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We investigate statistical uncertainty quantification for reinforcement learning (RL) and its implications in

exploration policy. Despite ever-growing literature on RL applications, fundamental questions about inference

and error quantification, such as large-sample behaviors, appear to remain quite open. In this paper, we fill in

the literature gap by studying the central limit theorem behaviors of estimated Q-values and value functions

under various RL settings. In particular, we explicitly identify closed-form expressions of the asymptotic

variances, which allow us to efficiently construct asymptotically valid confidence regions for key RL quantities.

Furthermore, we utilize these asymptotic expressions to design an effective exploration strategy, which we

call Q-value-based Optimal Computing Budget Allocation (Q-OCBA). The policy relies on maximizing the

relative discrepancies among the Q-value estimates. Numerical experiments show superior performances of

our exploration strategy than other benchmark policies.

Key words : reinforcement learning, statistical inference, policy exploration, OCBA

1. Introduction

We consider the standard reinforcement learning (RL) setting where the agent interacts with a

random environment and aims to maximize the accumulated discounted reward over time. The

environment is formulated as a Markov decision process (MDP) and the agent is uncertain about

the true dynamics to start with. As the agent interacts with the environment, data about system

dynamics are collected and the agent becomes increasingly confident about her decision. With

finite data, however, the potential reward from each decision is estimated with errors. The goal of

the agent is to make decisions as close to optimal as possible over time, given the collected data

at hand.

In this paper, we focus on statistical uncertainty quantification in RL and its implications in

exploration policy. More precisely, we investigate the large-sample behaviors in estimating the so-

called Q-values (action-value functions) and the associated optimal value functions, in the form
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of central limit convergences to Gaussian (or other) distributions. We explicitly characterize the

asymptotic variances of the limiting distributions in terms of the system parameters (i.e., transition

probabilities, mean rewards, and data-collection policies), from which we can construct statisti-

cally valid confidence intervals/regions. These closed-form formulas, moreover, are utilized in a

novel procedure that we call Q-value-based Optimal Computing Budget Allocation (Q-OCBA) to

efficiently explore the underlying MDP.

The motivation for our investigation is twofold. First, like classical statistical inference, large-

sample behavior and confidence interval construction are fundamental in assessing the error and

reliability of estimated quantities with respect to the data noises. Despite the ever-growing litera-

ture on RL applications, some of these fundamental questions appear to remain quite open. Our

first goal in this paper is to fill in the literature gap by studying the large sample behaviors of RL. In

the RL context, the key objects that measure performances and determine optimal policies are the

Q-values, namely the maximum cumulative rewards that initialize at given state-and-action pairs.

Closely related and derivable from the Q-values are the optimal value functions, namely the maxi-

mum cumulative rewards initialized at given states. We derive appropriate large-sample asymptotic

distributions that allow us to construct confidence regions for Q-value and optimal-value-function

estimations when data are collected from the underlying Markov chain. In addition to quantifying

the error of each value estimate, our results also allow one to evaluate the assertiveness of perfor-

mances among different decisions. For example, while one state-action pair may appear better by

reading the point estimate of its Q-value, its variability, which is estimated via our approach, can

also be larger, and should be properly accounted for when deciding whether the action should be

selected given the state.

Our investigation on the limit theorems and confidence region constructions is in line with the

so-called input uncertainty problem in stochastic simulation (Barton 2012, Song et al. 2014, Lam

2016). The latter problem aims to quantify the impacts on simulation outputs due to the statistical

noises incurred in fitting the input models that generate the fed-in random variates. Quantifying

these impacts requires estimating the output variability contributed from the input noises (e.g.,

Song and Nelson 2015, Cheng and Holland 1997), or constructing output confidence intervals that

properly account for input uncertainty (e.g., Cheng and Holland 2004, Barton et al. 2013). In

stochastic simulation, the inputs often take the form of parametric models (e.g., Xie et al. 2014,

Zhu et al. 2020), a finite collection or mixture of parametric models (e.g., Chick 2001, Zouaoui and

Wilson 2004), or in the nonparametric case, empirical distributions where independence of random

variates is typically assumed (e.g., Barton and Schruben 2001, Yi and Xie 2017). Our study can be

viewed as addressing the input uncertainty problem for MDPs, where the input model now takes

the form of Markov transition matrices and reward distributions. In addition to the Markovian
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structure, another distinction of our work from conventional input uncertainty is the involvement

of optimization in our target quantity (both the Q-values and the optimal value functions). In this

regard, our work also relates to the uncertainty quantification of stochastic optimization problems,

which aims to understand the sub-optimality of obtained solutions due to the statistical noise

in constructing the objective functions (Mak et al. 1999, Bayraksan and Morton 2006). Similar

to the sample average approximation and stochastic programming literature (e.g., Shapiro et al.

2014, Higle and Sen 2013), our limit theorems capture the statistical fluctuations of estimated

optimal values. However, instead of a finite number of stages or having independent variates across

stages, we focus on the error quantification of maximum cumulative rewards, which necessitate the

intricate use of the Bellman equation machinery and the stationarity of the underlying Markov

chain.

Besides input uncertainty, we describe our methodological advancements relative to the RL

literature. Our results complement the existing finite-sample bounds (e.g., Kearns and Singh 1998,

Kakade 2003, Munos and Szepesvári 2008) by offering closed-form asymptotic variances that often

show up in the first-order terms in these bounds. In constructing confidence intervals (and also

in using variance-based exploration strategies like Q-OCBA that we detail further below), finite-

sample error bounds are typically conservative. In contrast, in our development, the dependence

of asymptotic variance on key parameters, such as the reward and transition variabilities, and the

frequency of visits for each state-action pair, is tightly characterized. To this end, Mannor et al.

(2004, 2007) are among the first and very few to study asymptotically tight statistical properties

of value function estimation. They investigate the bias and variance in value function estimates

under a fixed policy. Methodologically, our technique resolves a main technical challenge in Mannor

et al. (2004, 2007) that allows us to generalize their variance results to Q-values and optimal value

functions. The derivation in Mannor et al. (2004, 2007) hinges on an expansion of the value function

in terms of the perturbation of the transition matrix, which (as pointed out by the authors) is not

easily extendable from the value function under a fixed-policy to the optimal value function. In

contrast, our results utilize an implicit function theorem applied to the Bellman equation which

can be verified to be sufficiently smooth. This idea turns out to allow us to obtain gradients

for Q-values, translate the asymptotic variance of Q-values to the optimal value function, and

furthermore generalize similar asymptotic distributional results for constrained MDPs, approximate

value iteration, and kernel estimation. Recently, Devraj and Meyn (2017) and Chen et al. (2020)

derive central limit convergence results and characterize the corresponding asymptotic variances

for some parametric Q-learning algorithms. Their development builds on an elegant connection

between Q-learning and stochastic approximation. On the other hand, our main asymptotic result

(Theorem 1) does not impose any parametric assumption on the Q-values.
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Our work is also related to the line of studies on dynamic treatment regimes (DTR) applied

commonly in medical decision-making (Laber et al. 2014). DTR focuses on the statistical properties

of policies on finite horizons (such as two-period). Our infinite-horizon results on the optimal values

and Q-values distinguish our developments from the DTR literature. Indeed, Laber et al. (2014)

list the statistical properties for the infinite-horizon case as an “open problem”. Moreover, as we

will elaborate in the sequel, our result for the non-unique policy case can be demonstrated to

correspond to the “non-regularity” concept in DTR, where the true parameters are very close to the

decision “boundaries” that switch the optimal policy (motivated by situations of small treatment

effects), thus making the obtained policy highly sensitive to estimation noises.

The second motivation of our study is to design good exploration policies by directly using our

tight error estimates derived from our limit theorems. We consider the pure exploration setting

where an agent is first assigned a period to collect as much experience as possible, and then,

with the optimal policy trained offline, starts deployment to gain reward. The goal is to collect

as informative data as possible in the first stage via a good exploration strategy such that, at

the end of this stage, our recommended policy coincides with the true optimal policy of the MDP

with the highest probability. This setting is motivated by recent autonomous-driving applications

(Kalashnikov et al. 2018), and differs from classical learning settings that balance the exploration-

exploitation trade-off: exploring poorly-understood states and actions in the hope of improving

future performance versus exploiting existing knowledge to attain better reward now (Jaksch et al.

2010). Crucially, our setting has a dedicated learning stage in which no rewards are collected, and

the focus is to select the best policy using the data collected in the learning stage. The separation

of learning and execution stages is particularly attractive when extra safety-protection tools could

be incorporated into the learning stage. For example, to derive safe driving policies for autonomous

vehicles, “soft crash” (or “near crash”) perceived by high-precision sensors is used to reveal the

potential risks of unsafe driving behaviors and avoids real physical damage to the car (Kiran et al.

2020, Amini et al. 2020). The learning stage can also sometimes be carried out through a simulation

platform where real maneuvers could be virtually simulated (Schöner 2017, Corso et al. 2020).

Our main contribution in regard to the second motivation is the design of a pure exploration

policy by maximizing the worst-case relative discrepancy among the estimated Q-values (ratio of

the mean squared difference to the variance). We coin our strategy Q-OCBA, as our policy search

criterion resembles the widely known Optimal Computing Budget Allocation (OCBA) procedure

in simulation optimization (Chen and Lee 2011). OCBA has been successfully applied to ranking

and selection (Glynn and Juneja 2004, Gao et al. 2017) where the search space is a finite number of

discrete simulatable alternatives, a variant called targeting and selection (Ryzhov 2018), random

search (Chen et al. 2013), stochastically constrained problems and feasibility determination (Lee
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et al. 2012, Gao and Chen 2016), and quantile-based selection (Peng et al. 2018a). In sequential

OCBA implementations, one divides the computation budget into stages in which one sequentially

updates mean and variance estimates, and optimizes next-stage budget allocations according to

the worst-case relative discrepancy criterion (Chen et al. 2006). Like OCBA, the worst-case relative

discrepancy in Q-OCBA serves as a proxy for the probability of selecting the optimal policy, which

is analogous to the probability of correct selection in ranking and selection. Nonetheless, Q-OCBA

bears two important distinctions: One is that we utilize the Q-value estimates and asymptotic

variance estimates, derived via our limit theorems, in our maximization criterion. The other is

that while the allocation in OCBA can be derived and implemented straightforwardly, it is not the

case in RL. Because of the underlying Markov chain, the desired allocation has to be implemented

through a randomized policy that gives rise to a stationary distribution of state-action pairs that

matches the desired allocation. To address this issue, we design a computationally tractable scheme

to obtain the randomized policy. More precisely, through our derived asymptotic variance formula

that depends explicitly on the frequency of visits to each state-action pair, and by characterizing

all the feasible stationary distributions of the MDP as a set of linear constraints, we can derive

our Q-OCBA exploration policy by solving a convex optimization problem. We further propose a

sequential updating rule to implement the exploration strategy in practice.

To the best of our knowledge, our work is among one of the few to concretely use the variances

of Q-value estimates and link budget allocation to develop exploration policies for MDP. The only

other work that uses OCBA-based criterion for efficient budget allocation in MDP is Jia (2012),

which is for a different setting. Similar to our work, the objective is to maximize the probability

of selecting the optimal action at each state. However, they consider a setting where the state-

action pair at each “step” can be arbitrarily chosen and the Q-values for different state-action pairs

are estimated independently by simulation. This allows them to use standard sample variance for

variance estimation. In contrast, we consider the “online” setting where the next state is determined

by the current state-action pair through the underlying Markov chain. This poses a substantial

challenge to constructing a good variance estimator. Interestingly, one way to further improve the

efficiency of the strategy proposed in Jia (2012) is to reuse (at least partially) the sample simulated

for the Q-value estimation at one state-action pair to estimate the Q-value at another state-action

pair. However, this would require sophisticated derivations of the corresponding variances as in

our setting. Another related work is Devraj and Meyn (2017), which uses asymptotic variances to

optimize the corresponding Q-learning algorithm with certain parameterization. They consider the

classic regret minimization objective, which is different from our pure exploration setting.

More generally, we also position Q-OCBA relative to the online learning literature. In particu-

lar, our pure exploration problem resembles the so-called best-arm identification in multi-armed
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bandits (Audibert and Bubeck 2010, Kaufmann et al. 2016, Russo 2016), which studies procedures

to efficiently identify alternatives with the highest reward. This problem is intricately related to

ranking and selection in simulation (Kim and Nelson 2007) in that they both focus on the perfor-

mance of the selected alternative at the end of the learning period, without concerning the interim

rewards, but with differences in the analytical tools and the types of complexity guarantees. The

ranking and selection or best-arm identification problems can be viewed as a one-state special case

of the pure exploration setting in RL, which is much less studied (the only recent work that we are

aware of is Putta and Tulabandhula (2017)). Compared to the former problem that often assumes

independence across samples from different alternatives, RL is more complex due to the long-term

effect of an action that could determine the future frequency of visits for many state-action pairs.

Q-OCBA provides an implementable avenue to obtain a good policy for precisely this purpose.

Recently, there are also extensions of ranking and selection to context-dependent settings, where

rewards can depend on agent’s covariates (Shen et al. 2021). Although in both RL and contextual

ranking and selection, the rewards are state-dependent, in RL, the state variables follow a Markov

chain, whereas in contextual ranking and selection, the state variables (covariates) are static.

Most existing RL algorithms consider settings where one solves for the optimal policy while

simultaneously learning the dynamics of the underlying MDP. The objective is to minimize the

regret, which gives rise to a non-trivial exploration-exploitation trade-off. In this context, poli-

cies that focus on more systematic exploration such as posterior sampling reinforcement learning

(PSRL) and various versions of the upper confidence bound algorithm (e.g., UCRL2, UCBVI)

have been developed and shown to achieve good regret bounds (Osband et al. 2013, Azar et al.

2017, Jin et al. 2018). Recently, Bellemare et al. (2017) advocates learning an approximate value

distribution rather than its expectation to obtain more stable learning. In this paper, we consider

a very different setting – a pure exploration task. Thus, our policy focuses more on exploration

than the aforementioned policies (which were designed for a different objective). To support our

approach, we show through numerical experiments that Q-OCBA consistently achieves superior

performances compared to an array of benchmark policies in the literature (see Section 6.2.1).

The rest of the paper is organized as follows. Section 2 first describes our MDP setup. Section

3 presents our results on large-sample behaviors. Section 4 demonstrates their use in developing

exploration strategies. Section 5 studies two approximations schemes to deal with large state and/or

action spaces. Section 6 substantiates our findings with simulation experiments. Section 7 provides

some concluding remarks. All proofs are deferred to the appendix.

1.1. Notations

We introduce some notations used throughout the paper. We denote “⇒” as “convergence in dis-

tribution”, and N (µ,Σ) as a multivariate Gaussian distribution with mean vector µ and covariance
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matrix Σ. We write I as the identity matrix, and ei as the i-th unit vector. We also write 0 as a

zero vector or matrix. The dimension of N (µ,Σ), I, ei, and 0 should be clear from the context.

