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Abstract

Empirical risk minimization (ERM) and distri-
butionally robust optimization (DRO) are pop-
ular approaches for solving stochastic optimiza-
tion problems that appear in operations manage-
ment and machine learning. Existing general-
ization error bounds for these methods depend
on either the complexity of the cost function
or dimension of the uncertain parameters; con-
sequently, the performance of these methods is
poor for high-dimensional problems with objec-
tive functions under high complexity. We pro-
pose a simple approach in which the distribution
of uncertain parameters is approximated using a
parametric family of distributions. This mitigates
both sources of complexity; however, it intro-
duces a model misspecification error. We show
that this new source of error can be controlled by
suitable DRO formulations. Our proposed para-
metric DRO approach has significantly improved
generalization bounds over existing ERM / DRO
methods and parametric ERM for a wide vari-
ety of settings. Our method is particularly ef-
fective under distribution shifts. We also illus-
trate the superior performance of our approach
on both synthetic and real-data portfolio opti-
mization and regression tasks.

1 Introduction

The goal of data-driven stochastic optimization is to solve

min
x∈X

{Z(x) := Eξ∼P∗ [h(x; ξ)]} , (1)

where x ∈ X is the decision, ξ is a random perturbation
in the sample space Ξ distributed according to P∗, and
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h : X × Ξ → R is the cost function. Here, we assume
P∗ is unknown and we only have access to i.i.d. samples
ξ̂i ∼ P∗, i = 1, . . . , n. This problem setting arises ubiq-
uitously from machine learning to various applications in-
volving decision making (Shapiro et al. (2014); Birge and
Louveaux (2011)).

To tackle the above problem, the commonest method is
to replace the unknown P∗ with the empirical measure
P̂n = 1

n

∑n
i=1 δξ̂i in (1), leading to the empirical risk min-

imization (ERM) problem (Hastie et al. (2009)):

min
x∈X

{
Ẑ(x) := EP̂n

[h(x; ξ)] =
1

n

n∑
i=1

h(x; ξ̂i),

}
. (2)

A second approach that is surging in popularity over recent
years is distributionally robust optimization (DRO), where
the unknown P∗ is replaced by the worst-case distribution
over a so-called ambiguity set A, giving rise to:

min
x∈X

{
Ẑ(x) := max

P∈A
EP[h(x; ξ)]

}
. (3)

Here, A is constructed using the data and, at least intu-
itively, by selecting a A that covers the ground-truth P∗

with high confidence, (3) outputs a solution with a worst-
case performance guarantee. In order to guarantee a sta-
tistically consistent solution, it is common to set A =
{P|d(P, P̂n) ≤ εn} for some statistical distance d and let
εn shrink to zero as n increases. This approach has been
studied with d set to Wasserstein distance (Esfahani and
Kuhn (2018); Blanchet and Murthy (2019)), f -divergence
(Ben-Tal et al. (2013)), kernel distance (Staib and Jegelka
(2019)) and other variants.

In this paper, we are interested in bounding the generaliza-
tion error

E(x̂) := Z(x̂)− Z(x∗), (4)

where x̂ is an approximate solution and x∗ ∈
argminx∈X Z(x) denotes the oracle best solution. E(x̂)
captures the true objective performance of x̂ relative to
x∗, thus providing a direct measurement of the subopti-
mality of x̂. Bounds on E(x̂) are typically of the form
E(x̂) ≤ B

nα where B,α > 0 are method-dependent: For
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ERM, α = 1
2 and B depends on the complexity of the

hypothesis class, i.e., {h(x, ξ) : x ∈ X}, represented by
well-known notions such as the Vapnik–Chervonenki (VC)
dimension (Vapnik (1999); Bartlett and Mendelson (2002))
and local Rademacher complexity (Bartlett et al. (2005);
Xu and Zeevi (2020)). On the other hand, DRO can be an-
alyzed by two mainstream viewpoints. One treats DRO as
a regularization of ERM (where the regularizer depends on
the choice of d (Duchi and Namkoong (2019); Gotoh et al.
(2021); Lam (2019); Blanchet et al. (2019b); Gao (2022)),
which gives rise to similar α and B as ERM. In the sec-
ond approach the ambiguity set A is constructed as a (non-
parametric) confidence region for P∗ resulting in a a worst-
case performance bound on x̂ (Esfahani and Kuhn (2018);
Bertsimas et al. (2018); Delage and Ye (2010); Wiesemann
et al. (2014)). This can be converted into a bound for E(x̂)
where B depends only on h(x∗, ·) instead of the hypothesis
class (Zeng and Lam (2022)), but then α typically degrades
as 1

Dξ
where Dξ denotes the dimension of the randomness

ξ. In other words, in all the existing bounds for ERM and
DRO, the generalization error E(x̂) depends on either the
complexity of the cost function class or the dimension of
the distribution space. Thus, for a high-dimensional prob-
lem with complex cost function, both ERM and DRO are
likely to have poor performance.

Our main goal in this paper is to propose a simple approach
that aims to remove the dependence of the bound on the
generalization error E(x̂) on both the function complexity
and distributional dimension. Our approach operates by re-
placing the empirical distribution P̂n typically used as the
center of the ambiguity set in DRO with a suitable para-
metric distribution. For convenience we call our approach
parametric DRO (P-DRO). Using the second analysis route
of DRO mentioned above, we obtain B that depends only
on h(x∗, ·) while, because of the use of parametric distribu-
tion, we also remove the dependence of Dξ in α. Of course,
all of this come with the price of a model misspecification
error due to the use of parametric distributions. The main
insight is that by choosing the ambiguity set size properly,
the worst-case nature of P-DRO can be leveraged to con-
trol the impact of model misspecification, and ultimately
exhibit a gracious tradeoff between this latter error and the
removal of complexity/dimension dependence.

Under this framework, we demonstrate how the strength
of P-DRO is further amplified under distribution shift, i.e.,
when training and testing data statistically differ, thanks to
the hedge on model misspecification provided by P-DRO.
Our desirable generalization bound of P-DRO under dis-
tribution shift also serves as a propellant of DRO as truly
superior against model changes – While previous literature
has argued the advantages of DRO in protecting against
unexpected distribution shift, the arguments are based on
a worst-case bound applied on the attained objective (e.g.,
Van Parys et al. (2020); Sutter et al. (2021)), which does

not imply whether the obtained solution is good relative to
other possibilities or the oracle solution. Our generaliza-
tion bound, on the other hand, reveals how P-DRO can be
better than both ERM, conventional DRO, and also para-
metric analogs of ERM, meaning that our solution is better
under the shifted test distribution than other previous ap-
proaches. On the other hand, P-DRO requires potentially
more computation effort than these other methods, due to
the need to suitably discretize the parametric distribution
(if it is continuous) for optimization tractability. We will
also analyze the price of such a discretization effort.

In the following, we first explain the existing generalization
error bounds of ERM and DRO, including notably the key
reasoning behind their derivations (Section 2). Then, we
present P-DRO and its basic theory (Section 3). We gener-
alize the theory to distribution shift (Section 3.1) and incor-
porate discretization or Monte Carlo error (Section 3.3). Fi-
nally, we present numerical experiments on both synthetic
and real data to support the strengths of P-DRO (Section 4).

2 Background

We briefly discuss how existing generalization bounds for
E(x̂) for ERM and DRO are derived. This would reveal the
related literature and also set the stage for our new bounds
for P-DRO. First, it is customary to decompose:

E(x̂) = [Z(x̂)− Ẑ(x̂)] + [Ẑ(x̂)− Ẑ(x∗)]

+ [Ẑ(x∗)− Z(x∗)]

≤ [Z(x̂)− Ẑ(x̂)] + [Ẑ(x∗)− Z(x∗)]. (5)

In the above, x̂ denotes either the ERM solution obtained
from (2) or DRO solution from (3). Ẑ(·) refers to the corre-
sponding estimated objective function, namely the sample
average objective depicted in (2) and the worst-case objec-
tive in (3). The inequality in (5) that removes the middle
term in the decomposition thus follows from the optimality
of x̂ in minimizing Ẑ(·) in either ERM or DRO. From (5),
one can proceed to bound the two terms and, in a sense,
optimizing the overall generalization bound relies on a bal-
ancing between the bounds on these two terms.

ERM. In ERM, the second term Ẑ(x∗) − Z(x∗), which
relies only on the oracle optimal solution x∗ among the
decision space X , can be bounded easily using standard
bounds for sample mean. On the other hand, the first
term Z(x̂) − Ẑ(x̂) depends on the random solution x̂
and is bounded by its supremum supx∈X |Z(x) − Ẑ(x)|
(or localized versions). Using tools from empirical pro-
cesses (van der Vaart et al. (1996)), we obtain in general

a bound for E(x̂) of the form O(
√

MZ(x∗)Comp(H) logn
n )

(Vapnik (1999); Boucheron et al. (2005)), where Comp(H)
is some complexity measure of the hypothesis class H =
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{h(x; ·)|x ∈ X}. For example, the VC Dimension. and
M = supx∈X ∥h(x; ·)∥∞.

DRO from regularization perspective. Analyzing E(x̂)
for DRO can take two viewpoints. One is its equivalence to
a variability regularization on ERM. To explain this, let us
now put subscript “ERM” and “DRO” under Ẑ to denote
their respective estimated objective function. Lam (2016);
Duchi and Namkoong (2019); Gao et al. (2022) show that,
for small enough ball size ε, we have roughly speaking:

ẐDRO(x) = ẐERM (x)+Vd(x)
√
ε+O(ε), ∀x ∈ X . (6)

Here Vd(x) is a variability measure of the cost function h
that depends on the statistical distance d used in the am-
biguity set. For example, Vd(x) is the Lipschitz norm
of h(x; ·) if d is 1-Wasserstein (Blanchet et al. (2019a);
Gao et al. (2022)), and

√
VarP∗ [h(x, ξ)] if d is an f -

divergence (Lam (2016); Duchi and Namkoong (2019);
Duchi et al. (2021)). (6) can be used to bound the second
term Ẑ(x∗) − Z(x∗) in (5) by connecting to ERM. More-
over, with ε properly chosen (depending on the hypothesis
class complexity), (6) can be converted into the bound

Z(x) ≤ ẐDRO(x) +O

(
1

n

)
, ∀x ∈ X

by using an empirical Bernstein inequality (Maurer and
Pontil (2009)), which can be used to bound the first term
Z(x̂)−Ẑ(x̂) in (5) as well. Putting these together arrives at

a bound for E(x̂) given by O(Vd(x
∗)
√

Comp(H)
n ). Compar-

ing with ERM, this DRO bound bears the constant Vd(x
∗)

instead of MZ(x∗), but both bounds require Comp(H).

DRO from robust bound perspective. As another per-
spective to understand DRO, if the ball size ε is chosen
large enough such that

P[d(P∗, P̂n) ≤ ε] ≥ 1− δ (7)

i.e., G covers the ground-truth P∗ with high probability
1− δ, then the first term Z(x̂)− Ẑ(x̂) in (5) is non-positive
with probability at least 1− δ (Ben-Tal et al. (2013); Bert-
simas et al. (2018)). Note that this choice of ε does not
depend on the cost function h. At the same time, the sec-
ond term Ẑ(x∗)− Z(x∗) depends on ε, but not Comp(H).
These altogether give rise to an overall bound that only de-
pends on H through h(x∗, ·) (Zeng and Lam (2022)). How-
ever, for (7) to hold, we typically need to choose ε to scale

in O(n
− 1

Dξ ), which in turn would degrade the bound for
the second term. This is the case if we use Wasserstein
(Esfahani and Kuhn (2018)) and f -divergence, the latter
requiring a modification of P̂n to a smoothed distribution
estimator due to absolute continuity requirement in defin-
ing the divergence (Jiang and Guan (2018)). The only ex-
ception is Maximum Mean Discrepancy (MMD) that can

retain ε to be O(1/
√
n), but then the second term bound

requires strong reproducing kernel assumption on h(x∗, ·),
i.e. h(x∗, ·) ∈ H in Zeng and Lam (2022). Overall, if the
assumption is mild, then we would have a bound for E(x̂)
given by O(n

− 1
Dξ ).

Overview of our bound. The bounds discussed above
are shown in the first column of Table 1. As we can
see, they either depend on the hypothesis class complex-
ity Comp(H) or the distributional dimension Dξ. Our ap-
proach P-DRO, which uses a suitably fit parametric model
in the DRO ball center, replaces both Comp(H) and Dξ

with a potentially much smaller parametric complexity
Comp(Θ). However, in doing so, we incur a model mis-
specification term Eapx. The tradeoff between Comp(Θ)
and Eapx are shown in Table 1 (shown at the bottom of the
second column): When sample size n is moderate, the gain
in Comp(Θ) over Comp(H) could be significant and out-
wash the loss from Eapx. Moreover, if we simply apply
the same parametric model into ERM, we obtain a bound
that depends less desirably on Eapx (shown at the top of the
second column).

3 Main Results

Given i.i.d. sample {ξ̂i}ni=1 and a class of parametric dis-
tributions PΘ parametrized by Θ, our P-DRO solves (3)
where A = {P|d(P, Q̂) ≤ ε} is now centered around the
parametric distribution Q̂ ∈ PΘ. This Q̂ is estimated from
the sample via a parametric fit. As a special case, we can
apply the same Q̂ to ERM, giving rise to P-ERM (i.e., set-
ting ε = 0 in P-DRO).

To analyze P-DRO, we first make the following general as-
sumption:

Assumption 1 (Oracle Estimator). Q̂ ∈ PΘ satisfies

d(P∗, Q̂) ≤ Eapx(P∗,PΘ) +
Comp(Θ) log(1/δ)

nα

=: ∆(δ,Θ),

with probability 1 − δ, for some α > 0, Comp(Θ) is
the complexity of PΘ, and Eapx(P∗,PΘ) (sometimes ab-
breviated to Eapx) is a non-negative function such that
Eapx(P∗,PΘ) = 0 if P∗ ∈ PΘ.

