example of the quadratic cost function with linear
perturbation in Section 5.2 in Duchi and Namkoong (2019): h(z;€) = 1|z — o[> + ¢" (2 — v). We let D¢ = 50 and
the decision space X = {z € RP¢ : ||z||y < B} and set v = —Z—_1 known beforehand. We use some misspecified

2,/De¢
distributions with Pg but keep Ep«[(£);] = 0 such that we have: * = v,VA. Then we have V;(z*) = 0. We illustrate
through experiments and show that here our P~DRO model (fit with normal distribution) can also achieve zero error under
large ambiguity size € (like NP-DRO in|Duchi and Namkoong|(2019);Zeng and Lam|(2022)), which outperforms the ERM

loss no matter whether we use parametric or nonparametric models.

We take the marginal distribution of random variable (&); = (£);+ (&), Vi, where & ~ N(0, %), (€); i Exp(A\)—1,Vi €
[D¢] for each marginal, where A > 0. Since the pdf of (é )i is f(z) = Ae™?7, the smaller \ is, the larger difference it is
compared to the normal &y. Under this case Ep-[(£);] = 0,Vi € [Dy].

We vary the decision boundary B from {2, 10}, noise ratio A from {%, %} Before each run, we independently generate X
in the setup. For DRO methods, we apply x2-divergence and 1-Wasserstein distance. We choose the parametric class to be

Po = {N(u, Y):ueRPe T € Sfj_} with unknown p and X. Then, we have £,,,(P*,©) > 0. The misspecification
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Figure E.1: Exact Generalization Error of DRO models varying sample size n, decision boundary B and noise ratio A

effect reduces when A grows larger. We fit the distribution with Q@ ~ A/(j1, 3), where ji = + Ly G y=1 Ly (G-
i) (& — 1) 7. We set each DRO model with ambiguity set size ranging in {0.1,0.2,0.5,1,2.5 " 5,10} to show the trend.

Figureﬂshow different subcases varying (n, B, A) across 50 independent runs . Across all these setups, since the optimal
solution (i.e. * = v) does not depend on the decision boundary chosen here, increasing this decision boundary as well as
the order dimension may not affect the decision quality too much. We have the following observations:

* Compared with the nonparametric version, P-DRC performs competitively against NP-DRO in all setups under the
same ambiguity size £. Both Wasserstein and y>-DRO can beat ERM models by a great extent under large ambiguity
size, which can be explained from the error bound that replaces the term sup,. . y Vg(x) with Vg(z*);

 P-ERM and NP-ERM do not differ a lot. It can be directly computed that ™~ #%M = ¢ 4 E5 [¢£] and zF~ FHMm —
v+ EQM [€] without restricting the decision space .X. Under finite Monte Carlo size m, P-ERM would introduce
another Monte Carlo error. Therefore, P-ERM does not gain since NP-ERM only uses the mean of the random
variable to predict the decision.

Therefore in this case, we illustrate that the P~DRO still inherits the property of NP-DRO in eliminating the dependency of
the complexity term only to V,;(z*).

Note that we can also consider the problem with distribution shift. However, as long as E¢[£] = 0 such that V;(z*) = 0,
both DRO models would still incur almost zero generalization error due to the additional error V,(z*)d(P*, P") = 0
under large ambiguity . For example, results in (a) - (d) and (e) - (h) of Flgure-can be regarded as two distributions but

E[h(z'"; €)] = E*[h(z*;£)]. Therefore, if noise ratio A in P'" is } but in P* is 3, the previous results and observations
still hold.
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In general, our results show that P-DRO outperforms P-ERM significantly and achieves almost zero generalization error
under large fixed ambiguity size ¢ across 1-Wasserstein distance and x2-divergence, which is indicated by Theorem

E.2 Detailed Setups and Analysis for Synthetic Example in the main text

The problem is to minimize the objective (10) in the main text. That is,

(03

h(w;€) = |min{0,¢ "z — p}| = (n—¢&"x)"

Regarding each marginal (§);, the base case is fully parametrized such that (§); < 9r x Beta(a;,2) —r with {@; } {ic[D)})
ii.d. drawn from [1.5, 3].

E.2.1 Comparison between Comp(#) and Comp(O)

We give concrete representations of Comp(#) and Comp(©) in each method here. First, we present an upper bound below
for the covering number of .