When not specified, all the vectors are column vectors. For ǫ > 0, we define a± ǫ := [a− ǫ, a+ ǫ],

i.e., it is a closed interval with lower bound a− ǫ and upper bound a+ ǫ. Lastly, 1(·) denotes the
indicator function.

2. Problem Setup

Consider an infinite horizon accumulated discounted reward MDP, M= (S,A,R,P, γ, ρ), where S
is the state space, A is the action space, R(s, a) denotes the random reward when the agent is in

state s ∈ S and selects action a ∈A, P (s′|s, a) is the probability of transitioning to state s′ in the

next epoch given the current state s and taken action a, γ is the discount factor, and ρ is the initial

state distribution. The distribution of the reward R and the transition probability P are unknown

to the agent.

We assume both S and A are finite sets. Without loss of generality, we denote S =

{1,2, . . . ,ms} and A= {1,2, . . . ,ma}. We also make the following stochasticity assumption:

Assumption 1. R(s, a) has a finite mean µR(s, a) and a finite variance σ2
R(s, a), ∀ (s, a)∈ S ×A.

For any given (s, a)∈ S ×A, R(s, a) and s′ ∼ P (·|s, a) are independent random variables.

A policy π is a mapping from each state s ∈ S to a probability measure over actions in A.

Specifically, we write π(a|s) as the probability of taking action a when the agent is in state s

and π(·|s) as the ma-dimensional vector of action probabilities at state s. For convenience, we

sometimes write π(s) as the realized action given the current state s. The value function associated

with a policy π is defined as

V π(s) =E
π

[

∞
∑

t=0

γtR(st, π(st))|s0 = s

]

with st+1|(st, π(st))∼ P (·|st, π(st)). The expected value function, under the initial distribution ρ,

is denoted by

χπ =
∑

s

ρ(s)V π(s).

A policy π∗ is said to be optimal if V π∗(s) =maxπ V
π(s) for all s∈ S. For convenience, we denote

V ∗ = V π∗ and χ∗ =
∑

s ρ(s)V
∗(s). The Q-value at (s, a) ∈ S × A, denoted by Q(s, a), is defined

as Q(s, a) = µR(s, a) + γE[V ∗(s′)|s, a]. Correspondingly, V ∗(s) = maxaQ(s, a) and the Bellman

equation for the Q-values takes the form

Q(s, a) = µR(s, a)+ γE

[

max
a′

Q(s′, a′)|s, a
]

. (1)

Denoting the Bellman operator as TµR,P (·), Q is a fixed point associated with TµR,P , i.e., Q =

TµR,P (Q). For most part of this paper, we make the following assumption about Q:
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Assumption 2. For any state s∈ S, argmaxa∈AQ(s, a) is unique.

Under Assumption 2, the optimal policy π∗ is unique and deterministic. Let

a∗(s) = argmax
a∈A

Q(s, a).

Then π∗(a|s) = 1 (a= a∗(s)). We relax this assumption in Section 3.2.

We next introduce some statistical quantities arising from data. Suppose we have n observations

(whose collection mechanism will be made precise later), which we denote as

{(st, at, rt(st, at), s′t(st, at)) : 1≤ t≤ n},

where rt(st, at) is the realized reward at time t and s′t(st, at) = st+1. We define the sample mean

µ̂R,n and the sample variance σ̂2
R,n of the random rewards as

µ̂R,n(s= i, a= j) =

{
∑

1≤t≤n rt(st,at)1(st=i,at=j)∑
1≤t≤n 1(st=i,at=j)

, if
∑

1≤t≤n 1(st = i, at = j)> 0

u0
R(i, j) if

∑

1≤t≤n 1(st = i, at = j) = 0;
(2)

σ̂2
R,n(s= i, a= j) =

{∑
1≤t≤n rt(st,at)

2
1(st=i,at=j)

∑
1≤t≤n 1(st=i,at=j)

− µ̂R,n(i, j)
2 if

∑

1≤t≤n 1(st = i, at = j)> 0

s0R(i, j) if
∑

1≤t≤n 1(st = i, at = j) = 0,

where u0
R(i, j) ∈R and s0R(i, j)≥ 0 are some appropriate initial values for the mean and variance

if no data is available.

Similarly, we define the empirical transition matrix P̂n as

P̂n(s
′ = k|s= i, a= j) =

{
∑

1≤t≤n 1(st=i,at=j,s
′
t(st,at)=k)∑

1≤t≤n 1(st=i,at=j)
if
∑

1≤t≤n 1(st = i, at = j)> 0

p0(k|i, j) if
∑

1≤t≤n 1(st = i, at = j) = 0,
(3)

where p0 with p0(k|i, j)≥ 0 and
∑

k p
0(k|i, j) = 1 is some appropriate initialization of the transition

matrix if no data is available.

Note that u0(i, j), s0(i, j), and p0(k|i, j) above can be any reasonable initialization when the

corresponding state-action pairs have not been visited yet. For example, we can initialize P̂n(s
′ =

k|s = i, a = j) = 1/ms, µ̂R,n(s = i, a = j) = 0, and σ̂2
R,n(s = i, a = j) = 1 if there is no good prior

knowledge.

Furthermore, we define the ms ×ms sampling covariance matrix ΣPs,a (with one sample point

of 1(st = s, at = a)) as

ΣPs,a(k1, k2) =

{

P (k1|s, a)(1−P (k1|s, a)) k1 = k2
−P (k1|s, a)P (k2|s, a) k1 6= k2.

, for 1≤ k1 ≤ms,1≤ k2 ≤ms. (4)

With the data, we construct our estimate of Q, called Q̂n, via the empirical fixed point of the

Bellman operator, i.e.,

Q̂n = Tµ̂R,n,P̂n
(Q̂n).
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Correspondingly, we write

V̂ ∗
n (s) =max

a∈A
Q̂n(s, a) and χ̂∗

n =
∑

s∈S

ρ(s)V̂ ∗
n (s).

Throughout the paper we focus on the estimation errors due to the noise of collected data, and

assume the MDP or Q-value evaluation given the estimated average reward and transaction matrix

can be obtained exactly.

3. Quantifying Asymptotic Estimation Errors

In this section, we present an array of results regarding the asymptotic behaviors of Q̂n and V̂ ∗
n

as n→ ∞. We start with the standard case where each state has a unique optimal action, i.e.,

Assumption 2 holds. We then discuss two important extensions: non-unique optimal action and

constrained MDP.

To prepare, we first make an assumption on our exploration policy π to gather data. Define the

extended transition probability P̃ π under policy π as

P̃ π(s′, a′|s, a) = P (s′|s, a)π(a′|s′).

Assumption 3. The Markov chain with transition probability P̃ π is irreducible.

Under Assumption 3, as we have a finite state space and action space, P̃ π has a unique stationary

distribution, denoted by w, which is equal to the long run frequency of visiting each state-action

pair, i.e., for i∈ S and j ∈A

w(i, j) = lim
n→∞

1

n

∑

1≤t≤n

1(st = i, at = j),

where all w(i, j)’s are positive. Note that Assumption 3 is satisfied if for any two states s, s′, there

exists a sequence of actions such that s′ is attainable from s under P , and if π is sufficiently mixed,

e.g., π satisfies π(a|s)> 0 for all s, a. We define

ŵn(i, j) :=
1

n

∑

1≤t≤n

1(st = i, at = j),

which is the empirical frequency of visiting each state-action pair.

Let N =msma. In our subsequent algebraic derivations, we need to re-arrange µR, Q, and w

as N -dimensional vectors. With a little abuse of notation, we define the following indexing rule:

(s= i, a= j) is re-indexed as (i− 1)ma+ j, e.g.,

µR(i, j) = µR((i− 1)ma+ j).

We also need to re-arrange P̃ π as an N ×N matrix following the same indexing rule, e.g.,

P̃ π(i′, j′|i, j) = P̃ π((i− 1)ma+ j, (i′ − 1)ma+ j′).
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3.1. Limit Theorems under Sufficient Exploration

We first establish the asymptotic Normality of Q̂n under an exploration policy π:

Theorem 1. Under Assumptions 1 and 2, if the data are collected according to π satisfying

Assumption 3, Q̂n→Q almost surely (a.s.) as n→∞. Moreover,

√
n(Q̂n−Q)⇒N (0,Σ) as n→∞,

where

Σ= (I − γP̃ π∗)−1W−1(DR+ γ2DQ)((I − γP̃ π∗)−1)T , (5)

W , DR and DQ are N ×N diagonal matrices with

W ((i− 1)ma+ j, (i− 1)ma+ j) =w(i, j),

DR((i− 1)ma+ j, (i− 1)ma+ j) = σ2
R(i, j),

DQ((i− 1)ma+ j, (i− 1)ma+ j) = (V ∗)TΣPi,j
V ∗,

(6)

where ΣPi,j
is defined in (4).

In addition to the asymptotic Normality, a key result in Theorem 1 is an explicit characterization

of the asymptotic variance Σ, which is derived using the delta method (Serfling 2009). Intuitively,

it is the product of the sensitivities (i.e., gradient) of Q with respect to its parameters and the

variances of the parameter estimates. Here, the parameters are µR and P and the corresponding

gradients are (I − γP̃ π∗)−1 and (I − γP̃ π∗)−1V ∗ respectively. The variances of these parameter

estimates (i.e. (2) and (3)) involve σ2
R(i, j), ΣPi,j

, and w(i, j) (i.e., the proportion of samples to

each state-action pair).

Using the relations that V ∗(s) = maxa∈AQ(s, a) and V̂ ∗
n (s) = maxa∈A Q̂n(s, a), we can leverage

Theorem 1 to further establish the asymptotic Normality of V̂ ∗
n and χ̂∗

n:

Corollary 1. Under Assumptions 1, 2 and 3,

√
n(V̂ ∗

n −V ∗)⇒N (0,ΣV ) and
√
n(χ̂∗

n−χ∗)⇒N (0, σ2
χ) as n→∞

where

ΣV = (I − γP π∗)−1(W π∗)−1[Dπ∗

R + γ2Dπ∗

V ]((I − γP π∗)−1)T ,

and

σ2
χ = ρTΣV ρ,

where P π∗ is an ms ×ms transition matrix with P π∗(i, j) = P (j|i, a∗(i)), W π∗, Dπ∗

R and Dπ∗

V are

ms×ms diagonal matrices with

W π∗(i, i) =w(i, a∗(i)), Dπ∗

R (i, i) = σ2
R(i, a

∗(i)), and Dπ∗

V (i, i) = (V ∗)TΣPi,a∗(i)
V ∗

respectively.
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Theorem 1 and Corollary 1 can be used immediately for statistical inference. In particular, we

can construct confidence regions for subsets of the Q-values jointly, or confidence intervals for linear

combinations of the Q-values. For example, a quantity of interest that we will later utilize to design

good exploration policies is Q(s, a1)−Q(s, a2), i.e., the difference between action a1 and a2 when

the agent is in state s. Define σ2
∆Q as

σ2
∆Q(s, a1, a2) =

(

e(s−1)ma+a1 − e(s−1)ma+a2

)T
Σ
(

e(s−1)ma+a1 − e(s−1)ma+a2

)

(7)

and its estimator σ̂2
∆Q,n by replacing Q, V ∗, σ2

R, w, P with Q̂n,V̂
∗
n , σ̂

2
R,n, ŵn, P̂n in Σ. Then, the

100(1−α)% confidence interval for Q(s, a1)−Q(s, a2) takes the form

Cn(s, a1, a2;α) =
(

Q̂n(s, a1)− Q̂n(s, a2)
)

± zα/2σ̂∆Q,n(s, a1, a2),

where zα/2 is the (1− α/2)-quantile of N (0,1), i.e., P(N (0,1)≤ zα/2) = 1− α/2. This confidence

interval is asymptotically valid in the sense that

lim
n→∞

P(Q(s, a1)−Q(s, a2)∈Cn(s, a1, a2;α)) = 1−α.

Following a similar approach as the proof of Theorem 1, we can also establish the asymptotic

Normality for the estimated value function under any given policy π̃. In this case, the value function

V π̃ satisfies the equation

V π̃(s) =
∑

a

µR(s, a)π̃(a|s)+ γ
∑

a

π̃(a|s)
∑

s′

P (s′|s, a)V π̃(s′).

Denote the estimator of V π̃ as V̂ π̃
n , which satisfies

V̂ π̃
n (s) =

∑

a

µ̂R,n(s, a)π̃(a|s)+ γ
∑

a

π̃(a|s)
∑

s′

P̂n(s
′|s, a)V̂ π̃

n (s
′).

Corollary 2. Under Assumptions 1 and 3,

√
n(V̂ π̃

n −V π̃)⇒N (0,Σπ̃V ) as n→∞

where

Σπ̃V = (I − γP π̃)−1Dπ̃
(

(I − γP π̃)−1
)T
,

P π̃ is an ms ×ms transition matrix with P π̃(i, j) =
∑

1≤a≤ma
P (j|i, a)π̃(a|i), Dπ̃ is an ms ×ms

diagonal matrix with

Dπ̃(i, i) =
∑

1≤j≤ma

π̃(j|i)2
w(i, j)

[

(γV π̃)TΣPi,j
(γV π̃)+σ2

R(i, j)
]

.
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Corollary 2 essentially recovers Corollary 4.1 in Mannor et al. (2007). Different from Mannor

et al. (2007), we derive our results by using an implicit function theorem on the corresponding

fixed-point equation to obtain the gradient of Q, viewing the latter as the solution to the equation

and as a function of µR, P . This approach is able to generalize the results for a fixed policy in

Mannor et al. (2007) to the optimal value functions, and provide distributional statements as

Theorem 1 and Corollary 1 above. We also note that an alternative route to obtain our results is to

conduct perturbation analysis on the linear programming (LP) representation of the MDP, which

would also give gradient information of V ∗ (and hence Q as well). The implicit function approach,

nonetheless, is more elementary and intuitive.

3.2. Non-Unique Optimal Policy

Theorem 1 above is developed assuming the optimal solution for the MDP is unique. A natural

question to ask is what would happen if Assumption 2 does not hold. When the optimal solution

for the MDP is not unique, the estimated Q̂n and V̂ ∗
n may “jump” around different optimal actions,

leading to a more complicated large-sample behavior. We elaborate on this next. Let

U = {u∈R
msN+N : ||u||= 1}.

Theorem 2. Suppose Assumptions 1 and 3 hold, but the optimal policy is not unique. Then there

exists K ≥ 1 distinct ms × (Nms +N) matrices {Gk}1≤k≤K and a deterministic partition of U ,

{Uk}1≤k≤K, i.e., U =∪1≤k≤KUk, such that

√
n(V̂ ∗

n −V ∗)⇒
K
∑

k=1

Gk1 (Z/‖Z‖ ∈Uk)Z as n→∞,

where Z ∼N (0,ΣR,P ),

ΣR,P =

(

W−1DR 0

0 DP

)

, DP =





















ΣP1,1

w(0ma+1)

. . .
ΣPi,j

w((i−1)ma+j)

. . .
ΣPms,ma

w((ms−1)ma+ma)





















, (8)

and W and DR are defined in (6).