Assumption 1 holds under a wide range of parametric mod-
els, though its verification is case-by-case. Here we dis-
cuss two important settings (We leave the formal defini-
tions of popular metrics d including Wasserstein distance
and f -divergence, such as Kullback-Leibler (KL), χ2 and
Hellinger (H2), in the Appendix A):

Example 1. d = 1-Wasserstein distance, PΘ =
{N (µ,Σ)|µ ∈ RDξ} with known Σ, and marginals
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No Distribution Shift Additional Error Due to Distribution Shift
Method Standard Parametric Standard Parametric

ERM
√

MZ(x∗)Comp(H)
n

Vd(x
∗)
√

Comp(Θ)
n

+ Eapx +ME
3
4
apx d(Ptr,Pte)M

3
4 (Comp(H)

n
)
1
4 M(d(Ptr,Pte))

3
4

DRO with
metric d

Vd(x
∗) · 1

n
1/Dξ Vd(x

∗)
√

Comp(Θ)
n

+ Eapx
0 0

Vd(x
∗)
√

Comp(H)
n

d(Ptr,Pte)V
1
2
d (x∗)M

1
2 (Comp(H)

n
)
1
4

Table 1: Generalization error of different methods w/o distribution shift. In the case with distribution shift, we show the
additional term besides d(Ptr,Pte)Vd(x

∗), which would be paid for across all methods.

of the random variable ξ is subGaussian with param-
eter with parameter σ, i.e. E[exp(v⊤(ξ − E[ξ]))] ≤
exp

(
∥v∥2σ2

2

)
,∀v ∈ RDξ . Then Assumption 1 holds for

Q̂ = N ( 1n
∑n

i=1 ξ̂i,Σ), Eapx = W1(P∗,Q∗) with Q∗ =

N (E[ξ],Σ), α = 1
2 and Comp(Θ) =

√
Dξσ.

We explain the rationale behind this example. It follows
by W1(P∗, Q̂) ≤ W1(P∗,Q∗) + W1(Q∗, Q̂), where we
bound W1(Q∗, Q̂) ≤ W2(Q∗, Q̂) and use the computa-
tion of W2 for two Gaussian distributions W2(Q∗, Q̂) =√∑Dξ

j=1 | 1n
∑n

i=1(ξ̂i))j − E[ξ]j |2 in Dowson and Landau
(1982). Then we apply subGaussian concentration inequal-
ity (Wainwright (2019)) to all Dξ components and obtain

W2(Q∗, Q̂) ≤ σ

√
Dξ log(1/δ)

n .

Example 2 (Extracted from Theorem 13 in Liang (2021)).
d = KL-divergence, PΘ is the class of all distributions gov-
erning gθ(Z) for some random variable Z and function gθ
parametrized by θ ∈ Θ. Then Assumption 1 holds for Q̂ as
the distribution of gθ̂n(Z) and

Eapx = sup
θ

inf
ω

∥∥∥∥log p∗
pθ

− fω

∥∥∥∥
∞

+B inf
θ

∥∥∥∥log pθ
p∗

∥∥∥∥ 1
2

∞
,

Comp(Θ) =
√
Pdim(F), α =

1

2
,

where p∗ and pθ are the densities of P∗ and gθ(Z) if we
consider a GAN estimator with the discriminator class
F = {fω(x) : RDξ → R} realized by a neural network
with weight parameter ω, and generator class G = {gθ(z) :
RDξ → RDξ} realized by a neural network with weight pa-
rameter θ:

θ̂n ∈ argmin
θ:gθ∈G

max
ω:fω∈F,

∥fω∥∞≤B

{EZfω(gθ(Z))− Ênfω(X)},

with Pdim(F) as the Pseudo dimension of F .

Here Eapx reflects the expressiveness of the generator and
discriminator in Example 2 and Comp(Θ) describes the
statistical complexity of the discriminator. Note that α is
dimension-independent in both examples above, and this
is also generally the case for most interesting metrics (we
leave more details in the Appendix B).

Next, to state our main result, we consider two main types
of distances d. First, the Integral Probability Metric (IPM)
(Müller (1997)) is defined as

d(P,Q) := sup
{f :Vd(f)≤1}

∣∣∣EP[f ]− EQ[f ]
∣∣∣,

for appropriately defined variability measure Vd(f). Exam-
ples include the 1-Wasserstein distance (Vd(f) = ∥f∥Lip),
Total Variation Distance (Vd(f) = 2∥f∥∞) and MMD
(Vd(f) = ∥f∥H) (Zhao and Guan (2015)). Second, we
consider f -divergences beyond the IPM class. Here, we
can still link it to IPM, in particular the Total Variation Dis-
tance dTV , if the following holds with some constant Cd:

dTV (P,Q) ≤ Cd

√
d(P,Q). (8)

For example, KL-divergence holds with CKL = 1√
2

.

With these, letting xP−DRO be the solution to P-DRO, we
have the following result.

Theorem 1 (Generalization bounds for P-DRO). Suppose
Assumption 1 holds and the size of the ambiguity set ε ≥
∆(δ,Θ). Then, with probability at least 1− δ, the general-
ization error of P-DRO satisfies the following:

(a) When d is an IPM metric,

E(xP−DRO) ≤ 2Vd(x
∗)ε.

(b) When d is a non-IPM satisfying (8), including
χ2,KL,H2,

E(xP−DRO) ≤ 4Cd∥h(x∗; ·)∥∞
√
ε.

(c) When d is the χ2-divergence, we can improve the
bound to

2
√
εVarP∗ [h(x∗; ξ)] + 2ε

3
4 ∥h(x∗; ·)∥∞.

Theorem 1 gives the bounds on E(xP−DRO) (excluding
constant factors) with probability at least 1− δ for the fol-
lowing examples:

(1) 1-Wasserstein distance: ∥h(x∗; ·)∥Lip∆(δ,Θ)
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(2) KL-divergence: ∥h(x∗; ·)∥∞
√

∆(δ,Θ). In the Ap-
pendix D.1.2, we further show an improvement to√

VarP∗ [h(x∗; ·)]∆(δ,Θ) under mild conditions.

In the above, ∆(δ,Θ) can be plugged in from Assumption
1 and the quantities discussed right after it.

The key ideas in proving Theorem 1 are as follows. Con-
sider the first and second terms in the right hand side in
the decomposition (5). Based on Assumption 1, our choice
of ε ensures P[d(P∗, Q̂) ≤ ε] ≥ 1 − δ. Then under the
event d(P∗, Q̂) ≤ ε, we have P∗ ∈ A and EP∗ [g(ξ)] ≤
supP∈A[g(ξ)] for any measurable function g. This implies
that the first term Z(x̂) − Ẑ(x̂) in (5) is non-positive with
probability at least 1 − δ. This observation holds for all
three cases in Theorem 1. On the other hand, when d is
IPM, the second term Ẑ(x∗)− Ẑ(x∗) can be written as

Ẑ(x∗)− Z(x∗) = max
d(P,Q̂)≤ε

EP[h(x
∗; ·)]− EP∗ [h(x∗; ·)]

≤ Vd(x
∗) max

P:d(P,Q̂)≤ε
d(P,P∗)

≤ Vd(x
∗)(d(P, Q̂) + d(Q̂,P∗))

≤ 2Vd(x
∗)ε.

When d is a non-IPM satisfying (8), we have

Ẑ(x∗) ≤ max
dTV (P,Q̂)≤Cd

√
ε
EP[h(x

∗; ·)],

which allows us to reduce to the previous case. Moreover,
to obtain the improved result for the χ2-divergence in part
(c) in particular, we borrow the Cauchy-Schwarz inequality
to relate to

√
VarP∗ [h(x∗; ξ)]:

|EP[h(x
∗; ξ)]−EQ[h(x

∗; ξ)]| ≤
√
2χ2(P,Q)VarP[h(x∗; ξ)].

(9)
(9) helps us obtain the inequality supP∈A EP[h(x

∗; ξ)] −
EQ̂[h(x

∗; ξ)] ≤
√
2εVarQ̂[h(x

∗; ξ)] when d is the

χ2-divergence, and we only need to bound the term
|EQ̂[h(x

∗; ξ)]− EP∗ [h(x∗; ξ)]| by applying (9) again.

Lastly, in Appendix D.1.2, under additional mild con-
ditions, when d is the KL divergence or Hellinger dis-
tance, we improve the result in part (b) of Theorem 1 to
E(xP−DRO) ≤ c1

√
εVarP∗ [h(x∗; ξ)] + c2ε

3
4 ∥h(x∗; ·)∥∞

with probability at least 1− δ for some constants c1, c2.

Next, letting xP−ERM be the solution to P-ERM, we have
the following result:
Theorem 2 (Generalization bounds for P-ERM). Suppose
Assumption 1 holds and the cost function |h(x; ξ)| ≤
M,∀x, ξ. Then with probability at least 1 − δ, the gen-
eralization error of P-ERM satisfies the following:

(a) When d is an IPM metric:

E(xP−ERM ) ≤ 2

(
sup
x∈X

Vd(x)

)
∆(δ,Θ).

(b) When d is a non-IPM satisfying (8), including
χ2,KL,H2,

E(xP−ERM ) ≤ 4CdM
√

∆(δ,Θ).

(c) When d is (modified) χ2-divergence, we can improve
the bound to:√

2∆(δ,Θ)
√

VarP∗ [h(x∗; ξ)] + 2M (∆(δ,Θ))
3
4 .

Compared with Theorem 1, the bound for E(xP−ERM ) in
Theorem 2 involves the uniform quantity supx∈X Vd(x) or
M , which can be much larger than Vd(x

∗) or ∥h(x∗; ·)∥∞
for E(xP−DRO) in Theorem 1. This amplifies the model
error Eapx when using P-ERM or, equivalently, demon-
strates the power of P-DRO in curbing the impact of model
error. Note that for χ2-divergence, the first term in the im-
proved bound for P-ERM is the same as that for P-DRO
when ε = ∆(δ,Θ), but P-ERM still incurs the uniform
quantity M in the second term.

We briefly outline the proof for Theorem 2. Consider the
decomposition (5) and, without the worst-case machinery
of DRO here, we bound the two terms by supx∈X |Z(x)−
Ẑ(x)|, which leads to the appearance of supx∈X Vd(x).
The improved χ2 result follows by replacing the uniform
bound supx∈X

√
VarP∗ [h(x; ξ)] with√

VarP∗ [h(xP−ERM ; ξ)] ≤
√

VarP∗ [h(x∗; ξ)]

+ 2M(χ2(P∗, Q̂))
3
4 .

The main results of this section are summarized under “No
Distribution Shift” in Table 1. As discussed in the Introduc-
tion, our P-DRO bounds do not depend on Comp(H) and
Dξ but instead the parametric complexity Comp(Θ) and
model error Eapx. In general, P-DRO compares favorably
with existing ERM/DRO when the hypothesis class is com-
plex or distributional dimension is high, and when the data
size is small so that the model error Eapx becomes relatively
less profound compared to Comp(Θ)/n. Our experimental
results in Section 4 will support these stipulations.

Note that in Table 1, we suppress the dependency of
α and focus on the comparison of major terms, i.e.
Comp(Θ),Comp(H), Eapx. From the examples satisfying
Assumption 1, to bound d(P∗, Q̂), α = 1 can hold when
d is χ2-divergence (Example 2) and α = 1

2 can hold when
d is 1-Wasserstein distance (Example 1), which implies the
results shown in the “Parametric” column under “No Dis-
tribution Shift” in Table 1.

3.1 Generalization to Distribution Shift

We extend our framework to the distribution shift setting.
We have i.i.d. sample from the training distribution Ptr but
the test distribution Pte ̸= Ptr, and x̂ is computed using the
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sample from Ptr. We are interested in the generalization
error Ete(x̂) = EPte [h(x̂; ξ)] −minx∈X EPte [h(x; ξ)]. We
have the following results:

Corollary 1 (Generalization bounds for P-DRO under dis-
tribution shift). Suppose Assumption 1 holds, and the ra-
dius ε ≥ ∆(δ,Θ) + d(Pte,Ptr), then E(xP−DRO) is
bounded by the same term in Theorem 1.

Corollary 2 (Generalization bounds for P-ERM under
distribution shift). Suppose Assumption 1 holds, then
E(xP−ERM ) is bounded by the same term in Theorem 2
except replacing ∆(δ,Θ) with ∆(δ,Θ) + d(Pte,Ptr).

The proof of the two results follows a similar structure as
Theorem 2. The right half of Table 1 summarizes the ad-
ditional errors incurred by the various methods because of
distribution shift. We see that P-ERM under distribution
shift suffers from the product of d(Ptr,Pte) and uniform
quantities over X including M and supx∈X Vd(x).

In the literature, the evaluation metric in distribution shift
is called “discrepancy metric”, which can be defined
as discL(H;Pte,Ptr) = suph1,h2∈H |EPteL(h1, h2) −
EPtrL(h1, h2)| for some loss function L : H × H → R
(Mansour et al. (2009); Ben-David et al. (2010); Zhang
et al. (2019)). This metric depends on the hypothesis class
H. Instead, the metric d(Pte,Ptr) to measure the distribu-
tion shift in our generalization error bound does not con-
sider the interactions between H and Ptr,Pte. Meanwhile,
we do not need to get access to samples of Pte, but we need
the value (or an upper bound) of d(Pte,Ptr). Lee and Ra-
ginsky (2018) uses the same discrepancy measure and ob-
tains a similar generalization error bound when Q̂ is taken
to be the empirical distribution and d is the p-Wasserstein
distance, which inherits the curse of dimensionality in stan-
dard Wasserstein-DRO approaches. This challenge is also
shown in the numerical results in Section 4.

As mentioned, we do not assume any specific structure
in the distribution shift but only d(Pte,Ptr). This distin-
guishes our result from those associated with some specific
types of distribution shift, such as group-based approaches
(Sagawa et al. (2020)), latent covariate shifts (Duchi et al.
(2020)), and conditional shifts (Sahoo et al. (2022)). It
would be interesting to extend the P-DRO idea to these
specific types such that the approach is more realistic to
downstream tasks, e.g. representing Pte

Y |x by some para-
metric distributions and then robustifying in Sahoo et al.
(2022).

3.2 Error Tradeoffs Compared to Existing Bounds

We discuss several implications of P-DRO regarding gen-
eralization. It is designed to hedge against function class
complexity and distributional dimension, while paying a
controllable price of model misspecification in our para-
metric approximation. Illustrated in Figure 1, when the

sample size is not too large, i.e. when n ≤ n∗, by replac-
ing Comp(H) in ERM or 1/Dξ in DRO with Comp(Θ)
plus Eapx, P-DRO can enjoy better generalization. Be-
sides, under distribution shift, both ERM and P-ERM are
further negatively impacted by the amplification of the im-
pact of function class complexity and indicate the strength
of P-DRO.