Lemma 10 (Theorem 5.4 in Matousek| (1999)). If ‘H consists of polynomials up to degree D with d variables (e.g. each
h(&) € H, & = (&1,...,€4) T € R? can be represented as h(¢) = div o rig<p GG &, then we have:

VC(H) < (d-iC-lD) ~ (d+D)min{d,D}.

And borrowing Theorem 2.6.7 in|van der Vaart et al. (1996)), we have the following results:

16Mne)VC(H)1

NOHEe ] o) < 50N, - i) < v (22

2n

for some numerical constants c.

Then combining it with Lemma[10| we have the following upper bound for the Covering number of # in (10):

. M (D£+a)rnin{D§,a}

NH(E), ||+ llso) < C(Dg + aymin{Pecd (5> , (E.1)

where we denote M = sup,cy [|h(2;)|lc < (Derr 4+ p)® and denote M* = /Varp« [h(z*;-)] < [|h(z*;-)]|ec <
(r|l=*|lx + 7)*. On the other hand, here we fix the true underlying distribution to be a variant of Beta distributions for
simplicity, i.e. £,p, = 0 if we just use the Beta distribution to fit our model, i.e. Po = {P : { = (&1,...,&p,) " ~

P& 2 9or x Beta(a;,2) — r} and independent with other marginals. Therefore, we construct a set of bounded parametric
distributions to allow for explicit bounds for different models. In these error bounds, we approximate the variance term
appearing in x?-divergence by Varp- [h(z*;-)] < ||h(z*;-)||%. Therefore, setting ¢ = 1 in (E.I) and (D.7), and ignoring
the term log(1/4) and log n, the major dominating terms of the generalization errors in the four methods from existing
results and our theorems (under 2-divergence for DRO methods) are:

Method ‘ NP-ERM P-ERM NP-DRO P-DRO

£(#) ‘M [(De+a)riogM g r [De  yrv [(Deta)®logM e [De

In our theorem, we can obtain the following results for Comp(©):

Proposition 1. When d is x*-divergence, Po = {P : £ = (&,...,¢ép,) " ~ P, (&) 2 9 x Beta(a;,2) — r,a; €
[k,2k],¥i € [Dg]} for some constant k and therefore P* € Pe. Then Assumption 1| holds for Q with é&; computed
Sfrom Maximum Likelihood estimation or Methods of Moments (will define the estimator formula next) and Eqpy =
0, Comp(©) = CD¢, o = 1 for some constant C when n is large.

Then we show briefly the proof sketch under y2-divergence related to Assumption |1} We first give the formula of x?2-
divergence under Beta distribution below:
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Example 7. Generally, for Py ~ Beta(ay, 1), Py ~ Beta(as, 82), and oy, as, 1, B2 > 0, we have:

Bax, 1) B(20 — 01,20 = B1)
B(OQ,ﬁQ) 7

2711 — 2)8~Ydx. In order for the value to be meaningful, we can restrict the support of o €

X (P1]|P2) =

where B(a, 8) = fl

0
[k1,2k1], B € [ka,2ka], k1, ko > 0. Therefore, if true distribution for § ~ H?Zl P (g Beta(w;, 5;)) and the estimated

distribution € ~ H?Zl Qs (i Beta(dy, 3;)), then by the product rule:

< 4 By, B:)B(26; — ai, 26: — Bi)
2 ]P’*, ) = 15 M1 ) _ 79 3 T 1.
cdlr e =11 (B(as, b))

Rescaling Beta distribution from [0, 1] to the region [—r, r] does not change the value of the f-divergence.

We then show briefly why MLE / Methods of Moments can help establish the parametric convergence rate. We give a sketch
of proof to indicate that these distribution parametric estimators associated with model class Po under x2-divergence
concretely satisfy Assumption|l} For simplicity, we fix 3; = 3; = 2 in our problem. Then the divergence reduces to:

d d d . ~ ~ N
9 . A a; oy +1 Q; a; + 1
P D=1 — — —1. E.2
X(ll;ll 1’11;[1@) izlai 041—1—1 2ai—ai 2041-—041-—1—1 ( )

The formula in (E.2) implies an estimation error such that Vi € [d], with probability at least 1 — ¢, we have:

1—uv/A <& <14 uV/A, (E.3)
@i

A+ 1
1—oVA <Y oL WVA, (E.4)
a; +1
where A := w in (E.3) and (E.4) and u, v are independent with the sample size n. If (E.3) and (E.4) holds, then:

d d
* A d
(TP TIQ) < (A +wA) 1 +0%A)" —1
i=1 =1

= [1+2(w® +0)A+0(A)] -1
< 4d(u? + v A+ o(A),

where the first inequality holds by & . % — 2((27‘//57‘)): <1+ fj:f\/)i < 1+ (uv/A)? (as long as uv/A < 2). And

the second inequality holds when n is large. Thus we show that )(2(1_[§l:1 P, H?:l Q) = O(%).