To see Theorem 2, note that the non-uniqueness of the optimal solution can be formalized as

a non-degeneracy in the LP representation of the MDP. In particular, when the optimal policy is

not unique, the LP representation of the optimal value function has multiple optimal bases. When

perturbing [P,µR] along a specific direction u ∈ U for a small enough amount, at least one of the
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bases remains optimal. Let Bu denote an optimal basis under the perturbation u and let G̃Bu

denote the derivative of the optimal solution to the perturbed LP with respect to [P,µR]. Then, the

corresponding directional derivative takes the form uT G̃Bu . Based on the above discussion, K in

Theorem 2 is the number of distinct derivatives among the optimal bases, {Gk}1≤k≤K denotes these

derivatives, and {Uk}1≤k≤K denotes the corresponding partition of U . In particular, for u∈Uk, the
directional derivative of the optimal value takes the form uTGk. See Appendix A.4 for more details.

We note from Theorem 2 that if K = 1, we recover the case of Corollary 1. However, if K > 1,

the limit distribution becomes non-Gaussian. This arises because the sensitivity to P or µR can be

very different depending on the perturbation direction, which is a consequence of non-uniqueness

of the solution. Lastly, we comment that Theorem 2 can be viewed as an MDP analog to the

non-Gaussian limit in sample average approximation where an expected-value optimization may

have multiple optimal solutions (Shapiro et al. 2014).

3.3. Constrained Problems

The MDP introduced in Section 2 does not have any constraint. In recent years, motivated by

budgeted decision-making (Boutilier and Lu 2016) and safety-critical applications (Achiam et al.

2017, Chow et al. 2017), there are growing interests in constrained MDPs. The goal is to maximize

the long-run accumulated discounted reward, V π(s), while ensure that a long-run accumulated

discounted cost, denoted as Lπ(s) = E[
∑∞

t=0 γ
tC(st, π(st))|s0 = s], is less than some given budget

η, i.e.,

max
π

∑

s

ρ(s)V π(s) subject to
∑

s

ρ(s)Lπ(s)≤ η (9)

We refer to Lπ(s) as the loss function. Assume data is generated as before. In addition, we have

observations on the incurred cost {ct(st, at) : 1 ≤ t ≤ n}. Define the sample mean and sample

variance of the random costs as

µ̂C,n(s= i, a= j) =

{
∑

1≤t≤n ct(st,at)1(st=i,at=j)∑
1≤t≤n 1(st=i,at=j)

, if
∑

1≤t≤n 1(st = i, at = j)> 0

u0
C(i, j) if

∑

1≤t≤n 1(st = i, at = j) = 0;

σ̂2
C,n(s= i, a= j) =

{∑
1≤t≤n ct(st,at)

2
1(st=i,at=j)

∑
1≤t≤n 1(st=i,at=j)

− µ̂C,n(i, j)
2 if

∑

1≤t≤n 1(st = i, at = j)> 0

s0C(i, j) if
∑

1≤t≤n 1(st = i, at = j) = 0,

where u0
C(i, j) ∈R and s0C(i, j)≥ 0 are some appropriate initial values for the mean and variance

if no data is available.

We follow our paradigm to solve the empirical counterpart of the problem, namely to find a

policy π̂∗
n that solves (9) by using V̂ π

n (s) and L̂
π
n(s) instead of V π(s) and Lπ(s), where V̂ π

n (s) and

L̂πn(s) are the value functions and loss functions estimates using the empirical µ̂R,n, µ̂C,n, P̂n. We
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focus on the estimation error of the optimal values (instead of the feasibility, which could also be

important but not pursued here).

To understand the error, we first utilize an optimality characterization of constrained MDPs. In

general, an optimal policy for (9) is a “split” policy (Feinberg and Rothblum 2012), namely, a policy

that is deterministic except at one state where a randomization between two different actions is

allowed. This characterization can be deduced from the associated LP using the occupancy measure

(Altman 1999). We refer to the randomization probability as the mixing parameter and denote the

optimal mixing parameter as α∗. In particular, whenever this state, say sr, is visited, action a
∗
1(sr)

is chosen with probability α∗ and action a∗2(sr) is chosen with probability 1−α∗.

Theorem 3. Suppose Assumptions 1 and 3 hold and there is a unique optimal policy. Moreover,

assume that there is no deterministic policy π that satisfies
∑

s ρ(s)L
π(s) = η. Then

√
n(V̂ ∗

n −V ∗)⇒N(0,Σc) as n→∞,

where one of the following two cases hold:

1. The optimal policy is deterministic. In this case, Σc =ΣV where ΣV is defined in Corollary 1.

2. The optimal policy is deterministic, except at one state, sr, where a randomization between two

actions, a∗1(sr) and a
∗
2(sr), occurs, with the mixing parameter α∗. In this case,

Σc =

(

(I − γP π∗)−1[Gπ∗ ,0,Hπ∗

V ]− (I − γP π∗)−1hV ρ
T (I − γP π∗)−1[0,Gπ∗ ,Hπ∗

L ]

ρT (I − γP π∗)−1hL

)

×ΣR,C,P

(

(I − γP π∗)−1[Gπ∗ ,0,Hπ∗

V ]− (I − γP π∗)−1hV ρ
T (I − γP π∗)−1[0,Gπ∗ ,Hπ∗

L ]

ρT (I − γP π∗)−1hL

)T

,

where

ΣR,C,P =





W−1DR 0 0

0 W−1DC 0

0 0 DP



 ,

DC is an N ×N diagonal matrix with DC((i− 1)ma+ j, (i− 1)ma+ j) = σ2
C(i, j), W and DR are

defined in (6), and DP is defined in (8). hV and hL are ms-dimensional vectors. When s= sr

hV (s) = (µR(s, a
∗
1(s))−µR(s, a

∗
2(s))+

ms
∑

j=1

γV π∗(j)(P (j|s, a∗1(s))−P (j|s, a∗2(s))),

hL(s) = (µC(s, a
∗
1(s))−µC(s, a

∗
2(s))+

ms
∑

j=1

γLπ
∗

(j)(P (j|s, a∗1(s))−P (j|s, a∗2(s))).

when s 6= sr, qV (s) = qL(s) = 0.

Gπ∗ =







π∗(·|1)T
. . .

π∗(·|ms)
T






,Hπ∗

V =







qπ
∗

V (1)T

. . .

qπ
∗

V (ms)
T






,Hπ∗

L =







qπ
∗

L (1)T

. . .

qπ
∗

L (ms)
T






,
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where qπ
∗

V (i) and qπ
∗

L (i) are N -dimensional row vectors:

qπ
∗

V (i) = γ
[

π∗(1|i)(V π∗)T , . . . , π∗(j|i)(V π∗)T , . . . , π∗(ma|i)(V π∗)T
]T

,

qπ
∗

L (i) = γ
[

π∗(1|i)(Lπ∗)T , . . . , π∗(j|i)(Lπ∗)T , . . . , π∗(ma|i)(Lπ
∗

)T
]T

.

Case 1 in Theorem 3 corresponds to the case where the constraint in (9) is not binding. This

effectively reduces the constrained MDP to the unconstrained scenario in Corollary 1, since a small

perturbation of µR, µC , P does not affect feasibility. Case 2 is when the constraint is binding. In

this case, α∗ must be chosen such that the split policy ensures equality in the constraint. When

µR, µC , P are perturbed, the estimated α̂∗
n would adjust accordingly. In this case, V̂ ∗

n incurs two

sources of noises, one from the uncertainty in µ̂R,n, P̂n that appears also in unconstrained problems,

and the other from the uncertainty in calibrating α̂∗
n that is affected by µ̂C,n, P̂n. This latter source

of noise leads to the extra terms in the asymptotic variance expression.

We assume in Theorem 3 that there is no deterministic policy π satisfying
∑

s ρ(s)L
π(s) = η.

This requirement is imposed to ensure that the corresponding LP formulation of the constrained

MDP is non-degenerate. Similar to Assumption 2, when it does not hold, the limiting distribution

can be non-Gaussian (see, e.g., Theorem 2).

4. Exploration Policy

In this section, we utilize our results in Section 3 to design good exploration policies. We focus on

the setting in which an agent is assigned a period to collect data by running the state transition

with an exploration policy. The goal is to obtain the best policy at the end of the period in a

probabilistic sense, i.e., minimize the probability of selecting a suboptimal policy. We restrict our

development to the standard case where each state has a unique optimal action as discussed in

Section 3.1.

We first define, for i∈ S, j ∈A and j 6= a∗(i), the relative discrepancy as

hij = (Q(i, a∗(i))−Q(i, j))
2
/σ2

∆Q(i, a
∗(i), j), (10)

where σ2
∆Q(i, a

∗(i), j) is defined in (7). Intuitively, hij captures the relative “difficulty” in obtaining

the optimal policy given the estimation errors of Q-values. In particular, if the Q-values are far

apart, or if the estimation variance is small, then hij is large which signifies an “easy” problem,

and vice versa.

Our proposed strategy attempts to maximize the worst of hij’s, i.e.,

max
w∈W

min
i∈S

min
j∈A,j 6=a∗(i)

hij, (11)
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where w denotes the proportion of visits to each state-action pair, within some allocation set W
which will be defined in (12) below. Based on our interpretation of hij’s, criterion (11) aims to

make the problem the “easiest” to differentiate the optimal policy. Alternatively, one can also

interpret (11) from a large deviation point of view (Glynn and Juneja 2004, Dong and Zhu 2016).

Suppose the Q-values for state i between two different actions a∗(i) and j are very close. Then,

one can show that the probability of a suboptimal selection of j has roughly an exponential in

n decay rate controlled by hij. Obviously, there can be many more comparisons to consider, but

the exponential form dictates that the smallest decay rate dominates the calculation, thus leading

to the inner minimizations in (11). Criterion like (11) is motivated by the OCBA procedure in

simulation optimization, which in general considers simple mean-value alternatives (Chen and Lee

2011). Here, we consider the estimation of Q-values. Thus, we refer to our procedure as Q-OCBA.

Implementing criterion (11) requires addressing two additional considerations. First, solving

(11) needs the model primitives Q, P , and σ2
R, which appear in the expression of hij. These

quantities are unknown a priori, but as we collect more data, they can be sequentially estimated.

This leads to a multi-stage parameter update plus optimization scheme. Second, since data are

collected through running a Markov chain, not all allocation w is admissible, i.e., realizable as the

stationary distribution of some Markov chain. To resolve this issue, we next derive a convenient

characterization for admissibility.

Accordingly to Assumption 3, we call a policy π(·|s) admissible if the Markov Chain with tran-

sition probability P̃ π is irreducible, and we denote wπ as its stationary distribution. Define

W =

{

w> 0 :
∑

1≤j≤ma

w((i− 1)ma+ j) =
∑

1≤k≤ms

∑

1≤l≤ma

w((k− 1)ma+ l)P (i|k, l)

∀1≤ i≤ms,
∑

1≤i≤ms

∑

1≤j≤ma

w((i− 1)ma+ j) = 1

}

.

(12)

The following lemma provides a characterization for the set of admissible policies.

Lemma 1. For any admission policy π, wπ ∈W. For any w ∈W, πw with πw(a= j|s= i) =w((i−
1)ma+ j)/ (

∑ma

k=1w((i− 1)ma+ k)) is an admissible policy.

Lemma 1 implies that optimizing over the set of admissible policies is equivalent to optimizing

over the set of stationary distributions. The latter is much more tractable thanks to the linear

structure of W. In practice, we use Wη =W ∩{w(i)≥ η, i= 1, . . . ,N} for some small η to ensure

closedness of the set (In our numerical experiments, we use η= 10−6).

To elaborate the criterion (11), we note that it can be equivalently written as

minw∈W maxi∈S maxj∈A,j 6=a∗(i) 1/hij. Then, plugging the formula for σ2
∆Q(i, a

∗(i), j) (i.e., (7)) in hij,

we have

min
w∈W

max
i∈S

max
j∈A,j 6=a∗(i)

∑

(s,a)∈S×A

cij(s, a)

ws,a
, (13)
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where

cij(s, a) =
(Hij((s− 1)ma+ a))2

(

σ2
R(s, a)+ (V ∗)TΣPs,aV

∗
)

(Q(i, a∗(i))−Q(i, j))
2 (14)

and

Hij =
(

e(i−1)ma+a∗(i) − e(i−1)ma+j

)T
(I − γP̃ π∗)−1.

Note that cij(s, a) can be easily estimated with plug-in estimators. Next, note that the objective

function in (13) is convex with N variables and the feasible region Wη can be characterized by

ms + 1+N linear constraints. Thus, (13) can be solved by standard convex optimization solvers

efficiently (in our numerical experiments in Section 6, solving it takes less than 0.01 seconds).

We are now ready to introduce our Q-OCBA implementation – Algorithm 1.

Input: Number of iterations K, cumulative number of data collected after stage k, Bk,

k= 1, . . . ,K, with BK = n, i.e., n is the total sampling budget (and we define B0 = 0),

auxiliary parameters η > 0 (a small constant), Cu > 0 (a large constant), and Cl > 0 (a

small constant), and initial exploration policy π1.

Initialization: k= 1;

while k≤K do

Run πk for Bk−Bk−1 steps and collect the corresponding data; Calculate P̂Bk
, µ̂R,Bk

,

and σ̂2
R,Bk

based on the Bk data points collected;

Apply value-iteration using P̂Bk
and µ̂R,Bk

to obtain Q̂Bk
;

Solve the following adaption of (13) for the optimal wk

min
w∈Wη

max
i∈S

max
j∈A,j 6=a∗(i)

∑

(s,a)∈S×A

max
(

Cl,min
(

Cu, ĉij,Bk
(s, a)

))

ws,a
, (15)

where ĉij,Bk
(s, a) denotes the plug-in estimator of cij(s, a) defined in (14);

Set πk+1(a= j|s= i) =wk((i− 1)ma+ j)/
∑ma

l=1wk((i− 1)ma+ l) and k= k+1;
end

Algorithm 1: Q-OCBA sequential updating rule for exploration

Let πe denote the optimal exploration policy (here e stands for exploration) and w∗ denote the

corresponding stationary distribution, i.e., w∗ solves (13). Note that πe is different from π∗. The

former is used to collect data, while the latter is used to collect reward in the deployment stage

and is to be learned offline using the data collected under πe. We also denote π̂n as the exploration

policy derived from Algorithm 1 after collecting n data points. The following theorem establishes

the asymptotic consistency of the Q-OCBA sequential updating rule.
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Theorem 4. Under Assumptions 1, 2, and 3, for Q-OCBA defined in Algorithm 1, suppose one

of the following two cases holds as we send the sampling budget n=BK to infinity:

1. The number of iterations K is fixed. This implies that there exists at least one k̂ ∈ {1, . . . ,K},
such that Bk̂−Bk̂−1 →∞ as n→∞.

2. The number of iterations K→∞ as n→∞ and Bk−Bk−1 ≥N for all k= 1,2, . . . .

Then,

Q̂n→Q and π̂n→ πe a.s. as n→∞.