We point out that our P-DRO framework hinges on the
availability of a parametric model with low Eapx mea-
sured by the metric d. While this presumption may not
hold in all cases, fortunately there is a rich literature in
statistics for selecting and estimating parametric models:
information-based model selection (Anderson and Burn-
ham (2004)), and decision-driven parameter calibration
(Ban et al. (2018)). Our approach is not to create new meth-
ods for parametric model estimation; rather takes advan-
tage of this rich existing literature. More precisely, P-DRO
turns the P-ERM solutions obtained from directly using
these models into consistently better solutions via robus-
tification – the error in P-ERM has an extra uniform term
ME

3
4
apx in addition to the error in P-DRO when there is no

distribution shift (see Table 1).

Figure 1 also demonstrates that the performance of P-DRO
may be dominated by others. If Comp(H) ≈ Comp(Θ),
and the parametric class PΘ provides a poor approxima-
tion for P∗, i.e. Eapx is large, the ambiguity size ε has to
be set large in order to cover the true distribution. In such
setting, P-DRO underperforms against nonparametric ap-
proaches even for small n. In the limit n → ∞, the error
of nonparametric approaches converges to 0; however, the
error of P-DRO is lower bounded by Eapx.
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Figure 1: Concept of model performance when
Comp(H) ≫ Comp(Θ), where dP = d(Ptr,Pte)
and n∗ increases with Comp(H) and decreases with
Comp(Θ), Eapx.

Moreover, when the distribution center Q̂ is continu-
ous, the inner maximization term supP∈A EP[h(x; ξ)] in
(3) becomes an infinite-dimensional optimization prob-
lem even after dual reformulation. For example, for 1-
Wasserstein distance (Esfahani and Kuhn (2018)) and f -
divergence (Bayraksan and Love (2015)), the inner prob-
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lem supP∈A EP[h(x; ξ)] would be reformulated as:

inf
λ≥0

{λε+ Eξ0∼Q̂[sup
ξ∈Ξ

{h(x; ξ)− λ∥ξ0 − ξ∥}]} (1-W)

inf
λ≥0,µ∈R

{µ+ λε+ Eξ∼Q̂[(λf)
∗(h(x; ξ)− µ)]} (f )

where the objective involves a high-dimensional integral
over Q̂ instead of the empirical distribution. This makes the
problem even harder to evaluate and optimize than DRO
based on the empirical distribution. There are two ap-
proaches to handle this issue. One is through Monte Carlo
and sample average approximation that reduce the problem
to a structure resembling DRO based on the empirical dis-
tribution. Another is through stochastic approximation. In
the next subsection we discuss the first approach and how
its error can be controlled. We leave the discussion of the
second approach in the Appendix D.5.

3.3 Incorporation of Monte Carlo Errors

Suppose for tractability purpose we generate Monte Carlo
sample ξ̃i ∼ Q̂, i = 1, . . . ,m to construct Q̂m :=
1
m

∑m
i=1 δξ̃i , which approximates the ball center of the am-

biguity set A in (3), i.e., we now use A = {P|d(P, Q̂m) ≤
ε}. Let xP−DROm be the corresponding solution. We
investigate the required Monte Carlo size m such that
E(xP−DROm) ≈ E(xP−DRO) in Theorem 1.

The approximated reformulation now incurs both the sta-
tistical generalization error from the data and the Monte
Carlo sampling error, and we would like the latter error
to be dominated by the former. We assume h(x; ξ) ∈
[0,M ],∀x, ξ throughout this subsection.

Theorem 3 (Generalization bounds for Wasserstein
P-DRO with Monte Carlo errors). Suppose Assumption 1
holds and the size of the ambiguity set satisfies ε

2 ≥
∆(δ,Θ). If our Monte Carlo size m ≥ C( 2ε )

Dξ for some
constant C, when d is 1-Wasserstein distance, then with
probability at least 1− δ, we have:

E(xP−DROm) ≤ 2∥h(x∗; ·)∥Lipε.

Note that when Eapx ≈ 0 in ∆(δ,Θ) and we set ε =
∆(δ,Θ), the required Monte Carlo size m ≈ nαDξ , which
depends on the distribution dimension. A key observa-
tion in proving Theorem 3 is that we can still establish
P∗[d(P∗, Q̂m) ≤ ε] ≥ 1 − δ since W1(P∗, Q̂m) ≤
W1(P∗, Q̂) +W1(Q̂, Q̂m) ≤ ε for large m.

However, the argument of Theorem 3 does not hold more
generally since, for instance, d(P∗||Q̂m) = ∞ for any m
and continuous distribution P∗ for general f -divergence d.
Leveraging on the equivalence between DRO and regular-
ization, we provide another result below:

Theorem 4 (Generalization bounds for general P-DRO
with Monte Carlo errors). Suppose Assumption 1 holds

and the size of the ambiguity set ε ≥ ∆(δ,Θ), when d
is χ2-divergence or 1-Wasserstein distance, if the Monte

Carlo size m ≥ C
(

M
Vd(x∗)ε

)k
Comp(H) logm for some

constant C and k, then with probability at least 1 − δ,
E(xP−DROm) ≤ 2Ed, where Ed is the corresponding gen-
eralization error upper bound in Theorem 1.

The key idea here is to control the following term ∀x ∈ X :∣∣∣∣ sup
d(P,Q̂)≤ε

EP[h(x; ξ)]− sup
d(P,Q̂m)≤ε

EP[h(x; ξ)]

∣∣∣∣,
via the variability regularization property of DRO so
that (3.3) can be dominated by Ed when m ≈ Comp(H)nα,
which is now independent of the distribution dimension
but depends on hypothesis class complexity. In Ap-
pendix D.3.5, we further show the metric d in Theorem 4
can be extended to p-Wasserstein distance for p ∈ [1, 2].

Computational Issues. Theorems 3 and 4 provide the
required Monte Carlo sizes such that E(xP−DROm) ≈
E(xP−DRO). With this use of Monte Carlo, P-DRO can
be viewed as translating the statistical errors entailed by
the distribution dimension to the model error and additional
computational effort. The latter involves two aspects, one
is the Monte Carlo sampling of the parametric model Q̂
in lieu of the original data, which is considered acceptable
since this is typically cheap for common models. In other
words, the m in xP−DROm can be much bigger than the
original data size n drawn from P∗. Second is the optimiza-
tion complexity for DRO. Since our optimization model re-
duces to the same formulation as DRO based on the em-
pirical distribution of m data points after the Monte Carlo
sampling, we can borrow the same existing procedures for
empirical-based DRO. This is conceptually attractive, but
we should caution that solving the latter is not always easy
to do, and certainly more difficult than solving ERM. On
the other hand, we can leverage recently proposed large-
scale DRO procedures specially designed for f -divergence
in Levy et al. (2020); Jin et al. (2021) and Wasserstein dis-
tance in Sinha et al. (2018) via variants of stochastic gra-
dient method. We hope the current and future active inves-
tigation of large-scale DRO computation would make the
procedure for solving P-DRO much more efficient.

Similarly, we also provide the required Monte Carlo size
of P-ERM such that E(xP−ERMm) ≈ E(xP−ERM ) in Ap-
pendix D.4, where m also depends on the hypothesis class
complexity.

Other Related Work. We conclude our theoretical dis-
cussion by pointing out our differences with other work
that uses parametric models in DRO. First, despite the pop-
ularity of such models in statistics and machine learning,
they have not been investigated in DRO until recently. Sut-
ter et al. (2020) establish the optimality of DRO methods
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A Basic Definition

Definition 1 (Wasserstein distance). Let P and Q be two distributions supported on Ξ, the p-Wasserstein distance Wp :
Ξ× Ξ → R is defined by:

Wp(P,Q) = inf
Π∈M(Ξ×Ξ)

{(∫
Ξ×Ξ

∥x− y∥pΠ(dx, dy)

) 1
p

: Πx = P,Πy = Q

}
,

where Π is the joint distribution of x and y, Πx and Πy are the corresponding marginal distributions of Π.

We also need the standard measure concentration result of 1-Wasserstein distance in our analysis.

Lemma 1 (Measure concentration, from Theorem 2 in Fournier and Guillin (2015)). Suppose P is a light-tailed distribution
such that A := EP[exp(∥ξ∥a)] < ∞ for some a > 1. Then there exists some constants c1, c2 only depending on a,A and
Dξ such that ∀δ ≥ 0, if n ≥ log(c1/δ)

c2
, then W1(P, P̂n) ≤ ( log(c1/δ)c2n

)1/max{Dξ,2)}.

Definition 2 (f -divergence). Let P and Q be two distributions and P is absolutely continuous w.r.t. Q. For a convex
function f : [0,∞) → (−∞,∞] such that f(x) is finite ∀x > 0, f(1) = 0, f -divergence of P from Q is defined as:

Df (P,Q) =

∫
f

(
dP
dQ

)
dQ = EQ

[
f

(
dP
dQ

)]
.

Remark 1. In terms of specific metrics d in Assumption 1 in the main text, we define them as:

Name Notation in terms of d(P,Q) f(t) in Definition 2
Total Variation (TV) distance dTV (P,Q) |t−1|

2

χ2-divergence χ2(P,Q) (t−1)2

2

Modified χ2-divergence χ2(Q,P) (t−1)2

2t
KL divergence KL(P,Q) t log t− (t− 1)

squared Hellinger distance H2(P,Q) (
√
t− 1)2

The following inequality shows that (modified) χ2-divergence, KL-divergence and squared Hellinger distance satisfy (8).

Lemma 2 (Pinsker’s inequality). For distributions P,Q, under our definitions of specific f -divergences above, we have:

dTV (P,Q) ≤
√

1

2
KL(P,Q) ≤

√
χ2(P,Q)

2
.

The following result shows that (modified) χ2-divergence can also be represented as similar forms like IPM in the main
text with Vd(x) =

√
VarP∗ [h(x; ξ)] when d is taken as χ2-divergence.

Lemma 3 (Pseudo IPM property for (modified) χ2-divergence). For distributions P,Q, under our definitions of specific
f -divergences above, we have:∣∣∣∣Eξ∼P[g(ξ)]− Eξ∼Q[g(ξ)]

∣∣∣∣ ≤√2min{χ2(P,Q)Varξ∼P[g(ξ)], χ2(Q,P)Varξ∼Q[g(ξ)]}.

Proof. This result follows directly from the definition of χ2-divergence and the Cauchy-Schwarz inequality. Denote M∗ =
EQ[g(ξ)]. Then we have:

EP[g(ξ)]− EQ[g(ξ)] = EQ

[(
dP
dQ

− 1

)
(g(ξ)−M∗)

]
≤
√

EQ

(
dP
dQ

− 1

)2√
VarQ[g(ξ)]

=
√

2χ2(P,Q)VarQ[g(ξ)].

EP[g(ξ)]− EQ[g(ξ)] = EQ

[(
dP
dQ

− 1

)
(g(ξ)−M∗)

]
≥ −

√
2χ2(P,Q)VarQ[g(ξ)].

The other side follows by considering the term EQ[g(ξ)]− EP[g(ξ)].
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Following this result, all the properties for our derived generalization error bounds hold both for χ2-divergence and modi-
fied χ2-divergence.

In the following proofs, if not specially noted, all C with different superscripts and subscripts are denoted as some constants
independent of problem-dependent complexity terms. Besides, regarding the statement in Section 3.3 in the main text, we
ignore the polynomial dependence on log(1/δ) for the required Monte Carlo size for each case.

B Parametric Estimators under Assumption 1

Back to Assumption 1 in the main text, distribution estimation is a fundamental and longstanding topic in statistics and
machine learning. Compared with nonparametric approaches, learning distributions in the parametric regime reduces to
finite-dimensional estimation of some parameters θ̂. The classical Maximum Likelihood Estimator (MLE) and Methods of
Moment can provide some finite-sample guarantee of ∥θ̂ − θ∗∥ with and without distribution misspecification (Spokoiny
(2012); Boucheron et al. (2013)) in general. Under complex parametric classes where computing likelihood is intractable,
minimum distance estimators (Bernton et al. (2019); Briol et al. (2019)) and generative models such as Generative Adver-
sarial Network (GAN) (Goodfellow et al. (2020)) are efficiently implemented in practice to represent complex distributions.
These methods can provide generalization guarantees to bound the distribution distance between P∗ and the output estima-
tor Q̂ with some distribution complexity measures (e.g., Zhang et al. (2017); Liang (2021)).

Other Examples for Assumption 1 in the Main Text. We talk about two examples where d is the Wasserstein distance
or KL-divergence. We illustrate some additional estimators Q̂, and pairing distribution metrics d, that satisfy Assumption 1.

(1) d is the squared Hellinger distance, PΘ is the class of all distributions governing gθ(Z) for some random variable Z

and function gθ parametrized by θ ∈ Θ. Then Assumption 1 holds for Q̂ as the distribution of gθ̂n(Z) and

Eapx = sup
θ

inf
ω

∥∥∥∥√p∗ −√
pθ√

p∗ +
√
pθ

− fω

∥∥∥∥
∞

+B inf
θ

∥∥∥∥√p∗ −√
pθ√

p∗ +
√
pθ

∥∥∥∥
∞

,

Comp(Θ) =
√
Pdim(F), α =

1

2
,

where p∗ and pθ are the density of P∗ and gθ(Z) if we consider GANs estimator with the discriminator class F and
generator class G:

θ̂n ∈ argmin
θ:gθ∈G

max
ω:fω∈F,

∥fω∥∞≤B

{EZfω(gθ(Z))− Ênfω(X)},

and Pdim(F) is the Pseudo dimension of F , which is shown in Liang (2021).

(2) d is χ2-divergence and P∗ ∈ PΘ itself is a location variant of Beta distribution. See Proposition 1 for the specific
result of Comp(Θ) and α.

(3) d is 1-Wasserstein distance. We consider the following two different mixture models:

• First, we consider the special case of standard mixture Gaussian models P∗ ∈ PΘ = { 1
2N (µ,Σ) +

1
2N (−µ,Σ)|µ ∈ RDξ} with known Σ := σIDξ×Dξ

.

