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Abstract

The Alchemical Transfer Method (ATM) is herein validated against the relative

binding free energies of a diverse set of protein-ligand complexes. We employed a

streamlined setup workflow, a bespoke force field, and the AToM-OpenMM software

to compute the relative binding free energies (RBFE) of the benchmark set prepared
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by Schindler and collaborators at Merck KGaA. This benchmark set includes exam-

ples of standard small R-group ligand modifications as well as more challenging sce-

narios, such as large R-group changes, scaffold hopping, formal charge changes, and

charge-shifting transformations. The novel coordinate perturbation scheme and a dual-

topology approach of ATM address some of the challenges of single-topology alchem-

ical relative binding free energy methods. Specifically, ATM eliminates the need for

splitting electrostatic and Lennard-Jones interactions, atom mapping, defining ligand

regions, and post-corrections for charge-changing perturbations. Thus, ATM is sim-

pler and more broadly applicable than conventional alchemical methods, especially for

scaffold-hopping and charge-changing transformations. Here, we performed well over

500 relative binding free energy calculations for eight protein targets and found that

ATM achieves accuracy comparable to existing state-of-the-art methods, albeit with

larger statistical fluctuations. We discuss insights into specific strengths and weak-

nesses of the ATM method that will inform future deployments. This study confirms

that ATM is applicable as a production tool for relative binding free energy (RBFE)

predictions across a wide range of perturbation types within a unified, open-source

framework.

Introduction

Alchemical binding free energy prediction tools are emerging as a best-in-class standard for

in silico prediction of binding free energies (i.e., protein-ligand binding affinity) in structure-

based drug design.1–6 While many challenges remain,7,8 the increased utilization of RBFE

calculations has been fueled in part by the promising results of large-scale validation cam-

paigns against benchmark sets representative of actual drug discovery projects.8–19

Despite decades of progress, reliable prediction of binding affinities of protein-ligand

complexes remains a challenging problem with many unresolved issues, especially related to

large chemical modifications, core transformations, and formal charge changes. In principle,
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the dissociation constant of a complex can be measured via brute force molecular dynamics

(MD) simulations by sampling many binding/unbinding events.20 However, this approach

is generally not practical because the typical residence time of the ligand in the binding

site (from milliseconds to hours) is too computationally expensive for practical applications

in drug discovery. The alternative physical pathway methods21–28 consist of measuring the

reversible work of dragging the ligand from the solution to the binding site (or vice versa)

along a chosen route. While physically appealing and computationally more efficient than

brute force MD,26,29–31 physical pathway methods are rarely used in small molecule structure-

based drug design because they require overcoming transition states and they do not readily

apply to the common enclosed binding sites that lack a clear entryway.27 Furthermore,

physical pathway methods do not apply to the direct estimation of relative binding free

energies useful in drug discovery applications.

In drug discovery applications, knowledge of the change in binding affinity resulting

from modifying a ligand into another is usually more relevant than that of their absolute

binding affinities due to the nature of the iterative design-make-test (DMT) cycle that is

almost always employed to advance a hit to a development candidate.2,10,12 Furthermore,

while sampling of the full binding/unbinding pathway can yield information about binding

kinetics, it is unnecessary for the computation of binding thermodynamics. Accordingly,

Relative Binding Free Energy (RBFE) alchemical protocols can estimate the difference in

the binding free energies of a pair of related ligands more directly than computing each of

their absolute binding free energies.19,32–34 That being said, absolute binding free energies

still have great potential value in the context of virtual screening of diverse molecules.35 This

work focuses on relative binding free energies in the context of optimizing screening hits to

drugs.