Moreover, in Case 2, if there exists a constant γ > 0 such that Bk−Bk−1 ≥ γk, k= 1,2, . . . , then

1

n

n
∑

t=1

1(st = s, at = a)→w∗(s, a) a.s. for any (s, a)∈ S ×A as n→∞.

The first result in Theorem 4 indicates that as we collect more data in Q-OCBA, our estimated

Q-values will get closer to the true Q-values and our estimated exploration policy will get closer

to the optimal exploration policy. This is achieved by showing that each state-action pair is vis-

ited infinitely often under our policy. The second result shows that if the number of iterations is

increasing with the sampling budget and the batch size Bk −Bk−1 is properly increasing with k,

the overall proportion of samples at each state-action pair is also getting closer to the optimal

proportion as we collect more data. Recall that wk denotes the stationary distribution under policy

πk in Algorithm 1. From the first result, in Case 2, we have wk → w∗ as k→ ∞. Thus, for the

second result, we only need to show that the convergence happens sufficiently fast. To character-

ize the convergence rate, we employ the large deviations theory for the empirical measure of the

underlying Markov chain.

Theorem 4 lays out fairly general conditions for K and Bk’s, under which Algorithm 1 achieves

consistency. However, with a finite budget in practice, we need to be more mindful about the choice

of these parameters. In Section 6.2.2, we numerically investigate how to tune Q-OCBA. In general,

we suggest setting K between 6 to 10. As for Bk’s, when n or K is small, we suggest evenly splitting

the sampling budget among the K stages, i.e., Bk−Bk−1 = n/K. When n and K are large, we can

use gradually increasing batch sizes, e.g., Bk−Bk−1 = γk where γ = 2n/(K(K +1)).

5. Approximations for Large State Space and/or Action Space

In many applications, the state space S and/or the action space A can be very large. In those

settings, updating an ms ×ma look-up table via TµR,P can be computationally infeasible, and

approximation/parameterization is often employed. In this section, we study two approximation

schemes: approximate value iteration and kernel representation.
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5.1. Approximate Value Iteration

When ms is large, approximate value iteration can be employed. It operates by applying a mapping

M over TµR,P . In many cases,M =Mg ◦MS0
I , whereMS0

I is a dimension-reducing “inherit” mapping

R
msma →R

ms0ma and Mg is the “generalization” mapping R
ms0ma →R

msma that lifts back to the

full dimension. By selecting a “representative” subset S0 ⊂ S with cardinality ms0 ≪ms, M
S0
I is

defined as MS0
I (x) = [x(i, j)]i∈S0,1≤j≤ma where [xi]i∈I denotes the set of xi’s whose index i∈ I. The

idea is that we update the Q-values for s ∈ S0 only, and use the mapping Mg to extrapolate the

other Q-values. In this setup, we define QM as a fixed point of the operator M ◦ TµR,P (·), and
V M(s) =maxaQ

M(s, a). We also define QM
S0

=MS0
I ◦TµR,P (QM) as the dimension-reduced Q-values.

We next study the large-sample behavior of an approximate value iteration scheme. We first

introduce a few assumptions. Assume S is a complete vector space. Define the max norm as

‖a‖∞ = maxi |ai|. To guarantee the existence of QM , we make the following assumption on the

generalization map Mg:

Assumption 4. Mg is a max-norm non-expansion mapping in S, i.e.,

‖Mg(x)−Mg(y)‖∞ < ‖x− y‖∞ for any x, y ∈ S.

Under Assumption 4, M ◦TµR,P (·) is still a contraction mapping (Theorem 3.1 in Gordon 1995).

Thus, QM is well defined. On the other hand, when this assumption is not satisfied, there exist

MDPs for which M ◦ TµR,P (·) does not have a unique fixed point (Gordon 1995). Assumption

4 is generally satisfied by “local” approximation methods such as linear interpolation, k-nearest

neighbors, and local weighted averaging. Moreover, Gordon (1995) defines the notion of an averager

and shows that any Mg associated with an averager is max-norm non-expansion (Theorem 3.2 in

Gordon 1995). In particular, Mg is an averager if the fitted values (i.e., Q(s, a) for s ∈ S) are the

weighted average of some target values (i.e., Q(s, a) for s∈ S0) and some predetermined constants.

We also need the following analogs of Assumptions 2 and 3 to QM and S0:

Assumption 5. For any state s∈ S, argmaxa∈AQ
M(s, a) is unique.

Assumption 6. For the Markov Chain with transition probability P̃ π, the set of states {(s, a) : s∈
S0, a∈A} is irreducible.

Let N0 =ms0ma and IS0
= {(i− 1)ma + j : i ∈ S0, j ∈ A}. With Assumption 6, we denote P̃M

S0
as

a sub-matrix of P̃ π that only contains rows with indices in IS0
. We also denote S0(i) as the i-th

element (state) in S0. Define Q̂M
n as the empirical estimate of QM built on n observations.
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Theorem 5. Under Assumptions 4, 5, and 6, if Mg is continuously differentiable, then

√
n(Q̂M

n −QM)⇒N (0,ΣMS0
) as n→∞,

where

ΣMS0 =(I − γ∇Mg(Q
M
S0
)P̃M

S0
)−1∇Mg(Q

M
S0
)(W S0)−1[DS0

R + γ2DS0
Q ]

∇Mg(Q
M
S0
)T ((I − γ∇Mg(Q

M
S0
)P̃M

S0
)−1)T ,

∇Mg is the Jacobian of the mapping Mg, and W
S0, DS0

R , DS0
Q are N0 ×N0 diagonal matrices with

W S0((i− 1)ma+ j, (i− 1)ma+ j) =w(S0(i), j),

DS0
R ((i− 1)ma+ j, (i− 1)ma+ j) = σ2

R(S0(i), j),

DS0
Q ((i− 1)ma+ j, (i− 1)ma+ j) = (V M)TΣPS0(i),j

V M .

An important class of approximation scheme that satisfies Assumption 4 is the nearest neighbors

(Shah and Xie 2018). Given data q ∈R
ms0ma , the nearest-neighbor averaging can be expressed as

Mg(q)(s, a) =

ms0
∑

i=1

K(s,S0(i))q(S0(i), a), ∀(s, a)∈ S ×A, (16)

where K(·, ·)≥ 0 is the weighting kernel function satisfying
∑ms0

i=1 K(s,S0(i)) = 1 for any s∈ S and

K(x, y) = 0 if ‖x−y‖>h, where h is the width parameter. Then, for any s∈ S,QM(s, a) =Mg(Q
M
S0
);

and for any s0 ∈ S0,

QM
S0
(s0, a) = µR(s0, a)+ γE

[

max
a′∈A

Mg(Q
M
S0
)(s′, a′)|s0, a

]

.

We note from (16) that the nearest-neighbor averaging is an averager and is thus max-norm non-

expansion.

5.2. Kernel Representation

When N =msma is large, a common practice is to parameterize the high-dimensional Q-values

or policy functions using a set features. In this subsection, we study one particular parameteriza-

tion scheme – the kernel representation (Yang and Wang 2020), where we assume the transition

probability P can be fully embedded in a kernel space:

Assumption 7. For each (s, a) ∈ S × A and s′ ∈ S, there exists a transition core matrix M∗ ∈
Rk1 ×Rk2, such that

P (s′|s, a) = φ(s, a)TM∗ψ(s′)

where φ(s, a) ∈ Rk1 and ψ(s′) ∈ Rk2 are feature functions. We assume that φ(s, a) and ψ(s′) are

known, while M∗ has to be estimated from data.
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k1 and k2 in Assumption 7 are typically much smaller than N . Thus, we can approximate P by a

lower dimensional manifold. Similar assumptions are made for the distribution of the reward:

Assumption 8. For each (s, a) ∈ S ×A, there exist parameters θµ ∈Rd1 and θσ ∈Rd2 , such that

E[R(s, a)] = φµ(s, a)
T θµ and E[R2(s, a)] = φσ(s, a)

T θσ where φµ(s, a) ∈ Rd1 and φσ(s, a) ∈ Rd2 are

feature functions. We assume that φµ(s, a) and φσ(s, a) are known, while θµ and θσ have to be

estimated from data.

We next define a few more notations to facilitate our subsequent discussion. Define M∗
v as a

vector by concatenating columns of M∗, i.e, M∗
v = [(M∗)T1 , . . . , (M

∗)Tk2 ]
T , where (M∗)i is the i-th

column of M∗. Then, P (s′|s, a) can be written as

P (s′|s, a) =













φ(s, a)T

. . .
φ(s, a)T






M∗

v







T

ψ(s′)

=ψ(s′)T







φ(s, a)T

. . .
φ(s, a)T






M∗

v =: Fφ,ψ(s, a, s
′)M∗

v ,

where

Fφ,ψ(s, a, s
′) =ψ(s′)T







φ(s, a)T

. . .
φ(s, a)T






.

When n data points are available, the least-squares estimation of M∗ takes the form:

M̂n =A−1
n

n
∑

t=1

φ(st, at)ψ(s
′
t)
TK−1

ψ ,

where Kψ =
∑

sψ(s)ψ(s)
T and An = I +

∑n

t=1 φ(st, at)φ(st, at)
T . Define the vector M̂n,v by con-

catenating columns of M̂n, i.e, M̂n,v = [(M̂n)
T
1 , . . . , (M̂n)

T
k2
]T , where (M̂n)i is the i-th column of M̂n.

Similar to P (s′|s, a), we can define

P̂K
n (s′|s, a) = Fφ,ψ(s, a, s

′)M̂n,v. (17)

Next, consider an extended Markov chain X̄ = (s, a, s′) with transition kernel

P̄ π((s2, a2, s
′
2)|(s1, a1, s′1)) =

{

π(a2|s2)P (s′2|s2, a2), if s′1 = s2;

0, otherwise.

Let S̄ = {x1, x2, . . . , xm2
sma

} denote the state space of X̄. The states are indexed in the same

order as they appear in the rows of P̄ π. For any state x in S̄, denote its original (s, a, s′) rep-

resentation as (s(x), a(x), s′(x)). Let ω̄ denote the stationary distribution of X̄. Then, ω̄x =

ws(x),a(x)P (s
′(x)|s(x), a(x)). Lastly, define

G(x) = φ(s(x), a(x))ψT (s′(x))K−1
ψ −φ(s(x), a(x))φ(s(x), a(x))TM∗
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and the vector Gv(x) by concatenating columns of G(x), i.e., Gv(x) = [(G(x))T1 , . . . , (G(x))
T
k2
]T ,

where (G(x))i is i-th column of G(x).

Lemma 2. Assume Eω̄[G
2
v(X̄)]<∞. Then, for any (s, a, s′)∈ S̄,

√
n(P̂K

n (s′|s, a)−P (s′|s, a))⇒N (0, Fφ,ψ(s, a, s
′)Υ−1

E ΣGΥ
−1
E (Fφ,ψ(s, a, s

′))T ),

where

ΥE =







I +
∑

s,aws,aφ(s, a)φ(s, a)
T

. . .
I +

∑

s,aws,aφ(s, a)φ(s, a)
T







and

ΣG =Varω̄(Gv(X̄0))+ 2
∞
∑

t=1

Covω̄(Gv(X̄0),Gv(X̄t)).

Here, Varω̄(Gv(X̄0)) is the covariance matrix of Gv(X̄0) where X̄0 follows the station-

ary distribution ω̄ and Covω̄(Gv(X̄0),Gv(X̄i)) is a matrix with {Covω̄(Gv(X̄0),Gv(X̄t))}s,r =

Covω̄((Gv(X̄0))s, (Gv(X̄t))r). Specifically,

Varω̄(Gv(X̄0)) =
∑

(s,a,s′)∈S̄

ws,aP (s
′|s, a)Gv(s, a, s

′)Gv(s, a, s
′)T

and

∞
∑

t=1

Covω̄(Gv(X̄0),Gv(X̄t))

=
∑

xk,xl∈S̄

ws(xk),a(xk)P (s
′(xk)|s(xk), a(xk))Gv(xk)Gv(xl)

T
{

(I − P̄ π)−1
}

k,l
.

Note that the asymptotic variance Fφ,ψ(s, a, s
′)Ψ−1

E ΣGΨ
−1
E (Fφ,ψ(s, a, s

′))T can be estimated using

plug-in estimators. The sampling policy will affect ΣG through the transition matrix P̄ π and the

stationary distribution ω̄.

We next study the estimation of the mean reward µR. Let Φµ,n denote the observed feature

matrix for the reward, i.e., the t-th row of Φµ,n is φµ(st, at)
T , t = 1, . . . , n. Similarly, let Φσ,n

denote the observed feature matrix for the squared reward, i.e., the t-th row of Φσ,n is φσ(st, at)
T ,

t= 1, . . . , n. We also denote Yµ,n as the observed reward vector, i.e., the t-th row of Yµ,n is rt(st, at),

and Yσ,n as the observed squared reward vector whose t-th entry is rt(st, at)
2, t= 1, . . . , n. Then,

the least-squares estimators for θµ and θσ take the form

θ̂µ,n = (ΦTµ,nΦµ,n)
−1ΦTµ,nYµ,n and θ̂σ,n = (ΦTσ,nΦσ,n)

−1ΦTσ,nYσ,n respectively.

In this case, µR(s, a) and σ
2
R(s, a) can be estimated via

µ̂KR,n(s, a) = φµ(s, a)
T θ̂µ,n (18)
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and

(σ̂KR,n(s, a))
2 = φσ(s, a)

T θ̂σ,n− (φµ(s, a)
T θ̂µ,n)

2

respectively.

Consider a Markov chain X̃ = (s, a) with transition kernel

P̃ π(s2, a2|s1, a1) = P (s2|s1, a1)π(a2|s2).

We denote S̃ = {x1, . . . , xmsma} as the state space of X̃, where the states are indexed in the same

order as they appear in the rows of P̃ π. For any state x̃ ∈ S̃, denote its (s, a) representation as

(s(x̃), a(x̃)). Recall that w is the stationary distribution of X̃. Let

H(X̃) =
(

r(s(X̃), a(X̃))−µR(s(X̃), a(X̃))
)

φµ(s(X̃), a(X̃)).

Lemma 3. Assume Ew[(H(X̃))2]<∞. Then, for any (s, a)∈ S̃,
√
n(µ̂KR,n(s, a)−µR(s, a))⇒N (0, φµ(s, a)

TΥ−1
µ ΣHΥ

−1
µ φµ(s, a)),

where

Υµ =Ew[φµ(X̃0)(φµ(X̃0))
T ]

and

ΣH =Varw(H(X̃0))+ 2
∞
∑

t=1

Covw(H(X̃0),H(X̃t)).

Specifically,

Varw(H(X̃0)) =
∑

(s,a)∈S̃

ws,aH(s, a)H(s, a)T

=
∑

(s,a)∈S̃

ws,aσ
2
R(s, a)φµ(s, a)φµ(s, a)

T

=
∑

(s,a)∈S̃

ws,a
(

φσ(s, a)
T θσ
)

φµ(s, a)φµ(s, a)
T

and
∞
∑

t=1

Covw(H(X̃0),H(X̃t)) =
∑

xk,xl∈S̃

ws(xk),a(xk)H(s(xk), a(xk))H(s(xl), a(xl))
{

(I − P̃ π)−1
}

k,l
.