Then Assumption 1 holds for Q̂ :
d
= 1

2N (µ̂,Σ) + 1
2N (−µ̂,Σ) with the output of EM algorithm with µ̂. Besides,

Comp(Θ) =
√

Dξσ and α = 1
2 , which is implied by W1(P∗, Q̂) ≤ ∥µ̂ − µ∗∥2 = O(σ

√
Dξ log(1/δ)

n ) by

∥µ̂ − µ̂∥22 = O(
σ2Dξ log(1/δ)

n ) in Theorem 6 of Xu and Zeevi (2020) and Corollary 2 of Balakrishnan et al.
(2017) under some additional mild conditions.

• Second, consider P∗ :=
∑K

k=1 p
∗
kP∗

k for some unknown probability pk with distribution P∗
k in terms of each

group. We define PΘ = {∑K
k=1 pkN (µk,Σ)|(p1, . . . , pK) ∈ ∆K , µk ∈ RDξ ,∀k ∈ [K]}3 for some known Σ.

Besides, we are given group labels {gi}ni=1 associated with {ξi}ni=1, where each gi ∈ [K].

Then Assumption 1 holds for Q̂ d
=
∑

k∈[K] p̂kN (µ̂k,Σ), where p̂k =
∑n

i=1 I{gi=k}
n , µ̂k =

∑n
i=1 ξiI{gi=k}

np̂k
,∀k ∈

[K]. Eapx = W1(P∗,Q∗) with Q∗ :
d
=
∑

k∈[K] p
∗
kN (Eξ∼P∗

k
[ξ],Σ), α = 1

2 , Comp(Θ) = C
√

DξσK with some
constant C depending on P∗ (e.g. scales with 1

mink∈[K] p
∗
k

and maxi,j∈[K] ∥Eξ∼P∗
i
[ξ]− Eξ∼P∗

j
[ξ]∥).

3∆K represents K-dimensional probability simplex. Here PΘ corresponds to the model in our last numerical example.



Garud Iyengar, Henry Lam, Tianyu Wang

Remark 2. The derivation of the term in the second case above follows by:

W1(P∗, Q̂) ≤ W1(P∗,Q∗) +W1(Q∗, Q̃) +W1(Q̃, Q̂),

where Q̃ :
d
=
∑

k∈[K] p̂kN (Eξ∼P∗
k
[ξ],Σ).

As a complement, we also mention some smooth nonparametric estimators Q̂ instead of the empirical distribution P̂n

used in the DRO literature if the density of P∗ is smooth. A series of suggestions include the histogram density estimate
(Mevissen et al. (2013); de Klerk et al. (2020)) and kernel density estimate (KDE) (Jiang and Guan (2018); Zhao and Guan
(2015); Chen et al. (2022)). For example, with the Wasserstein distance, the ambiguity size ε = O((nh

dim(ξ)
n )−

1
2 ∨ h2

n)

(hn is the bandwidth of KDE, where the density of Q̂ is f(ξ) = 1
nhn

∑n
i=1 K( ξ−ξi

hn
) for some kernel function K(·))

can include P∗ in the ambiguity set A, where this size ε can be slightly smaller than directly implementing the empirical
distribution in terms of n. However, the nature of nonparametric approaches determines that they cannot bypass the curse
of dimensionality.

C Formal Derivation of Existing Empirical Approaches

In the following, we detail some steps on how existing approaches are derived specifically in Section 2 in the main text.
In each approach, we look at the generalization error Z(x̂) − Z(x∗) where x̂ is a data-driven minimizer. In particular,
denoting Ẑ(·) as the data-driven objective, we use the decomposition roadmap:

Z(x̂)− Z(x∗) = [Z(x̂)− Ẑ(x̂)] + [Ẑ(x̂)− Ẑ(x∗)] + [Ẑ(x∗)− Z(x∗)]

where the middle term [Ẑ(x̂) − Ẑ(x∗)] is at most 0 by definition of x̂ as a minimizer of Ẑ(·). Thus, we would focus on
bounding w.h.p.

[Z(x̂)− Ẑ(x̂)] + [Ẑ(x∗)− Z(x∗)]. (C.1)

The traditional approach is to replace the true distribution in the problem with the empirical distribution, i.e. P̂n =
1
n

∑n
i=1 δξi and obtain the empirical optimization objective of (2) with solution xN−ERM .

Lemma 4 (Adapted from Boucheron et al. (2005)). Consider xN−ERM as the minimizer of minx Ẑ(x) in (2), denote
M := supx∈X ∥h(x; ·)∥∞, then we have the following generalization error of xN−ERM with probability at least 1− δ:

Z(xN−ERM )− Z(x∗) ≤ log(1/δ)

[√
MZ(x∗)Comp(H) log n

n
+

Comp(H)M

n

]
. (C.2)

This result is minimax optimal w.r.t. the function complexity Comp(H), e.g. the case of VC(H) shown in Section 5 of
Boucheron et al. (2005).

As discussed in the main text, DRO follows another route of setup that relies on optimizing the worst-case objective over
an ambiguity set A = {P : d(P, P̂n) ≤ ε} constructed from some distance / divergence metric d(·, P̂n) (f -divergence,
Wasserstein distance, MMD etc). Denote the optimal solution to (3) as xN−DRO. To evaluate the quality of a solution,
by letting x̂ := xN−DRO and ZN−DRO(·) := Ẑ(·) in (C.1), the second term will lead to an error O( εVd(x

∗)√
n

). The key
lies in the first term, i.e. Z(xN−DRO) − ZN−DRO(xN−DRO). In the literature, there are two interpretations to bound
the first term, one using the equivalence of DRO with regularization, and one using the confidence guarantee in bounding
Z(ZN−DRO) with the worst-case objective if the ambiguity set is chosen large enough to be a confidence region for P ∗.
For convenience, in the sequel we sometimes call the first interpretation as the regularization perspective and the second as
the pessimism perspective.

Theorem 5. For some certain metric, when the ambiguity size ε = Ω((Comp(H)
n )

1
2β ) with β ∈ { 1

2 , 1}, we have the following
generalization error of xN−DRO with probability at least 1− δ:

Z(xN−DRO)− Z(x∗) ≤ log(1/δ)

[
εβVd(x

∗) +
Comp(H)(supx∈X Vd(x))

n

+
E1(x∗)√

n
+ E2(x∗, ε)

]
,

(C.3)
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where β is a constant depending on different metrics d used here. E1(x∗) only depends on h(x∗; ξ) and P∗, E2(x∗, ε) ≈
Vd(x

∗)ε2β , which is of order 1
n .

When the ambiguity size ε = Ω(n
− 1

α(Dξ) ), we may also have:

Z(xDRO)− Z(x∗) ≤ Vd(x
∗) log(1/δ)

n
1

α(Dξ)

, (C.4)

where α(Dξ) is some function of the domain dimension of the distribution P.

Proof. For the bound (C.3), it is a combination of the following results:

• Variability regularization in the form:

Z(x) ≤ ZN−DRO(x) +
Comp(H) supx∈X Vd(x)

n
(C.5)

• DRO expansions in the form:

ZN−DRO(x∗) ≤ Ẑn(x
∗) + εβVd(x

∗) + E2(x∗, ε).

• Standard concentration bound for the empirical mean:

|Ẑn(x
∗)− Z(x∗)| ≤ E1(x∗)√

n
.

For the bound (C.4), it is achieved by using a ball size ε large enough to cover the true P∗ with probability at least 1 − δ.
Under such event, we have:

Z(xN−DRO)− ZN−DRO(xN−DRO) ≤ 0 (C.6)

ZN−DRO(x∗)− Z(x∗) ≤ Vd(x
∗)ε. (C.7)

Typically, to ensure that the ball size is large enough to cover the true distribution with probability at least 1 − δ, the
ambiguity size is usually needed to depend on Dξ. □

This result unifies several streams from previous literature. Besides we denote r∗n ≤ VC(H) log( n
VC(H)

)

n as the fixed point of
some sub-root Rademacher Complexity. For example:

Example 3 (Gao (2022)). In the case of 1-Wasserstein distance, β = 1, ε =
√

τ log(N(H, 1
n ,n)/δ)

n (or
√

τ log(1/δ)
n +

√
r∗n +

1

n
√

r∗n
) to ensure that the variability regularization bound (C.5) holds with probability at least 1− δ, where τ only depends

on P∗ with VW1(x) = ∥h(x; ·)∥Lip.

Example 4 (Duchi and Namkoong (2019)). In the case of χ2-divergence, β = 1
2 , ε = log(N(H, 1

n ,n)/δ)

n (or M log(1/δ)
n +r∗n).

Moreover, the second term in the RHS of (C.5) is also of order r∗n with Vχ2(x) =
√

VarP∗ [h(x; ·)].

D Proofs and Explanations

D.1 Proof before Section 3.1

D.1.1 Proof of Theorem 1.

In the case (a) when d is an IPM metric, we have:

Z(xP−DRO)− Z(x∗)
(a)

≤ sup
d(P,Q̂)≤ε

EP[h(x
∗; ξ)]− EP∗ [h(x∗; ξ)]

(b)

≤ sup
d(P,P∗)≤2ε

EP[h(x
∗; ξ)]− EP∗ [h(x∗; ξ)]

(c)

≤ 2Vd(x
∗)ε,

(D.1)
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where (a) follows from the fact that when ε ≥ ∆(δ,Θ), by Assumption 1, we have P∗ ∈ A(Q̂; d, ε) (i.e. d(P∗, Q̂) ≤ ε
with probability at least 1 − δ). Therefore, the term Z(x) − Ẑ(x) in (C.1) is non-positive with probability at least 1 − δ.
Furthermore, (b) follows from the triangular property of distance, ∀P ∈ A(Q̂; d, ε), d(P,P∗) ≤ d(P, Q̂) + d(Q̂,P∗) ≤ 2ε.

And (c) follows from the fact that d is IPM with d(P,Q) = supf :Vd(f)≤1

∣∣∣∣EP[f ]− EQ[f ]

∣∣∣∣.
In the case (b) when d satisfies the inequality (8), we have:

E(xP−DRO) ≤ sup
d(P,Q̂)≤ε

EP[h(x
∗; ξ)]− EP∗ [h(x∗; ξ)]

≤ sup
dTV (P,Q̂)≤Cd

√
ε

EP[h(x
∗; ξ)]− EP∗ [h(x∗; ξ)]

≤ 4Cd

√
ε∥h(x∗; ·)∥∞,

where the first inequality follows by P∗ ∈ A(Q̂; d, ε) with probability at least 1 − δ. The second inequality follows by

the fact that dTV (P, Q̂) ≤ Cd

√
d(P, Q̂) such that {P : d(P, Q̂) ≤ ε} ⊆ {P : dTV (P, Q̂) ≤ Cd

√
ε}. The remaining parts

follow the same in (D.1) above since TV distance is IPM.

Specially, in the case (c), when d is (modified) χ2-divergence, we have:

E(xP−DRO)
(a)

≤ sup
χ2(P,Q̂)≤ε

EP[h(x
∗; ξ)]− EP∗ [h(x∗; ξ)]

(b)

≤ EQ̂[h(x
∗; ξ)] +

√
2εVarQ̂[h(x

∗; ξ)]− EP∗ [h(x∗; ξ)]

(c)

≤ 2
√

εVarQ̂[h(x
∗; ξ)]

(d)

≤ 2
√
εVarP∗ [h(x∗; ξ)] + 2

5
4 ε

3
4

[
(VarP∗ [h2(x∗; ξ)])

1
4 + 2

1
4 ∥h(x∗; ·)∥

1
2∞(VarP∗ [h(x∗; ξ)])

1
4

]
≤ 2
√
εVarP∗ [h(x∗; ξ)] + 4ε

3
4 ∥h(x∗; ·)∥∞,

where (a) still follows from the fact that χ2-divergence satisfies Assumption 1 w.h.p. (b), (c) follows from Lemma 3 for
two pairs (P, Q̂) and (P∗, Q̂). And (d) follows by:

VarQ̂[h]− VarP∗ [h] ≤
∣∣∣EQ̂[h

2]− EP∗ [h2]
∣∣∣+ 2∥h∥∞

∣∣∣EQ̂[h]− EP∗ [h]
∣∣∣

≤
√

2χ2(P∗, Q̂)VarP∗ [h2] + 2∥h∥∞
√

2χ2(P∗, Q̂)VarP∗ [h]. □
(D.2)

D.1.2 Proof of Improved Results of Theorem 1 for General f -divergence

In fact, the result in Theorem 1 can be improved for general f -divergence from ∥h(x∗; ·)∥∞ to
√

VarP∗ [h(x∗; ·)], without
requiring (8) as long as some mild conditions hold for the cost function h(x; ·) and sample size n. We present some
technique non-asymptotical results for general f -divergence to bound Ẑ(x∗) − Z(x∗) with the help of duality in DRO
under f -divergence. These types of results hold for any f -divergence DRO problem with continuous or discrete ball center
Q̂. Before that, we first present some known asymptotical results.

Remark 3 (Adapted from Theorem 1 in Duchi et al. (2021)). For general f -divergence, we can obtain the following
equality asymptotically under some mild conditions for h and ε:

sup
P∈A(Q̂;df ,ε)

EP[h(x; ξ)] = EQ̂[h(x; ξ)] +

√
2ε

f ′′(1)
VarQ̂[h(x; ξ)] +Op

(
1

n

)
.

inf
P∈A(Q̂;df ,ε)

EP[h(x; ξ)] = EQ̂[h(x; ξ)]−
√

2ε

f ′′(1)
VarQ̂[h(x; ξ)] +Op

(
1

n

)
.
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Theorem 6. When the sample size n is large enough and ε → 0 when n → ∞, for general metric df in f -divergence and
∥h(x∗; ·)∥∞ < ∞, we have:

sup
P∈A(Q̂;df ,ε)

EP[h(x; ξ)] ≤ EQ̂[h(x; ξ)] + C(f)
√

VarQ̂[h(x; ξ)]ε, (D.3)

inf
P∈A(Q̂;df ,ε)

EP[h(x; ξ)] ≥ EQ̂[h(x; ξ)]− C(f)
√

VarQ̂[h(x; ξ)]ε, (D.4)

where C(f) only depends on the metric df and P∗.

