
Bayesian Inference Approach for Entropy Regularized Reinforcement Learning
with Stochastic Dynamics

Argenis Arriojas1 Jacob Adamczyk1 Stas Tiomkin2 Rahul V Kulkarni1

1Department of Physics, University of Massachusetts Boston, Boston, Massachusetts, USA
2Department of Computer Engineering, San Jose State University, San Jose, California, USA

Abstract

We develop a novel approach to determine the op-
timal policy in entropy-regularized reinforcement
learning (RL) with stochastic dynamics. For de-
terministic dynamics, the optimal policy can be
derived using Bayesian inference in the control-
as-inference framework; however, for stochastic
dynamics, the direct use of this approach leads
to risk-taking optimistic policies. To address this
issue, current approaches in entropy-regularized
RL involve a constrained optimization procedure
which fixes system dynamics to the original dy-
namics, however this approach is not consistent
with the unconstrained Bayesian inference frame-
work. In this work we resolve this inconsistency by
developing an exact mapping from the constrained
optimization problem in entropy-regularized RL
to a different optimization problem which can be
solved using the unconstrained Bayesian inference
approach. We show that the optimal policies are
the same for both problems, thus our results lead to
the exact solution for the optimal policy in entropy-
regularized RL with stochastic dynamics through
Bayesian inference.

1 MOTIVATION

Reinforcement learning (RL) provides a promising frame-
work for training artificial agents for goal-oriented tasks
through trial and error interaction with the environment [Sut-
ton and Barto, 2018, Zhu et al., 2020]. Specifically, the agent
receives rewards in the process of solving a task according
to a predefined reward function and this interaction informs
the agent’s behavior policy. The aim is to determine the
optimal policy which, in the original formulation of rein-
forcement learning, maximizes the expected accumulated
reward. The problem of RL can be addressed in the model-

based [Atkeson and Santamaria, 1997, Boone, 1997, Abbeel
and Ng, 2005, Berkenkamp et al., 2017, Asadi et al., 2018,
Corneil et al., 2018, Lowrey et al., 2019] or model-free set-
tings [Watkins and Dayan, 1992, Hasselt, 2010, Mnih et al.,
2015, Kiumarsi et al., 2018]. In the former case, the agent
has access to a model of the environment and in the latter
case, it has access only to samples from the environment.
Approaches based on RL have led to remarkable successes
in robotics [Zhu et al., 2020], board games [Silver et al.,
2018, Schrittwieser et al., 2020], and many other fields [Cao
et al., 2021, Yu et al., 2019, Charpentier et al., 2021].

A more general framework is entropy-regularized rein-
forcement learning, which considers reward accumulation
with an entropy-based regularization term [Haarnoja et al.,
2017, 2018b, Nachum et al., 2017]. The entropic regular-
ization term corresponds to a control cost associated with
the control policy (relative to a prior policy) and leads to
stochastic optimal policies that are robust to environmental
changes [Eysenbach and Levine, 2021] and show improved
exploration [Haarnoja et al., 2017]. Moreover, entropy regu-
larization has been shown to improve convergence rates in
policy gradient methods [Mei et al., 2020, Cen et al., 2022].
This generalization of RL towards entropy-regularized RL
also makes connections to statistical mechanics, given that
the free energy is given by a similar combination of energy
and entropy terms. A series of recent works have revealed
new connections between non-equilibrium statistical me-
chanics and entropy-regularized RL, which have led to new
algorithms and applications [Rose et al., 2021, Das et al.,
2021, Arriojas et al., 2023a].

One of the advantages of entropy-regularized RL is that it en-
ables us to recast the problem of reward maximization into
a problem of Bayesian Inference [Todorov, 2008, Rawlik
et al., 2012, Kappen et al., 2012, Levine, 2018]. This insight
brings the rich arsenal of tools in Bayesian inference [Koller
and Friedman, 2009] to control and reinforcement learn-
ing, motivating the development of the control-as-inference
framework [Rawlik et al., 2012, Kappen et al., 2012, Levine,
2018]. An important aspect of this approach is that, in the
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case of stochastic dynamics, an optimal control-as-inference
solution involves inferring both a posterior policy as well as
a posterior transition dynamics. Correspondingly, a direct
application of this approach for stochastic dynamics leads
to the “optimistic agent problem” (see Fig. 1), in which
the agent unreasonably assumes for the optimal solution
that it can control not only its policy, but also the system
dynamics. In practice, system dynamics is typically fixed
(e.g. a robot with fixed physical parameters) and not within
the agent’s control. In such cases, the policy derived using
the control-as-inference framework for entropy-regularized
RL is sub-optimal. This problem of obtaining the optimal
policy using Bayesian inference while imposing the con-
straint to keep the dynamics fixed is an open problem in
entropy-regularized RL, which motivates the current work.