In most RBFE software implementations, the transformation of one molecule to another

is accomplished by parameter interpolation approaches33,36 that scale parameters of the po-

tential energy function to convert one ligand into another through an alchemical transforma-
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tion. However, parameter interpolation schemes require complex and often non-transferable

customization of the energy subroutines of molecular dynamics engines and custom soft-core

pair-potentials used to correct singularities of the alchemical potential energy function.37,38

Moreover, parameter interpolation implementations typically do not directly connect the two

ligands in their bound states. Rather, they rely on a thermodynamic cycle and alchemical

calculations in solution and receptor environments separately, and often each step is further

split into the decoupling of electrostatic and non-electrostatic interactions to avoid numeri-

cal instabilities.8,33 Furthermore, transformations involving changes in the net ligand charge

require the additional calculation of correction factors.39–43

Atom mapping procedures to find corresponding atom pairs for interpolation and the cre-

ation or annihilation of atoms to dummy types add complexities to current single-topology al-

chemical RBFE protocols.11,44–46 Single-topology transformations often encode non-standard

molecular topology formats that require custom system setup workflows that are incom-

patible with standard molecular visualization and trajectory analysis tools. In many im-

plementations, RBFE alchemical schemes are limited to R-group transformations involv-

ing ligand pairs sharing a common scaffold.8,47 Except for a few commercial products,48–50

scaffold-hopping RBFE calculations involving cyclization, ring expansion, linking, or any

other transformation that necessitate the breaking or the formation of chemical bonds,51 are

not generally supported.

We have recently developed the Alchemical Transfer Method (ATM) that resolves many of

the aforementioned complexities of RBFE calculations. The key innovations of the method

are 1) the mapping of the potential energy functions of the unbound and bound states

by a coordinate transformation rather than a variation of parameters and 2) expressing

the alchemical potential energy function in a dual-topology formulation as the combination

of the energy functions of the physical end states rather than the interpolation of their

parameters.28,34,52,53

ATM is not as affected by the complexities of traditional alchemical methods. It supports
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absolute and relative binding free energy calculations in a unified way, computes free energies

directly employing a single simulation box with standard chemical topologies, and natively

supports diverse perturbations (standard R-groups, charge-changing, and scaffold-hopping

transformations) without correction factors and ancillary calculations. Furthermore, since

ATM employs a dual-topology formalism and does not use parameter interpolation or custom

soft-core pair potentials, it is easier to implement and more straightforward to transfer across

MD engines because it uses the unmodified energy routines of the underlying molecular dy-

namics engine. For the same reason, it applies to any molecular energy function, including

the next generation of polarizable,54–57 quantum-mechanical,58–61 and machine-learning po-

tentials62,63 that are starting to be employed in macromolecular simulations. The current

open-source software release of ATM employs the OpenMM molecular dynamics engine and

has been successfully tested on a series of drug discovery targets with the AMBER molecular

mechanics force field in academic and industrial settings.18,34

The simplifications and greater range of applicability afforded by the alchemical transfer

approach can be particularly useful in drug-discovery deployments to screen large and diverse

ligand libraries in a more streamlined fashion. In this work, we validate ATM against the

community benchmark prepared by Schindler et al.,12 which contains examples of standard

peripheral group transformations as well as more challenging scaffold-hopping and charge-

changing transformations representative of real-world drug-discovery applications.

Given the large number of calculations involved, aspects of the ATM workflow have been

automated, which was facilitated by the nature of the ATM approach that avoids custom

alchemical topologies and atom mapping typical of conventional RBFE workflows.4,8,36,64,65

Knowing that the quality of the potential energy functions can have a substantial effect on

the free energy prediction accuracy,66,67 we applied a bespoke force field parameter generation

protocol for each of the ligands. While the force field generation engine (FFEngine) is not

publicly available, the parameters for each of the ligands in this work have been included in

the Supporting Information. Thus, the work presented here is fully reproducible using the
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open-source version of ATM and the published force field parameters.

The paper is organized as follows: We first introduce the theory of the Alchemical Transfer

Method and present some of the key implementation details. We then describe the bench-

marks sets, system setup, and alchemical simulation details. The results are presented and

analyzed next. The paper concludes with a discussion of examples illustrating the strengths

and weaknesses of the method and identifying areas of improvement for the application of

ATM to drug discovery projects.