Then the result in the case (b) in Theorem 1 can be improved to:

E(xP−DRO) ≤ sup
df (P,Q̂)≤ε

EP[h(x
∗; ξ)]− EP∗ [h(x∗; ξ)]

≤ EQ̂[h(x
∗; ξ)]− EP∗ [h(x∗; ξ)] + C(f)

√
VarQ̂[h(x

∗; ξ)]ε

≤ EQ̂[h(x
∗; ξ)]− inf

P∈A(Q̂;df ,ε)
EP[h(x

∗; ξ)] + C(f)
√

VarQ̂[h(x
∗; ξ)]ε

≤ 2C(f)
√

VarQ̂[h(x
∗; ξ)]ε,

where the second and fourth inequality follows by the result in Theorem 6. And the first and third inequality is a result
of P[P∗ ∈ A(Q̂; df , ε)] ≥ 1 − δ such that infdf (P,Q̂)≤ε EP[h(x

∗; ξ)] ≤ EP∗ [h(x∗; ξ)] ≤ supdf (P,Q̂)≤ε EP[h(x
∗; ξ)] with

probability at least 1− δ. After that, we can use the same argument before to bound
√

VarQ̂[h(x
∗; ξ)].

Proof of Theorem 6. We first show (D.3). We have:

sup
P∈A(Q̂;df ,ε)

EP[h(x
∗; ξ)] ≤ min

λ≥0,µ
λEQ̂

[
f∗
(
h(x∗; ξ)− µ

λ

)]
+ λε+ µ

≤ λ̂EQ̂

[
f∗
(
h(x; ξ)− µ̂

λ̂

)]
+

√
VarQ̂[h(x

∗; ξ)]ε

f ′′(1)
+ EQ̂[h(x

∗; ξ)]

≤ EQ̂[h(x
∗; ξ)] +

(
1√
f ′′(1)

+

√
f ′′(1)(f∗)

′′
(0)C̃(f,P∗)

2

)√
VarQ̂[h(x

∗; ξ)]ε,

where the first inequality above is based on the weak duality condition, i.e. Theorem 1 in Ben-Tal et al. (2013)4, and

the second inequality above is given by λ̂ =
√

VarQ̂[h(x
∗;ξ)]

f ′′(1)ε , µ̂ = EQ̂[h(x
∗; ξ)] as the feasible dual solution, and the third

inequality plugging in the value of λ̂ and µ̂, then we take the Taylor expansion up to the second order for f∗ with a proxy
of Maclaurin remainder C̃(f,P∗) → 1 when ε → 0:

λ̂EQ̂

[
f∗
(
h(x∗; ξ)− µ̂

λ̂

)]
≤ λ̂EQ̂

[
f∗(0) + (f∗)′(0)

(
h(x∗; ξ)− µ̂

λ̂

)
+

(f∗)
′′
(0)C̃(f,P∗)

2

(
h(x∗; ξ)− µ̂

λ

)2
]
,

= λ̂EQ̂

[
(f∗)

′′
(0)C̃(f,P∗)

2

(
h(x∗; ξ)− µ̂

λ̂

)2
]
=

(f∗)
′′
(0)C̃(f,P∗)VarQ̂[h(x

∗; ξ)]

2λ̂
,

where the equality holds by f∗(0) = 1 and µ̂ = EQ̂[h(x
∗; ξ)].

Then if ε is small, we let C(f,P∗) ≥ 1√
f ′′ (1)

+

√
f ′′ (1)(f∗)

′′
(0)C̃(f,P∗)

2 and obtain (D.3). For (D.4), we only need to

consider −h(x; ·) and plug in the result of (D.3). □

We now show several common divergences satisfying (8) and give some concrete values for the result above. We focus on
the counterpart w.r.t. (D.3).

4Although strong duality holds generally in this problem, we only need weak duality in our proof.
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Example 5 (KL divergence). We take f(t) = t log t−(t−1). Then f∗(t) = et−1 with f
′′
(1) = 1. We use Taylor inequality

et − 1 ≤ t+ t2 when t ∈ (−1, 1), i.e. we need
∣∣∣h(x∗;ξ)−µ̂

λ̂

∣∣∣ ≤ 1, which implies when
√

VarQ̂[h(x
∗;ξ)]

ε = λ̂ ≥ 2∥h(x∗; ·)∥∞,

i.e. ε ≤ VarP̂[h(x
∗;ξ)]

4∥h(x∗;·)∥2
∞

, then we have:

sup
P∈A(Q̂;KL,ε)

EP[h(x
∗; ξ)] ≤ EQ̂[h(x

∗; ξ)] + 3
√

VarQ̂[h(x
∗; ξ)]ε.

Example 6 (Hellinger distance). Similarly, we apply f(t) = (
√
t − 1)2 and f

′′
(1) = 1

2 . Then for t < 1, f∗(t) = t
1−t =

1
1−t − 1 ≤ t+ 2t2 when t ∈ [− 1

2 ,
1
2 ]. Thus if ε ≤ VarQ̂[h(x

∗;ξ)]

2∥h(x∗;·)∥2
∞

, we have:

sup
P∈A(Q̂;H2,ε)

EP[h(x
∗; ξ)] ≤ EQ̂[h(x

∗; ξ)] + (2 +
√
2)
√

VarQ̂[h(x
∗; ξ)]ε.

Therefore, following the same argument in the case (c) of Theorem 1, if ∆(δ,Θ) ≤ ε ≤ VarQ̂[h(x
∗;ξ)]

c02∥h(x∗;·)∥2
∞

, E(xP−DRO) can

be improved to c1
√
εVarP∗ [h(x∗; ξ)]+c2ε

3
4 ∥h(x∗; ·)∥∞ for KL divergence and Hellinger distance with probability at least

1− δ.

D.1.3 Proof of Theorem 2

In the case (a) when d is an IPM metric, we have:

E(xP−ERM ) ≤ |EQ̂[h(x
P−ERM ; ξ)]− EP∗ [h(xP−ERM ; ξ)]|+ |EQ̂[h(x

∗; ξ)]− EP∗ [h(x∗; ξ)]|
(a)

≤ 2 sup
x∈X

∣∣∣∣EP∗ [h(x; ξ)]− EQ̂[h(x; ξ)]

∣∣∣∣
(b)

≤ 2 sup
x∈X

Vd(x)d(P∗, Q̂).

where (a) follows from the uniform bound ∀x ∈ X , (b) follows from the fact that d is IPM such that d(P,Q) =
supVd(f)≤1 |EP[f ]− EQ[f ]|. □

In the case (b) where d satisfies the inequality (8), similarly, we have:

E(xP−ERM ) ≤ |EQ̂[h(x
P−ERM ; ξ)]− EP∗ [h(xP−ERM ; ξ)]|+ |EQ̂[h(x

∗; ξ)]− EP∗ [h(x∗; ξ)]|

≤2 sup
x∈X

∣∣∣∣EP∗ [h(x; ξ)]− EQ̂[h(x; ξ)]

∣∣∣∣
≤4MdTV (P∗, Q̂) ≤ 4CdM

√
d(P∗, Q̂).

Specially, in the case (c), when d is (modified) χ2-divergence, following the previous decomposition and Lemma 3, we
have:

E(xP−ERM ) ≤ |EQ̂[h(x
P−ERM ; ξ)]− EP∗ [h(xP−ERM ; ξ)]|+ |EQ̂[h(x

∗; ξ)]− EP∗ [h(x∗; ξ)]|

≤
√
2χ2(Q̂,P∗)

(√
VarP∗ [h(xP−ERM ; ξ)] +

√
VarP∗ [h(x∗; ξ)]

)
≤ 2

√
2χ2(Q̂,P∗)

√
VarP∗ [h(x∗; ξ)] +

√
2χ2(Q̂,P∗)

√
|EP∗ [h2(xP−ERM ; ξ)]− EP∗ [h2(x∗; ξ)]|

(a)

≤ 2

√
2χ2(Q̂,P∗)

√
VarP∗ [h(x∗; ξ)] +

√
2χ2(Q̂,P∗)

√
4M2dTV (Q̂,P∗)

(b)

≤ 2

√
2χ2(Q̂,P∗)

√
VarP∗ [h(x∗; ξ)] + 2M(χ2(Q̂,P∗))

3
4 ,

where the inequality (a) follows by the following argument:

EP∗ [h2(xP−ERM ; ξ)]− EP∗ [h2(x∗; ξ)] ≤ EP∗
[
(h(xP−ERM ; ξ) + h(x∗; ξ))((h(xP−ERM ; ξ)− h(x∗; ξ))

]
≤ 2MEP∗ [h(xP−ERM ; ξ)− h(x∗; ξ)] ≤ 4M2dTV (Q̂,P∗),
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where the last inequality is from the definition of TV distance. And the inequality (b) follows from Lemma (2).

For each part above, we then use Assumption 1 to obtain the result. □

D.2 Proof and Detailed Analysis in Section 3.1

Here, we illustrate the main parts in the generalization error in the right part of Table 1. Besides the notations in the main
text, we denote xtr ∈ argminx∈X Etr[h(x; ξ)].

We first illustrate some discussion of the generalization error of existing approaches for ERM and DRO under the
empirical distribution P̂n. Again we focus on the generalization error

Zte(x̂)− Zte(x∗)

and will use the decomposition

Zte(x̂)− Zte(x∗) = [Zte(x̂)− Ẑ(x̂)] + [Ẑ(x̂)− Ẑ(x∗)] + [Ẑ(x∗)− Zte(x∗)]

where the middle term [Ẑ(x̂) − Ẑ(x∗)] is at most 0 by definition of x̂ as a minimizer of Ẑ(·). Thus, we would focus on
bounding w.h.p.

[Zte(x̂)− Ẑ(x̂)] + [Ẑ(x∗)− Zte(x∗)] (D.5)

where the second term above can be further decomposed as:

(Ẑ(x∗)− Ztr(x∗)) + (Ztr(x∗)− Zte(x∗)) ≤ Ẑ(x∗)− Ztr(x∗) + Vd(x
∗)d(Ptr,Pte),

where the term Ztr(x∗)− Zte(x∗) can also be decomposed using Lemma 3 such that:

Ztr(x∗)− Zte(x∗) ≤
√

2χ2(Ptr,Pte)VarPte [h(x∗; ξ)].

The term Ztr(x∗) − Zte(x∗) cannot be avoided through all the methods based on the error decomposition, which can be
regarded as the “best decision distance” under distribution shift. We make the following simplifications in the analysis part
of existing regularization approaches.

• We use χ2-divergence between Pte and Ptr to evaluate the extent of distribution shift.

• Vartr[h(xtr; ξ)] ≈ Varte[h(x∗; ξ)]. The “variablity” does not change across shift, i.e. Vd(x
tr) under Ptr is the same

order as Vd(x
te) under Pte.

ERM: Consider xERM as the minimizer of minx∈X Êtr[h(x; ξ)] where Êtr[·] denotes the empirical expectation from the
training set. Now, consider

Zte(xERM )− Ẑtr(xERM ) = [Zte(xERM )− Ztr(xERM )] + [Ztr(xERM )− Ẑtr(xERM )],

where the first term can be further bounded by:

Zte(xERM )− Ztr(xERM ) = Etr[(
dPte

dPtr
− 1)h(xERM ; ξ)] ≤

√
2χ2(Pte,Ptr)Vartr[h(xERM ; ξ)]

≤

√√√√2χ2(Pte,Ptr)

(
Vartr[h2(xtr; ξ)] +M

√
Comp(H)M

n

)
.

where the last inequality is bounded by Etr[h2(xERM ; ξ)]−Etr[h2(xtr; ξ)] ≤ 2M(Ztr(xERM )−Ztr(xtr)), which then
reduces to Lemma 4. For the N-ERM case, denoting the generalization error in Lemma 4 as EN (n,Ptr,H, xtr) (e.g.,
in Lemma 4 where there is no distribution shift, we have Ptr = P∗, xtr = x∗). Besides, denote E(Ptr,Pte,H) :=
|Zte(xERM )− Ztr(xERM )|+ |Zte(x∗)− Ztr(x∗)| bounded before. which characterizes the distribution shift effects on
the optimization models over the complexity class. Thus, overall we have the generalization error:

Zte(xN−ERM )− Zte(x∗) ≤ E(Ptr,Pte,H) + EN (n,Ptr,H, xtr),
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where we would incur an additional term E(Ptr,Pte,H) =

√
d(Pte,Ptr)(V2

d(x
∗) +M

√
Comp(H)M

n ) comparing with the

case without distribution shift. In addition to d(Pte,Ptr)(Vd(x
∗), the additional error of N-ERM due to distribution shift is

d(Pte,Ptr)M
3
4 (Comp(H)

n )
1
4 .

We turn to consider the DRO perspective, i.e. xN−DRO ∈ argminx∈X maxd(Q,P̂tr
n )≤ε EQ[h(x; ξ)], where P̂tr

n is the
empirical distribution of the training set.

DRO from the regularization perspective: Similarly, by choosing the ambiguity size ε properly such that it satisfies the
condition in order for (C.3) to hold and denote RHS of (C.3) to be EDRO(n,Ptr,H, x∗;A) := |Zte(xN−DRO) −
Ztr(xN−DRO)| + |Zte(x∗) − Ztr(x∗)| without distribution shift. By the error decomposition in the shifted case, fol-
lowing similar analysis, we would get the following bound w.h.p.:

Zte(xN−DRO)− Zte(x∗) ≤

√√√√d(Pte,Ptr)

(
V2
d(x

∗) +MVd(x∗)

√
Comp(H)

n

)
+ EDRO(n,Ptr,H, x∗;A).

In addition to d(Pte,Ptr)Vd(x
∗), the additional error of N-DRO due to distribution shift is

d(Pte,Ptr)V
1
2

d (x∗)M
1
2 (Comp(H)

n )
1
4 .

DRO from the pessimism perspective: For those d in the ambiguity set which is IPM, by choosing the radius ε ≥
d(Pte,Ptr) +O(n

− 1
α(Dξ) ) to cover the test distribution Pte properly, we could get

Zte(xN−DRO)− Zte(x∗) ≤ Vd(x
∗)(n

− 1
α(Dξ) + d(Pte,Ptr)), (D.6)

where α(Dξ) is some function of the dimension measure of the distribution P. where dim is some dimension measure of
the distribution Ptr. Thee bound (D.6) is achieved by using a ball size ε large enough such that it covers the true Pte w.h.p.,
where in the case of distribution shift for the empirical distribution under Wasserstein distance, this would be typically

1

n1/Dξ
+ d(Ptr,Pte). Formal type of the results have been established in Theorem E.3 in Zeng and Lam (2022). Note that

this requires knowledge of the extent of distribution shift, i.e., d(Ptr,Pte) (or an upper bound of it).