In this work, we take a step towards resolving this problem
by showing how to solve the constrained dynamics optimiza-
tion problem in entropy-regularized RL using a Bayesian
inference-based solution. We also develop a model-free algo-
rithm based on the results derived and validate our approach
in tabular settings. A simple example illustrating the ap-
plication of our approach is shown in Fig. 1. The insights
obtained can also be used to develop novel approaches to ad-
dress model-based and model-free problems with dynamics
shift. Our main contributions include the following:

• a formal mapping of the optimization problem
in entropy-regularized RL with fixed (constrained)
stochastic dynamics to a different problem for which
the optimization is unconstrained with respect to the dy-
namics. The derived mapping ensures that the optimal
policy is identical for the two optimization problems.

• an algorithm for obtaining the optimal policy for
entropy-regularized RL with an arbitrary fixed dynam-
ics (i.e. not necessarily constrained to original dynam-
ics) which can also be applied to problems involving
distribution shift for system dynamics.

2 RELEVANT WORK

Entropy-regularized RL can be seen as a particular case of
the general problem of minimization of a free energy func-
tional, wherein energetic quantities such as reward, value,
and energy, are combined with entropic quantities such as
entropy, cross entropy, and mutual information. Previously,
the utility of this combination has been studied from the
perspectives of i) cognitive science [Friston, 2009, Friston
et al., 2006], ii) information theory [Tishby and Polani, 2011,
Tiomkin and Tishby, 2017], iii) control [Mitter and New-
ton, 2000, Todorov, 2008, Watson et al., 2021], iv) robotics
[Toussaint, 2009], v) reinforcement learning [Nachum et al.,
2017, Haarnoja et al., 2018b, Levine, 2018]. The preced-
ing is only a short list of prior work that invoke of the free
energy formalism, which provides the reader with the big

Figure 1: Demonstration of the optimistic agent problem in a cliff
environment with stochastic dynamics. Left: The maze layout
showing the force of wind in six states. At each time step the
agent must choose a direction to walk and the wind may push in
one direction with some probability which is determined by wind
direction and intensity. Here there is 35% chance to move left,
35% to move down and 30% for no move due to wind. Each time
step has fixed penalization r = −1. Red crosses represent traps
with r = −5, and the golden star is the goal with r = 0. The MDP
is such that the agent transitions to the start state (green circle) after
stepping into a trap or the goal. Center: Policies computed with
our proposed biasing method (bottom) and without biases (top),
with β = 50. Right: The corresponding state visitation distribution
for each policy. The optimistic agent fails to predict how often
it will fall off the cliff, while the optimal solution has realistic
expectations.

picture and puts the current work in the broader context.

The most relevant prior work to the current research is in
the setting of RL [Rawlik et al., 2012, Nachum et al., 2017,
Haarnoja et al., 2018b, Levine, 2018]. In particular, the
question that motivates our work, i.e. how to find the op-
timal policy using the framework of control-as-inference
for the case of stochastic dynamics, has been clearly dis-
cussed in [Levine, 2018]. As noted in [Levine, 2018] the
standard solution to this question within the formalism of
control-as-inference results in a policy that leads to risk-
taking behaviour which is undesirable. In this work we
develop a novel mapping that leads to the derivation of an
exact solution for entropy-regularized RL within the frame-
work of control-as-inference in the general case of stochastic
dynamics.

3 PRELIMINARIES

In this section, we overview the standard setting of Markov
decision processes (MDP) in RL. Then, we discuss its exten-
sion to entropy-regularized RL, providing both the classical
perspective of control-as-inference and the free energy per-
spective. The latter emphasises the usefulness of the proper-
ties of free energy for the derivation of the optimal solution.
Then, we overview an existing analytical solution (in the
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long-time limit) for the general case of entropy-regularized
RL with unconstrained stochastic dynamics [Arriojas et al.,
2023a], which we apply in Section 4 to solve the general
case of constrained/fixed stochastic dynamics.