Theory and Methods

The Alchemical Transfer Method (ATM)

The alchemical Transfer Method (ATM) models the free energy difference between two chem-

ical states related by a coordinate transformation. One such example is the molecular binding

processes investigated here, represented as the translation of the ligand from the solvent to

the receptor binding site. The method details are fully described in previously published

works.,34,53 so an abridged account is provided here. Briefly, consider the potential energy,

U0(x), of the unbound state (R + A) of the complex between a receptor R and a ligand A

when the ligand is in solution and where x = (xR, xA, xS) represents the coordinates of the

receptor, ligand, and solvent, respectively. ATM expresses the potential energy function,

U1(x), that describes the state RA when the ligand is bound to the receptor as

U1(x) = U0(xR, xA + h, xS) , (1)

where h is a fixed displacement vector that brings the ligand from its position in the solvent

bulk to the receptor binding site (Figure 1). The free energy difference between the bound

and unbound states is then calculated by Free Energy Perturbation (FEP), similar to stan-

dard binding free energy methods. To this end, we define the perturbation energy function
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as

u(x) = U1(x) − U0(x) = U0(xR, xA + h, xS) − U0(xR, xA, xS) (2)

and introduce a λ-dependent alchemical potential energy function

Uλ(x) = U0(x) + Wλ[u(x)] , (3)

where Wλ(u) is an alchemical perturbation function with the properties W0(u) = 0 and

W1(u) = u, ensuring that Eq. (3) interpolates from the initial unbound state U0(x) at λ = 0

and the final bound state U1(x) at λ = 1. The linear alchemical perturbation function

Wλ(u) = λu is a common choice. In this work, we adopt a non-linear expression described

in Computational Details that yields faster convergence than the default linear version.68

As elaborated elsewhere,34,53 the alchemical path between the unbound and bound end-

points is divided into two legs: one starting from the unbound state at λ = 0 using the

alchemical potential in Eq. (3), and a second leg starting from the bound state U1(x)

morphing in the other direction towards the unbound state using the alchemical potential

Uλ(x) = U1(x) + W1−λ[−u(x)]. Both legs terminate at λ = 1/2 at the ATM alchemical in-

termediate with the potential energy function U1/2(x) = [U0(x) +U1(x)]/2 that is an equally

weighted average of the unbound and bound states.

The ATM formulation above is for an Absolute Binding Free Energy (ABFE) calculation.

Here, we are concerned with Relative Binding Free Energy (RBFE) prediction, in which the

binding of a ligand B occurs simultaneously as another ligand, A, leaves the receptor binding

site. The free energy change of this process is the difference between the binding free energies

of the two ligands. More specifically, an RBFE ATM calculation computes the free energy

change from the state RA + B with ligand A bound to the receptor to the state RB + A

where ligand B is bound to the receptor. In ATM, this process is described by a coordinate

transformation that translates ligand B from a position in the solvent to the binding site

and simultaneously translates ligand A from the receptor binding site to the solvent. Using
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converge the unbound state of the receptor, which can be a slow process given the possibility

of high-barrier conformational rearrangements, differences in binding site solvent structure,

changes to the protonation/tautomerization states of binding site residues, and other dif-

ferences that may exist between the bound and unbound states. ATM RBFE calculations

always have a ligand in the binding site, thus minimizing these effects. The actual free energy

of the unbound receptor is inconsequential in the context of RBFE calculations because it

is a constant for each ligand.

The alchemical intermediates in RBFE calculations are unphysical states in which the

ligands are present simultaneously in the receptor binding site and solution, each at a strength

proportional to the coupling parameter λ. The more dissimilar the ligands, the more strained

the conformations of the system required to accommodate the alchemical intermediate states.

This characteristic is reflected in the high free energy barrier encountered at the alchemical

midpoint for some ligand pairs. The height of the free energy barrier is used below as one

of the proxies to judge the quality of RBFE calculations and the confidence level of their

estimates. The specific settings of the RBFE protocol used in this work are described in

Computational Details.

FFEngine Ligand Force Field Assignment

FFEgine is a force field toolkit built with ParmEd,69 RDKit,70 GAFF2,71 GFN2-xTB,72

GPU-powered QM package Terachem73,74 that provides high-quality parameters for drug-

like molecules based on a bespoke workflow where quantum mechanical calculations are

performed on each molecule to obtain the potential surface for force field fitting. The atom

types in FFEngine are defined following the hierarchical structure described by Jin Z. et al.75

In total, FFEngine utilizes approximately 200 atom types, with the objective of covering the

chemical space of drug-like molecules.

FFEngine generates ligand parameters for the AMBER force field functional form,76

for use in AMBER, GROMACS, OpenMM, or other software packages. The charge as-
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signment uses GFN2-xTB/BCC, which is similar to the AM1/BCC model from AMBER.