Now, comparing the pessimism-based DRO with ERM or regularization-based DRO, if the upper bound of d(Ptr,Pte) is
not too loose, the former avoids the product of a distance between Ptr and Pte and a term that depends on the complexity
measure of the loss function class. Nonetheless, pessimism-based DRO would depend on the dimension of the training
distribution, but in this case possibly acceptable as the dominant quantity can be the distribution shift amount d(Ptr,Pte).

Although triangular inequality does not hold for general f -divergence, we can apply some “pseudo distance” decomposi-
tion in some f -divergence below when the support of Pte,Ptr, Q̂ is the same.

Lemma 5 (“Almost” triangular inequality for some f -divergence). Considering the relationship between Pte,Ptr, Q̂
(under the same support), we have:

χ2(Pte, Q̂) ≤ 2

∥∥∥∥dPtr

dQ̂

∥∥∥∥
∞

χ2(Pte,Ptr) + 2χ2(Ptr, Q̂).

KL(Pte, Q̂) ≤ KL(Pte,Ptr) +

∥∥∥∥dPte

dPtr

∥∥∥∥
∞

KL(Ptr, Q̂).

Proof. Proof of Lemma 5. Since we are only considering the continuous distribution class, we denote the density of
Pte,Ptr, Q̂ as f, g, h respectively.

For χ2-divergence, we have:∫
(f − h)2

h
dµ ≤

∫
2(f − g)2 + 2(g − h)2

h
dµ ≤ 2

∥∥∥ g
h

∥∥∥
∞

∫
(f − g)2

g
dµ+ 2

∫
(g − h)2

h
dµ.

For KL-divergence, we have:∫
f ln

f

h
dµ =

∫
f

(
ln

f

g
+ ln

g

h

)
dµ ≤

∫
f ln

f

g
dµ+

∥∥∥∥fg
∥∥∥∥
∞

∫
g ln

g

h
dµ. □
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This types of inequalities means that we can derive similar upper bounds in (D.6) for the nonparametric estimators such as

KDE for smooth and absolute continuous densities to obtain Vd(x
∗)(n

− 1
α(Dξ) + d(Pte,Ptr)) for some large n.

We next analyze the parameteric methods in Section 3.1.

Proofs of Corollary 1 and 2. These results directly follow assuming the exact or “almost” triangular inequality holds for
the metric d(Pte, Q̂) ≤ c1d(Pte,Ptr) + c2d(Ptr, Q̂) under appropriate conditions.

For the P-DRO problem (i.e. Corollary 1), ignoring the constant, if ε ≥ ∆(δ,Θ) + d(Pte,Ptr), when d is an IPM metric,
by (D.5), with probability at least 1− δ, we have:

E(xP−DRO) ≤ |Zte(xP−DRO)− Ẑ(xP−DRO)|+ Ẑ(x∗)− Zte(x∗)

≤ 0 + max
d(P,Q̂)≤ε

EP[h(x
∗; ξ)]− Ete[h(x∗; ξ)]

≤ 2Vd(x
∗)ε,

where the second inequality holds due to P[Pte ∈ A(Q̂; d, ε)] ≥ 1 − δ such that Zte(·) ≤ Ẑ(·) with probability
at least 1 − δ. And the third inequality returns to the case (a) in the proof of Theorem 1. The other cases of the
metric d under (b) and (c) follow similarly. This result follows the same proof structure compared with the previous
DRO from the pessimism perspective, and does not pay for additional terms due to the distribution shift besides d(Pte,Ptr).

For the P-ERM case (i.e. Corollary 2), when d is an IPM metric, we have:

E(xP−ERM ) ≤ 2 sup
x∈X

|Zte(x)− Ẑ(x)|

≤ 2(sup
x∈X

Vd(x))d(Pte, Q̂) ≤ 2(sup
x∈X

Vd(x))(d(Pte,Ptr) + d(Ptr, Q̂)).

Therefore, in Corollary 2, with respect to all the sub cases in Theorem 2 by replacing ∆(δ,Θ) with ∆(δ,Θ)+ d(Pte,Ptr),
in addition to the Vd(x

∗)d(Pte,Ptr) term, the additional error of P-ERM still need to pay due to distribution shift is at least
Md(Pte,Ptr)

3
4 +

√
2d(Pte,Ptr)

√
Varte[h(x∗; ξ)] by part (c).

D.3 Required Monte Carlo Size for P-DRO in Section 3.3

In this part, we denote xP−DROm ∈ argminx∈X maxd(P,Q̂m)≤ε EP[h(x; ξ)]. We generally would like to investigate the
required sample size m such that E(xP−DROm) ≈ E(xP−DRO) in Theorem 1. The idea is to let the Monte Carlo sampling
error dominated by the statistical generalization error in each P-DRO case. In the main text, for simplicity of the notation,
we ignore the dependency of log(1/δ), but the sample size is at most polynomial level of that term, i.e. m ≈ log(1/δ))k

for some constant k.

we concretize the complexity term appearing in the main text (e.g. Table 1, Theorem 4) Comp(H) ≈ Compn(H)
(logn)k

for some
constant k as the log of Covering number. And we mainly use Compm(H) in the proof here. We follow the notations of
covering number from Section 2.2.2 in Maurer and Pontil (2009); Duchi and Namkoong (2019). That is to say, for ε > 0,
a function class H and an integer n, the “empirical ℓ∞ covering number” N∞(H, ε, n) is defined to be:

N∞(H, ε, n) = sup
ξ∈Ξn

N (H(ξ), ε, ∥ · ∥∞), (D.7)

where H(ξ) = {(h(ξ1), . . . , h(ξn)) : h ∈ H} ⊆ Rn and for A ⊆ Rn, the number N (A, ε, ∥·∥∞) is the smallest cardinality
|A′| of a set A′ ⊆ A such that A ⊂ ∪x0∈A′{x : ∥x − x0∥∞ ≤ ε}. We denote Compn(H) := logN∞(H, 1

n ,n) below,
which usually scales as (log n)k in n for H in practice.

We also suppress the log(1/δ) dependency inside Compm(H). That is to say, when we use the argument “with probability
at least 1− δ, · · · ≤

√
Compm(H)”, we are referring to “· · · ≤

√
Compm(H) + log(1/δ)”.

We first present the proof of generalization bounds for Wasserstein P-DRO with Monte Carlo errors, i.e. Theorem 3 where
m ≈ nαDξ .
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D.3.1 Proof of Theorem 3.

In this case, we assume each distribution in PΘ satisfies the conditions in Lemma 1.

Comparing it with Theorem 1, we only need to show that P∗ ∈ A(Q̂m;W1, ε) with probability at least 1 − δ. And other
parts follow directly by the case (a) in Theorem 1 only need to consider Vd(x) = ∥h(x; ·)∥Lip. By triangular inequality of
Wasserstein distance, we have:

W1(P∗, Q̂m) ≤ W1(P∗, Q̂) +W1(Q̂, Q̂m)

≤ ε

2
+

(
C

m

) 1
Dξ

log(1/δ) ≤ ε,

where the last inequality holds when ε
2 ≥ ∆(δ,Θ) in Assumption 1 and

(
C
m

) 1
Dξ log(1/δ) ≤ ε

2 , i.e. m ≥ C( 2 log(1/δ)
ε )Dξ

for some constant C. Then the subsequent steps are analogous to proof of the first part in Theorem 1, only replacing Q̂
with P∗. □

D.3.2 Statement of Theorem 4.

Below, we present our specific results as well as their proofs with respect to χ2-divergence and general Wasserstein
distance where m ≈ Comp(H)nα which is independent with Dξ but dependent with the complexity term Comp(H).
Then, the general case in Theorem 4 in the main text is made up of the following sub results with more specific conditions.

Theorem 7 (Generalization bounds for χ2 P-DRO with Monte Carlo errors). Suppose Assumption 1 holds and the cost
function h(x; ξ) ∈ [0,M ],∀x, ξ with VarP∗ [h(x∗; ·)] > 0. The size of the ambiguity set ε ≥ ∆(δ,Θ). If Monte Carlo size

m ≥ C0

(
LM√

VarP∗ [h(x∗;·)]ε

)2

Compm(H) for some numerical constant C0, when d is χ2-divergence, then with probability

at least 1− δ, we have:

E(xP−DROm) ≤
{
2Eχ2 + C1

√
ε
LM, if VarQ̂[h(x

P−DROm ; ξ)] ≤ 2εM2

2Eχ2 , otherwise
,

where L ≥ 1 and Eχ2 is the generalization error upper bound in the case (c) of Theorem 1 in the main text.

Remark 4. Although this result depends on another term L, due to “incomplete” exact variance regulariza-
tion of χ2-divergence, when VarP∗ [h(x; ξ)] is sufficiently large, as long as the required Monte Carlo size m ≥

C0

(
M√

VarP∗ [h(x∗;·)ε

)2

Compm(H), E(xP−DROm) ≤ 2Eχ2 .

On the other hand, even if the variance is not enough, as long as
√

ε
LM ≤ Eχ2 ≤

√
VarP∗ [h(x∗; ·)]ε, i.e. L ≥ M2

VarP∗ [h(x∗;·)]

and therefore m ≥
(

LM√
VarP∗ [h(x∗;·)]ε

)6

Compm(H) for some numerical constant C0, we still have E(xP−DROm) ≤ 3Eχ2 .

The dependence of the required sample size m is also independent with the distribution dimension and we hope to bridge
the variance gap in our later work in this region.

Similarly, following similar proof structure, we can also obtain a dimension-free required Monte Carlo sample size for the
Wasserstein case. This may be better than the result in Corollary 3 of main text where the degrading effects of Comp(H)
is smaller than that of Dξ to the generalization error. We consider 1-Wasserstein distance here.

Theorem 8 (Generalization bounds for 1-Wasserstein P-DRO with Monte Carlo errors). Suppose Assumption 1 holds and
the cost function |h(x; ξ)| ≤ M,∀x, ξ with ∥h(x∗; ·)∥Lip > 0 with some proper conditions of H in Lemma 8. The size of
the ambiguity set ε ≥ ∆(δ,Θ). If Monte Carlo size m ≥ C0(

M
∥h(x∗;·)∥Lipε

)2Compm(H) for some numerical constant C0,
when d is 1-Wasserstein distance, then with probability at least 1− δ, we have: E(xP−DROm)∥h(x∗; ·)∥Lipε.

Since the overall proof of these two results are a bit involved, we move them to the next two subsections. We first present
two uniform concentration inequalities under H for the empirical mean and variance here under the assumptions listed
here, i.e. 0 ≤ h(x; ξ) ≤ M,∀x, ξ.
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Lemma 6 (Uniform Hoeffding Inequality, based on Maurer and Pontil (2009)). Under the problem setup, with probability
at least 1− δ, we have:

EQ̂[h(x; ξ)]− EQ̂m
[h(x; ξ)] ≤ C1M

√
Compm(H)

m
, (D.8)

where C1 is some numerical constant independent with the function complexity and sample size.

Lemma 7 (Uniform Variation Concentration Inequality). Under the problem setup, with probability at least 1 − δ, we
have: √

VarQ̂m
[h(x; ξ)] ≥

√
1− 1

m

√
VarQ̂[h(x; ξ)]−

2M2

m
− C2M

√
Compm(H)

m
, (D.9)

where C2 is some numerical constant independent with the function complexity and sample size.

Proof. These properties are directly based on the variance concentration inequality (adapted from Lemma A.1 in Duchi
and Namkoong (2019)), ∀x ∈ X , when m ≥ 3, we have with probability at least 1− δ:

√
VarQ̂m

[h(x; ξ)] ≥
√

1− 1

m

√
VarQ̂[h(x; ξ)]−

2M2

m
−M

√
2 log(1/δ)

m
. (D.10)

√
VarQ̂m

[h(x; ξ)] ≤
√

1 +
1

m

√
VarQ̂[h(x; ξ)] +M

√
2 log(1/δ)

m
. (D.11)

Then the second term of RHS in (D.10), we taking (D.10) for the uniform covering number version to obtain (D.9). □

D.3.3 Proof of Theorem 7.

The proof is divided into the following three steps. For simplicity, we denote Ẑ(x) = supχ2(P,Q̂)≤ε EP[h(x; ξ)] and our

discrete approximation in practice Ẑm(x) = supχ2(P,Q̂m)≤ε EP[h(x; ξ)]. We will show that supx∈X |Ẑ(x) − Ẑm(x)| is
small so that we can leverage on results in Theorem 1. Before beginning our main proof, we first state an decomposition
result for the empirical variance compared with the true variance under with probability at least 1− δ, ∀x ∈ X :∣∣∣VarQ̂m

[h(x; ξ)]− VarP∗ [h(x; ξ)]
∣∣∣ = ∣∣∣VarQ̂m

[h(x; ξ)]− VarQ̂[h(x; ξ)]
∣∣∣+ ∣∣∣VarQ̂[h(x; ξ)]− VarP∗ [h(x; ξ)]

∣∣∣
≤ M2

(
C1

√
Compm(H)

m
+ 3

√
2ε

)
,

(D.12)

where the first term in the inequality follows from the uniform Hoeffding inequality. And the second term in the inequality
follows by the value of ε such that χ2(P∗, Q̂) ≤ ε and ∥h∥∞ ≤ M in (D.2).

Step 1: Variance Regularization. Following Lemma 3, we have:

sup
χ2(P,Q̂)≤ε

EP[h(x; ξ)] ≤ EQ̂[h(x; ξ)] +
√

2εVarQ̂[h(x; ξ)], (D.13)

EQ̂m
[h(x; ξ)] ≤ sup

χ2(P,Q̂m)≤ε

EP[h(x; ξ)] ≤ EQ̂m
[h(x; ξ)] +

√
2εVarQ̂m

[h(x; ξ)], (D.14)

We now show the condition for n so that the exact equality of RHS holds in (D.14). Note that supχ2(P,Q̂m)≤ε EP[h(x; ξ)]
is equivalent to the value of the following optimization problem:

max
p∈Rm

+

m∑
i=1

pih(x; ξi), s.t. :
m∑
i=1

(pi −
1

m
)2 ≤ 2ε

m
,

m∑
i=1

pi = 1.