3.1 MARKOV DECISION PROCESSES IN RL

In the following, we introduce the notation for the standard
MDP formulation for RL [Puterman, 2014]. We will focus
on the undiscounted finite horizon version with horizon T .
The state of the system is denoted by s ∈ S and actions
are denoted by a ∈ A. The action of the agent is specified
by the policy function π(a|s) which represents the proba-
bility of choosing action a, given that the state is s. The
initial state distribution is denoted by µ(s). In the following,
we take µ to be deterministic, i.e. we fix the initial state.
The dynamics is determined by the state-transition function
p(s′|s, a) which denotes the probability of transitioning to
state s′ given that action a was chosen when in state s. The
reward function r(s, a) specifies the reward received after
choosing action a in state s.

The objective in standard RL is to find the optimal policy
that maximizes expected rewards collected by the agent, i.e.

π∗ = arg max
π

E

[
T∑
t=1

r(st, at)

]
, (1)

where the expectation is taken over the possible trajectories
generated by following π, and subject to the problem’s dy-
namics. The summation represents the sequence of steps
that form a trajectory.

3.2 ENTROPY-REGULARIZED RL

In entropy-regularized RL [Haarnoja et al., 2018a, Levine,
2018], the preceding objective function is modified to in-
clude an entropic regularization term, such that the optimal
policy is given by

π∗ = arg max
π

E

[
T∑
t=1

r(st, at)−
1

β
log

(
π(at|st)
π0(at|st)

)]
(2)

where β is an inverse temperature parameter and π0 denotes
the prior policy distribution. In the special case of maximum
entropy RL (MaxEnt RL), the prior policy is taken to be
the uniform distribution over actions [Levine, 2018]. In the
above formulation, it is implicit that the system dynamics
remains fixed to the original dynamics p(s′|s, a) and the
optimization is over the policy distribution π. Furthermore,
we note that, without any loss of generality, we will consider
reward functions such that r(s, a) ≤ 0, since a constant
offset for the reward function for all state-action pairs does
not impact the optimal policy [Levine, 2018].

Let us now consider the preceding optimization problem
from the trajectory perspective. Let τ := {(st, at)}Tt=0 de-
note a trajectory and (with a slight abuse of notation) let p(τ )
denote the corresponding trajectory distribution with the dy-
namics fixed to the original system dynamics. Given the
initial state distribution µ(s1) and a control policy π(at|st),
the trajectory distribution can be expressed as

p(τ) = µ(s1)
T∏
t=1

p(st+1|st, at)π(at|st). (3)

Note that p(st+1|st, at), π(at|st) and µ(s1) are all normal-
ized probability distribution functions. When the control
policy is taken to be the prior policy π0(at|st), the corre-
sponding prior trajectory distribution will be denoted by
p0(τ). Furthermore, let us denote the energy of a trajectory
τ as

E(τ) = −
T∑
t=1

r(st, at).

It is readily seen that the optimization problem in Eqn. (2)
is equivalent to determining the trajectory distribution p(τ)
that minimizes the objective function:

J [p(τ)] = Eτ∼p(τ) [E(τ)] +
1

β
H(p(τ)|p0(τ)) (4)

whereH(p(τ)|p0(τ)) denotes the relative entropy between
the prior and controlled trajectory distributions:

H(p(τ)|p0(τ)) =
∑
τ

p(τ) log
p(τ)

p0(τ)

3.3 CONTROL-AS-INFERENCE APPROACH

To connect to the control-as-inference approach, let us con-
sider a general controlled trajectory distribution denoted by
q(τ). In contrast with p(τ) in Eqn. (3), for q(τ) the system’s
transition dynamics is not constrained to be the same as the
original dynamics. In this more general setting, the objective
function is the same as in Eqn. (4) but with p(τ) replaced
by the unconstrained trajectory distribution q(τ):

J [q(τ)] = Eτ∼q(τ) [E(τ)] +
1

β
H(q(τ)|p0(τ)). (5)

We will refer to the problem of minimizing this objective
J [q(τ)] as the unconstrained optimization problem.

The solution of the unconstrained optimization problem is
related to the concept of free energy. Given a prior trajectory
distribution p0(τ), the corresponding free energy is defined
as

F
.
= − 1

β
logZ, where Z .

=
∑
τ

p0(τ)e−βE(τ).
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The connection to the unconstrained optimization prob-
lem is given by the relationship [Mitter and Newton, 2000,
Todorov, 2008, Theodorou and Todorov, 2012]:

F = inf
q(τ)

[
〈E〉q +

1

β
H(q(τ)|p0(τ))

]
. (6)

Therefore the free energy F above yields the solution to the
unconstrained optimization problem.