Atomic partial charges are assigned based on atom types and the bond charge correction

(BCC) parameters fitted to the HF/6-31G* electrostatic potential (ESP) from 50,000 drug-

like compounds and their conformations. In GFN2-xTB/BCC, the pre-charges are assigned

with the semiempirical method GFN2-XTB. The molecular structures are relaxed with the

machine learning force field GFN-FF to prepare the structure before partial charges assign-

ment.77 The vdW, bond, angle, and torsion parameters are assigned based on a more refined

set of atom types. GAFF2 was used as the fallback parameters for bond, angle, and torsional

degrees of freedom.

DiffNet Analysis

ATM yields estimates of the differences between the binding free energies of pairs of lig-

ands. We employed DiffNet64,78 to estimate the binding free energies of the ligands in the

set. Diffnet finds the set of binding free energies most consistent with the network of their

differences (referred to as edges) and their uncertainties based on the maximum likelihood

principle. The DiffNet solution is known up to an arbitrary constant that we set to match

the average of the experimental binding free energies.

The uncertainties associated with the edges of the network of free energy transformations

are an important element of the DiffNet protocol. Edges with small uncertainties weigh on

the final solution more than edges with larger uncertainties. To define confidence levels in the

ATM RBFE predictions, we used two measures of the quality of the alchemical calculations:

1) gaps in the perturbation energy distributions and 2) height of the free energy barrier along

the alchemical path.

To assess the presence of gaps in the perturbation energy distributions, the binding

energy samples of each leg were histogrammed with bins of size ∆u = kBT/∆λ, where ∆λ =

1/Nstates is the size of the subdivision of the alchemical path among Nstates alchemical states

(approximately 13 kcal/mol in this application). A case with a sequence of two or more bins
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with zero counts was flagged as unlikely to be converged, and its uncertainty was increased by

∆u. A case with a sequence of two or more bins with less than 10% of the expected number

of samples based on a uniform distribution was flagged as possibly unconverged, and its

uncertainty was increased by a tenth of ∆u. Similarly, to capture the lower confidence of

predictions of large transformations with high free energy intermediates, we increased the

uncertainty of predictions where the free energy of the alchemical intermediate, ∆∆G(1/2),

exceeds 30 kcal/mol relative to either end state. Specifically, in these cases, we increased

the uncertainty linearly by a(∆∆G(1/2) − g) where a = 0.1 kcal/mol and g = 30 kcal/mol.

While this assessment successfully flagged possibly problematic calculations, the specific

parameters used here to assign confidence levels were set empirically and would benefit from

validation in future studies.

Simulation Setup Workflow

To conduct this work, we wrote a Python-based ATM RBFE setup and analysis workflow.

The workflow performs water placement, force field generation, reference atom selection,

displacement vector searching, AToM-OpenMM simulation, relative binding free energy cal-

culation, and DiffNet analysis. As input, the workflow requires fully prepared proteins and

docked ligand poses.

In order to get better solvation structures for the receptors, 3D-RISM79 from Amber-

Tools80 was first applied to estimate the implicit water distribution on the receptor-primary

ligand complex surface, followed by Placevent81 to place the explicit water molecules on

the complex surface. Any water molecules that clashed with other ligands in the set were

removed. The workflow then assigned ligand force field parameters using FFEngine as de-

scribed above.

An ATM RBFE calculation requires the choice of three corresponding reference atoms for

the alignment of the ligand pair.34 The alignment reference atoms cannot be colinear and are

best chosen among rigid core atoms of the two ligands. This task involves manual selection
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the reference atoms of only one representative ligand placed into the receptor binding site.

All other ligands are then automatically aligned to the first by a minimum distance search

based on their initial poses.

In the simulation box for an ATM calculation, one ligand is placed in the binding pocket,

and the other one is translated into the solvent phase by a displacement vector h. While

the choice of the displacement vector could be arbitrary, a reasonable choice should ensure

that any atom of the second ligand is at least 10 Å away from any of the receptor atoms.