Note that the asymptotic variance φµ(s, a)
TΦ−1

µ ΣHΦ
−1
µ φµ(s, a) can be estimated using plug-in

estimators. Here the sampling policy will affect ΣH through the transition matrix P̃ π and the

stationary distribution w.

Based on the above analysis, the kernel-based Q-value estimates can be expressed as the empirical

fixed point of the Bellman operator

Q̂K
n = TP̂K

n ,µ̂K
R,n

(Q̂K
n ),
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where P̂K
n is defined in (17) and µ̂KR,n is defined in (18). Combining Lemmas 2 and 3, we have the

following central limit theorem for Q̂K
n .

Theorem 6. Under assumptions 7 and 8, assume Eω̄[G
2
v(X))]<∞ and Ew[H

2(X̃)]<∞. Then,

√
n(Q̂K

n −Q)⇒N (0,ΣK) as n→∞,

where

ΣK = (I − γP̃ π∗)−1(φTµΥ
−1
µ ΣHΥ

−1
µ φµ+ γ2VDFφ,ψΥ

−1
E ΣGΥ

−1
E F T

φ,ψVD)((I − γP̃ π∗)−1)T , (19)

φµ is an (msma)×d1 matrix whose i-th row is φµ(si, ai), Fφ,ψ is an (m2
sma)×k1 matrix whose the

i-th row is Fφ,ψ(si, ai, s
′
i),

VD =















(V ∗)T

. . .
(V ∗)T

. . .
(V ∗)T















,

ΥE and ΣG are defined in Lemma 2, Υµ and ΣH are defined in Lemma 3.

5.3. Q-OCBA Variants

In this section, we develop the Q-OCBA variants for the nearest-neighbors approximation and the

kernel representation.

We first consider the nearest-neighbors approximate value iteration. Based on Theorem 5, let

hMij =
(

QM(i, a∗(i))−QM(i, j)
)2
/σ2

∆QM (i, a∗(i), j),

where

σ2
∆QM (i, a∗(i), j) = (e(i−1)ma+a∗(i) − e(i−1)ma+j)

TΣMS0
(e(i−1)ma+a∗(i) − e(i−1)ma+j).

Then, we can modify Q-OCBA to QM -OCBA, where our goal is to find a sampling policy that

solves

max
w∈Wη

min
i∈S

min
j∈A,j 6=a∗(i)

hMij . (20)

Next, we consider the kernel representation. Based on Theorem 6, let

hKij =
(

QK(i, a∗(i))−QK(i, j)
)2
/σ2

∆QK (i, a
∗(i), j),

where

σ2
∆QK (i, a

∗(i), j) = (e(i−1)ma+a∗(i) − e(i−1)ma+j)
TΣK(e(i−1)ma+a∗(i) − e(i−1)ma+j)
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Then, we can modify Q-OCBA to QK-OCBA, where our goal is to find an exploration policy that

solves

max
w∈Wη

min
i∈S

min
j∈A,j 6=a∗(i)

hKij . (21)

In both cases discussed above, we can modify sequential updating rule in Algorithm 1 to develop

the corresponding algorithmic implementations. In particular, for QM -OCBA, we replace (15) in

Algorithm 1 with (20). For QK-OCBA, we replace (15) with (21).

6. Numerical Experiments

In this section, we conduct numerical experiments to support our large-sample results in Section

3, demonstrate the performance of Q-OCBA against some benchmark exploration policies, and

analyze how to tune the parameters when implementing Q-OCBA. We use the RiverSwim problem

with ms states and two actions at each state: swimming left (0) and swimming right (1). Figure 1

provides a pictorial illustration of the problem. The triplet above each arc in Figure 1 represents

i) the action, ii) the transition probability to the next state given the current state and action,

and iii) the reward under the current state and action. For example, in (1,0.3,0), 1 is the action

of swimming right, 0.3 is the probability of moving to the next state as the directed arc indicates,

and 0 is the reward for the current state-action pair. Note that, in this problem, rewards are only

given at the left and right boundary states, where the left-boundary reward, rL < 10, will be varied

in our experiments. We set the discount factor γ = 0.95.

Note that swimming to the right (against the current of the river) will more often than not

leave the agent in the same state, but will sometimes move the agent to the right, and with a

much smaller probability move the agent to the left. Swimming to the left (with the current)

always succeeds in moving the agent to the left, until the leftmost state is reached at which point

swimming to the left yields a small reward (i.e., rL < 10). The agent receives a much larger reward

for reaching the rightmost state. This MDP requires a sequence of appropriate actions in order to

explore effectively to the right, and is challenging to learn when nothing is known at the beginning.

Thus, it is a classic example to study exploration policies (see, e.g., Strehl and Littman 2008,

Osband et al. 2013).

6.1. Statistical Quality of Interval Estimations

We first demonstrate the validity of our large-sample asymptotic results. All coverage rates reported

in our numerical experiments are estimated using 103 independent repetitions of the procedure.

The estimation errors (half width of the 95% confidence intervals (CIs)) are around 0.01. Our

target confidence level (coverage rate) is 95%.
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Figure 1 RiverSwim Problem

We start with the RiverSwim problem with a small state space, i.e., ms = 6 as depicted in Figure

1, and rL = 1. Table 1 reports the coverage rates of the asymptotically valid 95% CI for Q, V ∗,

and χ∗, constructed based on Theorem 1 and Corollary 1. The data collection policy we employ

is a random exploration policy under which we swim right with probability 0.8 at each state, i.e.,

π(1|s) = 0.8. We observe that the coverage rate approaches the nominal 95% as the number of

observations n increases. Specifically, when n is 102, the coverage rates are all around 30%, when n

is 5× 102, they are around 90%, and when n≥ 103, they are around 95%. These suggest a sample

size of 103 is enough to elicit our asymptotic results in this problem.

Table 1 Coverage for Q(s, a), V ∗ and χ∗ values using exact tabular update

n 102 5× 102 103 104

Q(1,0) 0.2 0.91 0.95 0.95
Q(3,1) 0.31 0.89 0.95 0.95
Q(6,0) 0.30 0.87 0.94 0.95
V ∗(2) 0.29 0.89 0.94 0.96
V ∗(4) 0.30 0.90 0.94 0.95
V ∗(5) 0.29 0.88 0.94 0.95
χ∗ 0.30 0.88 0.94 0.95

We next consider the RiverSwim problem with a large state space, i.e., ms = 31, and rL = 1. We

use the linear interpolation approximation with S0 = {1,4, . . . ,28,31}. Table 2 reports the coverage

rates of the asymptotically valid 95% CI for Q, V ∗, and χ∗, constructed based on Theorem 5, with

different sample size and under different exploration policies. In particular, we vary the values of

π(1|s) from 0.8 to 0.9.

Compared to the exact update with a small state space, the coverage-rate convergence for the

approximate update with a larger state space appears slower. Specifically, comparing Tables 1 and

2 that use the same random exploration with π(1|s) = 0.8, we note that while the nominal coverage
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is obtained when n= 104 in the exact update with a smaller state space for all studied quantities,

this sample size is not enough for approximate update with ms0 = 11, where it appears that we

need n to be of order 107 to obtain the nominal coverage.

We also note that, when the coverage is very far from the nominal level, discrepancies can show

up among the estimates of Q, V ∗, and χ∗. For example, when π(1|s) = 0.8 and n= 104, the coverage

rates of Q and V ∗ are around 47%− 49% but that of χ∗ is as low as 2%, and when π(1|s) = 0.9

and n= 106, the coverage rates of Q and V ∗ are around 33%− 35% but that of χ∗ is only 4% .

However, when the coverage rate is close to 95%, all these quantities appear to attain this accuracy

simultaneously in all the cases considered. Nonetheless, the convergence behaviors predicted by

Theorem 5 are observed to hold.

Furthermore, Table 2 shows that the rates of convergence to the nominal coverage are quite

different for different values of π(1|s). The convergence rate when π(1|s) = 0.85 seems to be the

fastest, with the coverage rate close to 95% already when n = 105. On the other hand, when

π(1|s) = 0.8, the coverage rate is close to 95% only when n = 106, and when π(1|s) = 0.9, even

n= 107 is not large enough to have the target coverage rate. These caution that estimation quality

can be quite sensitive to the exploration policy (the quality of data collected). We investigate the

efficiency of different exploration policies further in the next subsection.

Table 2 Linear interpolation in approximate value iteration

n 104 105 106 107

π(1|s) = 0.8
Average Q coverage 0.47 0.73 0.93 0.95
Average V ∗ coverage 0.49 0.74 0.94 0.95

χ∗ coverage 0.02 0.37 0.93 0.94

π(1|s) = 0.85
Average Q coverage 0.45 0.92 0.94 0.95
Average V ∗ coverage 0.48 0.93 0.94 0.95

χ∗ coverage 0.12 0.91 0.95 0.94

π(1|s) = 0.9
Average Q coverage 0.30 0.37 0.33 0.69
Average V ∗ coverage 0.34 0.39 0.35 0.70

χ∗ coverage 0.01 0.01 0.04 0.55

6.2. Efficiency of Exploration Policies

In this section, we investigate the efficiency of Q-OCBA defined in Algorithm 1. We first compare

Q-OCBA to other benchmark policies for the task of learning the optimal policy. In particular,

given a sampling budget, we compare which policy would be able to collect a more “informative”

data set to learn the optimal policy. Note that Q-OCBA and other benchmark policies are used to

collect data, and the optimal policy is trained offline using the data collected under these policies

(i.e., by solving the empirical fixed point of the Bellman operator). We then discuss how to tune

Q-OCBA, e.g., choosing the number of iterations K.
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6.2.1. Comparison with other benchmark policies We compare Q-OCBA to four bench-

mark policies: i) ǫ-greedy with ǫ= 0.2, ii) random exploration (RE) with π(1|s) = 0.6 and π(1|s) =
0.8, iii) UCRL2 (a variant of UCRL) with δ = 0.05 (Jaksch et al. 2010), and iv) PSRL (Osband

et al. 2013). We do sequential updating for Q-OCBA, PSRL, and ǫ-greedy.

We first set ms = 6, and vary the values of rL. rL is either set as a constant or a Gaussian random

variable. P̂B0
(s′|s, a) is initialized to be 1/ms, and µ̂R,B0

(s, a) and σ̂2
R,B0

(s, a) are initialized to be 1

for all (s, a) pairs. Figure 2 compares the probability of obtaining the optimal policy (probability of

correct selection) using data collected under different policies. The probability of correct selection

is estimated using 103 independent repetitions of the procedures and the estimation errors (half

width of the 95% confidence intervals) are around 0.01. We observe that Q-OCBA outperforms the

other policies in almost all cases. For example, when rL = 1 and n= 2000, the probability of correct

selection using Q-OCBA is 4 times higher than that using PSRL, and 25% higher than that using ǫ-

greedy. By carefully tuning the RE parameter π(1|s), we find that π(1|s) = 0.8 achieves comparable

performance as Q-OCBA. However, when π(1|s) is not optimally chosen, e.g., π(1|s) = 0.6, the

performance of RE is significantly worse than Q-OCBA. For example, when rL = 1 and n= 2×103,

RE(0.8) leads to a 95% probability of correct selection, while RE(0.6) only gives a 72% probability.

Note that there is no systematic way to tune the parameter of RE other than trial and error. In

this sense Q-OCBA is more robust than RE.

We also observe that ǫ-greedy and PSRL perform much worse when rL = 3 compared to when

rL = 1. One possible explanation is that for rL = 1, the (s, a) pairs that need to be explored more

also tend to have larger Q-values. However, as rL increases, the corresponding changes in the Q-

values would change the exploration “preference” of ǫ-greedy and PSRL. On the other hand, as

the underlying stochasticity of the system does not change with rL, the states that need more

exploration remain unchanged. Thus, there is a misalignment between the Q-values and the (s, a)

pairs that need more exploration. In contrast, the performance of Q-OCBA is very stable against

different values of rL. The superiority of Q-OCBA in these experiments comes as no surprise to

us. The benchmark policies like UCRL and PSRL are designed to minimize regret which involves

balancing the exploration-exploitation trade-off. On the other hand, Q-OCBA focuses on efficient

exploration only, i.e., our goal is to minimize the probability of incorrect policy selection. This is

achieved by carefully utilizing the variance information gathered from the previous stages, and is

made possible by our derived asymptotic variance formulas.

Lastly, we observe that randomness in reward contaminates the estimation. For example, when

rL = 1 (Figure 2(a)), Q-OCBA is able to achieve a higher than 90% probability of correct selection

when the sample size is 103. However, when rL ∼N (1,102)(Figure 2(c)), even with a sample size

of 7× 103, the probability of correct selection under Q-OCBA is only around 80%. Nevertheless,
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even with a high variability in reward, Q-OCBA still outperforms other benchmark policies. For

example, when rL ∼ N (1,102) and n = 7 × 103, Q-OCBA achieves a 14% higher probability of

correct selection than the second best, which in this case is RE(0.6).

Figure 2 Probability of correct selection (PCS) with different sampling budgets and different values of rL.

(a) rL = 1 (b) rL = 3

(c) rL ∼N (1,102) (d) rL ∼N (3,102)

In practice, when we have a two-stage implementation where we collect experience in the first

stage and deploy the trained policy to collect reward in the second stage, we would care more

about the regret from the trained policy than the probability of obtaining the optimal policy itself.

Let π̂∗
n denote the estimated optimal policy trained offline using a sample of size n collected via a

proper exploration policy, e.g., Q-OCBA. In this case, we define the future regret as

R= ρT (V ∗ −E[V π̂∗n)].

In particular, R measures the average loss from deploying the estimated optimal policy in the

second stage.
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In Figure 3, we compare the future regret for π̂∗
n’s trained based on data collected under different

first-stage exploration policies using the examples as those in Figure 2. We observe that Q-OCBA

still outperforms most benchmark policies. For example, when rL = 1 and n= 2× 103, the regret

of the policy trained using data collected under Q-OCBA is only 1/160 of that using PSRL, and

1/30 of that using ǫ-greedy. Even though Q-OCBA is not designed to minimize R, it is intuitive

that the probability of selecting the optimal policy is positively corrected with V π̂∗n , which matches

our empirical observations.

Figure 3 Future regret of Q-OCBA vs benchmarks as n increases

(a) rL = 1 (b) rL = 3

(c) rL ∼N (1,102) (d) rL ∼N (3,102)

Next, we vary the value of ms to test the performance of the algorithm for large state spaces.

In particular, we fix n = 105 and assume rL ∼N (2,1). For the sequential update (for Q-OCBA,

PSRL, and ǫ-greedy), we set K = 10. For the initialization, we sample P̂B0
, µ̂R,B0

and σ̂2
R,B0

from

Uniform[0,1] (P̂B0
needs further normalization to be a valid transition matrix).
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Figure 4 compares the performance (probability of correct selection and future regret) under

different data collecting polices for different values of ms. We also calculate the performance of

Q-OCBA with known system parameters (i.e., hij’s defined in (10) can be evaluated exactly). This

oracle policy is referred to as Q-OCBAknown.