Furthermore, the corresponding optimal trajectory distribu-
tion q(τ) = q∗(τ) is given by [Mitter and Newton, 2000,
Todorov, 2008, Theodorou and Todorov, 2012]

q∗(τ) =
p0(τ)e−βE(τ)∑
τ p0(τ)e−βE(τ)

(7)

We will refer to the preceding result for the optimal trajec-
tory distribution as the inference approach solution.

This result provides insight into the control-as-inference
framework. This approach [Ziebart et al., 2010, Toussaint,
2009, Levine, 2018] involves the introduction of the binary
random variable Ot such that

p(Ot = 1|st, at) = exp(βr(st, at)) (8)

This choice is motivated by the observation that, conditioned
on optimality (i.e. Ot = 1 for all t), the posterior trajectory
distribution p(τ |O1:T ) exactly corresponds to the optimal
control distribution in Eqn. (7). Correspondingly, the pos-
terior policy derived using this Bayesian approach is the
optimal policy for the unconstrained optimization problem.

3.4 ENTROPY-REGULARIZED RL VIA
UNCONSTRAINED OPTIMISATION

One of the advantages of the inference approach solution is
that, in the long-time limit, it is possible to derive analyti-
cal expressions for the optimal policy and optimal dynam-
ics. Recent work [Arriojas et al., 2023a], using approaches
from large deviation theory, has shown how the optimal dy-
namics and policy can be expressed in terms of the Perron-
Frobenius eigenvalue (e−θ) and corresponding left eigenvec-
tor (u(s, a)) of a sub-stochastic matrix (P̃ ) whose elements
are given by

P̃(s′,a′),(s,a) = p(s′|s, a)π0(a′|s′)eβr(s,a)

Using this framework, it can be shown [Arriojas et al.,
2023a] that the posterior (i.e. optimal) transition dynam-
ics p∗ is related to the original transition dynamics by:

p∗(s′|s, a) ∝ p(s′|s, a)eβV
∗(s′) (9)

where V ∗(s) is the optimal value function and the propor-
tionality constant (for each s, a) is determined by normal-
ization.

Let us now consider the constrained optimization problem,
with the objective function defined by Eqn. (4), i.e. the tran-
sition dynamics is fixed to the original dynamics p(s′|s, a).
For the case of deterministic transition dynamics, the so-
lution to the constrained optimization problem is provided
by the inference approach solution. This can be seen from
Eqn. (9), which shows that, for the case of deterministic
dynamics, the optimal dynamics is the same as the original
dynamics. However, for the case of stochastic dynamics,
the same result indicates that the optimal dynamics is, in
general, different from the original dynamics. Thus, the con-
straint that the optimal dynamics is the same as the original
dynamics is satisfied by the inference approach solution for
the case of deterministic dynamics but not for stochastic
dynamics.

3.4.1 The optimistic agent problem in the inference
approach solution

The results for the inference approach solution outlined
in Eqn. (9) define the posterior transition dynamics that is
necessary to achieve optimal control. Although this result
can be useful in scenarios where the transition dynamics can
be controlled, in many cases such control is not feasible. In
such cases, the resulting policy derived from the inference
approach is no longer optimal, since the agent optimistically
expects that unfavorable transitions are unlikely [Levine,
2018] (see Fig. (1)).

An additional perspective on the optimistic agent prob-
lem comes from considering the backup equations for
the optimal soft value functions (assuming a prior policy
π0(a|s)) [Haarnoja et al., 2018b]

Q(s, a) =r(s, a) +
∑
s′

p(s′|s, a)V (s′), (10)

V (s) =
∑
a

π∗(a|s)
[
Q(s, a)− 1

β
log

π∗(a|s)
π0(a|s)

]
. (11)

Here the constraint is implicitly imposed in Eqn. (10),
where the original dynamics is directly used. Note that
the optimism problem does not arise when we consider
the equations above. However, when we consider the
inference-based approach we get the following backup equa-
tions [Levine, 2018]

Q(s, a) = r(s, a) +
1

β
log
∑
s′

p(s′|s, a)eβV (s′), (12)

V (s) =
1

β
log
∑
a

π0(a|s)eβQ(s,a). (13)

We note that the backup equation forQ(s, a) in the inference
approach (Eqn. (12)) is equivalent to Eqn. (10) only for the
case of deterministic dynamics. For stochastic dynamics,
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the averaging over exponentiated future rewards [Levine,
2018, Levine and Koltun, 2013] in Eqn. (12) is the source
of optimistic behavior by the agent.