On the other hand, a large displacement would unnecessarily increase the box size, affecting

performance. We used TLeap80 to generate a preliminary rectangular solvation box for the

receptor with a 10 Å water buffer to select a good displacement vector automatically. The

ATM displacement vector h was then obtained by displacing the ligand from the binding

pocket towards the center of the box face with the smallest surface area until all atoms of

the ligand were found outside the box.

The Amber input chemical topologies with the assigned force field parameters generated

by our automated workflow are listed in the simulation input files available on the GitHub

repository at https://github.com/EricChen521/ATM MerckSet.

Benchmark Systems

The benchmark sets prepared by Schindler et al.12 include eight receptor targets with 24

to 44 ligands for each target (Table 1). The benchmark also specifies the ligand pairs

forming the edges of the graph of RBFE calculations.82 In total, the benchmark set includes

264 protein-ligand complexes and 550 RBFE edges. Schindler et al. reported free energy

estimates for 525 of the 550 transformations using Schrödinger’s FEP+ package.10 In this

work, we considered all of the protein-ligand complexes and the corresponding edges except

the two involving compound 28 of the CDK8 set, which we suspect to have been misidentified.

This compound lacks a measured binding free energy and is classified as a non-binder, even

though close analogs are strong binders.83
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The benchmark sets provided by Schindler et al.12 are considered challenging because, in

addition to standard small R-group modifications, they include a significant number of more

challenging transformations. The set includes 43 large R-group transformations (more than

10 added/removed atoms), 66 charge transformations (either changing the formal charge or

moving the location of the formal charge), and 60 scaffold-hopping transformations. Large

R-group transformations are considered challenging because they often induce changes in

the conformation and hydration pattern of the complex to accommodate the new groups

of atoms. Charge-changing RBFEs, which involve ligands with different net charges, have

traditionally required specialized strategies or correction terms20,43,84 unnecessary in our al-

chemical transfer approach.34 Nevertheless, charge-changing transformations and the related

charge-shifting transformations remain challenging because of the receptor and solvent re-

organization that they often induce. Finally, scaffold-hopping transformations that include

cyclization, ring-breaking, and ring expansion/reduction transformations that involve the

breaking or forming of chemical bonds, which traditionally require specialized strategies,48,50

are generally straightforward and are treated here with ATM as any other transformation.34

Computational Details

Molecular Systems Setup

We employed the structures of the proteins and bound ligands as provided by Schindler et

al.12 The simulation systems were prepared for the RBFE calculations using the automated

workflow described above. The AMBER FF14SB force field85 was used for the protein and

the TIP3P model86 for water. K+ and Cl− ions were added to the system if needed for

neutralization. The force constants of the ligand alignment restraints were set to kr = 2.5

kcal/(mol Å2) for the position restraint, and kθ = kψ = 50 kcal/mol for the orientational

restraints.34 The Cα atoms’ positions of the receptors were restrained to their initial values

using flat-bottom harmonic restraints with a tolerance of 1.5 Å and a force constant of 25
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kcal/(mol Å2).

The solvated systems were energy minimized, thermalized, and relaxed for 400 ps at

298 K and 1 bar constant pressure and annealed to the λ = 1/2 alchemical intermediate

in 500 ps while restraining the receptor and the ligands’ atoms. The system was then

equilibrated in the NVT ensemble at 298 K for 300 ps at the alchemical intermediate after

releasing the restraints on the ligands and the receptor (except for the Cα atoms positional

restraints described above). The resulting structures were used as starting configurations for

the alchemical replica exchange simulations described next.

Alchemical Transfer Relative Binding Free Energy Protocol

ATM RBFE calculations were conducted using the AToM-OpenMM package version 3.2.3,87

the ATM MetaForce OpenMM plugin version 0.3.1,88 and the OpenMM MD engine version

7.7.89 The ATM alchemical schedule is comprised of two legs.34,53 Using the notation in-

troduced in Theory and Methods, the first leg corresponds to the transformation from the