For Methods of Moments, we consider the first-order estimation E[g—; + %] = ;75 toobtain &; = % —2:= %
27 2nr e

if we define 7; = &;T'T. Then we have:

@ _ E[y] 1-E[y]

o B[] 11—y

which can be directly bounded by a Hoeffding-type concentration inequality to bound [E[y;] — E[v;]|, which is the same

a1
case as for oo

)

For Maximum Likelihood Estimators, we estimate the parameter of each marginal with:

—a, —2— 2 44 " InA;
@i:max{min{ ¢ I+ ,3},1.5},whereanzw.

2a n

e R

Focusing on the part — 5o and replacing this with «,, we would obtain:

_an 1+&n—an+\/&%+4—\/a3+4
an + 24 /a2 +4 '

Then we can apply a concentration inequality to bound |a,, — @, | since log Beta distribution In~y, v € [0, 1] is subexpo-
nential. O

o) Jel

Qn
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(a) Fully Parametrized (b) Distribution Mis-specification (c¢) Distribution Shift

Figure E.2: Value of Cost function across different ERM-DRO models varying sample size n with (7, ) = (2,2).

E.2.2 Detailed Experimental Results

We also fit the model with normal class Pg, i.e. the parametric model in Section in this case. Intuitively, for x?-
divergence, Comp(©) = C(Dg¢)? with £,p, > 0. Even incurring distribution misspecification, Normal-DRO models can
still outperform the empirical version.

In general, we observe that the generalization error trend in terms of n is consistent with under different setups like
Figurein the main text in this simulation under (o, 7) = (2,2), In Figure under each DRO method, we tune the best
hyperparameter £ € {0.001, 0.005,0.01,0.05,0.1,0.5, 1} and results are averaged over 50 independent runs. For the base
case (a) without distribution misspecification, Beta-DRO performs significantly best especially under small size. Although
the performance gap between P-ERM and P-DRO are small under large sample size, the difference in values of the cost
function is still statistical significant with p < 0.001, which is also the case in (b)(c) of Figurecorresponding to the
distribution misspecification and distribution shift case.

Detailedly, we demonstrate the results in the three different cases to further illustrate the effects of the ambiguity size and
complexity term under fix ambiguity size £ as follows:

(1) Fully Parametrized Case, shown in Figure We have two major observations: (1) When («, 7) is large, since
parametric approaches does not depend on the overall complexity term, and then the distribution complexity is dominated
by the function complexity. P-DRO can enjoy relative better performance, especially under small samples. When (v, 7) is
small, the gaps would be small. (2) When we restrict the models to DRO models, when the ambiguity size increases from
0 to oo, the generalization error of P-DRO would first decrease and then increase. When the sample size increases, the
turning point decreases to (), which consistent with the trend of “best” ambiguity size (cover P* w.h.p. for s, = A(4,9))
e — 0asn — oco.

(2) Distribution Mis-specification Based on the previous model, we perturb each marginal of the random variable &; to
& + (i, where each ¢; ~ U(—2,2) and independent with £;. The results are shown in Figurewith more noticable
performance advantages for P-DRO models.

(3) Distribution Shift Here, we randomly generate one shift parameter C' € [—1, 1] and the train distribution satisfies:
tr Lo« Beta(w; 1, 8;) — r. And the test distribution satisfies: &4 29 x Beta{a; o, 8;) — r, where

;0 =o0;1 +Cmin{oy —a; 1,057 — o}

We also perturb an uniform noise ; ~ U(—2,2) to the test distribution as before. On the distribution shift case, if we have
distribution shifts, then P-DRO models would have better performance than the ERM counterpart. The results are shown

in Figure[E.5]

In general, the simulation results in Section [E.T]and [E.2]are almost consistant with our model theoretical analysis (e.g.
Table[T]in the main text).