In summary, two sources of the optimistic agent problem for
stochastic dynamics in the inference approach to entropy-
regularized RL are: 1) averaging over exponentiated rewards
in the value function computation and 2) posterior transition
dynamics being different from the original dynamics. To re-
solve this problem, we develop an approach that ensures that
(i) the posterior transition dynamics is fixed to the original
dynamics and (ii) the backup equations, even though they
involve averaging over exponentiated future rewards, reduce
to the entropy-regularized RL backup equations Eqns. (10)
and (11). Note that there can be other sources of optimistic
behavior in finite-horizon control-as-inference approaches
(as discussed in [Watson et al., 2021]), however these issues
do not apply for the current formulation and thus are not
considered in this work.

Given that the unconstrained entropy-regularized RL prob-
lem for stochastic dynamics can be solved exactly using the
inference approach, we ask if it is possible to similarly solve
the constrained entropy-regularized RL problem. In the next
section, we present an approach to solve the constrained
entropy-regularized RL problem through a transformation
of the unconstrained approach.

4 CONSTRAINED OPTIMIZATION VIA
UNCONSTRAINED INFERENCE

The core idea underlying our approach for constrained op-
timization via unconstrained inference is outlined in the
following. The results from previous section show that, for
the case of stochastic dynamics, the unconstrained inference
approach solution leads to posterior dynamics that differs
from the original dynamics. This implies that, if we want
to use the unconstrained inference approach to obtain the
solution for constrained entropy-regularized RL, it has to
be applied to a different problem. Our approach is to deter-
mine the parameters for this different problem such that the
optimal policy for the unconstrained inference problem is
identical to the optimal policy of the original constrained
optimization problem.

4.1 MAPPING TO CONSTRAINED
OPTIMIZATION

Let us begin by considering the general controlled trajec-
tory distribution denoted by q(τ). In contrast with p(τ) in
Eqn. (3), the system dynamics is not constrained to be the
same as the original dynamics for q(τ). As noted in the pre-
ceding section, the corresponding unconstrained objective
function J [q(τ)] is minimized by the inference approach
solution.

Figure 2: Left: an example maze with traps placed randomly, and
wind field blowing in random directions and intensity. Wind dy-
namics is similar to that of Fig. 1. Each time step has fixed penal-
ization r = −1. Red crosses represent traps with r = −2, and
the golden star is the goal with r = 0. The MDP is such that the
agent transitions to the start state (green circle) after stepping into
a trap or the goal. Right: Shows the state distribution induced by
the optimal policy which is computed using the proposed method.
This result has been validated by comparison to the ground truth
solution computed with value/policy iteration.

In the following, we will show how, for specific parame-
ter choices for the dynamics and reward function, the un-
constrained objective function J [q(τ)] exactly reduces to
objective function for constrained entropy-regularized RL
J([p(τ)]) (Eqn. (4)).

We begin by considering a modified unconstrained problem
with a biased transition dynamics and biased reward func-
tion, pb(s′|s, a) and rb(s, a), respectively, which are given
by

pb(s
′|s, a) = b(s′|s, a) p(s′|s, a) (14)

rb(s, a) = r(s, a) + δ(s, a) ≤ 0 ∀ s, a, (15)

with b(s′|s, a) > 0 s.t.
∑
s′ pb(s

′|s, a) = 1. For a given
choice of biasing functions, we can express the correspond-
ing unconstrained objective function, using Eqn. (6), as:

F = inf
q(τ)

[
〈E〉q − 〈δ〉q+

1

β

〈
log

1

b

〉
q

+
1

β
H(q(τ)|p0(τ))

]
(16)

with δ(τ)
.
=
∑T
t=0 δ(st, at), b(τ)

.
=
∏T
t=0 b(st+1|st, at)〈

log 1
b

〉
q

=
∑
τ q(τ) log 1

b(τ) , and 〈δ〉q =
∑
τ q(τ)δ(τ).