The the maximizing value of this problem is attainable to RHS in the second inequality of (D.14) whenever√
2ε

h(x;ξ)−EQ̂m
[h(x;ξ)]√

VarQ̂m
[h(x;ξ)]

≥ −1. Since h(x; ξ) ∈ [0,M ],∀x, ξ, it is sufficient to satisfy the following inequality:

VarQ̂m
[h(x; ξ)] ≥ 2εM2,∀x ∈ X . (D.15)
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In general, based on the analysis of the equality condition of Cauchy inequality, we reach the following result as a more
refined variance-dependent lower bound of supχ2(P,Q̂m)≤ε EP[h(x; ξ)]:

sup
χ2(P,Q̂m)≤ε

EP[h(x; ξ)] ≥ EQ̂m
[h(x; ξ)] +

√
∆VarQ̂m

[h(x; ξ)], (D.16)

as long as VarQ̂m
[h(x; ξ)] ≥ ∆M2.

For any integer L ≥ 1 and a given Q̂ output from the distribution estimator, we split the decision space X into the following
regions X0 ∪ X1 ∪ . . .XL+1 ∪ XL+2, where XL+2 = {x ∈ X : VarQ̂[h(x; ξ)] ≥ 2εM2}, and:

Xℓ =

{
x ∈ X : VarQ̂[h(x; ξ)] ∈

[
ℓ− 1

L
2εM2,

ℓ

L
2εM2

)}
,∀ℓ ∈ {1, . . . , L+ 1}.

Before conducting detailed analysis of this variance regularization effect, we first let the Monte Carlo size satisfy for (D.8):

MC1

√
Compm(H)

m
:= ∆E ≤ 2εM

L
, (D.17)

so that with probability at least 1− δ, by (D.12) we have:∣∣∣∣VarQ̂[h(x; ξ)]− VarQ̂m
[h(x; ξ)]

∣∣∣∣ ≤ 2εM2

L
,∀x ∈ X (D.18)

Step 2: Monte Carlo Error Decomposition to bound Ẑ(x)− Ẑm(x). We consider the decision variable under different
regimes.

(a) ∀x ∈ XL+2, by (D.18), (D.15) holds and therefore by (D.13) and (D.16), we obtain:

Ẑ(x)− Ẑm(x) ≤ EQ̂[h(x; ξ)] +
√
2εVarQ̂[h(x; ξ)]− EQ̂m

[h(x; ξ)]−
√
2εVarQ̂m

[h(x; ξ)]

= (EQ̂[h(x; ξ)]− EQ̂m
[h(x; ξ)]) +

√
2ε(
√

VarQ̂[h(x; ξ)]−
√

VarQ̂m
[h(x; ξ)]).

(D.19)

For the first term RHS in (D.19), we let the Monte Carlo size m satisfies C1M

√
Compm(H)

m := ∆E ≤ 2εM
L in (D.8) in

Lemma 6. Then, combining (D.8) and (D.9) into (D.19), we obtain with probability at least 1− δ, ∀x ∈ X :

Ẑ(x)− Ẑm(x) ≤ ∆E +
√
2ε

(
C2M

√
Compm(H)

m
+ (1−

√
1− 1

m
)
√

VarQ̂[h(x; ξ)] +
2M2

m

)

≤ ∆E + C2M

√
2εCompm(H)

m
+

√
2ε(2M2 + VarQ̂[h(x; ξ)])

m

≤ C3∆E +
3
√
2εM2

m
≤ C ′

3∆E ,

where C3, C
′
3 is another numerical constant independent with the function complexity and sample size. The second in-

equality follows by the IPM property of TV distance.

(b) ∀x ∈ Xi, i ∈ {1, . . . , L+ 1}, we have VarQ̂m
[h(x; ξ)] ≥ max{ i−2

L 2εM2, 0}.

(b.1) If i ≥ 2, by (D.13) and (D.16) as well as the definition of Xi, we have:

Ẑ(x)− Ẑm(x) ≤
(
EQ̂[h(x; ξ)]− EQ̂m

[h(x; ξ)]
)
+

√
i

L
2εVarQ̂[h(x; ξ)]−

√
i− 2

L
2εVarQ̂m

[h(x; ξ)]

≤ ∆E +

√
2(i− 2)ε

L

(√
VarQ̂[h(x; ξ)]−

√
VarQ̂m

[h(x; ξ)]
)
+

√
4ε

L
VarQ̂[h(x; ξ)]

≤ ∆E +

√
2(i− 2)ε

L

VarQ̂[h(x; ξ)]− VarQ̂m
[h(x; ξ)]√

VarQ̂[h(x; ξ)] +
√

VarQ̂m
[h(x; ξ)]

+

√
4ε

L

2i

L
M2

≤ ∆E +

√
2(i− 2)ε

L

2εM2/L

2
√
2(i− 2)εM2/L

+ C ′
4

√
ε

L
M ≤ ∆E + C4

ε

L
M + C ′

4

√
ε

L
M.

(D.20)
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(b.2) If i = 1, by (D.13), by definition of X1, we have:

Ẑ(x)− Ẑm(x) ≤
(
EQ̂[h(x; ξ)]− EQ̂m

[h(x; ξ)]
)
+

√
2ε

L
VarQ̂[h(x; ξ)]

≤ ∆E +
2εM

L
.

(D.21)

In general, combining different subcases in (b), with probability at least 1 − δ, ∀x ∈ X\XL+2, if we let ε
L ≤

√
ε
L ≤ 1,

then we finally have:

Ẑ(x)− Ẑm(x) ≤ C0

√
ε

L
M. (D.22)

Step 3: Generalization Error Decomposition. Plugging the solution xP−DROm into (D.22), we have:

Z(xP−DROm)− Ẑm(xP−DROm)

≤ Ẑ(xP−DROm)− Ẑm(xP−DROm) ≤
{
∆E + C0

√
ε
LM if x ̸∈ XL+2

C ′
0∆E otherwise

.
(D.23)

for some constant C0 when L is large, where the first inequality follows by Assumption 1 and Theorem 1, with probability
at least 1− δ, P∗ ∈ A(Q̂;χ2, ε) when ε ≥ ∆(δ,Θ). Finally:

Ẑm(x∗)− Z(x∗) ≤ (EQ̂m
[h(x∗; ξ)]− EP∗ [h(x∗; ξ)]) +

√
2εVarQ̂m

[h(x∗; ξ)],

where the first term is bounded by Bernstein inequality, with probability at least 1− δ:

EQ̂m
[h(x∗; ξ)]− EP∗ [h(x∗; ξ)] ≤ (EQ̂m

[h(x∗; ξ)]− EQ̂[h(x
∗; ξ)]) + (EQ̂[h(x

∗; ξ)]− EP∗ [h(x∗; ξ)])

≤

√
2VarQ̂[h(x

∗; ξ)] log(1/δ)

m
+

∥h(x∗; ·)∥∞ log(1/δ)

3m
+
√
2εVarP∗ [h(x∗; ξ)]

≤ ∥h(x∗; ·)∥∞
(√

2 log(1/δ)

m
+

log(1/δ)

3m

)
+
√
2εVarP∗ [h(x∗; ξ)]

(D.24)

And for the second term, by (D.11), we have with probability at least 1− δ:

√
2εVarQ̂m

[h(x∗; ξ)] ≤
√

2εVarQ̂[h(x
∗; ξ)] + 2∥h(x∗; ·)∥∞

√
ε log(1/δ)

m
. (D.25)

Therefore, based on the RHS of (D.23),(D.24) and (D.25), following the same decomposition procedure,

Z(xP−DROm)− Z(x∗) ≤ (Z(xP−DROm)− Ẑm(xP−DROm)) + (Ẑm(x∗)− Z(x∗)).

Therefore, comparing the preliminary results in the case (c) of Theorem 1, as long as m is large enough, we can attain the
similar generalization bound then. □

D.3.4 Proof of Theorem 8.

Before providing the proof, we first present the following lemma:

Lemma 8 (Based on Theorem 6.3 of Esfahani and Kuhn (2018) and Corollary 2 of Gao et al. (2022)). Assume
h(x; ξ) is Lipschitz continuous and convex w.r.t. ξ. If Ξ is unbounded and there exists ξ0 ∈ Z such that
lim sup∥ξ̃−ξ0∥→∞

h(x;ξ)−h(x;ξ0)

∥ξ̃−ξ0∥
= ∥h(x; ·)∥Lip, then for any P̂ we have:

sup
W1(P,P̂)≤ε

EP[h(x; ξ)] = EP̂[h(x; ξ)] + ε∥h(x; ·)∥Lip.
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We follow similar arguments in Step 3 of proof in Theorem 7. That is,

EP∗ [h(x̂; ξ)]
(a)

≤ sup
W1(P,Q̂)≤ε

EP[h(x̂; ξ)]
(b)
= sup

W1(P,Q̂m)≤ε

EP[h(x̂; ξ)] + (EQ̂[h(x̂; ξ)]− EQ̂m
[h(x̂; ξ)]), (D.26)

where (a) is given by W1(P∗, Q̂) ≤ ε if we take the ambiguity size ε to cover the true distribution with probability at least
1− δ. And (b) is given by applying Lemma 8 with the ball center is Q̂ and Q̂m respectively.

On the other hand, we have:

sup
W1(P,Q̂m)≤ε

EPm
[h(x∗; ξ)] ≤ EQ̂m

[h(x∗; ξ)] + ε∥h(x∗; ·)∥Lip

≤ EP∗ [h(x∗; ξ)] + (EQ̂m
[h(x∗; ξ)]− EQ̂[h(x

∗; ξ)]) + 2ε∥h(x∗; ·)∥Lip.

Therefore, we have:

E ≤ 2∥h(x∗; ·)∥Lipε+ 2 sup
x∈X

∣∣∣∣EQ̂[h(x; ξ)]− EQ̂m
[h(x; ξ)]

∣∣∣∣
≤ 2∥h(x∗; ·)∥Lipε+ 2C1M

√
Compm(H)

m
.

Letting the second term smaller than ∥h(x∗; ·)∥Lipε, we obtain the sample size required in Theorem 8. □

D.3.5 Generalization Result in p-Wasserstein distance

More generally, this argument to control the following Monte Carlo error term ∀x ∈ X :∣∣∣∣ sup
d(P,Q̂)≤ε

EP[h(x; ξ)]− sup
d(P,Q̂m)≤ε

EP[h(x; ξ)]

∣∣∣∣,
can be extended to the case of p-Wasserstein distance with p ∈ (1, 2] with the help of the following Lemma.

Lemma 9 (Adapted from Lemma 1 in Gao et al. (2022)). Under some mild first-order conditions for h(x; ·) ∈ H (i.e.,
Assumption 1 and 2 in Gao et al. (2022)), given p-Wasserstein distance with p ∈ (1, 2], for any distribution Q̂, there exists
C > 0 such that: ∣∣∣∣ sup

Wp(P,Q̂)≤ε

EP[h(x; ξ)]− EQ̂[h(x; ξ)]− εVQ̂,q(h(x; ·))
∣∣∣∣ ≤ Cεp.

where VQ̂,q(h(x; ·)) is the Lq norm of the random variable ∂h(x;ξ)
∂ξ under the measure Q̂ with 1

p + 1
q = 1.

Note that Lemma 1 in Gao et al. (2022) is originally meant for problems with the empirical distribution Q̂m, but when
p ∈ (1, 2] it can be directly extended to a ball center with continuous distribution.

Corollary 3. Suppose Assumption 1 in this main text and Assumption 1 and 2 in Gao et al. (2022) hold. The size of the
ambiguity set ε ≥ ∆(δ,Θ), when d is p-Wasserstein distance with p ∈ (1, 2], if the Monte Carlo size satisfies:

m ≥ max

{(
C1 + C2M̃

√
Compm(∂(H))

VP∗,q(h∗)

)q

, C0

(
M

εVP∗,q(h∗)

)2

Compm(H)

}
,

where M̃ := supx∈X ,ξ∈X

∥∥∥∂h(x;ξ)
∂ξ

∥∥∥
2

and ∂(H) =
{∥∥∥∂h(x;ξ)

∂ξ

∥∥∥
2
: x ∈ X

}
for some constant C0, C1, C2, Then with prob-

ability at least 1− δ, we have E(xP−DROm) ≤ 4εVP∗,q(h(x
∗; ·)) + Cεp.

Proof. For simplicity, we abbreviate h := h(x; ·), h∗ := h(x∗; ·) in the following. Similarly in (D.26), by the result in
Lemma 9, we have the Monte Carlo error bounded by:

EP∗ [h]− sup
Wp(P,Q̂m)≤ε

EP[h] ≤ sup
Wp(P,Q̂)≤ε

EP[h]− sup
Wp(P,Q̂m)≤ε

EP[h] ≤ (EQ̂[h]−EQ̂m
[h])+ε(VQ̂,q(h)−VQ̂m,q(h))+2Cεp.
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Therefore, we would obtain:

E(xP−DROm) ≤ 2εVP∗,q(h
∗) + Cεp + sup

h∈H

∣∣∣EP[h]− EQ̂m
[h]
∣∣∣+ ε sup

h∈H

∣∣∣VQ̂,q(h)− VQ̂m,q(h)
∣∣∣

≤ 2εVP∗,q(h
∗) + Cεp + C0M

√
Compm(H)/δ)

m

+ ε

[
C1 + C2M̃

√
Compm(∂(H))

]
m

1
p−1,

And the last term of the last inequality is obtained from the uniform concentration inequality of Lp-norm for
suph∈H |VQ̂,q(h)− VQ̂m,q(h)|. Concretely to say since q > 2, by Theorem 6.10 in Boucheron et al. (2013) and Lemma 7
in Duchi and Namkoong (2021), we first have:

VQ̂m,q(h)− E[VQ̂m,q(h)] ≤ M̃m− 1
q

√
log(1/δ).

Then uniformly bounded in ∂(H) of the covering number argument, we obtain ∀h ∈ H, with probability at least 1− δ:

|VQ̂m,q(h)− E[VQ̂m,q(h)]| ≤ C2M̃m− 1
q

√
Compm(∂(H)). (D.27)

And by Lemma 9 in Duchi and Namkoong (2021), under some situation conditions, by definition of VQ,q(h), we have:

VQ̂,q(h)−
2

p

√
Cn− 1

q ≤ E[VQ̂m,q(h)] ≤ VQ̂,q(h). (D.28)

Combining (D.27) and (D.28) would obtain the bound for |VQ̂,q(h)− VQ̂m,q(h)|. □

In general, as long as the ambiguity metric d satisfies the following “almost exact” regularization effect with some
variability measure Vd(x), i.e.:∣∣∣∣ sup

P∈A(Q̂;d,ε)

EP[h(x; ξ)]− EQ̂[h(x; ξ)]− εαVd(x)

∣∣∣∣ = o(εα),

then if the Monte Carlo size exceeds some term w.r.t. the overall complexity class m ≥ C(Compm(H))k for some constant
k, we would obtain E(xP−DROm) ≈ E(xP−DRO).