We observe from Figure 4 that with a fixed sampling budget, the performance of all policies

deteriorates as ms increases. This is because the problem is more difficult to learn as the state

space grows larger. Q-OCBAknown performs the best among all policies tested. Even when ms = 55,

it still achieves a 52% probability of correct selection. Q-OCBA consistently outperforms the other

benchmark policies. For example, when ms = 45, Q-OCBA (with estimated parameters) achieves a

25% probability of correct selection, while the best benchmark policy, which in this case is RE(0.8),

only has an 11% probability of correct selection. We also observe that the performance of UCRL,

PSRL, and ǫ-greedy deteriorate very quickly as ms increases. When ms ≥ 15, their probability of

correct selection is almost zero. This suggests that with a limited sampling budget, when the state

space is large, it is very important to optimize the exploration policy to collect informative data

for policy training. In this regard, Q-OCBA shows the potential to outperform in this example.

Figure 4 Probability of correct selection (PCS) and future regret with different ms

(a) (b)

6.2.2. Tuning Q-OCBA Q-OCBA requires very minimum tuning. Given a sampling budget,

we need to specify the number of iterations K and the budget for each iteration. In addition, we

need to provide some reasonable initializations for P̂ (·|s, a) and µ̂R(s, a).
We note from our experiments that the performance of Q-OCBA is quite robust to different

choices of initializations. This robustness stems from the updating criterion (15). In particular,

(15) leads to stationary distributions that are reasonably far from zero for all the state-action
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pairs. This stationary measure induces efficient exploration even when the initializations deviate

substantially from the true values. In Table 3, we report the probability of correct selection under

different initialization for RiverSwim with ms = 6 for different values of rL. We set the initialization

for P̂ (·|s, a) as uniform, i.e., for 1 ≤ s ≤ 4, p0(s′|s, a) = 1/3 for s′ ∈ {s, s + 1, s − 1}, for s = 0,

p0(0|0, a) = 1/2 and P̂ (1|0, a) = 1/2, and for s= 5, p0(5|5, a) = 1/2 and p0(4|5, a) = 1/2. We vary

the initializations for µ̂R(s, a), for all (s, a)∈ S×A, from 0 to 100. The sampling budget is n= 103,

the number of iterations is K = 10, and the sampling budget is equally distributed among the 10

iterations. We observe from Table 3 that across all problem instances and initializations, Q-OCBA

achieves a very high probability of correct selection. Specifically, even in the extreme case where we

set u0
R(s, a) = 100, when the true rL = 1, the probability of correct selection is 0.97. We also note

that the probability of correct selection is not monotone in the value of rL, with rL = 2 leading to

the lowest probability of correct selection.

Table 3 Probability of correct selection using Q-OCBA under different initializations, n= 103 and K = 10

rL u0
R(s, a) = 0 u0

R(s, a) = 1 u0
R = 10 u0

R(s, a) = 100
1 0.98 0.95 0.96 0.97
2 0.91 0.91 0.87 0.84
3 0.98 0.97 0.99 0.98

We next study the choice of K – the number of iterations, which determines how often the

exploration policy is updated during data collection. Figure 5 compares the probability of correct

selection for different values of K based on RiverSwim with ms = 6. To focus on the effect of K, the

sampling budget is equally distributed among the K iterations. We observe that as K increases,

the probability of correct selection under Q-OCBA increases. Specifically, with 104 samples, when

K = 2, the probability of correct selection is only around 18%−25%; when K = 10, the probability

of correct selection increases to above 85% in all cases, with the probability almost equal to 1 for

rL = 1 or 3. However, there is a diminishing benefit of increasing K. For example, when increasing

K from 2 to 4, the probability of correct selection increases by more than 0.5. In contrast, when

increasing K from 6 to 8, the probability only increases by only 0.03. We also note that when the

sampling budget n is small or when there is a lot of uncertainty in rL, we benefit more from having

a larger value of K. In particular, when comparing Figure 5(a) to 5(c), K = 4 leads to a probability

of correct selection of 0.82 when n = 103 versus 0.98 when n = 104. When n = 103, to achieve a

higher than 0.9 probability of correct selection, we need K ≥ 6. As a general rule of thumb, we

suggest setting K between 6 and 10, as updating the policy at each iteration, i.e., solving (15),

incurs some computational cost.
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Figure 5 Number of stages against probability of correct selection (PCS)

(a) rL = 1, n= 103 (b) rL = 3, n= 103

(c) rL = 1, n= 104 (d) rL = 3, n= 104

(e) rL ∼N(1,102), n= 104 (f) rL ∼N(3,102), n= 104

7. Concluding Remarks

In this paper, we investigate the large-sample behaviors in the estimation of Q-values and related

quantities in RL. We establish the corresponding central limit theorem with an explicit character-
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ization of the asymptotic variance. Utilizing the asymptotic variance obtained, we further develop

a pure exploration policy, Q-OCBA, that maximizes the worst-case relative discrepancy among

the estimated Q-values relative to the optimal action. In our numerical experiments, we compare

Q-OCBA with various benchmark policies in terms of the probability of correctly selecting the

optimal policy and the future regret. We observe that Q-OCBA outperforms benchmark methods

according to these pure exploration criteria. Our work is among the few that investigate statistical

uncertainty quantification for RL and develop policies for pure exploration purposes.

There are several limitations of our current developments that would lead to interesting future

research directions. First, compared to existing finite-sample bounds for RL estimates, our asymp-

totics result in tighter bounds and explicit characterization of the constants (i.e., the asymptotic

variances). However, uncertainty quantification based on asymptotics also has its limitations. With

a finite sample size, we may not be able to achieve the desired confidence level and it often requires

trial and error to decide how many samples are required to achieve close-to-asymptotic perfor-

mance.

Second, our exploration policy requires estimating the transition matrix and the reward distri-

bution for each state-action pair. This may need a large amount of data and can be computation-

ally expensive when the state space and/or action space is large. We consider two approximation

schemes: nearest neighbors and kernel representation. However, in many large-scale RL problems,

it is highly non-trivial to find a good approximation or lower-dimensional representation of the

underlying MDP. How to find good approximations for large-scale problems and develop efficient

exploration policies accordingly require substantial future developments. We believe our framework

provides a promising starting point.

Lastly, the relative discrepancy maximization criteria in Q-OCBA has its own limitations. The

mean-variance trade-off in OCBA could lead to misleading results in certain low-confidence scenar-

ios (see, for example, Shin et al. (2016), Peng et al. (2017)). Other criteria for information gaining

such as knowledge gradient (Ryzhov et al. 2012) or posterior probability of correct selection (Peng

et al. 2018b) may be employed to achieve better performance. However, how to adapt these criteria

to the RL setting requires further investigation. In addition, there is in general a lack of finite-

sample performance bounds for OCBA algorithms. Developing meaningful performance guarantees

when dealing with a relatively small sample size would also be an interesting research direction.

This can provide further guidance on how to fine-tune the algorithm parameters.

Appendix A: Proofs of the results in Section 3.1

In all the subsequent proofs, we shall treat P and P̂n as Nms-dimensional vectors following the

index rule: P ((i− 1)N +(j− 1)ms+ k) = P (k|i, j), P̂n((i− 1)N +(j− 1)ms+ k) = Pn(k|i, j)
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A.1. Proof of Theorem 1

The proof of Theorem 1 is based on the delta method and the implicit function theorem.

We first note that under Assumptions 1 and 3, we have

[µ̂R,n, P̂n]→ [µR, P ] a.s. (22)

and
1

n

∑

1≤t≤n

1(st = i, at = j)→w((i− 1)ma+ j) a.s. as n→∞.

By Slutsky’s theorem and Proposition 3 in (Trevezas and Limnios 2009),

√
n([µ̂R,n, P̂n]− [µR, P ])⇒N (0,ΣR,P ), (23)

where ΣR,P is defined in (8) and is an (N +Nms)× (N +Nms) matrix.

Second, define F (Q′, r′, P ′) as a mapping from R
N ×R

N ×R
Nms to R

N , representing the fixed

point equation for the Bellman operator (1):

F (Q′, r′, P ′)((i− 1)ma+ j) = Q′((i− 1)ma+ j)− r′((i− 1)ma+ j)

−γ
∑

1≤k≤ms

P ′((i− 1)N +(j− 1)ms+ k) gk(Q
′)

for 1≤ i≤ms and 1≤ j ≤ma, where gk(Q
′) =max1≤l≤maQ

′((k− 1)ma+ l), for 1≤ k≤ms.

Under Assumption 2, there exists an open neighborhood of Q, which we denote as Ω, such that

for any Q′ ∈ Ω, argmax1≤l≤maQ
′((k− 1)ma + l) is still unique for each 1≤ k ≤ms. Then, gk(Q

′)

has all its partial derivatives exist and continuous. This implies that F (Q′, r′, P ′) is continuously

differentiable in Ω×R
N ×R

Nms .

Denote the partial derivatives of F as

∂F

∂(Q′, r′, P ′)
=

[

∂F

∂Q′
,
∂F

∂r′
,
∂F

∂P ′

]

.

Note that ∂F
∂Q′ is an N×N matrix. Denote its element at the ((i−1)ma+j)-th row, ((k−1)ma+ l)-

th column by

∂F(i−1)ma+j

∂Q′
(k−1)ma+l

= 1 (i= k, j = l)− γP ′((i− 1)N +(j− 1)ms+ k)

×1
(

Q′((k− 1)ma+ l) = max
1≤u≤ma

Q′((k− 1)ma+u)

)

.

Define P̃ ′ is an N ×N matrix with

P̃ ′((i− 1)ma+ j, (k− 1)ma+ l)

= P ′((i− 1)N +(j− 1)ms+ k)1

(

Q′((k− 1)ma+ l) = max
1≤u≤ma

Q′((k− 1)ma+u)

)
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for 1≤ i≤ms, 1≤ j ≤ma,1≤ k≤ms, and 1≤ l≤ma. Then we have

∂F

∂Q′
= I − γP̃ ′.

Since all rows of P̃ ′ sum up to one, P̃ ′ can be interpreted as the transition matrix of a Markov

chain with state space {(i, j) : 1≤ i≤ms,1≤ j ≤ma}. Then, ∂F
∂Q′ is invertible for any Q′ ∈Ω. This

allows us to apply the implicit function theorem to the equation F (Q,µR, P ) = 0. In particular,

there exists an open set U ⊂R
N ×R

Nms , around µR×P , and a unique continuously differentiable

function φ: U →R
N , such that φ(µR, P ) =Q, and for any r′ ×P ′ ∈U

F (φ(r′, P ′), r′, P ′) = 0.

In addition, the partial derivatives of φ satisfy

∇φ(µR, P ) :=
∂φ

∂(r′, P ′)

∣

∣

∣

∣

r′=µR,P
′=P

= −
[

∂F

∂Q′

]−1 [
∂F

∂r′
,
∂F

∂P ′

]

∣

∣

∣

∣

∣

Q′=Q,r′=µR,P
′=P

.

For ∂F
∂r′

, we have
∂F

∂r′

∣

∣

∣

∣

Q′=Q,r′=µR,P
′=P

=−IN×N .

For ∂F
∂P ′ , because

∂F(i−1)ma+j

∂P ′
(k−1)N+(l−1)ms+v

∣

∣

∣

∣

∣

Q′=Q,r′=µR,P
′=P

= −γ max
0≤u≤ma

Q((v− 1)ma+u)1 (k= i, j = l)

= −γV ∗(v)1 (k= i, j = l) ,

for 1≤ i≤ms, 1≤ j ≤ma,1≤ k≤ms,1≤ l≤ma, and 1≤ v≤ms, we can write

∂F

∂P ′

∣

∣

∣

∣

Q′=Q,r′=µR,P
′=P

=−γ















(V ∗)T

. . .
(V ∗)T

. . .
(V ∗)T















,

which is an N ×Nms matrix.

Now, from (22), by continuous mapping theorem, we have

φ(µ̂R,n, P̂n)−φ(µR, P )→ 0 a.s. as n→∞,

which implies that Q̂n→Q a.s..

From (23), using the delta method, we have

√
n(Q̂n−Q) =

√
n(φ(µ̂R,n, P̂n)−φ(µR, P ))⇒N (0,∇φ(µR, P )ΣR,P∇(φ(µR, P ))

T ) as n→∞.

Plugging in the formula for ∇φ(µR, P ) and ΣR,P derived above, we have

∇φ(µR, P )ΣR,P∇φ(µR, P )T = (I − γP̃ π∗)−1W−1[DR+ γ2DQ]((I − γP̃ π∗)−1)T .

�
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A.2. Proof of Corollary 1

Define gV (Q): RN →R
ms as

gV (Q) = (g1(Q), . . . , gms(Q)) = (V π∗(1), . . . , V π∗(ms)),

which is continuously differentiable in an open neighborhood of Q. Then we can apply the delta

method to get

√
n(V̂ ∗

n −V π∗) =
√
n(gV (Q̂n)− gV (Q))⇒N (0,∇gV (Q)Σ(∇gV (Q))T ) as n→∞.

Note that ∇gV (Q) is a ms×N matrix with ∇gV (Q)(i, (j− 1)ma+ k) = 1 (i= j, k= a∗(i)).

To see where the explicit expression for ΣV is from, we will first rearrange the indexes such that

we can write

P̃ π∗ =

(

P π∗ 0

# 0

)

,

where we use # as a generic placeholder for quantitities that we do not need to characterize

explicitly. Using this new indexing, we can write ∇gV (Q) = [I,0], and

DR =

(

Dπ∗

R 0

0 #

)

,W =

(

W π∗ 0

0 #

)

,DQ =

(

Dπ∗

V 0

0 #

)

.

Then

∇gV (Q)(I − γP̃ π∗)−1 = [I,0]
∞
∑

i=0

γi(P̃ π∗)i

= [I,0]
∞
∑

i=0

γi
(

(P π∗)i 0
# 0

)

=
∞
∑

i=0

γi
[

(P π∗)i,0
]

=
[

(I − γP π∗)−1,0
]

.

And thus,

∇gV (Q)Σ(∇gV (Q))T

=
[

(I − γP π∗)−1,0
]

(

W π∗ 0

0 #

)−1 [(

Dπ∗

R 0

0 #

)

+

(

Dπ∗

V 0

0 #

)]

[

(I − γP π∗)−1,0
]T

= (I − γP π∗)−1(W π∗)−1[Dπ∗

R +Dπ∗

V ]((I − γP π∗)−1)T .

Lastly, the asymptotic normality of χ̂π
∗

n follows from the delta method as well. �
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A.3. Proof of Corollary 2

The convergence results for µ̂R,n and P̂n still hold in this case. Similar to the proof of Theorem 1,

we define F π̃ as a mapping R
ms ×R

N ×R
Nms → R

ms to represent the corresponding fixed point

equation, i.e.,

F π̃(V ′, r′, P ′)(s) = V ′(s)−
∑

1≤a≤ma

r′(s, a)π̃(a|s)− γ
∑

1≤a≤ma

π̃(a|s)
∑

1≤s′≤ms

P ′(s′|s, a)V ′(s′).