Since we want the inference approach solution to be identi-
cal to the solution for constrained entropy-regularized RL,
the first condition is that the optimal dynamics for the biased
model should be the same as the original dynamics. Using
Eqn. (9), the condition that the optimal dynamics for the
biased model must be the same as the original dynamics
imposes the constraint equation

∀s, a : b(s′|s, a) ∝ e−βVb(s
′) (17)

with the proportionality constant determined by normaliza-
tion of the distribution function for transition dynamics.
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We can interpret the above equation as follows: for any given
choice of biased reward function rb(s, a), this equation de-
termines the biasing function for the dynamics b(s′|s, a)
which is such that the optimal dynamics for the biased prob-
lem is the same as the original dynamics. Thus for each
choice of rb(s, a) for which the above equation has a solu-
tion, we have identified biased dynamics parameters which
satisfy the constraint on the dynamics. Now we can ask the
following question:

Within this set of biased dynamics and biased reward func-
tions, can we identify the choice of reward function which
gives rise to the same optimal policy as constrained entropy-
regularized RL?

Remarkably, we can derive a simple constraint equation that
answers this question. The basic insight is that we need a
condition such that the objective function for the biased un-
constrained problem becomes identical to the objective func-
tion for constrained entropy-regularized RL. Correspond-
ingly, we focus on the case where the cost contributions due
to b and δ cancel each other out in Eqn. (16). This can be
achieved by choosing δ(s, a) such that

βδ(s, a) = −
∑
s′

p(s′|s, a) log b(s′|s, a)

= DKL(p(·|s, a)||pb(·|s, a))

(18)

As before, let p(τ) denote the trajectory distributions subject
to the constraint that the dynamics is fixed to the original
dynamics of the problem, such that the variation among dif-
ferent trajectory distributions is entirely due to the policy π.
After applying both constraints in Eqns. (17) and (18), Eqn.
(16) gets simplified to

Fq = inf
p(τ)

[
〈E〉p +

1

β
H(p(τ)|p0(τ))

]
, (19)

which is the free energy objective to be minimized for the
constrained problem (Eqn. (4)). In both cases, the optimiza-
tion is to be carried out by varying the policy π, and the
preceding derivation shows that for every policy π, the cor-
responding objective function (i.e. sum of energetic and
entropic costs) is the same for constrained and the uncon-
strained optimization problems, for a specific choice of
biasing functions. Correspondingly, the optimal policy dis-
tribution is identical for the two problems. Thus we have
shown that, assuming the constraint Eqns. (17) and (18) can
be solved, the constrained optimization problem is identical
to an unconstrained optimization problem for biased dynam-
ics and biased reward function, which can then be solved
using the inference approach.

4.2 EQUIVALENCE OF BACKUP EQUATIONS

The previous section has derived conditions which, when
satisfied, lead to the solution of the constrained entropy-
regularized RL problem using the inference approach. It

is instructive to consider the equivalence between the two
optimization problems by considering the corresponding
backup equations.

Using Eqn. (9), the inference approach backup equation
(Eqn. (12)) can be recast as

Q(s, a) = r(s, a) +
∑
s′

p∗(s′|s, a)V (s′)

− 1

β
DKL(p∗(·|s, a)||p(·|s, a)), (20)

Comparing with Eqn. (10), we see that the two equations
are equivalent only when the optimal dynamics p∗(s′|s, a)
is the same as the original dynamics p(s′|s, a) and this is
true only for the case of deterministic dynamics.

When we consider the biased version of the unconstrained
problem, Eqn. (20) becomes

Q(s, a) = r(s, a) +
∑
s′

p∗(s′|s, a)V (s′)

+ δ(s, a)− 1

β
DKL(p∗(·|s, a)||pb(·|s, a)). (21)

We now consider biasing functions that satisfy the constraint
in Eqn. (18) which, when substituted in Eqn. (21), gives

Q(s, a) = r(s, a) +
∑
s′

p∗(s′|s, a)V (s′)

− 1

β
DKL(p∗(·|s, a)||p(·|s, a))

+
1

β

∑
s′

[p∗(s′|s, a)− p(s′|s, a)] log b(s′|s, a). (22)

Finally, we note that the condition in Eqn. (17) imposes
the constraint p∗ = p (i.e. the biased optimal dynamics is
the same as the original dynamics), using which Eqn. (22)
turns into Eqn. (10). This shows that by solving the biased
unconstrained optimization problem in this framework, with
the bias parameters chosen to satisfy the constraint equa-
tions, we effectively solve the original, constrained version
of entropy-regularized RL.

In summary, the inference approach backup equations for
biased dynamics reduce to the backup equations for con-
strained entropy-regularized RL for the optimal policy,
thereby showing that both approaches lead to the same soft-
value functions Q(s, a) and V (s).