D.4 Required Monte Carlo Size for P-ERM

We use similar notations with xP−ERMm ∈ argminx∈X EQ̂m
[h(x; ξ)] and investigate the required Monte Carlo size.

Theorem 9 (Generalization bounds for P-ERM with Monte Carlo errors). Suppose Assumption 1 holds with metric d,
denote the corresponding generalization error upper bound in Theorem 2 as EP . If the Monte Carlo size m satisfies:

m

MCompm(H)
≥ max

{
1

Z(x∗) + EP
,
Z(x∗) + EP

E2
P

}
,

then with probability at least 1− δ, E(xP−ERMm) ≤ 2EP .

Note that no matter whether we ignore distribution misspecification error in EP , then the Monte Carlo size required here
scales with the function complexity MCompm(H) as well as nα for some α independent with Dξ.

Proof. The result is directly from Lemma 4 and Theorem 2. Denote EP is the upper bound of Z(xP−ERM ) − Z(x) for
the generalization error result for the given continuous version, i.e. in RHS for each case in Theorem 2. Then we have:

Z(xP−ERM−S)− Z(x∗) ≤ EP + 2 sup
x∈X

∣∣∣∣EQ̂[h(x; ξ)]− EQ̂m
[h(x; ξ)]

∣∣∣∣
≤ EP + 2

(√
ZP−ERM (xP−ERM )Compm(H)M

m
+

Compm(H)M

m

)

≤ EP + 3

(√
(Z(x∗) + EP )Compm(H)M

m

)
≤ 2EP ,
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where the second inequality follows from Lemma 4 since xP−ERM ∈ argminx∈X EQ̂[h(x; ξ)]. And the third inequality
is a result of the following chain inequality:

ZP−ERM (xP−ERM ) ≤ ZP−ERM (x∗)

= Z(x∗) + (ZP−ERM (x∗)− Z(x∗))

≤ Z(x∗) + EP .

as in Theorem 2 and the Monte Carlo size m ≥ MCompm(H)
Z(x∗)+EP

. The last inequality holds as long as m ≥
(Z(x∗)+EP )MCompm(H)

E2
P

further. □

D.5 A Short Discussion of Stochastic Approximation Methods

Besides the Monte Carlo approach mentioned in the main text, another approach investigated in the literature to directly
tackle stochastic optimization with underlying continuous distribution Q̂ is through stochastic approximation (SA).

In SA, we apply stochastic gradient descent (SGD) to obtain a batch of samples from Q̂ in each step in each iteration. For
example in Param-ERM case, after a number of iterations, we can obtain a solution x̂ with the expected generalization
error (since SGD introduces another type of uncertainty due to random sampling to compute gradients) with a polynomial
number of iterations w.r.t. 1

γ (γ > 0) (such as Nemirovski et al. (2009)):

Ex̂[Z(x̂)− Z(x∗)] ≤ E(xP−ERM ) + γ. (D.29)

For some DRO approaches, we can still express our optimization objective as minx,y∈X×Y EQ̂[G(x, y)] for some auxiliary
variable y to apply this method. For example, by duality under general f -divergence, shown in Theorem 5.3 of Rahimian
and Mehrotra (2019), our optimization problem can be reformulated as:

inf
x∈X

inf
λ≥0,µ∈R

{µ+ λε+ Eξ∼Q̂[(λf)
∗(h(x; ξ)− µ)]}.

Then we can solve the DRO problem under general f -divergence by SA. We will also investigate the properties of them in
our future work.

E Complete Experiment Setups and Results

The optimization problems throughout this paper are all convex and solved by CVX and Gurobi implemented by Python
3.8.5. The computational environment is an Intel(R) Core(TM) i7-8650U CPU @1.90GHz personal computer.

E.1 Detailed Setups and Results for another Synthetic Example

We conduct a small synthetic-data experiment with Vd(x
∗) ≈ 0 similar to Section 5.2 in Duchi and Namkoong (2019).

To illustrate the model performance under this subcase, we follow an example of the quadratic cost function with linear
perturbation in Section 5.2 in Duchi and Namkoong (2019): h(x; ξ) = 1

2∥x − v∥2 + ξ⊤(x − v). We let Dξ = 50 and
the decision space X = {x ∈ RDξ : ∥x∥2 ≤ B} and set v = B

2
√

Dξ

1 known beforehand. We use some misspecified

distributions with PΘ but keep EP∗ [(ξ)i] = 0 such that we have: x∗ = v,∀λ. Then we have Vd(x
∗) = 0. We illustrate

through experiments and show that here our P-DRO model (fit with normal distribution) can also achieve zero error under
large ambiguity size ε (like NP-DRO in Duchi and Namkoong (2019); Zeng and Lam (2022)), which outperforms the ERM
loss no matter whether we use parametric or nonparametric models.

We take the marginal distribution of random variable (ξ)i = (ξθ)i+(ξ̃i),∀i, where ξθ ∼ N (0,Σ), (ξ̃)i
d∼ Exp(λ)− 1

λ ,∀i ∈
[Dξ] for each marginal, where λ > 0. Since the pdf of (ξ̃)i is f(x) = λe−λx, the smaller λ is, the larger difference it is
compared to the normal ξθ. Under this case EP∗ [(ξ)i] = 0,∀i ∈ [Dξ].

We vary the decision boundary B from {2, 10}, noise ratio λ from { 1
5 ,

1
2}. Before each run, we independently generate Σ

in the setup. For DRO methods, we apply χ2-divergence and 1-Wasserstein distance. We choose the parametric class to be
PΘ =

{
N (µ,Σ) : µ ∈ RDξ ,Σ ∈ SDξ

++

}
with unknown µ and Σ. Then, we have Eapx(P∗,Θ) > 0. The misspecification
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In general, our results show that P-DRO outperforms P-ERM significantly and achieves almost zero generalization error
under large fixed ambiguity size ε across 1-Wasserstein distance and χ2-divergence, which is indicated by Theorem 1.

E.2 Detailed Setups and Analysis for Synthetic Example in the main text

The problem is to minimize the objective (10) in the main text. That is,

h(x; ξ) =

∣∣∣∣min{0, ξ⊤x− µ}
∣∣∣∣α =

(
µ− ξ⊤x

)α
+
.

Regarding each marginal (ξ)i, the base case is fully parametrized such that (ξ)i
d
= 2r×Beta(αi, 2)− r with {αi}{i∈[Dξ]}

i.i.d. drawn from [1.5, 3].

E.2.1 Comparison between Comp(H) and Comp(Θ)

We give concrete representations of Comp(H) and Comp(Θ) in each method here. First, we present an upper bound below
for the covering number of H.

Lemma 10 (Theorem 5.4 in Matousek (1999)). If H consists of polynomials up to degree D with d variables (e.g. each
h(ξ) ∈ H, ξ = (ξ1, . . . , ξd)

⊤ ∈ Rd can be represented as h(ξ) =
∑

i1+...+id≤D aiξ
i1
1 . . . ξidd , then we have:

VC(H) ≤
(
d+D
d

)
∼ (d+D)min{d,D}.

And borrowing Theorem 2.6.7 in van der Vaart et al. (1996), we have the following results:

N(H(ξ), ε, ∥ · ∥∞) ≤ sup
Q

N(H,
ε

2n
, ∥ · ∥L1(Q)) ≤ cVC(H)

(
16Mne

ε

)VC(H)−1

,

for some numerical constants c.

Then combining it with Lemma 10, we have the following upper bound for the Covering number of H in (10):

N(H(ξ), ε, ∥ · ∥∞) ≤ C(Dξ + α)min{Dξ,α}
(
nM

ε

)(Dξ+α)min{Dξ,α}

, (E.1)

where we denote M := supx∈X ∥h(x; ·)∥∞ ≤ (Dξτr + µ)α and denote M∗ =
√

VarP∗ [h(x∗; ·)] ≤ ∥h(x∗; ·)∥∞ ≤
(r∥x∗∥1 + τ)α. On the other hand, here we fix the true underlying distribution to be a variant of Beta distributions for
simplicity, i.e. Eapx = 0 if we just use the Beta distribution to fit our model, i.e. PΘ = {P : ξ = (ξ1, . . . , ξDξ

)⊤ ∼
P, ξi

d
= 2r×Beta(αi, 2)− r} and independent with other marginals. Therefore, we construct a set of bounded parametric

distributions to allow for explicit bounds for different models. In these error bounds, we approximate the variance term
appearing in χ2-divergence by VarP∗ [h(x∗; ·)] ≤ ∥h(x∗; ·)∥2∞. Therefore, setting ε = 1

n in (E.1) and (D.7), and ignoring
the term log(1/δ) and log n, the major dominating terms of the generalization errors in the four methods from existing
results and our theorems (under χ2-divergence for DRO methods) are:

Method NP-ERM P-ERM NP-DRO P-DRO

E(x̂) M

√
(Dξ+α)α logM

n M
√

Dξ

n M∗
√

(Dξ+α)α logM
n M∗

√
Dξ

n

In our theorem, we can obtain the following results for Comp(Θ):

Proposition 1. When d is χ2-divergence, PΘ = {P : ξ = (ξ1, . . . , ξDξ
)⊤ ∼ P, (ξ)i

d
= 2r × Beta(αi, 2) − r, αi ∈

[k, 2k],∀i ∈ [Dξ]} for some constant k and therefore P∗ ∈ PΘ. Then Assumption 1 holds for Q̂ with α̂i computed
from Maximum Likelihood estimation or Methods of Moments (will define the estimator formula next) and Eapx =
0,Comp(Θ) = CDξ, α = 1 for some constant C when n is large.

Then we show briefly the proof sketch under χ2-divergence related to Assumption 1. We first give the formula of χ2-
divergence under Beta distribution below:
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Example 7. Generally, for P1 ∼ Beta(α1, β1),P2 ∼ Beta(α2, β2), and α1, α2, β1, β2 > 0, we have:

χ2(P1||P2) =
B(α1, β1)B(2α2 − α1, 2β2 − β1)

B(α2, β2)
− 1,

where B(α, β) =
∫ 1

0
xα−1(1 − x)β−1dx. In order for the value to be meaningful, we can restrict the support of α ∈

[k1, 2k1], β ∈ [k2, 2k2], k1, k2 > 0. Therefore, if true distribution for ξ ∼ ∏d
i=1 P∗

i (
d
= Beta(αi, βi)) and the estimated

distribution ξ̂ ∼∏d
i=1 Q∗

i (
d
= Beta(α̂i, β̂i)), then by the product rule:

χ2(

d∏
i=1

P∗
i ,

d∏
i=1

Q̂i) =

d∏
i=1

B(αi, βi)B(2α̂i − αi, 2β̂i − βi)

(B(α̂i, β̂i))2
− 1.

Rescaling Beta distribution from [0, 1] to the region [−r, r] does not change the value of the f -divergence.

We then show briefly why MLE / Methods of Moments can help establish the parametric convergence rate. We give a sketch
of proof to indicate that these distribution parametric estimators associated with model class PΘ under χ2-divergence
concretely satisfy Assumption 1. For simplicity, we fix βi = β̂i = 2 in our problem. Then the divergence reduces to:

χ2(

d∏
i=1

P∗
i ,

d∏
i=1

Q̂i) =

d∏
i=1

α̂i

αi
· α̂i + 1

αi + 1
· α̂i

2α̂i − αi
· α̂i + 1

2α̂i − αi + 1
− 1. (E.2)

The formula in (E.2) implies an estimation error such that ∀i ∈ [d], with probability at least 1− δ, we have:

1− u
√
∆ ≤ α̂i

αi
≤ 1 + u

√
∆, (E.3)

1− v
√
∆ ≤ α̂i + 1

αi + 1
≤ 1 + v

√
∆, (E.4)

where ∆ := log(1/δ)
n in (E.3) and (E.4) and u, v are independent with the sample size n. If (E.3) and (E.4) holds, then:

χ2(

d∏
i=1

P∗
i ,

d∏
i=1

Q̂i) ≤
(
(1 + u2∆)(1 + v2∆)

)d − 1

=
[
1 + 2(u2 + v2)∆ + o(∆)

]d − 1

≤ 4d(u2 + v2)∆ + o(∆),

where the first inequality holds by α̂i

αi
· α̂i

2α̂i−αi
= (α̂i/αi)

2

2(α̂i/αi)−1 ≤ 1 + (u
√
∆)2

1+2u
√
∆

≤ 1 + (u
√
∆)2 (as long as u

√
∆ ≤ 1

2 ). And

the second inequality holds when n is large. Thus we show that χ2(
∏d

i=1 P∗
i ,
∏d

i=1 Q̂i) = O(
Dξ

n ).

For Methods of Moments, we consider the first-order estimation E[ ξ̃i2r +
1
2 ] =

α
α+2 to obtain α̂i =

2
1
2−

∑
i ξi

2nr

− 2 := 2Ê[γi]

1−Ê[γi]

if we define γ̂i =
ξ̂i+r
2r . Then we have:

α̂i

αi
=

Ê[γi]
E[γi]

· 1− E[γi]
1− Ê[γi]

,

which can be directly bounded by a Hoeffding-type concentration inequality to bound |Ê[γi] − E[γi]|, which is the same
case as for α̂i+1

αi+1 .

For Maximum Likelihood Estimators, we estimate the parameter of each marginal with:

α̂i = max

{
min

{
−an − 2−

√
a2n + 4

2an
, 3

}
, 1.5

}
, where an =

∑n
i=1 ln γ̂i
n

.

Focusing on the part
−an−2−

√
a2
n+4

2an
and replacing this with α, we would obtain:

α̂

α
=

an
ân

(
1 +

ân − an +
√

â2n + 4−
√

a2n + 4

an + 2 +
√

a2n + 4

)
.

Then we can apply a concentration inequality to bound |an − ân| since log Beta distribution ln γ, γ ∈ [0, 1] is subexpo-
nential. □
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