E.3 Detailed Setup for Real-world Portfolio Experiments

To obtain and evaluate the out-of-sample performance, we apply the “rolling-sample” approach following DeMiguel et al.
(2007) on the monthly data from July 1963 to December 2018 (1" = 666) with the estimation window size to be M = 60
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Figure E.3: Value of Cost function across different ERM-DRO models varying sample size n and a.

month We report the experimental results of different models with the empirical performance o= ﬁ ZS;M(# —
)% given T'— M out-of-sample returns.

We use x2-divergence in our DRO models with cross validation £ = {0.2,0.4,...,1.6,1.8} in each period. And we fit the

observed samples with (1) normal families (the same as in Sectionand ; (2) variants of beta distributions, where
we still fix 3; = 2, a; using formula in Section and choose the boundary parameter r; = max |(£);| for each asset j.

E.4 Detailed Setup for Regression Tasks

We vary the ambiguity size £ € {0.01,0.05,0.1,0.5,1,5, 10, 50, 100} as the hyperparameter candidate set and tune them
through cross validation for DRO models. We set the Monte Carlo size M = 10n and Q) is constructed as follows:

Mixture Gaussian Model Construction: If we denote the features [z1,...,z4] € R% and z1,...,xx are K binary

category features with z; € {0, 1},Vi € [K], then we consider the following mixture Gaussian Distribution Class with 2
g

groups’)

Pe = {P: (.’L‘],...,Id,y)-r ~P:P(Tmz. g =s— 1) =ps, Vs € [QK],
d
(Tr1s e xay)|(@r, o 2x) = N, i)

‘(pl, s Par) € Ao,y € RdﬁK#‘l, Y€ Si:_f(+1,Vk S [QK]} .

*Rolling-sample: For data spanning 7" months, in order to construct portfolios in month £+ M (from ¢ = 1), we use the data spanning
from months ¢ to ¢t + M — 1 as observed samples solve the corresponding problem. Then we apply the optimal weight 2 obtained from
min.cx Z(z) to compute the returns 7y = §tT+ a2 in month ¢+ M. We repeat this procedure to construct portfolios in following months
by adding the next and dropping the earliest month until t = 7" — M. This gives us 7' — A monthly out-of-sample returns {7; }2 ;.
%@z ... Tx represents the decimal number of these binary digits z;, e.g. T01 = 5; A,, means the n-dimension probability simplex.
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Figure E.4: Value of Cost function across different ERM-DRO models varying sample size n and o under misspecification.

For a dataset with {(&;, ;) }ic[,) With #; ; denoting the j-th feature of the i-th sample. We output Q parametrized with
P K
{(Bres e, Xk )}y

NS
Pr = ZIH{@“...ithkfl}
i=

X 1\~ L
k= o Y ik Ead)EF ek 1)
PR =1

n
Y= % Z[(-’«TR.KH coeiali) — (T g e Taas i) — flk]TH{m:kq}
- i=1

Conditioned on the subgroups characterized by K = 4 binary categorical features black, hispanic, married,
nodegree, we fit the other continuous variables age, education, RE74, RE75, RE78 with Gaussian models
constructed above. After that, for our Monte Carlo sampling, if p is very small, i.e. not many samples in this group,
we would directly use the original data within that group and copy 10 times as the new data. We project the values of
some unrealistic features of the Monte Carlo data from @ onto their value boundary if these values violate some common
knowledge. For example, if earnings one year is negative, we change it to 0. And we project the value of simulated ages
into the interval [18, 60]. Then our Monte Carlo empirical distribution @, is a real crude approximation only assuming
the underlying true distribution has some approximate normal properties, which can be hardly attained in reality. In spite
of this, the results of P-DRO in the main text performs well and significantly better than others especially when the sample
size is not large enough, shown in the main text.

Furthermore, to illustrate that P~DRO can eliminate the model misspecification error and show consistenly good performan-
nce than P-ERMand the empirical models, we replace (A) mixture Gaussian in Pg to (B) joint Gaussian of all variables;
(C) joint Gaussian fixing categorical variables zero correlation following the same setup. All models still have &,,, > 0
but the robustness and superior performance indicate the effectiveness of DRO methods.

n = 200

Avg-R? 0.1589 0.4433 <0 0.5050 <0 0.5266 0.4926 0.5033

NP-ERM | NP-DRO | P-ERM-(A) | P-DRO-(A) | P-ERM-(B) | P-DRO-(B) | P-ERM-(C) | P-DRO-(C)
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Figure E.5: Value of Cost function across different ERM-DRO models varying sample size n and « under distribution
shift.
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