RA+B state described by the potential energy function U0(x) to the alchemical intermediate

state R(AB)1/2+(AB)1/2 described by the potential energy function U0(x)/2+U1(x)/2. The

second leg reaches the same alchemical intermediate state but starts from the final RB + A

state. The difference between the free energy changes of the first leg and second legs yields

the relative binding free energy ∆∆G◦

b(B,A) of ligand B with respect to ligand A. The

alchemical potential energy function for the first leg is given in Eq. (3) while that for the

second leg is

U1−λ(x) = U1(x) + Wλ[−u(x)] , (5)

where 0 ≤ λ ≤ 1/2, the perturbation energy is given in Eq. (2), and, for both legs, the

alchemical perturbation function is the softplus function68

Wλ(u) =
λ2 − λ1

α
ln
[

1 + e−α(usc(u)−u0)
]

+ λ2usc(u). (6)
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The parameters λ2, λ1, α, and u0 are functions of λ (see below).52 The function

usc(u) =















u u ≤ uc

(umax − uc)fsc

[

u−uc
umax−uc

]

+ uc u > uc

(7)

with

fsc(y) =
z(y)a − 1

z(y)a + 1
, (8)

and

z(y) = 1 + 2y/a + 2(y/a)2 (9)

with, in this work, umax = 200 kcal/mol, uc = 100 kcal/mol, and a = 1/16, is the soft-

core perturbation energy function designed to avoid singularities near the initial state of the

alchemical transformation.52

A schedule of 11 equispaced λ-states from λ = 0 to λ = 1/2 was employed for each

of the two legs. The corresponding schedules of softplus alchemical parameters in Eq. (6)

were: λ1 = 0, 0, 0, 0, 0, 0, 0.1, 0.2, 0.3, 0.4, 0.5, λ2 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,

and α = 0.1 (kcal/mol)−1 and u0 = 110 kcal/mol for all λ-states. We employed this al-

chemical schedule for all the ligand pairs of the benchmark sets in this work without further

optimization.

For each run, asynchronous Hamiltonian replica exchange90 molecular dynamics confor-

mational sampling was performed with a 2 fs timestep and a replica running time of 40

ps on 4 GPUs using the AToM-OpenMM software.87 Exchanges between the two equivalent

alchemical intermediate states at λ = 1/2 allow replicas to transition from one alchemical leg

to the other. Perturbation energy samples were collected every 40 ps. Relative binding free

energies were computed from replica trajectories at least 5 ns long (approximately 110 ns of

MD in aggregate per ligand pair), discarding the first third of the samples for equilibration.

UWHAM multi-state analysis91 was used for free energy and statistical error estimation.

The molecular system files, AToM-OpenMM input files, and UWHAM analysis code are
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available on GitHub at https://github.com/EricChen521/ATM MerckSet.

Results

The relative binding free energy performance of the automated ATM protocol compared with

the experimental measurements of the benchmark sets is summarized in Figure 2, where each

point represents a ligand pair. For each target set, we report the Average Unsigned Error

(AUE), the Pearson’s correlation coefficient r, and the fraction of concordant predictions

fconcd. relative to the experiments. A concordant prediction is a case in which the direction of

the change in binding affinity of more than 0.5 kcal/mol is correctly predicted (see Methods).

According to these statistics, the c-Met, PFKFB3, CDK8, and Hif-2α predictions are

better than the other targets, with correlation coefficients of 0.6 or higher with over 80%

of concordant pairs. The performance for the c-Met set with r = 0.84 and fconcd. = 86% is

particularly encouraging. However, due to a relatively small number of outliers, the AUEs for

these sets are quite high (from 0.98 to 1.5 kcal/mol). The RBFE prediction performance for

the remaining four sets (Eg5, SHP2, Syk, and TNKS2) is not as good. The Syk and TNKS2

set have fewer major outliers and display relatively small AUEs. However, the calculated

RBFEs are poorly correlated with the experiments with correlation coefficients of 0.52 and

0.40, respectively. The SHP2 and, particularly, the Eg5 sets have both a significant number

of outliers and poor correlation with the experiments.

The confidence levels of the RBFE predictions represented by the error bars in Figure

2 vary significantly from set to set. As described in the Methods, confidence levels reflect

the difficulty of the alchemical calculation. They are assigned based on statistical fluctua-

tions, connectedness, and the height of the free energy barrier of the alchemical pathway.

Surprisingly, the calculations for c-Met, which are the closest to the experiments, generally

have higher uncertainty than the other sets. The RBFE calculations for the Eg5 and Syk

sets are also considered challenging. With a few exceptions, the RBFEs for the other sets
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are assigned with high confidence. The types of RBFE transformations and their challenges

are further explored in the Discussion.