Note that F π̃(V π̃, µR, P ) = 0, F π̃ is continuously differentiable and I − γP π̃ is invertible. We can

thus apply the implicit function theorem. In particular, there exists an open set U π̃ around µR×P ∈
R
N ×R

Nms , and a unique continuously differentiable function φπ̃: U π̃ →R
N , such that φπ̃(µR, P ) =

V π̃ and for any r′ ×P ′ ∈U π̃,

F π̃(φπ̃(r′, P ′), r′, P ′) = 0.

In addition, the partial derivatives of φπ̃ satisfies

∇φπ̃(µR, P ) =
∂φπ̃

∂(r′, P ′)

∣

∣

∣

∣

r′=µR,P
′=P

= −
[

∂F π̃

∂V ′

]−1 [
∂F π̃

∂r′
,
∂F π̃

∂P ′

]

∣

∣

∣

∣

∣

V ′=V π̃ ,r′=µR,P
′=P

where
∂F π̃

∂V ′

∣

∣

∣

∣

V ′=V π̃ ,r′=µR,P
′=P

= I − γP π̃,

∂F π̃

∂r′

∣

∣

∣

∣

V ′=V π̃ ,r′=µR,P
′=P

=−















π̃(·|1)T
. . .

π̃(·|i)T
. . .

π̃(·|ms)
T















,

where π̃(·|i)T = [π̃(1|i), . . . , π̃(j|i), . . . , π̃(ma|i)]
and

∂F π̃

∂P ′

∣

∣

∣

∣

V ′=V π̃ ,r′=µR,P
′=P

=−















(qπ̃1 )
T

. . .
(qπ̃i )

T

. . .
(qπ̃ms

)T















,

where (qπ̃i )
T = γ[π̃(1|i)(V π̃)T , . . . π̃(j|i)(V π̃)T , . . . π̃(ma|i)(V π̃)T ], which is an N -dimensional vector.

Applying the delta method, we have

√
n(V̂ π̃

n −V π̃) =
√
n(φπ̃(µ̂R,n, P̂n)−φπ̃(µR, P ))

⇒ N
(

0,∇φπ̃(µR, P )ΣR,P
(

∇φπ̃(µR, P )
)T
)

as n→∞,

where

∇φπ̃(µR, P )ΣR,P∇φπ̃(µR, P )T = (I − γP π̃)−1Dπ̃
(

(I − γP π̃)−1
)T
.

�
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A.4. Proof of Theorem 2

To analyze MDPs with non-unique optimal policies, we utilize the LP representation of the MDP.

Consider ρ with ρ(i)> 0, for i= 1, . . . ,ms, the optimal value function V ∗ is the optimal solution of

of the following LP.

min
∑

s ρ(s)V (s)
subject to V (s)≥ µR(s, a)+ γ

∑

s′∈S P (s
′|s, a)V (s′), ∀s, a

The dual of the LP takes the form

max
∑

s,a µR(s, a)xs,a
subject to

∑

a xs,a− γ
∑

s′,aP (s|s′, a)xs′,a = ρ(s), ∀s
xs,a ≥ 0, ∀s, a

where the decision variables, xs,a’s, are known as the occupancy measure of the MDP (Puterman

2014). If the MDP has more than one optimal policies, the dual problem has more than one optimal

solutions, which further implies that the primal problem is degenerate. The degeneracy of the LP

means that some constraints are redundant at the primal optimal solution, i.e., the optimal solution

is at the intersection of more than ms hyperplanes. Since the rows of the primal LP are linearly

independent, in this case, there are multiple choices for the set of basic variables at the optimal

solution. In addition, for any choice of ρ with positive entries, V ∗ is always the primal optimal

solution (Puterman 2014). We denote vk as the k-th optimal basis and Ak the corresponding column

vectors, 1≤ k≤ K̄, for some K̄ > 1.

For any u∈U , we denote the directional Jacobian of V with respect to P and µR as Du(P,µR).

We next show that the directional Jacobian is well defined. Vectorize the matrix (I − γP ) row by

row and denote the correspondingmsN -dimensional vector as ΓP . We write u= (uP , uR)∈R
msN+N

where uP ∈R
msN and uR ∈R

N . We also define the mapping from ΓP , µR to the k-th optimal basis

as ψk, 1≤ k≤K. In particular, vk =ψk(ΓP , µR) =A−1
k µR. We first note that ψk(ΓP + tuP , µR+ tuR)

is continuous in t. Next, fix u ∈ U , and consider the perturbed LP with constraint coefficients

ΓP + tuP and µR + tuR. Due to the continuity of ψk’s, there exists tu > 0, such that at least

one basis is still optimal for all t ∈ (0, tu). In particular, there exists ku, 1 ≤ ku ≤ K̄, such that

ψku(ΓP + tuP , µR+ tuR) is the optimal solution to the perturbed LP for any t ∈ (0, tu). Lastly, we

note that the directional derivative of ψku at (ΓP , µR) takes the form uTGku , where

Gku =
∂ψku

∂(Γ′
P , µ

′
R)

∣

∣

∣

∣

Γ′
P
=ΓP ,µ

′
R
=µR

.

This implies that Du(P,µR) = uTGku is well defined.

Because there are K̄ optimal basis, there are K ≤ K̄ distinct Gk’s. Note that we allow K < K̄

since some Gk’s may be equal. With a little abuse of notation (which might involve rearranging the
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index), we write G1, . . . ,GK as the distinct Gk’s. Then, we can partition the set U into K subsets,

U1, . . . ,UK , such that if u∈Uk, Du(P,µR) = uTGk.

Lastly, define ûn = (P̂n−P, µ̂R,n−µR)/
√

||P̂n−P ||2 + ||µ̂R,n−µR||2. We have

V̂ ∗
n −V ∗ =

K
∑

k=1

Gk1 (ûn ∈Uk) (P̂n−P, µ̂R,n−µR)+ oP (‖(P̂n−P, µ̂R,n−µR)‖).

The convergence,
√
n(V̂ ∗

n − V ∗) ⇒∑K

k=1Gk1 (Z/‖Z‖ ∈Uk)Z, then follows from the continuous

mapping theorem. �

A.5. Proof of Theorem 3

We use the LP representation of the constrained MDP. Define xs,a as the occupancy measure

xs,a =
∞
∑

t=0

γtP(St = s|S0 ∼ ρ),

where S0 ∼ ρ denotes that the initial condition of the underlying Markov chain has probability

mass function ρ. Then, xs,a satisfies the LP

max
∑

s,a µR(s, a)xs,a
subject to

∑

s,a µC(s, a)xs,a ≤ η
∑

a xs,a− γ
∑

s′,aP (s|s′, a)xs′,a = ρ(s), ∀s
xs,a ≥ 0, ∀s, a

(24)

((24) is the dual formulation in the proof of Theorem 2 with an extra constraint.) The objective

and the first constraint correspond to the objective and the constraint in the constrained MDP

formulation. The second constraint can be deduced by a one-step analysis on the definition of

occupancy measure. Let (x∗
s,a)s,a denote the optimal solution of the LP (24). Then, the optimal

policy can be expressed as

π∗(a|s) = x∗
s,a

∑

a x
∗
s,a

.

Note that the LP has ms+1 constrains (excluding the non-negativity constrains). Thus, a basis

has ms + 1 basic variables. Moreover, by our assumptions, the optimal solution is unique, which

implies that perturbing the parameters µR, µC , and P does not immediately imply an overshoot to

negative values for the reduced costs of the non-basic variables. In particular, when the perturbation

is small enough, we still retain the same optimal basis. Next, we consider two cases depending on

whether the first constraint is binding or not.

In the first case, the first constraint is non-binding. In this case, the optimal policy is deter-

ministic, i.e., for any s, xs,a > 0 for only one a. A small perturbation of the parameters still retains

the same basic and non-basic variables, and the derived perturbed policy still retains the first

constraint non-binding. The analysis then reduces to that of Corollary 2.
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In the second case, the first constraint is binding. In this case, xs,a > 0 for only one a, for all

s except one state, sr, where we can have xsr,a∗1(sr) > 0 and xsr,a∗2(sr) > 0 for two distinct actions

a∗1(sr), a
∗
2(sr). We denote the mixing parameter by α∗ := π∗(a∗1(sr)|sr), and so π∗(a∗2(sr)|sr) = 1−α∗.

Again, perturbing the parameters retains the same basic and non-basic variables. In particular, the

first constraint remains binding in the perturbation, and the perturbed optimal policy π∗ is still

split at the same state and between the same actions.

We next make a few observations for case 2. First, we define

F π∗

L (L, c,P ′, α′) =L(s)−
[

c(s, a∗(s))+ γ
∑

s′

L(s′)P (s′|s, a∗(s))
]

1(s 6= sr)

−
[(

c(sr, a
∗
1(sr))+ γ

∑

s′

L(s′)P (s′|s, a∗1(s))
)

α′

+

(

c(sr, a
∗
2(sr))+ γ

∑

s′

L(s′)P (s′|s, a∗2(s))
)

(1−α′)

]

1(s= sr)

Then we have F π∗

L (Lπ
∗

, µC , P,α
∗) = 0 and I − γP π∗ is invertible. Thus, by the implicit function

theorem, there exists a continuously differentiable function φL such that Lπ
∗

= φL(µC , P,α
∗). Next,

define

F π∗

α (c,P ′, α′) = η− ρTφL(c,P
′, α′).

By applying the implicit function theorem again, we have there exists a continuously differentiable

function φα such that α∗ = φα(µC , P ). Following the same line of arguments as above, we define

F π∗

V (V ′, r′, P ′, α′) =V ′(s)−
[

r′(s, a∗(s))+ γ
∑

s′

V ′(s′)P (s′|s, a∗(s))
]

1(s 6= sr)

−
[(

r′(sr, a
∗
1(sr))+ γ

∑

s′

V ′(s′)P (s′|s, a∗1(s))
)

α′

+

(

r′(sr, a
∗
2(sr))+ γ

∑

s′

V ′(s′)P (s′|s, a∗2(s))
)

(1−α′)

]

1(s= sr)

Then, by the implicit function theorem, V ∗ can be viewed as a continuously differentiable function

of µR, P and α∗, i.e., V ∗ = φI(µR, P,α
∗). Since α∗ can be viewed as a continuously differentiable

function of µC and P , V ∗ can also be viewed as a function of µR, µC , and P , i.e., V
∗ = φV (µR, µC , P ).

Lastly, using the delta method, we have

√
n(V̂ ∗

n −V ∗)⇒N(0,∇φV (µR, µC , P )ΣR,C,P (∇φV (µR, µC , P ))T ) as n→∞,

where ∇φV (µR, µC , P ) is the Jacobian of φV evaluated at µR, µC , P , and ΣR,C,P is the estimation

covariance matrix of µR, µC , P .
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To see where the explicit expression for Σc is from, we note that

∂φV
∂(r′, c′, P ′)

=
∂φI

∂(r′, c′, P ′)
+
∂φI
∂α′

∂φα
∂(r′, c′, P ′)

.

For φI , we have

∂φI
∂(r′, P ′, α′)

∣

∣

∣

∣

r′=µR,P
′=P,α′=α∗

= −
[

∂F π∗

V

∂V ′

]−1 [
∂F π∗

V

∂r′
,
∂F π∗

V

∂P ′
,
∂F π∗

V

∂α

]

∣

∣

∣

∣

∣

V ′=V ∗,r′=µR,P
′=P,α′=α∗

and
∂φI
∂c′

= 0,

where

∂F π∗

V

∂V ′

∣

∣

∣

∣

V ′=V ∗,r′=µR,P
′=P,α′=α∗

= I − γP π∗ ,
∂F π∗

V

∂r′

∣

∣

∣

∣

V ′=V ∗,r′=µR,P
′=P,α′=α∗

=−Gπ∗ ,

∂F π∗

V

∂P ′

∣

∣

∣

∣

V ′=V ∗,r′=µR,P
′=P,α′=α∗

=−Hπ∗

V , and
∂F π∗

V

∂α′

∣

∣

∣

∣

V ′=V ∗,r′=µR,P
′=P,α′=α∗

=−hV .

Similarly, for φα, we have

∂φα
∂(c′, P ′)

∣

∣

∣

∣

c′=µC ,P
′=P

= −
[

∂F π∗

α

∂α′

]−1 [
∂F π∗

α

∂c′
,
∂F π∗

α

∂P ′

]

∣

∣

∣

∣

∣

α′=α∗,c′=µC ,P
′=P

and
∂φα
∂r′

= 0,

where

∂F π∗

α

∂α′

∣

∣

∣

∣

α′=α∗,c′=µC ,P
′=P

=−ρT (I − γP π∗)−1hL,
∂F π∗

α

∂c′

∣

∣

∣

∣

V ′=V ∗,r′=µR,P
′=P,α′=α∗

=−ρT (I − γP π∗)−1Gπ∗ ,

and
∂F π∗

α

∂P ′

∣

∣

∣

∣

V ′=V ∗,r′=µR,P
′=P,α′=α∗

=−ρT (I − γP π∗)−1Hπ∗

L .

�

Appendix B: Proof of the results in Section 4

B.1. Proof of lemma 1

For any given policy π, by the balance equation for Markov Chains, its induced stationary distri-

bution wπ satisfies

∑

k,l

wπ((k− 1)ma+ l)P (i|s= k, a= l)π(a= j|s= i) =wπ((i− 1)ma+ j)

for any i∈ S, j ∈A. Summing up across j’s for each i, we have

∑

j

wπ((i− 1)ma+ j)

=
∑

j

∑

k,l

wπ((k− 1)ma+ l)P (i|s= k, a= l)π(a= j|s= i)

=
∑

k,l

wπ((k− 1)ma+ l)P (i|s= k, a= l)
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On the other hand, for any w in W, πw satisfies

∑

k,l

w((k− 1)ma+ l)P (i|s= k, a= l)πw(a= j|s= i)

=
∑

k,l

w((k− 1)ma+ l)P (i|s= k, a= l)w((i− 1)ma+ j)/
∑

u

w((i− 1)ma+u)

=
∑

u

w((i− 1)ma+u)w((i− 1)ma+ j)/
∑

u

w((i− 1)ma+u) =w((i− 1)ma+ j)

for all i ∈ S. Thus, w is the stationary distribution of the Markov chain with transition matrix

P̃ πw . �

B.2. Proof of Theorem 4

We use the superscript n to mark the dependence of Bk’s and K on n, e.g., Bn
k and Kn when the

sampling budget is n.

In the first case in the first result, after collecting Bn
k̂−1

data points, as Cl > 0, wk̂(s, a)> 0

for any (s, a)∈ S×A. Then, as Bn
k̂
−Bn

k̂−1
→∞, each (s, a) is visited infinitely often. By Theorem 1,

Q̂Bn

k̂
→Q a.s. as n→∞. Next, because ĉij,Bn

k̂
→ cij a.s. as n→∞, by continuous mapping theorem,

we have π̂B
k̂
→ πe a.s. as n→∞.