4.3 OPTIMIZATION FOR ARBITRARY TARGET
DYNAMICS

The approach developed in previous sections can be general-
ized to the case where the transition dynamics is constrained
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Figure 3: Agent performance in various standard benchmark dy-
namics as a function of iterations in the biasing process by the
proposed method. At iteration 0, no biases are applied and the
obtained solution corresponds to the optimistic agent (the existing
optimal solution by inference). Transition dynamics are obtained
from discretized state observations. Then, Eqn. (25) is used to
find the optimal solutions. See Algorithm (1) and Table (S1) in
Appendix A for more details.

to some arbitrary target distribution p̂(s′|s, a) (not neces-
sarily the original dynamics). Specifically, the constrained
optimization problem now corresponds to backup equations
as given in Eqns. (10) and (11), but with original dynamics
p(s′|s, a) replaced by p̂(s′|s, a). This situation can be rele-
vant when the agent’s original dynamics either changes due
to some failures or can be changed by the agent to specific
target dynamics, corresponding to which we would like to
determine the optimal policy.

It is readily seen that this scenario, which corresponds to
a distribution shift in the transition dynamics, can be ad-
dressed by modifying the constraint equations (Eqns. (17)
and (18)) as follows

b(s′|s, a) ∝ p̂(s′|s, a)

p(s′|s, a)
e−βVb(s

′) (23)

βδ(s, a) = DKL(p̂(·|s, a)||pb(·|s, a)). (24)

4.4 ALGORITHMS AND EXPERIMENTAL
VALIDATION

In order to determine the optimal policy in constrained
entropy-regularized RL using the inference approach, we
need to determine the corresponding biased dynamics and
rewards. We have developed a procedure to determine the
biasing functions b(s′|s, a) and δ(s, a) through an iterative
approach which receives π0(a|s), p(s′|s, a), p̂(s′|s, a), and
r(s, a), and calculates b(s′, a, s) and δ(s, a) by iteratively
solving the constraint equations. Details are provided in
Algorithm (1). The basic idea of the algorithm is to itera-
tively solve the unconstrained MDP problem, while updat-
ing the biasing functions for dynamics and rewards through
Eqn. (25). The algorithm implements a fixed-point iteration
method on the biasing functions b and δ(b) (see Eqs. (23)
and (24)), such that

p
(n+1)
b (s′|s, a) =

1

C
p̂(s′|s, a)e−βV

(n)
b (s′) (25)

Algorithm 1 Find Biases for dynamics and rewards

Parameters: inverse temperature β, update rate α
Input: π0(a|s), p(s′|s, a), p̂(s′|s, a), r(s, a)
Output: b(s′|s, a), δ(s, a), ∆
1. Initialize b(s′|s, a)← 1 and δ(s, a)← 0
2. Initialize pb ← p and rb ← r
repeat

3. V, p∗ ← Unconstr(β, rb, pb, π0)
4. pb(s′|s, a)← p̂(s′|s, a)e−βV (s′) See Eqn. (25)
5. Normalize pb(s′|s, a)
6. δ(s, a)← β−1DKL(p̂(·|s, a)||pb(·|s, a))

See Eqn. (24)
7. ∆← max(s,a)[r(s, a) + δ(s, a)]
8. rb(s, a)← r(s, a) + δ(s, a)−∆

until convergence p∗ → p̂
function UNCONSTR(β, r(s, a), p(s′|s, a), π0(a|s))

a. P̃ (s′, a′|s, a)← π0(a′|s′)p(s′|s, a) exp(βr(s, a))
b. get dominant eigenvalue e−θ and left eigenvector u
c. compute eβV (s) ←

∑
a π

0(a|s)u(s, a)
d. p∗(s′|s, a)← from Eqn. (9)
return: V , p∗

end function

where V (n)
b is computed for the biased problem with p(n)b

and r(n)b ; and C is a normalization constant.

Convergence is tested by computing the KL divergences
between optimal and target dynamics. The convergence is
considered attained when the following condition is true:

max
(s,a)

[DKL(p∗(·|s, a)||p̂(·|s, a))] < 10−6

To solve the unconstrained optimization problem in entropy-
regularized RL using Bayesian inference, we have used the
approach developed in Arriojas et al. [2023a], where the
optimal value functions are obtained from the dominant
left eigenvector u(s, a) of the tilted transition matrix P̃ for
the MDP. Algorithm (1) summarizes this process in the
Unconstr function.