The accuracy of the absolute binding free energies (ABFE) predictions calculated from the

RBFEs using the Diffnet protocol (see Methods) is summarized in Table 1 and illustrated in

Figure 3. The Pearson’s correlation coefficients, Kendall’s rank order correlation coefficients,

and average unsigned errors relative to the experimental binding affinities averaged over the

eight systems are r = 0.60, τ = 0.46, and AUE = 1.11 kcal/mol, respectively. These overall

statistical measures are encouraging, given the unsupervised nature of the ATM calculation

workflow and the challenges of the benchmarks. Results are slightly inferior to those obtained

for the same benchmark set with the FEP+ software package (r = 0.62, τ = 0.50, and AUE

= 0.98 kcal/mol).12

Interestingly, the triangulation of the data afforded by DiffNet results in ABFEs signifi-

cantly tighter agreement with the experiments than the RBFEs estimates. This is particu-

larly noticeable for the c-Met set, which, despite the major outliers and large uncertainties

of the RBFEs (Figure 2), yields high-confidence predictions with low AUEs (Figure 3).

The ATM ABFE predictions for three of the eight systems (c-Met, PFKBF3, and CDK8)

have high correlation coefficients and generally low AUEs relative to the experiments. FEP+,

based on a different alchemical approach, performed similarly well for these systems, sug-

gesting that they are tractable for diverse free energy methods. Although affected by a few

major outliers, the performance on the Hif-2α set is also generally good. Conversely, ATM

performed noticeably worse for the SHP2 and Syk sets, where it resulted in an unusually poor

AUE relative to the experiments. ATM and FEP+ performed equally poorly for the Syk

and Eg5 systems indicating a common set of challenges. The TNKS2 set is less informative

due to the small range of experimental affinities (Figure 3).
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Table 1: Statistical measures of the agreement between experimental and computed binding
free energy values obtained with the ATM method compared with literature results using
FEP+.12

Target ATM FEP+12

Na rb τ c AUEd rb τ c AUEd

CDK8 32 0.79 0.66 1.35 0.62 0.57 1.20
c-Met 24 0.94 0.82 0.73 0.90 0.73 0.82
Eg5 28 0.49 0.39 1.06 0.47 0.54 1.09
HIF-2α 42 0.49 0.39 0.95 0.61 0.45 0.84
PFKFB3 40 0.72 0.50 1.07 0.79 0.60 1.09
SHP-2 26 0.58 0.39 1.32 0.71 0.61 0.74
Syk 44 0.44 0.24 1.34 0.50 0.29 0.85
TNKS2 27 0.36 0.27 1.02 0.40 0.29 1.23
Cumulative 263 0.60 0.46 1.11 0.62 0.50 0.98

a Number of complexes. b Pearson’s correlation coefficient. c Kendall’s rank order
correlation coefficient. d Averaged unsigned error in kcal/mol.

Discussion

The results obtained in this validation study confirm the applicability of the ATM approach

to large-scale binding free energy estimation campaigns for challenging and diverse ligand

libraries. In this section, we present some examples illustrating the strengths and weaknesses

of the method that we observed during this work. We plan to incorporate these insights in

deploying this approach in future work.

Small Charge-Preserving R-group RBFE Estimates are Generally

Well-Converged

Over 70% of the ligand pairs of the benchmark (384 out of 548) are classified as conventional

R-group alchemical transformations involving one or more small peripheral substitutes of the

same net charge with 10 or fewer heavy atoms. The calculations of these pairs are expected

to converge rapidly, and the corresponding relative binding free energy estimates to be more

reliable than the other more challenging cases. As illustrated by the example in Figure 4,

this expectation is largely confirmed by the consistently good quality measures in terms of
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is added to a neutral carbamate substituent, is an example of this class. While the free energy

of the alchemical intermediate is high (above 40 kcal/mol), the sequence of alchemical states

is relatively well connected. The Eg5 case in Figure 7 includes a shift by three bonds of a

charged ammonium group. This alchemical transformation is assigned a large uncertainty

because it is characterized by both a disconnected alchemical path and a high free energy

intermediate.