In the second case in the first result, because Cl > 0, there exists ǫ > 0 such that

min(s,a)∈S×Awk(s, a)> ǫ for all k = 1,2, . . . . Because Bk −Bk−1 ≥N , for any (s, a) ∈ S ×A, there

is a positive probability of visiting (s, a) at each stage. Thus, as K → ∞, each (s, a) is visited

infinitely often. The rest follows the same line of argument as in the first case.

In the second result, we first introduce a few more notations. Let bk = Bk −Bk−1, i.e., the

number of steps in the k-th iteration. Let sk,i, 1≤ i≤ bk, denote the state visited at the i-th step

in the k-th iteration and ak,i denote the action taken then.

Note that wk is the stationary distribution of P̃ πk , i.e., the Markov chain under the exploration

policy for iteration k. Then, by the large deviations theory for the empirical measure of a Markov

chain (Theorem 1.2 in Ellis et al. (1988)), we have for any given ǫ > 0,

sup
(sk,0,ak,0)∈S×A

P

(

sup
(s,a)∈S×A

∣

∣

∣

∣

∣

1

bk

bk
∑

i=1

1(sk,i = s, ak,i = a)−wk(s, a)

∣

∣

∣

∣

∣

≥ ǫ

∣

∣

∣

∣

∣

sk,0, ak,0

)

≤ exp(−bkI(ǫ,wk))

for some large deviations rate function I, where I(ǫ,wk) > 0 when ǫ > 0 and I is continuous in

wk (I is continuous in P̃ πk , which is in turn continuous in wk). Because wk → w∗ as k→∞ and

I(ǫ,w∗)> 0, there exists Ī(ǫ)> 0 such that mink≥1 I(ǫ,wk)≥ Ī(ǫ). Then, as bk ≥ γk,

∞
∑

k=1

sup
(sk,0,ak,0)∈S×A

P

(

sup
(s,a)∈S×A

∣

∣

∣

∣

∣

1

bk

bk
∑

i=1

1(sk,i = s, ak,i = a)−wk(s, a)

∣

∣

∣

∣

∣

≥ ǫ

∣

∣

∣

∣

∣

sk,0, ak,0

)

≤
∞
∑

k=1

exp(−γkĪ(ǫ))<∞



44

By Borel-Cantelli Lemma,

1

bk

bk
∑

i=1

1(sk,i = s, ak,i = a)−wk(s, a)→ 0 a.s. as k→∞.

Next, note that for any (s, a)∈ S ×A,

1

BK

K
∑

k=1

bk
∑

i=1

1(sk,i = s, ak,i = a)−w∗(s, a)

=
K
∑

k=1

bk
BKn

(

1

bk

bk
∑

i=1

1(sk,i = s, ak,i = a)−wk(s, a)+wk(s, a)−w∗(s, a)

)

=
1

BK

K
∑

k=1

(

1

bk

bk
∑

i=1

1(sk,i = s, ak,i = a)−wk(s, a)

)

bk+
K
∑

k=1

bk
BK

(wk(s, a)−w∗(s, a))

As
1

bk

bk
∑

i=1

1(sk,i = s, ak,i = a)−wk(s, a)→ 0 and wk →w∗ a.s. as k→∞,

by Silverman–Toeplitz Theorem,

1

BK

K
∑

k=1

bk
∑

i=1

1(sk,i = s, ak,i = a)−w∗(s, a)→ 0 a.s. as n→∞.

�

Appendix C: Proof of the Results in Section 6

C.1. Proof of Theorem 5

Denote

[µ̂R,n, P̂n]S0
= [µ̂R,n((i− 1)ma+ j), P̂n((i− 1)N +(j− 1)ms+ k)]i∈S0,1≤j≤ma,1≤k≤ms ,

and

[µR, P ]S0
= [µR((i− 1)ma+ j), P ((i− 1)N +(j− 1)ms+ k)]i∈S0,1≤j≤ma,1≤k≤ms .

By Assumption 6, we have

√
n([µ̂R,n, P̂n]S0

− [µR, P ]S0
)⇒N (0,ΣR,P,S0

) where ΣR,P,S0
=

(

W−1
S0
DS0
R 0

0 DS0
P

)

.

NoticeMg ◦MS0
I ◦Tµ̂R,n,P̂n

only involves random variables [µ̂R,n, P̂n]S0
. Changing the distribution

of [µ̂R,n, P̂n]S\S0
will not change the distribution of Q̂M

n . We can thus assign auxiliary random

variables to µ̂R,n and P̂n for all i /∈ S0, 1≤ j ≤ma, 1≤ k ≤ms. In particular, we use independent

random variables for each i /∈ S0 by letting

µ̂R,n((i− 1)ma+ j)
D
=

1√
n
N (µR((i− 1)ma+ j),1)
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P̂n((i− 1)N +(j− 1)ms+ k)
D
=

1√
n
N (P ((i− 1)N +(j− 1)ms+ k),1).

Doing so, we extend the ms0ma-dimensional random variable [µ̂R,n, P̂n]S0
to an msma-dimensional

random variable [µ̂R,n, P̂n]S and

√
n([µ̂R,n, P̂n]S − [µR, P ]S)⇒N (0,ΣR,P,S) where ΣR,P,S =

(

ΣR,P,S0
0

0 I

)

.

Similar to the proof of Theorem 1, define

FM(Q′, r′, P ′) =Q′ −Mg ◦MS0
I ◦ Tr′,P ′(Q′).

By Assumption 4, Mg is max-norm non-expansion. Then, Mg ◦ MS0
I is also max-norm non-

expansion, which implies that ∇(Mg ◦MS0
I ) has all its eigenvalues less than or equal to 1. Thus,

∂FM
∂Q′

=∇M(Tr′,P ′(Q′))(I − γP̃ ′)

is invertible. By Assumption 4, we have FM(QM , µR, P ) = 0. By Assumption 5, there exists a

neighborhood ΩM around (QM , µR, P ), such that FM is continuously differentiable on ΩM . Then,

applying the implicit function theorem, we have that there exists an open set EM ⊂ ΩM and a

continuously differentiable function φM on EM , such that φM(µR, P ) =QM and

∇φM(µR, P ) = −
[

∂FM
∂Q′

]−1 [
∂FM
∂r′

,
∂FM
∂P ′

]

∣

∣

∣

∣

∣

Q′=QM ,r′=µR,P
′=P

.

Using the delta method, we have

√
n(Q̂M

n −QM)⇒N (0,∇φM(µR, P )ΣR,P,S(∇φM(µR, P ))
T ) =N (0,ΣMS0

) as n→∞.

�

C.2. Proof of Lemma 2

We have

√
n(M̂n−M∗) =A−1

n

√
n

(

n
∑

i=1

φ(si, ai)ψ(s
′
i)K

−1
ψ −φ(si, ai)φ

T (si, ai)M
∗

)

−√
nA−1

n M∗

=

(

1

n
An

)−1√
n

(

1

n

n
∑

i=1

G(xi)

)

−
(

1

n
An

)−1
1√
n
M∗.

We first note that as n→∞,

1√
n
M∗ ⇒ 0 and

1

n
An⇒Ew̄[φ(s(X̄), a(X̄))φT (s(X̄), a(X̄))] =

∑

s,a

ws,aφ(s, a)φ(s, a)
T .
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We next note that because

Ew̄[Gv(X̄)] =
∑

(s,a)∈S×A

ws,a

(

φ(s, a)φ(s, a)TM∗

(

∑

s′∈S

ψ(s′)ψ(s′)T

)

K−1
ψ −φ(s, a)φ(s, a)TM∗

)

= 0.

By Markov Chain Central Limit Theorem, we have

√
n

(

1

n

n
∑

t=1

G(X̄t)

)

⇒N (0,ΣG) as n→∞,

where

ΣG =Var(Gv(X0))+ 2
∞
∑

i=1

Cov(Gv(X0),Gv(Xi)).

Then, by Slutsky’s theorem,

√
n(Mv,n−M∗

v )⇒N(0,Υ−1
E ΣGΥ

−1
E ) as n→∞.

Because P̂K
n (s′|s, a) = Fφ,ψ(s, a, s

′)M̂n,v,

√
n(P̂K

n (s′|s, a)−P (s′|s, a))⇒N (0, Fφ,ψ(s, a, s
′)Υ−1

E ΣGΥ
−1
E (Fφ,ψ(s, a, s

′))T ) as n→∞.

�

C.3. Proof of Lemma 3

We have

√
n(θ̂µ,n− θµ) = (ΦTµ,nΦµ,n)

−1
√
n

n
∑

i=1

φµ(si, ai)(ri−φµ(si, ai)
T θµ)

=

(

1

n
ΦTµ,nΦµ,n

)−1√
n

(

1

n

n
∑

i=1

H(x̃i)

)

.

We first note that
1

n
ΦTµ,nΦµ,n⇒Υµ as n→∞.

Next, because Ew[H(X̃)] = 0, by Markov Chain Central Limit Theorem, we have

√
n

(

1

n

n
∑

i=1

H(x̃i)

)

⇒N (0,ΣH) as n→∞,

where

ΣH =Varw(H(X̃0))+ 2
∞
∑

t=1

Covw(H(X̃0),H(X̃t)).

Then, by Slutsky’s theorem,

√
n(θ̂µ,n− θµ)⇒N (0,Υ−1

µ ΣHΥ
−1
µ )

Lastly, because µ̂R,n(s, a) = φµ(s, a)
T θ̂µ,n,

√
n(µ̂R,n(s, a)−µR(s, a))⇒N

(

0, φµ(s, a)
TΥ−1

µ ΣHΥ
−1
µ φµ(s, a)

)

as n→∞.

�
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C.4. Proof of Theorem 6

The proof of Theorem 6 is similar to that of Theorem 1. We first note that under Assumption 1,

by Lemmas 2 and 3,

√
n([µ̂R,n, Pn]− [µR, P ])⇒N (0,ΣKR,P ), as n→∞,

where

ΣKR,P =

(

DK
R 0

0 DK
P

)

, DK
P = Fφ,ψΥ

−1
E ΣGΥ

−1
E F T

φ,ψ, DK
R = φTµΥ

−1
µ ΣHΥ

−1
µ φµ.

The covariance block 0 in ΣKR,P is due to the fact that under Assumption 1,

Ew̄

[

(

r(X̄)−φµ(X̄)T θµ
) (

φ(s(X̄), a(X̄))ψ(s′(X̄))K−1
ψ −φ(s(X̄), a(X̄))φ(s(X̄), a(X̄))TM∗

)

]

= 0.

Next, define F (Q′, r′, P ′) as a mapping from R
N ×R

N ×R
Nms to R

N , representing the fixed point

equation for the Bellman operator (1). Specifically,

F (Q′, r′, P ′)((i− 1)ma+ j) =Q′((i− 1)ma+ j)− r′((i− 1)ma+ j)

− γ
∑

1≤k≤ms

P ′((i− 1)N +(j− 1)ms+ k) gk(Q
′),

for 1≤ i≤ms and 1≤ j ≤ma, where gk(Q
′) =maxlQ

′((k− 1)ma+ l), for 1≤ k≤ms. We can then

apply the implicit function theorem to the equation F (Q,µR, P ) = 0. In particular, there exists

an open set U ⊂R
N ×R

Nms , around (µR, P ), and a unique continuously differentiable function ν:

U →R
N , such that ν(µR, P ) =Q, and for any (r′, P ′)∈U

F (ν(r′, P ′), r′, P ′) = 0.

Using the delta method, we have

√
n(Q̂K

n −Q) =
√
n(ν(µ̂R,n, P̂

K
n )− ν(µR, P ))⇒N (0,∇ν(µR, P )ΣKR,P (∇ν(µR, P ))T ) as n→∞.

Plugging in the formulas for ∇ν(µR, P ) and ΣKR,P , we have

∇ν(µR, P )ΣKR,P∇ν(µR, P )T = (I − γP̃ π∗)−1[DK
R + γ2VDD

K
P VD]((I − γP̃ π∗)−1)T .

�

Appendix D: Optimal Exploration under a Different Objective

In Q-OCBA, the sequential exploration policy is derived by maximizing the worst-case relative

discrepancy among all Q-value estimates. If one is interested in obtaining the best estimate of χ∗

(i.e., the optimal value function initialized according to ρ), then it would be more natural to solve

min
w∈Wη

σ2
χ. (25)
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From (25), the optimal exploration policy πw can be derived based on Lemma 1. The motivation is

that by doing so, the half-width of the CI for χ∗ is minimized. We refer to this policy as χ∗-OCBA

Table 4 compares the half-width of 95% CI for χ∗ constructed using data collected under different

exploration policies. The half-width is estimated based on 103 independent replications of the

procedures and the estimation errors (half width of the 95% CIs) are around 0.01. We vary rL

from 1 to 3. The total sampling budget is n = 104. 30% of the budget is used to collect some

initial data under RE with π(1|s) = 0.8. We then use the initial data to train ǫ-greedy with ǫ= 0.2,

UCRL, PSRL, Q-OCBA, and χ∗-OCBA. This two-stage implementation creates a warm start

to help UCRL and PSRL achieve the correct coverage rate, i.e., 95%. In particular, using this

implementation, all policies in Table 4 are able to achieve the nominal coverage.

We observe that χ∗-OCBA leads to shorter CIs in χ∗ estimation compared to benchmark policies.

For example, when rL = 3, the half-width of the CI constructed from χ∗-OCBA is at least 40%

less than those constructed using PSRL or UCRL. The performances of χ∗-OCBA and Q-OCBA

appear quite similar, with χ∗-OCBA moderately better. For example, when rL = 3, the half-width

of the CI constructed from χ∗-OCBA is 24% less than that using Q-OCBA. We attribute the

improvement to the targeted criterion on χ∗ estimation used in our policy design of χ∗-OCBA. We

also note that the performance of χ∗-OCBA is robust against different values of rL. This is not

the case for some benchmark policies such as PSRL, which is designed to strike a balance between

exploration and exploitation. For example, when rL = 1, PSRL can perform as well as Q-OCBA,

with the half-width of the CI being 2.16 for PSRL, and 2.2 for χ∗-OCBA. However, when rL = 2

or 3, χ∗-OCBA demonstrates significant advantages over PSRL. Specifically, the half width of the

CI using χ∗-OCBA is less than 58% of that using PSRL. This observation is consistent with our

observation from Figure 2 where we consider the probability of correct selection.

Table 4 Comparison of CI half-widths for different exploration policies

rL 0.2-greedy RE(0.6) PSRL UCRL Q-OCBA χ∗-OCBA
1 3.50 3.47 2.16 6.25 2.58 2.20
2 3.12 2.07 3.26 3.31 1.38 1.35
3 1.47 1.48 1.40 1.40 1.06 0.81
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Schöner H (2017) The role of simulation in development and testing of autonomous vehicles. Driving Simu-

lation Conference, Stuttgart.

Serfling RJ (2009) Approximation Theorems of Mathematical Statistics, volume 162 (John Wiley & Sons).

Shah D, Xie Q (2018) Q-learning with nearest neighbors. Advances in Neural Information Processing Systems,

3111–3121.
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