We have tested this algorithm for various environments as
summarized at Figs. (2) and (3). The experimental details
are provided in the Appendix. To test the algorithm on the
scenario of an arbitrary target dynamics, we set out a model-
based proof-of-concept experiment where a prior transition
dynamics is defined for which the optimal policy can be
obtained. We then introduce a change in the dynamics repre-
senting a failure mode in the agent. In the example presented
in Fig. (4), the agent can no longer walk directly towards the
goal, but can still take advantage of the wind field to move in
the desired direction. With this setting we were able to find
the optimal policy for the altered dynamics by following the
procedure outlined to determine the corresponding biases to
the prior transition dynamics and reward function.

Finally, a model-free version that works in the tabular set-
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Figure 4: A windy environment used to test the feasibility of the
method for forcing a target transition dynamics, different from the
initial/prior transition dynamics. Left: The maze layout. Center: the
solution to the original problem. Right: the new optimal solution to
the modified problem where the action “up” has been suppressed
from the transition dynamics.

ting has been developed, wherein the biasing functions are
learned through experience, along with the intermediate poli-
cies (see Appendix B and Algorithm (S1)). The environment
used is the same shown in Figure (1) (windy cliff environ-
ment). Our approach utilizes a single experience dataset
collected from the original dynamics and the prior policy
(uniform policy) throughout the whole process, making it
an off-policy approach. Figure (5) shows the performance
evaluation during the training process for several biasing
iterations. As more iterations are completed, the optimistic
behavior is removed. The proposed approach successfully
leads to the optimal policy for constrained optimization.

5 DISCUSSION

Control-as-inference is a powerful formalism for solving
control problems using tools from Bayesian inference. Pre-
viously, the advantage of this formalism has been demon-
strated by generalization of existing methods and deriva-
tion of new sophisticated algorithms. However, for the case
of stochastic dynamics, this framework could not be di-
rectly applied to obtain the optimal solution for entropy-
regularized RL. This work closes this gap in the field and
provides a novel approach to the problem. Our solution can
provide an alternative to standard approaches based on struc-
tured variational inference [Levine, 2018]. In general, such
approaches provide variational bounds, whereas our results
show that there is a mapping to a problem that has an exact
solution.

The proposed solution not only adds to the formalism of
control-as-inference by providing an analytical solution in
the general case, but it also opens doors for new research di-
rections and applications. For example, our method enables
us to calculate the optimal policy and to choose optimal
stochastic dynamics from a set of possible dynamics. A
particular application of such optimal choice of dynamics
can be, for example, hierarchical control where the upper
level (manager) signals to the lower level (worker) to change
dynamics (e.g., to update system dynamics to different fric-
tions coefficients and/or different control gains). Another
natural application can be self-recovering robots from fail-

Figure 5: Progression of the learning process in a model-free set-
ting. Biases are learnt from experience along with the policies. The
environment used is the same as in Figure (1). An initial policy
is learnt without any biasing, which results in an optimistic agent.
Then biases are successively learnt and new policies obtained. As
expected, the optimistic policy has sub-optimal performance. After
learning the biases, the approach recovers the optimal policy.

ures, for which the ability to find a policy that works well
under distribution shift of the dynamics would be useful.
The results derived provide a novel approach for addressing
such issues.

The scope of this work is to develop a novel probabilistic
inference-based solution to entropy-regularized RL with
stochastic dynamics, which we demonstrate in various
model-based and model-free environments. We defer to
future work the extension towards high-dimensional con-
tinuous spaces via function approximators. Another avenue
for future work is a study of the theoretical properties of
the iterative coupled equations for determining the biasing
functions b and δ. We do not yet have a theoretical analysis
for their convergence, but we do provide empirical evidence
for various stochastic dynamics models.

Finally, we note that the approach developed in this work can
be applied more generally (i.e beyond entropy-regularized
RL) as outlined in the following. Consider a setting wherein
the solution to an unconstrained optimization problem is
readily accessible (e.g. via Bayesian inference), however
the problem of interest requires constrained optimization.
Our approach considers a broader class of optimization
problems which, for a specific parameter choice, reduce to
the original system of interest. We then ask the question:
Can we determine a (different) set of parameters such that
a) the optimal solution to the unconstrained optimization
problem satisfies the constraints of the original optimization
problem, and b) there is a one-to-one mapping between
objective functions for the two optimization problems? It
will be of interest to see if the approach presented here
for solving constrained optimization problems by mapping
them to unconstrained problems that can be analyzed via
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inference can also be applied to other settings involving
a more general class of objective functions [Hazan et al.,
2019, Zhang et al., 2020].
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