Overall, the 66 RBFE predictions classified as either charge-changing or charge-shifting

transformations have larger uncertainties and poorer agreement with the experiments than

average. This is especially so for the transformations in this class for the SHP2 set that are

found to have an RMSE relative to the experiments in excess of 3 kcal/mol. Nearly all edges

with large uncertainties for the c-Met and Eg5 sets (Figure 2) correspond to charge-changing

or charge-shifting transformations. Achieving better convergence for these transformations

would significantly improve ATM’s promising overall prediction accuracy for these sets.

Because the system remains neutral, the poorer outcomes observed here for alchemi-

cal transfer transformations involving charge variations are not obviously due to system-

atic boundary conditions and finite system biases present in some double-decoupling proto-

cols.43,84 The convergence issues observed with charged groups are more likely related to the

conformational reorganization of the complex that occurs when interactions are varied by

placing or relocating a charged group of the ligand. This is illustrated by the case in Figure

7 where an amide hydrogen bonding acceptor group is replaced by a strong ammonium hy-

drogen bonding donor originally placed three bonds away. In this case, we observe that the

two ligands shift position and form salt bridges with two different glutamate residues of the

receptor (Figure 8). The equilibration between these two conformational states of the com-

plex hinders convergence because it occurs slowly relative to the timescales of the alchemical

simulations. In addition, because the receptor needs to accommodate both charged groups of

the ligand simultaneously, conformational frustration at the alchemical intermediate leads to

high free energies and gaps and lack of state overlaps along the alchemical pathway (Figure
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7).

This and the previous examples underscore the various ways in which differences between

ligand pairs prevent successful RBFE predictions. Two ligands can have very different sizes

and shapes, as in the example of Figure 5, or, as in the present example of Figure 7, they

can be structurally similar but differ radically in the way that corresponding groups interact

with their environments. Cases with very dissimilar ligands such as these can probably be

addressed by breaking the alchemical transformation into smaller steps by inserting suitable

chemical intermediates. For example, the transformation in Figure 7 that attempts to replace

one charged group with another simultaneously causing a large conformational reorganization

(Figure 8) could be implemented by first removing or neutralizing one ammonium group and

then inserting the other in a second step. The case in Figure 6 and similar others we observed

indicate that individual insertions of charged groups are more manageable than replacing

one charged group with another placed elsewhere.

Scaffold-hopping Transformations are as Straightforward as R-group

Transformations

The Alchemical Transfer Method is based on a dual-topology representation, making it

easier to set up scaffold-hopping transformations between ligands that do not share the

same core topology. Indeed, the ATM setup procedure described here for scaffold-hopping

transformations is the same as any other transformation. Sixty of the 548 RBFE calculations

conducted in this work were classified as scaffold hopping transformations.

As illustrated by the examples in Figures 9 and 10, the results of this validation campaign

have also shown that scaffold-hopping RBFE calculations converge just as efficiently as small

R-group transformations of the same kind. In the HIF-2α case in Figure 9, for example, a 5-

membered ring is formed by the cyclization of two substituents of the central aromatic group.

In the case of Figure 10, a 5-membered ring is expanded to a 6-membered ring. In both of

these cases and many similar ones we observed, there are good overlaps between perturbation
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results indicate that standard small R-group transformations converge rapidly, as expected.

RBFE estimates for large R-group transformations and charge-changing and charge-shifting

transformations are less reliable due to the slow convergence rate of conformational reor-

ganization effects induced by the significant changes in molecular size and ligand-receptor

interactions.

Based on the insights from this work, we plan to break up difficult RBFE transformations

into multiple, more manageable steps. For example, large R-group transformations will be

implemented as a series of smaller transformations involving suitable chemical intermediates.

Similarly, to minimize the impact of conformational reorganization effects, we will consider

breaking up transformations involving the replacement of an exclusive hydrogen bond donor

with an exclusive hydrogen bond acceptor using chemical intermediates containing groups,

such as hydroxyls, with promiscuous hydrogen bond behavior. This study further confirms

that scaffold-hopping transformations involving the formation or breaking of chemical bonds

do not provide additional challenges with this method. In conclusion, this study confirms

that ATM is a promising production tool for lead optimization in structure-based drug

discovery.
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